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In general relativity, it is difficult to localize observables such as energy, angular momentum, or center of
mass in a bounded region. The difficulty is that there is dissipation. A self-gravitating system, confined by its
own gravity to a bounded region, radiates some of the charges away into the environment. At a formal level,
dissipation implies that some diffeomorphisms are not Hamiltonian. In fact, there is no Hamiltonian on phase
space that wouldmove the region relative to the fields. Recently, an extension of the covariant phase space has
been introduced to resolve the issue. On the extended phase space, the Komar charges are Hamiltonian. They
are generators of dressed diffeomorphisms. While the construction is sound, the physical significance is
unclear. We provide a critical review before developing a geometric approach that takes into account
dissipation in a novel way. Our approach is based on metriplectic geometry, a framework used in the
description of dissipative systems. Instead of the Poisson bracket, we introduce a Leibniz bracket—a sum of a
skew-symmetric and a symmetric bracket. The symmetric termaccounts for the loss of charge due to radiation.
On the metriplectic space, the charges are Hamiltonian, yet they are not conserved under their own flow.
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I. THE PROBLEM CONSIDERED

Consider a region of space with fixed initial data. What is
the total energy contained in the region? General relativity
gives no definite answer to this question. There is no unique
quasilocal [1–3] notion of energy in general relativity. This is
due to two features of the theory: first of all, there are no
preferred coordinates. If there are no preferred coordinates,
there is no preferred notion of time. Time is dual to energy. If
there is no preferred clock [4], there is also no preferred
notion of energy. The second issue is dissipation. If we insist
to restrict ourselves to local observables in a finite region of
space, we have to specify what happens at the boundary.
Since gravity can not be shielded, there is always dissipation.
A local gravitational system will always be open.
Gravitational radiation carries away gravitational charge,
including mass, energy, angular momentum, center of mass,
and additional soft modes related to gravitational memory
[5–7], which makes it difficult to characterize gravitational
charges on the full nonperturbative phase space of the theory.
That there is no preferred notion of energy or momentum

does not mean, of course, that it would be impossible to
speak about such important physical concepts in general
relativity. One possibility to do so is to introduce material
frames of reference fXμg, which depend themselves—in a

highly nonlinear but covariant way1—on the metric gab and
the matter fields ψ I. The resulting dressed observables, a
version of Rovelli’s relational observables [8–13], evaluate
the kinematical observables at those events in spacetime,
where the physical frames of reference take a certain value.
Such a dressing turns a gauge-dependent kinematical
observable, such as the metric, into a gauge invariant
(Dirac) observable [14,15]. An example for such an
observable is the dressed metric itself,

gμν½gab;ψ I�ðxoÞ ¼
Z
M
d4Xδð4ÞðXμ − xμoÞ

× gab∂aXμ
∂bXν ð1Þ

where the reference frame Xμ itself depends functionally on
metric and matter fields, i.e. Xμ ≡ Xμ½gab;ψ I�. Given a
material reference frameXμ½gab;ψ I�, we have a natural class
of state-dependent vector fields ξa ¼ ξμðX½gab;ψ I�Þ½ ∂

∂Xμ�a.
On shell, the correspondingHamiltonian, so it exists, defines
a surface charge Qξ, which is conjugate to the reference
frame, i.e.

fQξ; gabg ¼ Lξgab;

fQξ;ψ Ig ¼ Lξψ
I

�
⇒ fQξ; Xμg ¼ ξμðXÞ; ð2Þ

*Corresponding author.
wolfgangmartin.wieland@oeaw.ac.at

1The condition is ∀ϕ∈DiffðM∶MÞ;p∈M∶Xμ½gab;ψ I�ðϕðpÞÞ¼
Xμ½ϕ�gab;ϕ�ψ I�ðpÞ.
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where Lξ is the Lie derivative. That the Hamiltonian is a
surface charge is a consequence of Noether’s theorem and
the diffeomorphism invariance of the action. While this
approach is intuitive, it is unpractical. It is unpractical,
because the construction depends for any realistic choice
of coordinates fXμ½gab;ψ I�g on the metric and matter fields
in a complicated and highly nonlocal way [16]. A further
difficulty is that there are no such coordinates defined
globally on the entire state space.
A more practical approach is to take advantage of

asymptotic boundary conditions. In an asympotically flat
spacetime, the asymptotic boundary conditions select a
specific class of asymptotic (BMS) coordinates [17,18].
Any two members of this class can be mapped into each
other via an asymptotic symmetry, generated by an asymp-
totic BMS vector field ξaBMS. One may then expect that there
is a corresponding charge QξBMS

that would generate the
asymptotic symmetry as a motion on phase space. This,
however, immediately leads to the secondproblemmentioned
above: dissipation. The system is open, because radiation
escapes to null infinity, and the charges cannot be conserved
under their own flow. Hence, the BMS charges cannot be
Hamiltonian, i.e. there is no charge on a two-dimensional
cross section of future (past) null infinity that would generate
an asymptotic symmetry, see also [19] for a more detailed
explanation of this issue on the radiative phase space.
The same issues appear also at finite distance [20–25].

A candidate for a quasilocal notion of gravitational energy
in a finite region Σ, often mentioned in the literature, is the
Komar charge [26]. On the usual covariant phase space
[27–29], it is not at all obvious what the Hamiltonian vector
field of the Komar charges should be. The naive expectation
that would identify the Komar chargewith the generator of a
diffeomorphism is incorrect. It is incorrect, because there is
dissipation. The charges cannot be conserved under their
own flow. This, at least, is the usual story.
Recently, a different viewpoint appeared on the issue of

dissipation and Hamiltonian charges. The basic idea put
forward by Ciambelli, Leigh, Pai [30,31], Freidel and
collaborators [32,33] and Speranza and Chandrasekaran
[34,35] is to add boundary modes and extend the covariant
phase space in such a way that the Komar charges become
Hamiltonian. The resulting modified Poisson bracket on
phase space returns the Barnich-Troessaert bracket [36–38]
between the charges. These ideas resulted from a wider
research program concerned with gravitational subsystems,
quasilocal observables, physical reference frames, depara-
metrization, and themeaning of gauge [20–25,34,35,39–47].
In the following, we shall give a concise and critical

summary (Sec. II) of the construction [30–32] before devel-
oping a more geometric metriplectic approach [48–50] in
Sec. III. In the metriplectic approach, the usual Poisson
bracket is replaced by a Leibniz bracket on covariant phase
space. This new bracket consists of a symmetric and a skew-
symmetric part. The skew-symmetric part defines a Poisson

bracket on the extended phase space. The symmetric part
captures dissipation. Some of the charge aspect is carried
away under the Hamiltonian flow into the environment. For a
gravitational system, restricted to a bounded region of space,
the Komar charges are canonical with respect to the Leibniz
bracket. The charges generate diffeomorphisms of the region
relative to the fields inside. They are Hamiltonian, but are not
conserved under their ownHamiltonian flow, thus accounting
for dissipation in gravitational subsystems.

