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Doubly special relativity (DSR) theories consider (quantum-gravity motivated) deformations of the
symmetries of special relativity compatible with a relativity principle. The existence of time delays for
massless particles, one of their proposed phenomenological consequences, is a delicate question since,
contrary to what happens with Lorentz invariance violation scenarios, they are not simply determined by
the modification in the particle dispersion relation. While some studies of DSR assert the existence of
photon time delays, in this paper we generalize a recently proposed model for time delay studies in DSR
and show that the existence of photon time delays does not necessarily follow from a DSR scenario,
determining in which cases this is so. Moreover, we clarify long-standing questions about the arbitrariness
in the choice of the energy-momentum labels and the independence of the time delay on this choice, as well
as on the consistency of its calculation with the relative locality paradigm of DSR theories. Finally, we
show that the result for time delays is reproduced in models that consider propagation in a noncommutative
spacetime.
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I. INTRODUCTION

A quantum gravity theory (QGT) has been pursued
during the last decades. This theory would reconcile
quantum field theory (QFT) and general relativity (GR)
and should be able to describe particles with extremely high
energies, indispensable for studying the first instants of the
Universe.
Several attempts have been presented in order to avoid the

inconsistencies between QFT and GR, such as string theory
[1–3], loop quantum gravity [4,5], causal dynamical triangu-
lations [6], or causal set theory [7–9]. Inmost of these theories,
a minimum length appears [10–12], which is normally
associated with the Planck length lP ∼ 1.6 × 10−33 cm,
and therefore, there is associated a high-energy scale.
Unfortunately, the aforementioned theories are not yet fully
satisfactory in the sense that they still do not havewell-defined
testable predictions, which might serve us as a guidance in
building a definitive theory of quantum gravity.
Another way of thinking arose not long ago: instead of a

fundamental QGT, one can consider a bottom-up approach
in which residual effects of such a theory can be described.
This opens up the possibility of testing phenomenological

effects without an ultimate theory of quantum gravity (see
[13] for a recent review). In particular, one way of
effectively describing these possible effects is to consider
a modification of the kinematics of special relativity (SR).
A crucial ingredient in this approach is the fate of the
relativistic principle that characterizes SR, or in other
words, of the Lorentz invariance of the theory. In particular,
its breaking for high energies leads to Lorentz invariance
violation (LIV) scenarios [14,15], in which there is a
privileged observer. The main modification of the kinemat-
ics of SR is a modified dispersion relation, where usually
new terms, proportional to the energy divided by the high-
energy scaleΛ describing the SR deviation, are added to the
expression of SR.
On the other hand, in doubly/deformed special relativity

(DSR) theories [16] the Lorentz symmetry is not violated
but deformed. In these scenarios, in addition to a defor-
mation of the dispersion relation, there is a deformed
(nonadditive) composition law for the momenta and, in
order to save a relativity principle, some deformed Lorentz
transformations for the one- and multiparticle systems.
These relativistic deformed kinematics are usually con-
structed within the approach of Hopf algebras [17], being
κ-Poincaré kinematics [18–21], the most studied example
in this context (see, however, [22] for a geometrical inter-
pretation of these kinematics). There are different bases of
κ-Poincaré, i.e., different representations of the algebraic
structure (see [23] for some of them). It is important to note
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that the deformed Casimir depends on the chosen basis. For
example, in the so-called “classical basis” of κ-Poincaré
[24], it is the same as in SR. However, the composition of
momenta is always deformed in these kinematics, inde-
pendently of the basis.
Owing to the differences between LIV and DSR scenar-

ios regarding Lorentz invariance, their phenomenological
implications are rather different. While forbidden decays in
SR are also not allowed in DSR (due to the relativistic
principle), they can occur in a LIV scenario above some
threshold energy [25,26]. Also, the thresholds for allowed
reactions are different. In LIV, the modification is of the
order of E3=ðm2ΛÞ, where E is one of the energies involved
in the process in our (Earth-based) laboratory frame, and m
is a mass that controls the corresponding threshold in SR.
However, in DSR, due to cancellations of effects of the
deformed dispersion relation and momentum composition
law, these modifications are of the order of E=Λ, so that
they are only relevant when the energy of the particles are
of the order of the high-energy scale [27–30].
Moreover, in both scenarios, the possible existence of a

