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Recently, it has been shown that the radial stability of a light ring (LR) in a spacetime generated by a
stationary, axisymmetric, asymptotically flat object with a Z2 symmetry determines the possibility and
radial stability of timelike circular orbits (TCOs) around the LR. In this paper, we generalize this result by
also considering the vertical (angular) stability of the orbits through the study of the radial and vertical
epicyclic frequencies. We show that the vertical stability of the LR only determines the vertical stability of
the TCOs around it. A relation between the sum of the squared epicyclic frequencies and the Ricci tensor is
also provided. With such relation, we show that objects with radially and vertically unstable LRs (TCOs)
violate the null (strong) energy condition.
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I. INTRODUCTION

The study of the structure of null and timelike circular
orbits around a given generic ultracompact object is
important to access several of its phenomenology proper-
ties. These properties can, in principal, be very different
from the ones found for the paradigmatic General
Relativity black hole (BH)—the Kerr BH [1]. Such dif-
ferences are opportune to know given the recent measure-
ments of gravitational waves (GWs) by the LIGO/Virgo/
KAGRA Collaboration [2–5] and the shadow and lensing
of light around the M87* and Sgr A* supermassive BHs
provided by the EHT Collaboration [6,7]. Furthermore,
with the advances towards the construction and implemen-
tation of the future Laser Interferometer Space Antenna
(LISA), designed to be able to detect GW signals with
much lower frequencies than the LIGO/Virgo/KAGRA
Collaborations, such as the ones produced by extreme
mass-ratio inspirals (EMRIs) [8], it will be possible to
probe the structure of timelike circular orbits around these
ultracompact objects, that can be BHs or other ultra-
compact objects that could mimic a BH—e.g., scalar
and vector boson stars [9–16].
To get a sense of what structures of circular orbits one

can find, we start by recalling three remarkable works
developed recently in [17–19]. In the first work [17], the
authors showed, using a topological argument, that a
generic stationary, axisymmetric, and asymptotically-flat
ultracompact horizonless object must have at least two null

circular orbits—otherwise known as light rings (LRs)—
where one of them is stable. In the second work [18], the
authors used a similar topological argument as in the
previous one to prove that a stationary, axisymmetric,
asymptotically-flat, and nonextremal BH must have at least
one unstable LR outside of its event horizon. In [19] it was
shown that by using the previous two results together with a
careful analysis of the boundary behavior of some key
quantities, it is possible to further conclude that, for both
types of ultracompact objects mentioned (with or without
an horizon), if the object possesses an ergoregion then at
least one LR must exist outside its ergoregion. All these
results define precisely the structure of null circular orbits
for generic (within the assumptions mentioned) ultracom-
pact objects, with or without a horizon.
A natural question to ask now is the following: does the

existence of a LR establish any structure for timelike circular
orbits (TCOs) around it? An answer to this question was
given in [20], where it was shown that, for a generic
ultracompact object with the same assumptions as mentioned
previously, together with aZ2 symmetry fixing an equatorial
plane, the radial stability of the existing LRs determines the
localization and radial stability of TCOs in their vicinity.
However, this work only mentions and studies the radial
stability of the circular orbits, and it leaves open an
opportunity to perform a more complete study where the
vertical stability of the circular orbits is also included.
In this paper, we shall take the aforementioned oppor-

tunity. For that, we will study the radial and vertical
epicyclic frequencies of null and timelike particles follow-
ing circular orbits on a spacetime generated by a generic*jorgedelgado@ua.pt
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ultracompact object with the same assumptions mentioned
in the previous paragraph. These epicyclic frequencies are
computed by perturbing the circular orbits in the radial and
vertical directions, and are tightly connected with the
stability of the orbits. With them, we shall arrive at the
same result present in [20], together with its generalization,
where we also look at the vertical stability of the orbits.
Throughout the first part of this paper, we do not impose

any further assumption upon the ultracompact object in
question. The generic ultracompact object may or may not
be a BH, and it is a solution of an undefined set of equations
of motion obtained from an undefined theory of gravity.
However, it is expected that the matter which composes the
object obeys the energy conditions. Therefore, in the
second part of this paper, we establish connections between
the epicyclic frequencies, and consequently the structure of
circular orbits, with the energy conditions.
The first study of its kind was done in [21], where the

authors found that the sum of the squared epicyclic
frequencies of TCOs around a Maclaurin spheroid
[22,23] in the Newtonian regime, could be written only
in terms of the angular velocity of the timelike particles, Ω,
and the density of the spheroid, ρ, as [21],

ω2
r þ ω2

θ ¼ 2Ω2 þ 4πGρ; ð1Þ

where ωr and ωθ are the radial and vertical epicyclic
frequencies, respectively, and G is Newton’s constant. In
the same work, the authors also found that, for the case of a
Kerr BH, the sum vanishes when computed at the LR.
A proof was developed in [24] showing that, for a

very generic static, axisymmetric, and asymptotically-flat
object, the sum of the squared epicyclic frequencies of
TCOs could be written at the expense of a linear combi-
nation of the components of the Ricci tensor [24],

ω2
r þ ω2

θ ¼ ½Rtt þΩ2Rφφ� þ
Ω2

2grr

dgφφ
dr

1

r̃2
dr̃2

dr2
; ð2Þ

where, r̃2 ¼ −gφφ=gtt. They also found, through the above
equation, that if the object obeys the strong energy
condition (SEC) then ω2

r þ ω2
θ > 0.