II. DRESSING AND COVARIANT PHASE SPACE

A. Extended symplectic structure

The starting point of the original dressed phase space
approach due to [31,32] is the usual state space of general
relativity consisting of solutions to the Einstein equations
Rab½g� − 1

2
gabR½g� ¼ 8πGTab½gab;ψ I� for a metric gab, and

some matter fields ψ I on an abstract and differentiable
manifoldM. The state spaceF ∋ ðgab;ψ IÞ is then extended
by including a gravitational dressing for the diffeomorphism
group. A point on the extended state space F ext ∋
ðgab;ψ I;ϕÞ is thus characterized by a solution ðgab;ψ IÞ
to Einstein’s equations on M and a diffeomorphism
ϕ∶ M → M, which is purely kinematical.2 The diffeomor-
phism,which has nowbeen added to state space, allows us to
introduce dressed solutions to the Einstein’s equations, i.e.
ðϕ�gab;ϕ�ψ IÞ, where ϕ� denotes the pullback.
At first, the construction seems to merely add further

redundancy and to run against our basic physical intuition
about background invariance. In a generally covariant
theory, a diffeomorphism should have no physical meaning
whatsoever and ðgab;ψ IÞ ought to represent the same
physical state as ðϕ�gab;ϕ�ψ IÞ. But this intuition is slightly
misleading. It is misleading for two reasons. The first
reason is that boundaries break gauge symmetries, turning
otherwise redundant gauge directions into physical boun-
dary modes. If ϕ∶ M → M is a large diffeomorphism such
that ϕj

∂M ≠ id, the two states ðϕ�gab;ϕ�ψ IÞ and ðgab;ψ IÞ
are no longer gauge equivalent (in the phase space sense of
the word). The second reason is that the extended sym-
plectic potential proposed in [31,32] has a highly nontrivial
dependence on ϕ. The gravitational dressing ϕ� enters the
extended presymplectic current ϑext through two indepen-
dent terms

ϑext ¼ ϕ�ϑþ ϕ�ðY ⌟LÞ; ð3Þ
where L is the Lagrangian, which, in turn, defines the
presymplectic current3

∀ δ ∈ TF∶ δ½L� ¼ d½ϑðδÞ�: ð4Þ

2This is to say that there are no field equations or gauge
conditions that would constrain ϕ.

3In the following, all equations are taken on-shell, i.e. provided
the field equations are satisfied.

VIKTORIA KABEL and WOLFGANG WIELAND PHYS. REV. D 106, 064053 (2022)

064053-2



In addition, the extended presymplectic current depends
on Y a, which is a TM-valued one-form on the extended
state space F ext, i.e. a section of the tensor bundle
TM ⊗ T�F ext, and behaves like a Maurer-Cartan form
ðdϕÞðϕ−1Þ for diffeomorphisms.
The one-form Y a on field space can be introduced as

follows. Consider an ordinary state-independent differen-
tiable function on spacetime, say f∶ M → R. Since (space-
time) vector fields are derivations acting on scalars, the
expression Yp½f�≡ Y a

∂afjp must be read as a one-form on
field space, i.e. for all p ∈ M∶ Yp½f� ∈ T�F ext. This one-
form, which will depend linearly on df ∈ T�M, is itself
defined by

Yp½f� ≔ ðdðf ∘ ϕÞÞðϕ−1ðpÞÞ≡ Y a
pð∂afÞp; ð5Þ

where the symbol “d” denotes the exterior derivative on
field space F ext ∋ ðgab;ψ I;ϕÞ. An explicit coordinate
expression of Y a with respect to some fixed and fiducial
coordinate chart fxμg in a neighborhood of p ∈ M is thus
given by

Y ajp ¼ d½xμ ∘ ϕ�jϕ−1ðpÞ

�
∂

∂xμ

�
a

p
: ð6Þ

In the following, let us study this one-form a little more
carefully. If we commute the field space derivative with the
dressing, we obtain

dϕ� ¼ ϕ�dþ ϕ�LY : ð7Þ

This equation is obviously true for scalars. The generali-
zation to arbitrary p-form fields is immediate and is the
consequence of two basic observations: the exterior deriva-
tive (on spacetime) commutes with the pullback, i.e.
ϕ�d ¼ dϕ�, and the exterior derivative on field space
commutes with the exterior derivative on spacetime,
i.e. ½d;d� ¼ 0.
The one-form Y a behaves like a Maurer-Cartan form for

the diffeomorphism group [31,43]. If, in fact, δ1 and δ2 are
two tangent vectors on field space, Eq. (6) immediately
implies

ðdY aÞðδ1; δ2Þ ¼ −½Y ðδ1Þ;Y ðδ2Þ�a: ð8Þ

In other words,

dY a ¼ −Y b∧∇bY a; ð9Þ

where ∇a is the metric compatible torsionless derivative
with respect to gab, i.e. ∇agbc ¼ 0 and ∇½a∇b�f ¼ 0;
∀ f∶ M → R.
For a background invariant theory, it is now always

possible to trivially absorb the dressing field ϕ ∈
DiffðM∶MÞ back into a redefinition of metric and matter

fields. We shall find this redefinition useful, because it will
clarify the physical significance of the construction. If, in
fact, the theory is background invariant, the symplectic
current transforms covariantly under diffeomorphisms. In
other words,

∀p ∈ M∶ ðϕ�ϑ½gab;ψ I;dgab;dψ I�ÞðpÞ
¼ ϑ½ϕ�gab;ϕ�ψ I;ϕ�dgab;ϕ�dψ I�ðpÞ: ð10Þ

On the other hand, we also have

ϕ�dgab ¼ dðϕ�gabÞ − ϕ�LYgab; ð11Þ

ϕ�dψ I ¼ dðϕ�ψ IÞ − ϕ�LYψ
I; ð12Þ

where LY denotes the Lie derivative with respect to
Y a ∈ T�F ext ⊗ TM, i.e.