time delay of photons has been proposed as an observable
effect of a modification of special relativistic kinematics:
due to an energy dependent velocity for massless par-
ticles, photons with different energies emitted simulta-
neously by a distant local source could be detected at
different times. There is a clear consensus within the LIV
community concluding that there is a time delay in this
scenario [31–33]. Accordingly, the analysis of signals
from different astrophysical sources (active galactic nuclei
[34,35], gamma ray burst [36,37], and pulsars [38–40])
have been used to put limits on, and in the case of some
analyses [41,42] identify hints of, an energy dependence
of the velocity of propagation of photons due to a violation
of Lorentz invariance (see [13] for a more detailed
discussion).
However, it is an open question whether one would

expect time delays in the DSR framework. While there are
several papers [43–46] affirming the existence of such an
effect, some works point to the opposite [29,47–49]. The
reason behind the different contradictory answers to this
question is the fact that the deformed implementation of the
Poincaré transformations, in particular the translations
between different frames, adds a new ingredient together
with the velocity of propagation of photons in the discussion
on time delays. This was considered in [43], where, besides a
deformed dispersion relation, a noncommutativity of space-
timewas present. A noncommutative spacetimewas also the
main ingredient in the analysis made in Ref. [47].
In a recent work [50], a systematic way for the study of

time delays in DSR, based on postulating a representation
of a deformed Poincaré algebra in canonical phase-space
variables, was considered. Our aim in the present paper is to
generalize this analysis to show that there is no contra-
diction between the different previous works claiming the

presence or absence of time delays. In fact, both possibil-
ities correspond to different cases of DSR, i.e., different
bases of κ-Poincaré describe different physics. Moreover,
we interpret different choices of energy-momentum labels
as the result of canonical transformations. The identifica-
tion of energy and momentum with the generators of
translations has been a source of confusion in the literature
[23,51]. We will explicitly check that the expression of time
delays is indeed independent of energy-momentum labels if
they are identified with the momentum coordinates of the
canonical phase space. This will allow us to single out
specific choices for these labels in DSR theories. We will
see that the choice of phase-space variables is also behind a
nonconventional implementation of translations in the
system of one particle. In contrast to what is commonly
assumed, such nonstandard translations in the one-particle
system are not a consequence of the relative locality
paradigm of DSR and, in fact, can be removed by an
appropriate choice of the phase-space coordinates. We will
show, however, that the analysis of time delays presented in
the paper is consistent with the DSR formulation of the
relative locality of interactions.
The paper is organized as follows. In Sec. II, we

introduce the ingredients we will use in the computation
of time delays: the most generic first-order deformation of
the representation of translations and boosts in a canonical
phase space and the corresponding deformed dispersion
relation. The parameter of the deformation will be iden-
tified with the inverse of a high-energy scale, which
characterizes the effects of new physics. We analyze, in
detail, the computation of time delays in Sec. III, including
a discussion of the choice of the energy-momentum
variables. In Sec. IV, we see that the same expression
for time delays is obtained if, instead of considering a
commutative spacetime, we use a noncommutative one, as
it is done in some approaches of DSR. In Sec. V we study
the consistency of the previous discussion of time delays
with the main ingredients of DSR theories, a modified
composition law and the relative locality of interactions.
Finally, we end with the conclusions in Sec. VI.