In the second part of this paper, we shall generalize the
work done in [24] by considering a more generic stationary
ultracompact object. We shall obtain a similar result to the
one presented in Eq. (2) and we shall consider the SEC as
well as the null energy condition (NEC). If the matter
which compose the object in question obeys the SEC and
NEC, then the sum of the epicyclic frequencies of LRs and
TCOs will always be non-negative.
This work is organized as follows. In Sec. II we start by

introducing and defining all quantities of interest for the
null and timelike circular orbits; namely, their radial and
vertical epicyclic frequencies. Then, in Sec. III we show,
together with the work done in [20], that the epicyclic

frequencies of the timelike particle coincide with the
epicyclic frequencies of the null particles when both of
them are computed at the LRs. The four possible structure
of TCOs surrounding a LR are presented. Section IV
provides the relation between the sum of the squared
epicyclic frequencies and the Ricci tensor. Connections
with the null and strong energy condition are also provided
and analyzed. Finally, in Sec. V we close the present paper
with conclusions and final remarks.

II. EPICYCLIC FREQUENCIES OF
EQUATORIAL CIRCULAR ORBITS

To study the epicyclic frequencies, we shall follow a
similar setup as the one described in [20]. Let us consider
a stationary, axisymmetric, asymptotically-flat, (1þ 3)-
dimensional spacetime, ðM; gÞ, that describes a generic
ultracompact object with a Z2 symmetry that may or may
not have an event horizon. No assumption is made on the
field equations ðM; gÞ solves.
Stationarity and axial symmetry imply the existence

of two Killing vectors field, fη1; η2g, that commune,
½η1; η2� ¼ 0, thanks to a theorem develop by Carter
(together with asymptotic flatness) [25]. Such result open
the possibility to choose a coordinate system, ðt; r; θ;φÞ,
that can be adapted to the Killing vector fields such
that η1 ¼ ∂t and η2 ¼ ∂φ. We also assume that the metric
associated to the spacetime is, at least, C2-smooth on and
outside the possible horizon, and circular. This implies,
for asymptotically-flat spacetimes, that the geometry pos-
sesses a 2-space orthogonal to the Killing vector fields
(c.f. Theorem 7.11 in [26]). Therefore, the discrete sym-
metry ðt;φÞ → ð−t;−φÞ is present on the spacetime.
By a gauge choice, we can defined spherical-like

coordinates ðr; θÞ in the orthogonal 2-space that are
orthogonal to each other. An extra gauge choice can be
used to fix the localization of the horizon at a constant
positive radial coordinate, r ¼ rH, for the case of ultra-
compact objects with a horizon. With these choices,
grθ ¼ 0, grr > 0, and gθθ > 0 (outside the possible hori-
zon). One can also impose that ðr; θÞ must reduce to the
standard spherical coordinates as one approaches spatial
infinity, r → ∞. The range of the coordinates are t ∈
ð−∞;þ∞Þ; r ∈ ðrH;þ∞Þ, if a horizon exists, or r ∈
½0;þ∞Þ, if no horizon exists; θ ∈ ½0; π�; and φ ∈ ½0; 2πÞ.
The rotating axis is located at θ ¼ f0; πg, and the equatorial
plane can be found at θ ¼ π=2. Outside of a possible
horizon, causality implies that gφφ ≥ 0.
In the end, due to all the assumptions, gauge choices, and

using a Lorentzian signature ð−;þ;þ;þÞ, we can write the
following line element,

ds2 ¼ gttðr; θÞdt2 þ 2gtφðr; θÞdtdφþ gφφðr; θÞdφ2

þ grrðr; θÞdr2 þ gθθðr; θÞdθ2: ð3Þ
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Note that we shall consider that the radial coordinate is a
faithful measurement of the distance to the ultracompact
object.
The motion of test particles in the above geometry can be

described through the following effective Lagrangian,

2L ¼ gμν _xμ _xν ¼ ϵ; ð4Þ

where the dot denotes the derivation with respect to an affine
parameter, and ϵ ¼ f−1; 0g for timelike and null particles,
respectively. The effective Lagrangian will depend on the
spherical-like coordinate, and can be written as follows:

2L ¼ gttðr; θÞ_t2 þ 2gtφðr; θÞ_t _φþgφφðr; θÞ _φ2

þ grrðr; θÞ_r2 þ gθθðr; θÞ_θ2 ¼ ϵ: ð5Þ
The existence of Killing vector fields give rise to

constants of motion that we can introduce into the
Lagrangian. Those are the energy, E, and angular momen-
tum, L, of the test particle,