LY ½gab�¼ 2∇ðaY bÞ; LYψ
I ¼ d

dε

����
ε¼0

expðεY Þ�ψ I: ð13Þ

A trivial field redefinition allows us to remove the
dressing fields and absorb them back into the definition
of metric and matter fields

ϕ�gab → gab; ϕ�ψ I → ψ I; ð14Þ

ϕ−1� Y a ¼ dðxμ ∘ ϕÞ
�
ϕ−1�

∂

∂xμ

�
a

¼ dðxμ ∘ ϕÞ
�

∂

∂ðxμ ∘ ϕÞ
�
a
≕Xa: ð15Þ

So far, we kept the fiducial coordinate system fixed fxμg
and treated the diffeomorphisms ϕ∶ M → M as a new
dynamical element of the thus extended state space
F ext. Equation (15) tells us that we could also adopt a
different viewpoint. Instead of adding the diffeomorphism
to the state space, we could equally well reabsorb the
dressing ϕ� into a redefinition of the coordinates, i.e.
ϕ�xμ ¼ xμ ∘ ϕ → xμ. Adopting this viewpoint amounts
to adding the four coordinate scalars xμ∶ M → R4 to the
state space.
The addition of coordinate functions to phase space

seems to run against the very idea of background invari-
ance. To restore formal coordinate invariance, it is useful to
introduce the Maurer-Cartan form

Xa ¼ d½xμ�∂aμ; ð16Þ

which sends the coordinate variations δxμ ¼ δ ⌟dxμ back
into tangent space TM. Once again, this one-form on field
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space behaves like a ghost field4 for the diffeomorphism
group, i.e.

ð17Þ

In other words,

ð18Þ

where ∇a denotes the covariant derivative for the met-
ric gab.
Let us now proceed to write down the extended pre-

symplectic potential (3) in terms of the new variables,
where the dressing is absorbed into a redefinition of the
fields, as done in (14) and (15) above. Taking into account
the covariance (10) of the presymplectic potential and the
commutators (11) and (12), we immediately obtain

ϑext ¼ ϑ − ϑðLXÞ þX ⌟L≕ ϑ − dqX; ð19Þ

where qX denotes the charge aspect, which is a two-form on
spacetime and one-form on field space, i.e. a section of
⋀2T�M ⊗ T�F ext. It is then also useful to introduce the
anticommuting.5 Noether charge one-form on field space

QX ¼
I
∂Σ
qX ∈ T�F kin: ð20Þ

To proceed, we also need to introduce the presymplectic
potential Θext on the extended state space, whose exterior
derivative defines the presymplectic two-form, i.e.

Θext ¼
Z
Σ
ϑext; ð21Þ

Ωext ¼ dΘext: ð22Þ

Note that for any two vector fields δ1; δ2 ∈ T�F ext, we thus
have

Ωextðδ1; δ2Þ ¼ δ1½Θextðδ2Þ� − δ2½Θextðδ1Þ�
− Θextð½δ1; δ2�Þ; ð23Þ

where ½·; ·� is the Lie bracket between vector fields on
state space.

B. Noether charges on the extended phase space

The idea, which was developed in [30–34], is to consider
dressed diffeomorphisms on the extended field space.
A dressed diffeomorphism acts on metric and matter fields
as well as on the dressing itself. Given a vector field
ξa ∈ TM, we consider thus the flow on field space,

gab ↦ expðεξÞ�gab;ψ I ↦ expðεξÞ�ψ I: ð24Þ

This flow is then compensated by a corresponding trans-
formation of the dressing fields

ϕ ↦ expð−εξÞ ∘ ϕ ¼ ϕ ∘ expð−εϕ−1� ξÞ; ð25Þ

such that the dressed fields ϕ�gab and ϕ�ψ I are trivially
invariant under (24) and (25).
Let us now consider what happens to this flow upon the

field redefiniton

ðϕ�gab → gab;ϕ�ψ I → ψ I;ϕ−1� ξa → ξaÞ: ð26Þ

Notice that this field redefinition has a natural and
simultaneous action on the spacetime vector field
ξa ∈ TM, sending ξa into ϕ−1� ξa. If we start out, in fact,
with a field-independent vector field ξa, i.e. dξa ¼ 0, the
field redefinition (26) maps ξa into a field-dependent vector
field on the extended state space. We shall see below how
we are naturally led to consider such field-dependent vector
fields to render the charges integrable. After the field
redefinition, the flow (24) and (25) will only change the
dressing fields, whereas its action on the metric and matter
fields vanishes trivially. This flow lifts the vector field
ξa ∈ TM into a vector field δdrssdξ on field space. Upon
performing the field redefinition (26), the components of
this vector field are given by

δdrssdξ ½gab� ¼ 0; δdrssdξ ½ψ I� ¼ 0;

Xaðδdrssdξ Þ ¼ −ξa: ð27Þ

Let us now identify the conditions necessary to make
this vector field δdrssdξ ∈ TF ext Hamiltonian. To this end,
consider the interior product between the extended pre-
symplectic two-form, which, upon performing the field

4In the Becchi-Rouet-Stora-Tyutin (BRST) approach to the
quantization of gauge theories, auxiliary fields are added to
the gauge-fixed Lagrangian to restore gauge invariance of the
functional integral. These BRST ghosts are anticommuting
(Grasmmann-valued) fields that take values in the Lie algebra
of the underlying gauge group. If we identify the vector-valued
one-formXa on field space with the Grassmann-valued ghosts for
the diffeomorphism symmetry and identify, at the same time, the
pullback of the of the field space exterior derivative d to the gauge
orbits with the (anticommuting) BRST variation, then Eq. (17) is
nothing but the fundamental structure equation for the BRST
ghosts. See also [43] for a more modern incarnation of such a
geometric approach [51,52] to BRST in the context of boundary
modes.