II. RELATIVISTIC DEFORMED SYMMETRY

From an algebraic point of view, DSR introduces a
deformed Poincaré algebra characterized by a parameter in
terms of which one can consider a power expansion of the
deformation. Its inverse, which we will call Λ, has
dimensions of energy, and we will associate it to a high-
energy scale of new physics.
Let us consider the most general first-order deformation

of the Poincaré transformations acting on the canonical
phase space of one particle. These will be the ingredients
that will enter the calculation of time delays that we will
carry out in the following section. We denote by E, P, and
N the generators of translations and boosts in a 1þ 1
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dimensional spacetime1 with coordinates (x, t). The canoni-
cal phase space is composed, together with the space-time
coordinates, by its canonical conjugated momentum
coordinates (Π, Ω), such that fx;Πg ¼ 1; ft;Ωg ¼ −1;
fx;Ωg ¼ 0, and ft;Πg ¼ 0, where the f; g operation
stands for the Poisson bracket. The most general expression
for the generators of the Poincaré transformations in terms
of the canonical phase-space variables is2 (here and in the
following, equalities have to be understood neglecting
Oð1=Λ2Þ terms):

E ¼ Ωþ a1
Λ
Ω2 þ a2

Λ
Π2; P ¼ Πþ a3

Λ
ΩΠ;

N ¼ xΩ − tΠþ a4
Λ
xΩ2 þ a5

Λ
xΠ2 −

a6
Λ
tΩΠ; ð1Þ

where the ai are adimensional coefficients determining the
deformation of the Poincaré transformations in phase space.
Equation (1) is a generalization of the model presented
in [50].
The Casimir of this algebra will have the general form

C ¼ Ω2 − Π2 þ α1
Λ
Ω3 þ α2

Λ
ΩΠ2; ð2Þ

where the coefficients α1, α2 are determined, in terms of the
coefficients (a4, a5, a6) in N, by the condition fN;Cg ¼ 0.
One obtains

fN;Cg ¼ ð−2a4 þ 2a6 þ 3α1 þ 2α2Þ
Λ

Ω2Π

þ ð−2a5 þ α2Þ
Λ

Π3; ð3Þ

so that

α1 ¼
ð2a4 − 4a5 − 2a6Þ

3
and α2 ¼ 2a5: ð4Þ

The Casimir also determines the deformed energy-momen-
tum relation, also known as dispersion relation. In the case
of a massless particle (C ¼ 0), one finds

Ω ¼ Π −
ðα1 þ α2Þ

2Λ
Π2 ¼ Π −

ða4 þ a5 − a6Þ
3Λ

Π2: ð5Þ

One can also identify the deformed Poincaré algebra that
these deformed generators satisfy,

fN;Eg ¼ Πþ ða6 þ 2a1 þ 2a2Þ
Λ

ΩΠ;

fN;Pg ¼ Ωþ ða4 þ a3Þ
Λ

Ω2 þ ða5 þ a3Þ
Λ

Π2; ð6Þ

which is more naturally written in terms of the generators
themselves,

fN;Eg ¼ Pþ w3

Λ
EP; fN;Pg ¼ Eþ w1

Λ
E2 þ w2

Λ
P2;

ð7Þ

where the coefficients wi are given by

w1 ¼ a4 − a1 þ a3; w2 ¼ a5 − a2 þ a3;

w3 ¼ a6 þ 2a1 þ 2a2 − a3: ð8Þ

Similarly, the Casimir can also be written in terms of E and
P,

C ¼ E2 − P2 þ 2ðw1 − 2w2 − w3Þ
3Λ

E3 þ 2w2

Λ
EP2: ð9Þ

Note that the energy and momentum are denoted by
ðΩ;ΠÞ, so that one has to see the relation betweenΩ andΠ,
derived from the equation CðΩ;ΠÞ ¼ m2, as the particle
dispersion relation which intervenes in the deformed
kinematics, and it should not be confused with the relation
between E and P that one could derive equating CðE;PÞ to
m2. As we will remark in the following section, this is a
source of confusion regarding the arbitrariness in the choice
of energy-momentum labels for the physics under study.