−E≡ gtμ _xμ ¼ gtt_tþ gtφ _φ; L≡ gφμ _xμ ¼ gφt_tþ gφφ _φ:

ð6Þ
The effective Lagrangian reads now,

2L ¼ −
Aðr; θ; E; LÞ

Bðr; θÞ þ grrðr; θÞ_r2 þ gθθðr; θÞ_θ2 ¼ ϵ; ð7Þ

where

Aðr;θ;E;LÞ ¼ gφφðr;θÞE2þ 2gtφðr;θÞELþ gttðr;θÞL2;

and Bðr;θÞ ¼ gtφðr;θÞ2− gttðr;θÞgφφðr;θÞ:
ð8Þ

Equation (7) suggests the introduction of an effective
potential, Vϵðr; θÞ, defined in the following way,

Vϵðr; θÞ≡ grrðr; θÞ_r2 þ gθθðr; θÞ_θ2 ¼ ϵþ Aðr; θ; E; LÞ
Bðr; θÞ :

ð9Þ

In this work, we are interested in objects with a Z2

symmetry and in circular orbits in the equatorial plane,
θ ¼ π=2, meaning that _θ ¼ 0. With these additional
assumptions, the effective potential will only have a radial
dependency, and can be written as

Vr
ϵðrÞ≡ grrðr; π=2Þ_r2 ¼ ϵþ Aðr; π=2; E; LÞ

Bðr; π=2Þ : ð10Þ

An equatorial circular orbit can be easily computed
through this new effective potential, by imposing that the
following two equations must be true simultaneously,

Vr
ϵðrcirÞ ¼ 0 ⇔ Aðrcir; π=2; E; LÞ ¼ −ϵBðrcir; π=2Þ; ð11Þ

and

∂rVr
ϵðrcirÞ ¼ 0 ⇔ ∂rAðrcir; π=2; E; LÞ ¼ −ϵ∂rBðrcir; π=2Þ:

ð12Þ

Note that we have used Eq. (11), to obtain Eq. (12).
Besides knowing where and how to find circular orbits,

it is equally important to know their stability. This can be
analyzed by computing both their radial and vertical
epicyclic frequencies.

A. Radial and vertical epicyclic frequencies

The epicyclic frequencies can be computed by per-
turbing a circular orbit in either the radial or vertical
direction. Through the former, we compute the radial
epicyclic frequency, whereas through the latter, we obtain
the vertical epicyclic frequency.
Let us start by consider that x is one of the spheroidal

coordinates, x ¼ fr; θg, and y is the remaining spheroidal
coordinate. Moreover, let us also consider that we are on a
circular orbit, such that x ¼ xc and y ¼ yc. We shall fix y
and introduce a perturbation in x around xc, such that
y ¼ yc ⇔ _y ¼ 0 and x ¼ xc þ δx ⇔ _x ¼ _δx. Under these
assumptions, the perturbed effective potential reads,

Vx
ϵðxc þ δx; ycÞ ¼ gxxðxc þ δx; ycÞ _δx2: ð13Þ

The left-hand side of the above equation can be
expanded to

Vx
ϵðxc þ δx; ycÞ ¼ Vx

ϵðxc; ycÞ þ ∂xVx
ϵðxc; ycÞδx

þ 1

2
∂
2
xVx

ϵðxc; ycÞδx2 þOðδx3Þ: ð14Þ

The first two terms will always vanish because we are
both on a circular orbit [if x ¼ r∶Vr

ϵðrcirÞ ¼ ∂rVr
ϵðrcirÞ ¼ 0]

and on the equatorial plane of a Z2 symmetric object [if
x¼θ∶Vθ

ϵðπ=2Þ¼∂θVθ
ϵðπ=2Þ¼0]. Thus, Eq. (13) becomes,1

1

2
∂
2
xVx

ϵðxc; ycÞδx2 ¼ gxxðxc þ δx; ycÞ _δx2: ð15Þ

Expanding the right-hand size of the above equation,
and considering only terms up to second order in _δx,
we arrive at

1

2
∂
2
xVx

ϵðxc; ycÞδx2 ¼ gxxðxc; ycÞ _δx2: ð16Þ

1Note that, for simplicity and notation ease, we dropped the
error term, Oðδx3Þ.
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By performing a dot derivative of both sides, we can write a
more instructive result,

δ̈xþðωx
ϵÞ2δx¼ 0; where ðωx

ϵÞ2≡−
1

2

∂
2
xVx

ϵðxc; ycÞ
gxxðxc;ycÞ

ð17Þ

This is an harmonic oscillator, which means that if the
frequency ω2

x is negative (positive), the perturbation grows
exponentially (remains a small perturbation) leading to
unstable (stable) circular orbits. This frequency is known
as the epicyclic frequency. Going back to the spheroidal
coordinates, we have the radial and vertical epicyclic
frequencies, respectively,