5Notice that the charge QX is a one-form on field space, which
anticommutes with itself, i.e. QX∧QX ¼ 0. This property reso-
nates with the nilpotency of the BRST charge. The observation
deserves further investigation to better understand the relation
between edge modes, the extended phase space approach, and the
BRST symmetry.
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redefinition (14) and (15), is given by (19) and (22), and
the bivector δ ⊗ δdrssdξ − δdrssdξ ⊗ δ. A short calculation, see
also [29], gives

Ωextðδ;δdrssdξ Þ¼ δ½Θðδdrssdξ Þ�−δdrssdξ ½ΘðδÞ�−Ωð½δ;δdrssdξ �Þ
þδ½Qξ�þδdrssdξ ½QXðδÞ�þQXð½δ;δdrssdξ �Þ; ð28Þ

where δ ∈ TF ext is a second and linearly independent
vector field and

Qξ ¼
Z
Σ
ðϑðLξÞ − ξ ⌟LÞ ¼

I
∂Σ
qξ ð29Þ

is the Noether charge. Given the definition (27) of the
dressed diffeomorphisms δdrssdξ , the first line of Eq. (28)
vanishes trivially. The second line gives a nontrivial
contribution

δdrssdξ ½QXðδÞ� ¼ Lδdrssdξ
½QXðδÞ� ¼ QL

δdrssd
ξ

½XðδÞ�; ð30Þ

where Lδ½·� ¼ δ ⌟ ðd·Þ þ dð ⌟ ·Þ is the Lie derivative on the
extended field space,

Lδdrssdξ
½XaðδÞ� ¼ ðLδdrssdξ

XaÞðδÞ þXað½δdrssdξ ; δ�Þ
¼ ðdXaÞðδdrssdξ ; δÞ − δ½ξa� þXað½δdrssdξ ; δ�Þ
¼ −½ξ;XðδÞ�a − δ½ξa� þXað½δdrssdξ ; δ�Þ: ð31Þ

Thus

Ωextðδ; δdrssdξ Þ ¼ δ½Qξ� −Qδ½ξ�−½XðδÞ;ξ�: ð32Þ

If the second term vanishes, the vector field δdrssdξ , defined
in Eq. (27) above, is Hamiltonian. The corresponding
Hamiltonian is the Noether charge Qξ. The second term
vanishes for any generic configuration on state space if and
only if

δ½ξa� ¼ ½XðδÞ; ξ�a: ð33Þ

This equation is satisfied for a specific class of field-
dependent vector fields on spacetime, namely those that
depend explicitly on the coordinates fxμg via their com-
ponent functions ξμðxÞ,

ξa ¼ ξμðxÞ
�
∂

∂xμ

�
a ≡ ξμðxÞ∂aμ: ð34Þ

In fact, such a vector field is field dependent, because the
four coordinate scalars fxμg have been added to the state
space. To see that Eq. (33) holds for such vector fields ξa

and field variations δ, notice that

δ½ξa� ¼ δ½ξμðxÞ�∂aμ þ ξμðxÞδ½∂aμ�
¼ δ½xν�ð∂νξμÞðxÞ∂aμ − ξμðxÞ∂bμδ½dxνb�∂aν
¼ δ½xν�ð∂νξμÞðxÞ∂aμ − ξμðxÞð∂μδ½xν�ÞðxÞ∂aν
¼ ½δ½x�; ξ�a ¼ ½XðδÞ; ξ�a; ð35Þ

where ½·; ·�a is the Lie bracket between vector fields on
spacetime. Going back to (32), we thus see that the Noether
charge (29) generates the dressed diffeomorphism δdrssdξ ½·�
on the extended state space. From the definition (27) of
the vector field, and the fact that these vector fields are
Hamiltonian, we can now immediately infer the canonical
commutation relations

fQξ; Qξ0 g ¼ δdrssdξ ½Qξ0 � ¼ Qδdrssdξ ½ξ0�

¼ Q½Xðδdrssdξ Þ;ξ0� ¼ −Q½ξ;ξ0�: ð36Þ

Let us stop here and discuss the physical significance of
the approach outlined thus far. On the usual covariant phase
space, the Komar charges for radial or timelike diffeo-
morphisms are not integrable. This is hardly surprising.
Diffeomorphisms that move the boundary enlarge the
system. They bring new data into the region that was in
the exterior before. Since there is new data outside, there is
no Hamiltonain for radial or timelike diffeomorphisms on
the quasilocal phase space. Otherwise it would be possible
to extend in a unique way initial data on a partial Cauchy
surface into initial data on the entire Cauchy slice.
Upon performing a trivial field redefinition, we saw that

the extended state space [31,32] consists of the ordinary
(undressed) fields in the bulk and the coordinate scalars
fxμ∶M → R4g. The presymplectic structure on the
extended state space is then carefully tuned in such a
way that the conjugate momentum to the coordinates fxμg
is the pullback to Σ of the exterior derivative of the Noether
charge aspect, i.e. pμ ¼ ϕ�

Σd½q∂μ �. In this way, the presym-
plectic two-form is only changed by a boundary term at ∂Σ.
Furthermore, all commutation relations between the new
boundary fields and the dynamical fields in the interior
vanish [upon the field redefinitions (14) and (15)].
Consider, for example, the total momentum charge with
respect to the reference frame fxμg, i.e. Pμ ¼

R
Σ pμ ¼ Q∂μ

.
Since the vector field δdrssd

∂μ
½·� ¼ fQ∂μ

; ·g is Hamiltonian
with respect to the extended presymplectic structure, and
since δdrssd

∂μ
annihilates all dynamical fields in the bulk, see

(27), the total momentum Pμ trivially commutes with all
bulk degrees of freedom, i.e. fPμ; gabg ¼ 0, fPμ;ψ Ig ¼ 0.
The only nonvanishing Poisson bracket between Pμ and the
elements of the extended state space is simply the Poisson
bracket fPμ; xνg ¼ δνμ.
While this is not a problem per se, it does raise the

question of how physically meaningful this extension of the
phase space really is. There is no relational change of
matter and geometry relative to the hypersurface. In the
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original construction due to [31], dressed diffeomorphisms
transform the fundamental fields, i.e. gab → ϕ�gab, but they
also deform the hypersurface, sending Σ into ϕ−1ðΣÞ. From
the perspective of an observer locked to Σ, the net effect is
zero. Such dressed diffeomorphisms leave all covariant
functionals of the metric at Σ unchanged. Consider, for
example, the total three-volume of Σ, i.e. the integral

Vol½gab;Σ� ¼
Z
Σ
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðhijÞ

q
; hij ¼ gab∂ai ∂

b
j ; ð37Þ

where fxi∶i ¼ 1; 2; 3g are coordinates intrinsic to Σ, and
∂
a
i ∈ TΣ are the corresponding tangent vectors. Such a
functional trivially Poisson commutes with all Noether
charges Qξ under the extended symplectic structure
[31,32], i.e. fQξ;Volg ¼ 0, even for those ξa that are
timelike. On the extended phase space, the Noether charge
Qξ does not behave like a physical time translation. A
physical Hamiltonian should not preserve the total three-
volume. Note that this constitutes an important difference
between the dressed phase space approach and deparamet-
rization via physical reference frames. A material reference
frame depends (in a complicated and nonlinear manner)
on the metric and matter fields and therefore does not
commute in general with the dynamical quantities in the
bulk, see e.g. (2). To put it simply, what is happening in
[31,32] is that the classical phase space is extended by
adding new variables xμ and pμ and then carefully choosing
a symplectic structure that allows us to identify pμ with
the Noether charge aspect, while, at the same time, all the
newly added boundary variables (edge modes) trivially
commute with all the dynamical fields in the bulk.