III. CALCULATION OF TIME DELAYS

Once the implementation of a deformed Poincaré algebra
in the phase space of one particle has been set, it is possible
to study its physical consequences for photon time delays,
as we will do in the present section.
The deformed Casimir C determines the propagation of

particles in spacetime by identifying it with the generator of
translations in a parameter τ along the worldline of the
particle,

dx
dτ

¼ λðτÞfC; xg; dt
dτ

¼ λðτÞfC; tg; ð10Þ

where λðτÞ is an arbitrary function implementing the
invariance under reparametrizations of the worldline. The
trajectory xðtÞ will be a solution of

dx
dt

¼fC;xg
fC;tg ¼−

∂C=∂Π
∂C=∂Ω

;
dΩ
dτ

¼dΠ
dτ

¼ 0; CðΩ;ΠÞ¼m2:

ð11Þ

1The extension of the results to the case of 3þ 1 dimensions is
straightforward.

2We have assumed the invariance of these expressions under
the discrete transformation Π → −Π, P → −P, x → −x, and
N → −N in order to have an analogue in 1þ 1 dimensions of
the restrictions due to rotational invariance in the case of 3þ 1
dimensions.
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Using the dispersion relation for a massless particle,
Eq. (5), which is the relevant one for the discussion of
photon time delays, one obtains that the velocity of
propagation for photons is

v¼ dx
dt

¼ 1−
ðα1 þ α2Þ

Λ
Π¼ 1−

2ða4 þ a5 − a6Þ
3Λ

Π; ð12Þ

a result that could have been derived directly from the
energy-momentum relation identifying the velocity
with dΩ=dΠ.
In order to discuss time delays, we consider the propa-

gation of two photons, one of high energy, whose trajectory
will be characterized by Eq. (12), and one with low energy,
that propagates with dx=dt ≈ 1, as in SR. Wewill define the
time delay as the difference in the detection times of the two
photons if their emission was simultaneous.
In the case of a LIV scenario, one only needs to consider

a single observer to discuss time delays. If the two photons
are emitted at the origin of the space-time coordinates, the
low-energy photon is detected at coordinates ðL;LÞ and the
high-energy photon, propagating at speed v, at coordinates
ðL;Lþ δtÞ, where δt is the time delay, which is equal to
L½ð1=vÞ − 1� (Fig. 1).
In contrast, the analysis of time delays is much more

subtle in a DSR scenario. The reason is the principle of
relative locality [52], which states that in DSR, for a given
interaction (e.g., either the emission or the detection of the
high-energy photon), there exists only one observer3 which
sees this interaction as local. For this “local” observer, the
interaction takes place at the origin of the space-time
coordinates. The nonlocality of all other interactions is,
nevertheless, negligible when all the intervening momenta

are sufficiently small compared with the scale Λ. We will
analyze in more detail the connection between the present
calculation of time delays and relative locality in Sec. V.
Relative locality makes necessary the presence of two

observers to compute the time delay, one of them local to the
emission of the high-energy photon and the other one local to
its detection. Let us call O the observer for which the
detection of the high-energy photon happens at its origin of
space-time coordinates, ðx; tÞ ¼ ð0; 0Þ (Fig. 2, right), andO0
the observer for which the emission of the high-energy
photon takes place at ðx0; t0Þ ¼ ð0; 0Þ (Fig. 2, left).
If the source and the detector are at relative rest, then the

coordinates of the points of the photon worldline assigned
by each observer will be related by a translation
with parameters ðϵ1; ϵ0Þ that we need to determine.
Since the Poisson brackets of E or P with fP; xg,
fP; tg, fE; xg, and fE; tg are zero, one can compute the
finite transformation as

x0 ¼ x − ϵ1fP; xg þ ϵ0fE; xg;
t0 ¼ t − ϵ1fP; tg þ ϵ0fE; tg: ð13Þ

As for both observers the worldline of the high-energy
photon contains their corresponding origin of spacetime, its
trajectory will be x ¼ vt for observer O, and x0 ¼ vt0 for
observer O0, where v is given by Eq. (12). This imposes a
relation between the parameters of the translation,

ϵ0½vfE; tg − fE; xg� ¼ ϵ1½vfP; tg − fP; xg�: ð14Þ

Using that

FIG. 1. In LIV, only one observer is necessary for the
calculation of time delays. An observer at the emission is able
to assign coordinates to the detection of both photons.