ðωr
ϵÞ2≡−

1

2

∂
2
rVr

ϵðrcir;π=2Þ
grrðrcir;π=2Þ

; ðωθ
ϵÞ2≡−

1

2

∂
2
θV

θ
ϵðrcir;π=2Þ

gθθðrcir;π=2Þ
:

ð18Þ

These epicyclic frequencies are measured with respect to
the proper time of a comoving observer. However, in the
following computations, it proved useful to use the epicy-
clic frequencies measured by an observer at spatial infinity,
rather than by a comoving observer. To obtain the frequen-
cies measured by such observer, one only has to divide the
frequencies in Eq. (18) by the squared redshift factor, _t2,

ðνrϵÞ2 ≡ ðωr
ϵÞ2
_t2

¼ −
1

2

∂
2
rVr

ϵðrcir; π=2Þ
grrðrcir; π=2Þ

×

�
Bðrcir; π=2Þ

Egφφðrcir; π=2Þ þ Lgtφðrcir; π=2Þ
�
2

; ð19Þ

ðνθϵÞ2 ≡ ðωθ
ϵÞ2
_t2

¼ −
1

2

∂
2
θV

θ
ϵðrcir; π=2Þ

gθθðrcir; π=2Þ

×

�
Bðrcir; π=2Þ

Egφφðrcir; π=2Þ þ Lgtφðrcir; π=2Þ
�
2

: ð20Þ

Henceforth, we shall drop the explicit dependency of the
several functions, and it shall be understood that all
quantities are computed at r ¼ rcir and θ ¼ π=2, unless
stated otherwise.
We shall now compute the epicyclic frequencies for null

and timelike circular orbits.

B. Null particles

For null particles, ϵ ¼ 0, circular orbits are known as LRs.
In order to obtain them, we will use Eqs. (11) and (12). Both
equations can be rewritten in terms of the inverse impact
parameter, σ� ¼ E�=L�, where � represents the two
possible solutions due to the rotation of the ultracompact
object and they are associated with prograde (þ) and
retrograde (−) orbits,

A ¼ 0 ⇔ ½gφφσ2� þ 2gtφσ� þ gtt�LR ¼ 0; ð21Þ

∂rA ¼ 0 ⇔ ½∂rgφφσ2� þ 2∂rgtφσ� þ ∂rgtt�LR ¼ 0: ð22Þ

The first equation gives an algebraical equation for the
inverse impact parameter,

σ� ¼
�
−gtφ þ

ffiffiffiffi
B

p

gφφ

�
LR

; ð23Þ

whereas the second equation gives the radial coordinate of
the LR, r ¼ rLR.
The epicyclic frequencies of the LRs, can be easily

computed through Eqs. (19) and (20),

ðνr0Þ2 ¼ −
1

2

�
∂
2
rgφφσ2� þ 2∂2rgtφσ� þ ∂

2
rgtt

grr

�
LR

ð24Þ

ðνθ0Þ2 ¼ −
1

2

�
∂
2
θgφφσ

2
� þ 2∂2θgtφσ� þ ∂

2
θgtt

gθθ

�
LR

ð25Þ

Since grr and gθθ are always positive outside of a possible
horizon, the epicyclic frequencies are real (complex) if their
numerator are negative (positive).

C. Timelike particles

For timelike particles, ϵ ¼ −1, the same analysis can be
done. In order to simplify the following computations, it is
convenient to introduce the angular velocity of timelike
particles along circular orbits (measured with respect to an
observer at infinity),

Ω ¼ dφ
dt

¼ −
Egtφ þ Lgtt
Egφφ þ Lgtφ

: ð26Þ

With this result and Eq. (11), one can obtain an analytical
expression for the energy and angular momentum of the
timelike particle written in terms of the metric functions and
the angular velocity,

E� ¼−
�
gttþ gtφΩ�ffiffiffiffiffiffi

β�
p

�
rcir

; L¼
�
gtφþ gφφΩ�ffiffiffiffiffiffi

β�
p

�
rcir

; ð27Þ

where β� ≡ −gtt − 2gtφΩ� − gφφΩ2
�. An expression for

the angular velocity can be obtained by solving Eq. (12),

Ω� ¼
�
−∂rgtφ �

ffiffiffiffi
C

p

∂rgφφ

�
rcir

; ð28Þ

where C≡ ð∂rgtφÞ2 − ∂rgtt∂rgφφ.
With Eqs. (27) and (28), we have defined all possible

timelike circular orbits (TCOs) in a given spacetime (with
the assumptions presented in the beginning of this section).
Their stability can be analyzed through their epicyclic
frequencies,
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ðνr−1Þ2 ¼−
1

2

�ð∂2rgφφΩ2
� þ 2∂2rgtφΩ� þ ∂

2
rgttÞB− 2Cβ�

Bgrr

�
rcir

;

ð29Þ

ðνθ−1Þ2 ¼ −
1

2

�
∂
2
θgφφΩ2

� þ 2∂2θgtφΩ� þ ∂
2
θgtt

gθθ

�
rcir

: ð30Þ

Similar as to the case of LRs, the epicyclic frequencies of
TCOs are real (complex) is the numerator of the above
expressions are negative (positive), since B, grr and gθθ are
always positive outside a possible horizon.