III. GRAVITATIONAL SUBSYSTEMS
AND METRIPLECTIC GEOMETRY

In the following, we propose a different approach. We
want to take seriously dissipation and treat the system as
open. Hence the Hamiltonian cannot be conserved under
its own flow. This can be formalized by replacing the
symplectic structure by a metriplectic structure [48–50]
with modified bracket, which captures dissipation (see
Appendix B for a brief introduction to metriplectic geom-
etry). The metriplectic structure consists of an extended
symplectic two-form Ωextð·; ·Þ ∈ T�F ext ∧ T�F ext and a
symmetric bilinear form, namely a supermetric6 Gð·; ·Þ ∈
T�F ext ⊗sym T�F ext, which describes the interaction of the
system with its environment. The resulting bilinear is then
given by

Kð·; ·Þ ¼ Ωextð·; ·Þ − Gð·; ·Þ ∈ T�F ext ⊗ T�F ext: ð38Þ

Given a functional H∶ F ext → R on the extended state
space, i.e. a functional H½gab;ψ I; xμ� of the metric gab, the

matter fields ψ I and the four coordinate scalars xμ, we say a
vector field XH ∈ TF ext is Hamiltonian with respect to the
metriplectic structure provided the following equation is
satisfied:

∀ δ ∈ TF ext∶δ½H� ¼ Kðδ;XHÞ: ð39Þ

The new bracket between any two such functionals H and
F on phase space is then given by

ðH;FÞ ¼ XH½F�: ð40Þ

This bracket clearly satisfies the Leibniz rule in both
arguments,

ðH1H2; FÞ ¼ H1ðH2; FÞ þ ðH1; FÞH2; ð41Þ

ðH;F1F2Þ ¼ ðH;F1ÞF2 þ F1ðH;F2Þ: ð42Þ

If there is dissipation, i.e. Gðδ1; δ1Þ ≠ 0, the bracket will
pick up a symmetric term such that the Hamiltonian will not
be preserved under its own evolution, i.e.

ðH;HÞ ¼ −GðXH;XHÞ: ð43Þ

If, in addition, H is the energy of the system, and the
supermetric Gð·; ·Þ is positive (negative) semidefinite, the
system can only lose (gain) energy.
To apply metriplectic geometry to a gravitational sub-

system in a finite domain Σ, we must identify the skew-
symmetric symplectic two-form Ωext and the supermetric
Gð·; ·Þ ∈ T�F ext ⊗sym T�F ext that render the charges
Hamiltonian. Our starting point is the familiar definition
of the Noether charge itself, i.e.

Qξ ¼
Z
Σ
ðϑðLξÞ − ξ ⌟LÞ; ð44Þ

where ϑ is the ordinary, undressed symplectic current and
L denotes the Lagrangian (a four-form on spacetime). In
addition, Lξ ∈ TF ext is a vector field on field space, whose
components are given by the Lie derivative on the space-
time manifold, i.e.

Lξ½gab� ¼ Lξgab ¼ 2∇ðaξbÞ; Lξ½ψ I� ¼ Lξψ
I;

XaðLξÞ ¼ ξa; ð45Þ

where Lξ is the Lie derivative of tensor fields on spacetime.
Notice that this differs from the dressed diffeomorphism
δdrssdξ which annihilates all fields in the bulk, see (14)
and (27).6Superspace is the space of fields.
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On shell,7 the Noether charge (44) is a surface integral,

Qξ ¼
Z
Σ
dqξ ¼

I
∂Σ
qξ: ð46Þ

We now want to identify the metriplectic structure that
renders these charges the Hamiltonian generators of the
field space vector field (45). Consider first the usual,
undressed presymplectic two-form in the region Σ, i.e.

Ω ¼
Z
Σ
dϑ≡ dΘ: ð47Þ

Given a vector field δ on field space, we then have

Ωðδ;LξÞ ¼ δ½ΘðLξÞ� − Lξ½ΘðδÞ� − Θð½δ;Lξ�Þ: ð48Þ

A standard calculation, see e.g. [29], allows us to simplify
the second term. First of all, we have

Lξ½ΘðδÞ� ¼
Z
Σ
Lξðϑ½gab;ψ I; δgab; δψ I�ðpÞÞ

¼
Z
Σ

Z
M

�
ðLξgabÞðqÞ

δϑ½gab;ψ I; hab; χI�ðpÞ
δgabðqÞ

þ ðLξhabÞðqÞ
δϑ½gab;ψ I; hab; χI�ðpÞ

δhabðqÞ

þ ðLξψ
IÞðqÞ δϑ½gab;ψ

I; hab; χI�ðpÞ
δψ IðqÞ

þ ðLξχ
IÞðqÞ δϑ½gab;ψ

I; hab; χI�ðpÞ
δχIðqÞ

�
; ð49Þ

where ðδgab; δψ IÞ≡ ðhab; χIÞ is a linearized solution of the
field equations around ðgab;ψ IÞ. The action of the vector
field Lξ on the metric perturbation hab yields

Lξhab ¼ ½Lξ; δ�gab þ δ½Lξgab� ¼ ½Lξ; δ�gab þ δ½Lξgab�
¼ ½Lξ; δ�gab þ ½δ;Lξ�gab þ Lξ½δgab�
¼ ½Lξ; δ�gab þ Lδξgab þ Lξ½δgab�: ð50Þ

In the same way, we also have

Lξψ
I ¼ ½Lξ; δ�ψ I þ Lδξψ

I þ Lξ½δψ I�: ð51Þ

Taking these results back to (49), we obtain

Lξ½ΘðδÞ�¼Θð½Lξ;δ�ÞþΘðLδξÞþ
Z
Σ
Lξ½ϑðδÞ�

¼Θð½Lξ;δ�ÞþΘðLδξÞþ
I
∂Σ
ξ⌟ ½ϑðδÞ�þ

Z
Σ
ξ⌟δ½L�;