FIG. 2. In DSR, due to relative locality, the observer O0 (left
figure) sees the emission of the high-energy photon as local, but
not the detection. The opposite behavior is shown for O (right
figure), which sees the detection of the high-photon as local, but
not the emission. The emission and detection of the low-energy
photon is local for every observer.

3We are here identifying observers related by a Lorentz trans-
formation so that different observers are related by a translation.
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fE; tg ¼ 1þ 2a1
Λ

Ω; fE; xg ¼ −2
a2
Λ
Π;

fP; tg ¼ a3
Λ
Π; and fP; xg ¼ −1 −

a3
Λ
Ω; ð15Þ

and the energy-momentum relation, Eq. (5), one gets

ϵ0
ϵ1

¼ 1þ 2ða4 þ a5 − a6Þ
3Λ

Π −
2ða1 þ a2 − a3Þ

Λ
Π: ð16Þ

In order to determine these parameters, let us consider
the simultaneous emission of a low-energy photon, that is,
emitted at ðx0; t0Þ ¼ ð0; 0Þ, whose trajectory is characterized
by dx=dt ≈ 1. The nonlocality of the emission and detec-
tion of this photon can be neglected for all observers if one
assumes that these are low-energy processes. Observer O
defines the detection of the high-energy photon at x ¼ 0.
Disregarding the size of the detector, the detection of the
low-energy photon will also happen at x ¼ 0 for O. The
coordinates of the detection of the low-energy photon will
be then ðx; tÞ ¼ ð0;−δtÞ, where δt is the time delay of the
high-energy photon with respect to the one of low energy.
This detection will correspond to a point ðx0; t0Þ ¼ ðL; LÞ
for O0 (see Fig. 2). The relation between the coordinates
assigned by both observers to the worldline of the low-
energy photon is then

x0 ¼ xþ L; t0 ¼ tþ ðLþ δtÞ: ð17Þ

This gives the values of the parameters of the translation in
Eq. (13), ϵ1 ¼ L, ϵ0 ¼ Lþ δt, and then,

ϵ0
ϵ1

¼ 1þ δt
L
: ð18Þ

From Eq. (16) we get

δt ¼ L

�
2ða4 þ a5 − a6Þ

3Λ
Π −

2ða1 þ a2 − a3Þ
Λ

Π
�
: ð19Þ

We see that the time delay is a sum of two contributions.
The first one, due to the momentum dependence of the
velocity of propagation of photons, can be read from the
equation for the trajectory, Eq. (12), and the second one,
due to the nontrivial translations relating the two observers
O and O0.
One will have a cancellation of the two contributions in

(19), and then no observable consequences at the level of
time delays, when the deformations of the boost and space-
time translation generators are such that

a4 þ a5 − a6 ¼ 3ða1 þ a2 − a3Þ: ð20Þ

A. Independence of the choice
of energy-momentum variables

In the previous study, we have identified the energy-
momentum variables with the momentum coordinates
ðΠ;ΩÞ of the canonical phase space; however, there is
not a unique choice for these coordinates, since one can
consider a canonical change of phase-space variables
ðx; t;Π;ΩÞ → ðx̄; t̄; Π̄; Ω̄Þ, with

Ω̄¼Ωþ δ1
Λ
Ω2 þ δ2

Λ
Π2; Π̄¼ Πþ δ3

Λ
ΩΠ;

t̄¼ t−
2δ1
Λ

tΩþ δ3
Λ
xΠ; x̄¼ xþ 2δ2

Λ
tΠ−

δ3
Λ
xΩ: ð21Þ

The generators of the deformed Poincaré algebra acting on
the new phase-space coordinates are then

E ¼ Ω̄þ ā1
Λ
Ω̄2 þ ā2

Λ
Π̄2; P ¼ Π̄þ ā3

Λ
Ω̄ Π̄;