III. CONNECTION BETWEEN NULL
AND TIMELIKE PARTICLES

We shall show now that the epicyclic frequencies of
TCOs coincide with the epicyclic frequencies of LRs when
we compute the former on a LR.
We start by recalling the results derived in [20]. Firstly,

the authors showed that the function β� always vanishes on
a LR, by proving that Eqs. (21) and (22) identically vanish
when β� ¼ 0. A consequence of this result is that the
angular velocity of a timelike particle on such a TCO is
the same as the inverse impact parameter of a null particle
on the LR, ½Ω� ¼ σ��LR. Secondly, they showed that
the localization and radial stability of the regions that
can harbor TCOs around the LR, depend exclusively on the
radial stability of said LR. Such a statement is verified by
looking at the sign of β� to find the regions where TCOs
are allowed, and by studying the stability of those allowed
regions. In short, a radially stable (unstable) LR accom-
modates radially stable (unstable) TCOs in the regions
radially below (above) the LR. A schematic representation
of these results is presented in Fig. 1.
These results can now pave the way for us to generalize

them, by also including the vertical stability of the allowed
TCOs. For that, let us consider a spacetime with a LR. If
we compute the epicyclic frequencies of a TCO infinitely
close to the LR, such that we can use β�jLR ¼ 0 and
½Ω� ¼ σ��LR, we obtain,

ðνr−1Þ2 ¼ −
1

2

�
∂
2
rgφφσ2� þ 2∂2rgtφσ� þ ∂

2
rgtt

grr

�
LR

¼ ðνr0Þ2;

ð31Þ

ðνθ−1Þ2 ¼ −
1

2

�
∂
2
θgφφσ

2
� þ 2∂2θgtφσ� þ ∂

2
θgtt

gθθ

�
LR

¼ ðνθ0Þ2:

ð32Þ

Here we see that the epicyclic frequencies, and hence the
stability of a TCO infinitely close to a LR are precisely
the same as the ones for the same LR. Therefore, the full
stability (both radial and vertical) of a LR determines the
full stability of a TCO infinitely close to that LR.
This result, however, it is only true infinitely close to

the LR, where β�jLR ¼ 0 and ½Ω� ¼ σ��LR are valid. To
analyze the stability of the allowed TCOs in the vicinity of
the LR, where β�jLR ¼ 0 and ½Ω� ¼ σ��LR are no longer
valid, we need to investigate what happens to the epicyclic
frequencies on those regions. Fortunately, this analysis is
rather simple to do. One only has to use the continuity
properties of the epicyclic frequencies.
Imagine a spacetime with a radial unstable LR. By

Eq. (31) we know that a timelike particle on a TCO
infinitely close to the LR is radially unstable, hence,
νr−1ðrLRÞ2 < 0. If we analyze the epicyclic frequency of
an allowed TCO adjacent to the LR, one can argue that the
epicyclic frequency squared will continue to be negative
(however one does not know if it increases or decreases).
Such argument can be done by assuming that the epicyclic
frequencies are continuous on the allowed regions for
TCOs, which is a fair assumption to make since we
assumed that all metric functions are, at least, C2-smooth
and all remaining quantities are well behaved. Hence, the
allowed region of TCOs adjacent to the radially unstable
LR will harbor radially unstable TCOs. Such result is
consistent with the results provided in [20].
The same argument can be done regarding a radially

stable LR, recovering the same results found in [20], or
regarding a vertically stable and unstable LR. In the last
two cases, the allowed region of TCOs continues to be
determined by the radial stability of the LR, but their
vertical stability is entirely determined by the vertical
stability of the LR. We can summarize all the main results
in the following list:

(i) Spacetime with a radially unstable LR.
For such spacetime, the region immediately in-

wards of the LR can not accommodate TCOs,
whereas the outward region can. To know the full
stability of the allowed TCOs we need to know the
full stability of the LR. Therefore, let us assume that
the LR is
(a) Vertically unstable.

In this case, the allowed TCOs will be both
radially and vertically unstable, cf. Fig. 2.

FIG. 1. Structure of the equatorial TCOs in the immediate
vicinity of an unstable (top panel) and stable (bottom panel) LR.
Adapted from [20].
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(b) Vertically stable.
Here, the allowed TCOs will be radially

unstable but vertically stable, cf. Fig. 3.
(ii) Spacetime with a radially stable LR.