ð52Þ
where we used Stoke’s theorem as well as the definition of
the presymplectic potential in terms of the Lagrangian, i.e.
the on-shell equation δ½L� ¼ d½ϑðδÞ�.
Let us now return to (48) above. Using the definition of

the Noether charge (29), we obtain the well-known result

Ωðδ;LξÞ ¼ δ½Qξ� −Qδ½ξ� −
I
∂Σ
ξ ⌟ϑðδÞ: ð53Þ

In the following, we shall restrict ourselves to a specific
class of state-dependent vector fields on the extended
state space. The extended state space F ext ∋ ðgab;ψ I; xμÞ
contains the coordinate functions xμ∶ M → R4. A vector
field, given in terms of its xμ-coordinate representation,
must be understood, therefore, as a state-dependent vector
field,

ξa ¼ ξμðxÞ
�
∂

∂xμ

�
a ≡ ξμðxÞ∂aμ; ð54Þ

δ½ξμ� ¼
Z
M
δ½xν� δ

δxν
ξμðxðpÞÞ ¼ δ½xν�ð∂νξμÞðxðpÞÞ: ð55Þ

Note that ξa depends as a functional on xμ∶ M → R4, but
there is no functional dependence on gab or ψ I. This way,
the functional differential dξa of any such vector field
returns the Lie derivative on spacetime with respect to the
Maurer-Cartan form Xa, i.e. ξa ¼ XaðLξÞ and δ½ξa� ¼
½XðδÞ; ξ�a [cf. Eq. (35) above]. For any such specific
state-dependent vector field, we can rewrite Eq. (53) as

δ½Qξ�¼Ωðδ;LξÞþQ½XðδÞ;XðLξÞ� þ
I
∂Σ
XðLξÞ⌟ϑðδÞ: ð56Þ

Comparing this equation with the definition of Hamiltonian
vector fields for a dissipative system, i.e. Eq. (39), and
demanding that the Lie derivative Lξ ∈ TF ext be the
Hamiltonian vector field of the Noether charge Qξ, we
are led to the following definition: a vector field XH ∈
TF kin is Hamiltonian, if there exists a functional
H∶ F ext → R on state space, such that for all vector fields
δ ∈ TF ext the following condition is satisfied:

δ½H� ¼ Ωðδ;XHÞ þQ½XðδÞ;XðXHÞ� þ
I
∂Σ
XðXHÞ ⌟ ϑðδÞ

≡ Kðδ;XHÞ: ð57Þ

The new bracket between any two such functionals is then
given by Eq. (40). Moreover, we are now ready to identify7That is provided the field equations are satisfied.
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the metrisymplectic structure that renders the charges
integrable, i.e.

Kð·; ·Þ ¼ Ωextð·; ·Þ − Gð·; ·Þ: ð58Þ

The skew-symmetric part defines the extended symplectic
two-form

Ωextðδ1; δ2Þ ¼ −Ωextðδ2; δ1Þ
¼ Ωðδ1; δ2Þ þQ½Xðδ1Þ;Xðδ2Þ�

þ
I
∂Σ
Xðδ½1Þ ⌟ϑðδ2�Þ; ð59Þ

where square brackets around the indices stand for
antisymmetrization, i.e. ðα∧βÞðδ1; δ2Þ ¼ 2αðδ½1Þβðδ2�Þ ¼
αðδ1Þβðδ2Þ − ð1 ↔ 2Þ for all α; β ∈ T�F kin. The symmet-
ric part, on the other hand, determines the supermetric

Gðδ1; δ2Þ ¼ −
I
∂Σ
Xðδð1Þ ⌟ ϑðδ2ÞÞ; ð60Þ

where the round brackets around the indices stand for
symmetrization, i.e. ðα ⊗ βÞðδð1; δ2ÞÞ ¼ 1

2
ðαðδ1Þβðδ2Þ þ

αðδ2Þβðδ1ÞÞ. Note that the supermetric Gð·; ·Þ is a boundary
term. This is consistent with our physical intuition that the
interaction of an open system with its environment takes
place at the boundary.
Let us briefly summarize. We introduced a new bracket

ð·; ·Þ on state space that turns the covariant phase space
into a metriplectic manifold. This bracket is a generaliza-
tion of the Poisson bracket. It takes into account dissipation
and renders the vector field Lξ½·�, defined in (45), inte-
grable. The corresponding Hamiltonian is the Noether
charge,

ðQξ; gabÞ ¼ Lξgab; ðQξ;ψ IÞ ¼ Lξψ
I;

ðQξ; xμÞ ¼ ξμ: ð61Þ

These results are only possible at the expense of changing
the bracket. Neither does the new bracket satisfy the Jacobi
identity nor is it skew symmetric. The symmetric part
describes dissipation. The skew-symmetric part defines the
usual Poisson bracket on the extended phase space.
Let us add a few further observations. We built the

Leibniz bracket in such a way that the Noether charge
generates the Hamiltonian vector field (45). Given two
state-dependent vector fields ξa1 ¼ ξμ1ðxÞ∂aμ and ξa2 ¼
ξμ2ðxÞ∂aμ that satisfy Eq. (55), we can now also obtain
immediately the new bracket between two such charges, i.e.

ðQξ1 ; Qξ2Þ ¼ Lξ1 ½Qξ2 � ¼
I
∂Σ
ξ1 ⌟ ðdqξ2Þ

¼
I
∂Σ
ðξ1 ⌟ϑðLξ2Þ − ξ1 ⌟ ξ2 ⌟LÞ: ð62Þ

In the same way, we obtain the Leibniz bracket of the
Noether charge with itself,

ðQξ; QξÞ ¼ −GðLξ;LξÞ ¼
I
∂Σ
ξ ⌟ ϑðLξÞ: ð63Þ

If the vector field ξa ∈ TM lies tangential to the corner, i.e.
ξa ∈ Tð∂ΣÞ, the charge is conserved under its own
Hamiltonian flow. Intuitively, this must be so, because
the resulting diffeomorphism maps the corner relative to
the metric into itself. Hence, there is no relational change.
On the other hand, a generic diffeomorphism that moves
the boundary relative to the metric, will not preserve its
own Hamiltonian if there is flux, i.e. ξ ⌟ ϑðLξÞj∂Σ ≠ 0.