For such spacetime, the region immediately out-
wards of the LR can not accommodate TCOs,
whereas the inward region can. Similar as the
previous case, the full stability of the allowed region
is determined by the full stability of the LR. Let us
assume that the LR is,
(a) Vertically unstable.

For this case, the allowed TCOs with be
radially stable but vertically unstable, cf. Fig. 4.

(b) Vertically stable.
In this particular case, the allowed TCOs will

be both radially and vertically stable, cf. Fig. 5.

IV. EPICYCLIC FREQUENCIES
AND ENERGY CONDITIONS

We have shown, so far, that the structures of TCOs
around a LR for a generic stationary, axisymmetric, and
asymptotically-flat objects with a Z2 symmetry can be
characterized in four different ways. This, however, does
not assume any type of constraint regarding the matter

composing the object. If one wants to consider an object
that is compose of real physical matter, then one assumes
that the matter obeys the energy conditions.
The energy conditions that we will take special attention

to are the NEC and SEC. Regarding the former, a proof
given in [17] showed that an ultracompact horizonless
object, that obeys the NEC, can never have a fully unstable
LR. Likewise, following [18], a BH can not have fully
unstable LRs if its matter obeys the NEC. Here, we shall
arrive to the same result using a different approach than the
one used in [17,18]. Regarding the latter, we shall show a
similar conclusion as the one stated previously but related
with TCOs. In particular, we shall present a proof that the
existence of a region with fully unstable TCOs implies the
violation of the SEC. We will also look into the more
simple case of a Ricci-flat object, where we will show
that such object can never have neither fully unstable nor
stable LRs and, consequently, can never have neither fully
stable or unstable TCOs close to the LRs. However,
fully stable TCOs can still exist in regions far away from
the LRs, such as, e.g., in the asymptotically-flat region.
All previous statements can be demonstrated by relating

the sum of the squared epicyclic frequencies and the
Ricci tensor.
Following a similar work developed in [24], where

the authors constructed a relation between the epicyclic
frequencies and the Ricci tensor, for a generic static, axisym-
metric, and asymptotically-flat spacetime, we need to find a
linear combination of the Ricci tensor components such that
we can write it in terms of the epicyclic frequencies. From the
connection with the Newtonian limit [27,28], we expect that
Rtt must be connected to the epicyclic frequencies, since, in
this limit [24,27,28], ðνr−1Þ2þðνθ−1Þ2¼2Ω�þRtt, where
Rtt¼4πGρ [cf. Eq. (1). Furthermore, since the epicyclic
frequencies do not depend on the derivatives of grr and gθθ,
the linear combination must account that fact.
The linear combination of Ricci tensor components that

satisfy the requirements presented above must be of the
form of Rtt þ 2fRtφ þ f2Rφφ, where f is either the inverse
impact parameter of null particles, σ�, or the angular
velocity of timelike particles, Ω�. This way, the correct
terms to write the epicyclic frequencies appear, and all the
terms with derivatives of grr and gθθ disappear.
Let us focus in the particular case of TCOs. In this case,

f ¼ Ω�, and we start by expanding the linear combination,

Rtt þ 2Ω�Rtφ þΩ2
�Rφφ

¼ ð∂μΓμ
tt þ 2Ω�∂μΓ

μ
tφ þΩ2

�Γ
μ
φφÞ

þ Γμ
μνðΓν

tt þ 2Ω�Γν
tφ þ Ω2

�Γν
φφÞ

− ðΓμ
νtΓν

μt þ 2Ω�Γ
μ
νtΓν

μφ þΩ2
�Γ

μ
νφΓν

μφÞ; ð33Þ

where Γα
μν¼ 1

2
gαρð∂μgρνþ∂νgμρ−∂ρgμνÞ are the Christoffel

symbols. Since we are computing these quantities in a

FIG. 2. Structure of the equatorial TCOs in the immediate
vicinity of a radially and vertically unstable LR.

FIG. 3. Structure of the equatorial TCOs in the immediate
vicinity of a radially unstable and vertically stable LR.

FIG. 4. Structure of the equatorial TCOs in the immediate
vicinity of a radially stable and vertically unstable LR.

FIG. 5. Structure of the equatorial TCOs in the immediate
vicinity of a radially and vertically stable LR.
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circular orbit at the equatorial plane, we can use the
relations discussed in previous sections. This way, the first
term (first line) in Eq. (33) reduces to

∂μΓ
μ
tt þ 2Ω�∂μΓ

μ
tφ þΩ2

�Γ
μ
φφ ¼ ðνr−1Þ2 þ ðνθ−1Þ2 −

1

grr

Cβ�
B

:

ð34Þ
Likewise, the second term (second line) vanishes, whereas
the third and final term (third line) reduces to

Γμ
νtΓν

μt þ 2Ω�Γ
μ
νtΓν

μφ þΩ2
�Γ

μ
νφΓν

μφ ¼ −
1

2grr

Cβ�
B

: ð35Þ

Therefore, we can write the sum of the squared epicyclic
frequencies through the linear combination of Ricci tensor
components in the following way,

ðνr−1Þ2 þ ðνθ−1Þ2 ¼ Rtt þ 2Ω�Rtφ þΩ2
�Rφφ þ

1

2grr

Cβ�
B

:

ð36Þ
We have successfully generalized the result presented
in [24] for the more general case of a stationary spacetime.
In the limit of static spacetimes our result converges to the
one obtained in [24].
The same procedure can be done for the case of LRs. In

this case, f ¼ σ� and, after expanding and simplifying the
linear combination, one can obtain a similar expression as
seen in Eq. (36),

ðνr0Þ2 þ ðνθ0Þ2 ¼ Rtt þ 2σ�Rtφ þ σ2�Rφφ: ð37Þ
Thus, for null particles, the sum of the squared epicyclic
frequencies can be entirely written in terms of the Ricci
tensor components and the inverse impact parameter.
Note that the same result can be obtained by simply using
some results from the previous section, in particular,
β� ¼ 0, σ� ¼ Ω�, νr−1 ¼ νr0, and ν

θ
−1 ¼ νθ0, and using them

in Eq. (36).
We can now investigate what happen to Eqs. (36) and

(37) when we impose some conditions to the Ricci tensor.

A. Ricci-flat object

For a Ricci-flat object, all components of the Ricci tensor
vanish, Rμν ¼ 0. For such objects, the sum of the squared
epicyclic frequencies of null and timelike particles sim-
plifies to,

LR∶ ðνr0Þ2 þ ðνθ0Þ2 ¼ 0; ð38Þ

TCOs∶ ðνr−1Þ2 þ ðνθ−1Þ2 ¼
1

2grr

Cβ�
B

: ð39Þ

From the first equation, one can conclude that a LR can
never be neither fully stable, ðνr0Þ2 > 0 ∧ ðνθ0Þ2 > 0, or

unstable, ðνr0Þ2 < 0 ∧ ðνθ0Þ2 < 0, since its sum must vanish.
This implies that the LR must have opposite radial and
vertical stabilities. This is consistent with what is already
known for Ricci-flat solutions that are stationary, axisym-
metric, asymptotically flat and in (1þ 3) dimensions, such
as the Kerr solution [29–31]. Both the prograde and
retrograde LRs present in the Kerr spacetime are always
radially unstable and vertically stable.
For the case of TCOs, one can prove that the right-hand

side of Eq. (39) is always positive. The proof rely on the fact
that each individual quantity is positive. The grr component
of the metric and theB function are always positivewhenwe
are outside of a possible horizon [cf. Sec. II]. The functionC
is always positive on the regions where TCOs are allowed,
otherwise the angular velocity of the timelike particle is
complex, and we no longer have TCOs—see [20] for a more
detailed analysis. The β� function is also always positive on
the regions where TCOs are allowed, as we discussed in the
previous section. Therefore, we have proved that the right-
hand size of Eq. (39) is always positive on the regions where
we can find TCOs.
A direct consequence of this proof is that TCOs around a

Ricci-flat solution can never be fully unstable. However,
their stability can be any of the three remaining possibilities
combinations. For the well-known case of Kerr BHs, it is
known that sufficiently far away from the BH, TCOs are
fully stable, whereas, if we approach the BH, we start to
find radially unstable but vertically stable TCOs [29–31].
Thus, our result is consistent with the well-known results
from the Kerr case.

B. NEC and SEC obeying object

If an object possesses matter such that its energy-
momentum tensor (and, by Einstein’s equations, the Ricci
tensor) is nonvanishing, a way to inform ourselves about its
exotic properties is by evaluating possible violation of the
energy conditions. One of them is the SEC. In short, this
condition is defined as Rμνtμtν ≥ 0, for any timelike vector
field, tμ, and encapsulated the condition that matter must
gravitate towards matter. To study this energy condition, let
us consider a timelike vector tangent to a TCO,

tμ ¼ aðημ1 þ Ω�η
μ
2Þ; ð40Þ

where a ¼ aðrcir; π=2Þ > 0 is a constant. By computing the
SEC, we arrive at,

Rμνtμtν ≥ 0 ⇔ a2ðRtt þ 2Ω�Rtφ þ Ω2
�RφφÞ ≥ 0: ð41Þ

Therefore, we can written the sum of the squared epicyclic
frequencies of a TCO as

ðνr−1Þ2 þ ðνθ−1Þ2 ¼
1

a2
Rμνtμtν þ

1

2grr

Cβ�
B

: ð42Þ
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Thus, for a object whose matter obeys the SEC, the first
term of the right-hand size of Eq. (42) is always positive.
Furthermore, using the same argument used in the previous
subsection where we prove that the right-hand size of
Eq. (39) is always positive, we can conclude that the sum
of the squared epicyclic frequencies of TCOs around an
object obeying the SEC is always positive. This implies that
no fully unstable TCOs exist on the spacetime generated by
such object. Or, in different words, if a generic stationary,
axisymmetric, asymptotically-flat spacetime has a region
with fully unstable TCOs, then we can guarantee that the
SEC is violated.
A second energy condition that we can also study is the