IV. OUTLOOK AND DISCUSSION

In this work, we discussed two different approaches
toward describing the phase space of a gravitational
subsystem localized in a compact region of space: the
extended covariant phase space approach due to [31,32] as
well as a new geometrical framework based on metriplectic
geometry [48–50]. The former is focused on obtaining
integrable charges for diffeomorphisms, including large
diffeomorphisms that change the boundary. To achieve this,
the phase space is extended. Embedding fields xμ∶ M →
R4 are added to phase space and the presymplectic structure
is modified accordingly. The key result [30–34] is alge-
braic: On the extended phase space, the Komar charges
close under the Poisson bracket. This yields a new
Hamiltonian representation of the Lie algebra of vector
fields on spacetime. However, this comes at the cost of
weakening the physical interpretation of the charges. Upon
performing a trivial field redefinition, we saw that the
charges commute with all bulk degrees of freedom. The
Hamiltonian vector field of the charges only shifts the
embedding coordinates at the boundary. Put differently,
on the extended phase space [31,32], the Komar charge
generates diffeomorphisms of the metric and the matter
fields, but such change is always made undone by a
deformation of the hypersurface Σ. For an observer locked
to Σ, the net effect is zero.
The metriplectic approach provides a new perspective on

how to obtain meaningful charges on phase space. Once
again, the Komar charges are rendered Hamiltonian, yet the
bracket is different. Instead of the Poisson bracket, we now
have a Leibniz bracket ð·; ·Þ. The resulting Hamiltonian
vector field ðQξ; ·Þ generates the full nonlinear dynamics
in the interior of Σ while accounting for the interaction
of the system with its environment. This is achieved by
replacing the usual presymplectic structure on phase
space with the metriplectic structure commonly used in
the context of dissipative systems [48–50]. The main
difference to the extended phase space approach is that
the Leibniz bracket will no longer provide a representation
of the diffeomorphism group, i.e. there is an anomaly
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ðQξ1 ; Qξ2Þ ≠ −Q½ξ1;ξ2�. The extra terms account for dissi-
pation and flux.
What both approaches have in common is that they give

a rigorous meaning to the Komar charges on phase space.
Therefore, they both face the same problem of what is the
physical interpretation of these charges. To compute the
Komar charge on state space, we need three inputs: a choice
of hypersurface Σ, a vector field ξa ∈ TM, and a solution to
the field equations. This leaves a lot of functional freedom.
At finite distance, it is difficult to explain how such charges
are connected to physical observables such as energy,
momentum, and angular momentum. Given the metric
and the Cauchy hypersurface, one is left with infinitely
many choices for the vector field ξa. It is unclear which ξa

gives rise to energy, which to momentum, and which to
angular momentum. However, this is just a reflection of
background invariance. If the theory is background invari-
ant, there is an infinite-dimensional group of gauge
symmetries (diffeomorphisms). These infinitely many
gauge symmetries give rise to infinitely many charges,
hence the vast functional freedom in defining the quasilocal
charges. A second potential criticism is that the first
derivative of the Komar charge, accounting for flux, does
not vanish in Minkowski space. This may seem counter-
intuitive at first. Minkowski space is empty and thus no flux
expected. However, for a given choice of vector field ξa, the
flux of the Komar charge depends not only on radiative data
but also on kinematical data. The kinematical data is the
choice of boundary ∂Σ and the choice of vector field ξa. To
probe the presence of curvature and distinguish purely
kinematical flux from physical flux due to gravitational
radiation, it seems necessary to add further derivatives, e.g.
ðQξ; ðQη; QτÞÞ. Future research will be necessary to clarify
the physical significance of such nested brackets and
their algebraic properties in terms of e.g. the Jacobiator
Jðξ;η;τÞ¼ðQξ;ðQη;QτÞÞþðQη;ðQτ;QξÞÞþðQτ;ðQξ;QηÞÞ.
Another important avenue for future research concerns

black holes. Black holes have an entropy and there is a
notion of energy and temperature. The outside region,
connected to asymptotic infinity, defines a dissipative
system: Radiation can fall into the black hole, but nothing
comes out. The metriplectic approach is tailor made to
study such thermodynamical systems out of equilibrium, to
investigate chaos, stability, and dissipation. Entropy pro-
duction and energy loss are captured by the supermetric
Gð·; ·Þ on metriplectic space.
More generally, the framework of metriplectic geometry

seems suitable for describing dissipation in a wide range of
theories beyond general relativity, in particular any theory
that can be cast in the covariant phase space formalism.
This includes the study of generalized boundary charges in
Yang-Mills or Chern-Simons theory, see e.g. [20,53]. The
description in terms of the metriplectic geometry provides a
useful new perspective whenever one considers open
subsystems with nontrivial flux across the boundary. In

the future, we will consider applications of the metriplectic
approach to more concrete physical setups and theories
beyond vacuum general relativity.
Finally, let us briefly comment on the implications for

quantum gravity. In metriplectic geometry, the Liouville
theorem is violated. The volume two-form on phase space
is no longer conserved under the Hamiltonian flow ðQξ; ·Þ.
An analogous statement should be possible at the quantum
level. Evolution should be now governed by a nonunitary
dynamics, e.g. a flow equation consisting of an antisym-
metric commutator, representing the unitary part, and a
symmetric Lindbladian describing the radiation.
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APPENDIX A: NOTATION AND CONVENTIONS

1. Index notation

We use a hybrid notation. p-form indices are often sup-
pressed, but tensor indices are kept. Indices a; b; c;… from
the first half of the alphabet are abstract indices on tangent
space. Indices μ; ν; ρ;… from the second half of the Greek
alphabet refer to coordinate charts fxμ∶Uμ ⊂ M → R4g.

2. Spacetime

We are considering a spacetime manifold M, with sig-
nature ð−þþþÞ, metric gab and matter fields ψ I that satisfy
the Einstein equationsRab − 1

2
gabR ¼ 8πGTab and the field

equations for the matter content. On this manifold, we have
several natural derivatives. ∇a denotes the usual (metric
compatible, torsionless) derivative, Lξ is the Lie derivative
for a vector field ξa ∈ TM, and “d” denotes the exterior
derivative, i.e. ðdωÞa1…apþ1

¼ ðpþ 1Þ∇½a1ωa2…apþ1�. If ω is
a p-form on M, the Lie derivative satisfies Lξω ¼
dðξ ⌟ωÞ þ ξ ⌟ ðdωÞ, where ðξ ⌟ωÞðη;…Þ ¼ ωðξ; η;…Þ ¼
ωab…ξaηb � � � is the interior product. If applied to a vector
field, the Lie derivative acts via the Lie bracket
Lξη

a ¼ ½ξ; η�a ¼ ξb∇bη
a − ηb∇bξ

a.

3. Field space

Field space F is the state space of the solutions of the
field equations. For simplicity, we always go on-shell;
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otherwise, we would need to constantly carry around terms
that are constrained to vanish. As for the differential
calculus on F , the following notation is used. Linearized
solutions δ½gab�≕ hab, δ½ψ I�≕ χI define tangent vectors
δ ∈ TF on field space. If, in fact, ðgðεÞab ;ψ

I
ðεÞÞ is a smooth

one-parameter family of solutions to the field equations,
through the point on field space ðgab;ψ IÞ ¼ ðgðεÞab ;ψ

I
ðεÞÞjε¼0,

we set

δ½gab� ¼
d
dε

����
ε¼0

gðεÞab ; ðA1Þ

δ½ψ I� ¼ d
dε

����
ε¼0

ψ I
ðεÞ: ðA2Þ

To distinguish the differential calculus on field space from
the differential calculus on spacetime, we use a double
stroke notation wherever necessary: d is the exterior
derivative on field space, ∧ denotes the wedge product
between differential forms on F , and ⌟ is the interior
product. If F∶ F → R is a differentiable functional on state
space, we may thus write

δ½F� ¼ δ ⌟dF: ðA3Þ
If, in addition, δ is a vector field on field space, and Ξ is a
p-form on field space, the Lie derivative on state space will
satisfy the familiar identities

Lδ½Ξ� ¼ δ ⌟ ðd½Ξ�Þ þ dðδ ⌟ ½Ξ�Þ; ðA4Þ

Lδ½dΞ� ¼ d½LδΞ�: ðA5Þ

4. Komar charge

For the Einstein–Hilbert action with matter action
Lmatter½gab;ψ I;∇aψ

I�, thepresymplecticpotential isgivenby

ΘðδÞ ¼
Z
Σ
ϑðδÞ ¼ 1

16πG

Z
Σ
d3vað∇bhab −∇ahbbÞ

þ
Z
Σ
d3va

∂Lmatter

∂ð∇aψ
IÞ χ

I; ðA6Þ

where ðhab; χIÞ≡ ðδgab; δψ IÞ solves the linearized field
equations and d3va is the directed volume element (a
tensor-valued p-form). More generally,

dpva1…a4−p ¼
1

p!
εa1…a4−pb1…bp∂

b1
μ1

� � � ∂bpμpdxμ1 ∧ … ∧ dxμp : ðA7Þ

On shell, the Noether charge is given by the Komar formula

Qξ¼
Z
Σ
ðϑðLξÞ−ξ⌟LÞ¼−

1
16πG

I
∂Σ
d2vab∇½aξb�; ðA8Þ

where Lξ is the Lie derivative and L ¼ d4vðð16πGÞ−1
R½g; ∂g; ∂2g� þ Lmatter½g;ψ ;∇ψ �Þ is the total Lagrangian.

APPENDIX B: METRIPLECTIC SPACE AND
DISSIPATION

In this section, we briefly review the formalism of
metriplectic systems [48–50] as an extension of the
framework for Hamiltonian systems. To simplify the
exposition, we restrict ourselves in this appendix to a
finite-dimensional system. The generalization to field
theory is straightforward.
For Hamiltonian systems, the phase space is character-

ized by the equations of motion

d
dt
f ¼ fH; fg ðB1Þ

defined in terms of the antisymmetric Poisson bracket

ff; gg ¼ ωij ∂f
∂zi

∂g
∂zj

; ðB2Þ

where ωij ¼ −ωji is the inverse of the symplectic two-form

ω¼1

2
ωijdzi∧ dzj; dω¼ 0; ωjmωim¼ δji ; ðB3Þ

and zi, i ¼ 1…2N are coordinates on phase space.
Analogously, one can define a metric system through the
equations of motion

d
dt
f ¼ fjS; fjg ðB4Þ

and a symmetric bracket

fjf; gjg ¼ gij
∂f
∂zi

∂g
∂zj

; ðB5Þ

with inverse metric tensor gij ¼ gji and line element

ds2 ¼ gijdzi ⊗ dzj: ðB6Þ
If one requires, in addition, that gij is positive-definite it
follows that

d
dt
S ¼ gij

∂S
∂zi

∂S
∂zj

≥ 0; ðB7Þ

i.e. S only increases over time and finds its interpretation as
a form of entropy. Finally, one obtains ametriplectic system
by combining the two brackets to form the Leibniz bracket

ðf; gÞ ¼ ff; gg � fjf; gjg ðB8Þ
where the relative sign depends on the conventions and on
which thermodynamical potential generates the evolution
(e.g. internal energy, free energy, entropy).
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Note that this bracket lives up to its name and satisfies
the Leibniz rule in either argument

ðf; ghÞ ¼ ðf; gÞhþ gðf; hÞ; ðB9Þ

ðfg; hÞ ¼ fðg; hÞ þ ðf; hÞg; ðB10Þ

for all phase-space functions f, g, h. Based on this bracket,
there are different ways to define the equations of motion.
On the one hand, one can introduce a generalized free
energy F ¼ H − TS to generate the flow of the metriplectic
system, in which case the Hamiltonian is conserved and
the dissipation captured by an increase in entropy [48].
Alternatively one can use the Hamiltonian itself to generate
the time evolution through

d
dt
f ¼ ðH; fÞ: ðB11Þ

In this case, the Hamiltonian is no longer conserved since
ðH;HÞ ≠ 0, due to the symmetric part of theLeibnizbracket,
and captures directly the loss or gain of energy through
dissipation, depending on the sign of fjH;Hjg, [49,50].

Furthermore, just as we can associate Hamiltonian vector
fields Xf to each function f on phase space given a
symplectic two-form ω through δ½f� ¼ ωðδ; XfÞ for all
variations δ, we can define Hamiltonian vector fields Xf
with respect to the metriplectic structure as

∀ δ∶ δf ¼ ωðδ; XfÞ � gðδ; XfÞ; ðB12Þ

provided the bilinear kð·; ·Þ ¼ ωð·; ·Þ � gð·; ·Þ is nondegen-
erate.8 Given the metric and symplectic two-form, we
define the Leibniz bracket

ðf; gÞ ¼ ωðXf; XgÞ � gðXf; XgÞ ¼ Xf½g�: ðB13Þ

Strictly speaking, there are two Leibniz vector fields,
namely a right Leibniz vector field Xr

H½f� ¼ ðf;HÞ and
a left Leibniz vector field Xl

H½f� ¼ −ðH; fÞ. These defi-
nitions are the same for antisymmetric brackets but no
longer so for the Leibniz bracket.
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