NEC. This condition is defined as Tμνkμkν ≥ 0, for any null
vector field kμ, and it is intertwined with the SEC, in the
sense that one can imply the other. In particular, if the SEC
is obeyed then the NEC is also obeyed, or if the NEC is
violated, the SEC is also violated. We will now show that
the interlacement between both energy conditions is con-
sistent with all results discussed so far.
Let us consider the following null vector field,

kμ ¼ bðημ1 þ σ�η
μ
2Þ; ð43Þ

where b ¼ bðrcir; π=2Þ > 0. With this null vector, the NEC
can be written as2

Tμνkμkν ≥ 0 ⇔ b2ðRtt þ 2σ�Rtφ þ σ2�RφφÞ ≥ 0: ð44Þ

Therefore, the sum of the squared epicyclic frequencies of
the LRs take a very simple form,

ðνr0Þ2 þ ðνθ0Þ2 ¼
1

b2
Tμνkμkν: ð45Þ

From this result we can conclude that fully unstable LRs
never exist for objects whose matter obeys the NEC. Or,
in different words, if a generic stationary, axisymmetric,
asymptotically-flat spacetime has fully unstable LRs, then
we can guarantee that the NEC is violated. This is precisely
the same result that was first obtained in [17] for an
ultracompact horizonless object and [18] for a BH.
Finally, let us comment on the interlacement of the

energy conditions and all results discussed so far. Consider
now that we have a hypothetical spacetime such that it
possesses a fully unstable LR, hence it violated the NEC.
From the result obtained in the previous section, we know
that in the immediate vicinity of the LR we have a region
which harbors fully unstable TCOs [cf. Fig. 2]. Thus, by
Eq. (42) and the following argument, the SEC is also
violated. This is consistent with the implication tree of the

NEC and SEC. Namely, that the violation of the NEC also
implies the violation of the SEC.

V. CONCLUSIONS AND FINAL REMARKS

In this work, we have analyzed the radial and vertical
epicyclic frequencies of null and timelike particles follow-
ing circular orbits in a spacetime generated by a generic
stationary, axisymmetric, asymptotically-flat ultracompact
object with a Z2 symmetry. We have shown that the
epicyclic frequencies of LRs coincide with the epicyclic
frequencies of TCOs when the latter approach the former.
This implies, by continuity, that the full stability of a LR
determines the full stability of TCOs in the immediate
vicinity of the LR. The results present in the first part of this
paper generalize the ones obtain in [20], where the authors
only analyzed the radial stability of the LRs and TCOs.
Together with the results of [20], we determined the four
possible structures that one can find for a generic spacetime
with a LR—cf. Figs. 2–5.
The results of the first part of this paper can be

summarized as follows: the radial stability of a LR
determines the localization and radial stability of TCOs
in its vicinity, whereas, the vertical stability of a LR only
determines the vertical stability of TCOs in its vicinity.
In the second part of this work, we established relations

between the sum of the squared epicyclic frequencies with
linear combinations of the Ricci tensor components, that
generalize the results obtained in [24]. Such relations opened
the possibility of introduce some energy conditions regarding
the matter that the generic ultracompact object may be
composed of. In particular, we showed that if the object
obeys the SEC, which implies that the NEC is also obeyed,
LRs and TCOs can never be fully unstable. Reciprocally,
if a generic ultracompact object possesses fully unstable LRs,
it violated the NEC, and consequently the SEC. This is
consistent with the works presented in [17,18]. Furthermore,
if the same object only possesses a region with fully unstable
TCOs, then the object only violates the SEC.
We also study the more simpler case of a Ricci-flat

ultracompact object. In this case, we showed that the LRs
can never be neither fully stable or fully unstable, since the
sum of the squared epicyclic frequencies of each LR always
vanishes—cf. Eq. (38). Regarding the TCOs, the sum of its
epicyclic frequencies is always positive, hence, a Ricci-flat
object never has regions of fully unstable TCOs.
As future work, it would be interesting to generalize

further the results presented here to more generic ultra-
compact objects that do not have a Z2 symmetry. For such
objects, circular orbits will not always be found at the
equatorial plane, but will be found at an angular coordinate
θcir that will be a function of the radial coordinate,
θcir ¼ fðrcirÞ. Due to the missing Z2 symmetry, the relation
between the full stability of a LR and the full stability of
TCOs in its vicinity will, most likely, be more convoluted
and less obvious. Nevertheless, one could obtain all the

2We are assuming that, within a given theory of gravity, we can
defined an effective energy-momentum tensor such that we can
use the Einstein’s equations, Rμν − 1

2
gμνR ¼ Teff

μν .
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possible structures of TCOs around LRs and also study
which are connected to violations of the energy conditions.
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