N ¼ x̄ Ω̄−t̄ Π̄þ ā4
Λ
x̄Ω̄2 þ ā5

Λ
x̄Π̄2 −

ā6
Λ
t̄ Ω̄ Π̄; ð22Þ

with

ā1 ¼ a1 − δ1; ā2 ¼ a2 − δ2; ā3 ¼ a3 − δ3;

ā4 ¼ a4 − δ1 þ δ3; ā5 ¼ a5 − δ2 þ δ3;

ā6 ¼ a6 þ 2δ1 þ 2δ2 − δ3: ð23Þ

Hence one can check that

δt̄ ¼ L
2ðā4 þ ā5 − ā6 − 3ā1 − 3ā2 þ 3ā3Þ

3Λ
Π̄

¼ L
2ða4 þ a5 − a6 − 3a1 − 3a2 þ 3a3Þ

3Λ
Π ¼ δt: ð24Þ

From this result one concludes that the value of the time
delay, i.e., Eq (19), is independent of the choice of energy-
momentum variables.

B. Coordinate-independent expression of the time delay

We can use this freedom of choice of the energy-
momentum variables to simplify the computation of the
time delay. For example, from Eq. (12), one can check that
the condition to have a momentum-independent velocity
for massless particles is ðā4 þ ā5 − ā6Þ ¼ 0. Therefore,
when performing a change of phase-space variables such
that δ1 þ δ2 − δ3 ¼ ð1=3Þða4 þ a5 − a6Þ, the time delay
will have a contribution only from the nontrivial trans-
lations. On the other hand, from Eq. (19), we see that the
condition to have trivial translations is ðā1 þ ā2 − ā3Þ ¼ 0.
Then, when performing a change of phase-space variables
such that δ1 þ δ2 − δ3 ¼ ða1 þ a2 − a3Þ, the time delay
will be due exclusively to the momentum dependence of
the velocity.
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Let us use a choice of energy-momentum variables such
that they coincide with the generators of space-time trans-
lations, ðΩ̄; Π̄Þ ¼ ðE; PÞ, and so

t̄¼ t−
2a1
Λ

tΩþ a3
Λ
xΠ; x̄¼ xþ 2a2

Λ
tΠ−

a3
Λ
xΩ: ð25Þ

With this choice of coordinates, the space-time trans-
lations are not deformed, so the time delay is only due to
the momentum dependence of the velocity, i.e.,
δt̄ ¼ L½1=v̄ − 1�. Moreover, the velocity can be read
directly from the Casimir in terms of E and P,

v̄ ¼ dx̄
dt̄

¼ dΩ̄
dΠ̄

¼ dE
dP

����
C¼0

: ð26Þ

Then the time delay, Eq. (19), can also be written in terms
of the relation between E and P, which does not depend on
the choice of phase-space variables,

δt ¼ δt̄ ¼ L

��
dE
dP

����
C¼0

�
−1

− 1

�
¼ L

2ðw1 þ w2 − w3Þ
3Λ

P:

ð27Þ

Therefore, the condition of absence of time delays
can be written as a condition over the algebra of
ðE;P;NÞ,

w1 þ w2 − w3 ¼ 0; ð28Þ

which is independent of the choice of phase-space varia-
bles. Without losing generality, then, one can say that there
will be no time delay as long as the Casimir expressed in
terms of E and P is such that the solution of the equation
CðE;PÞ ¼ 0 is the same as in SR, i.e., E ¼ P.4

We can now show some examples of different bases of κ-
Poincaré, for which the previous condition is satisfied:

(i) Classical basis [24].
In this basis, the Casimir is unmodified with

respect to the SR case. Therefore, E ¼ P trivially
for photons.

(ii) Magueijo-Smolin basis [53].
The Casimir in this basis is

C ¼ E2 − P2

ð1 − E=ΛÞ2 ; ð29Þ

for which E ¼ P for massless particles.

(iii) DCL1 basis [54]
The Casimir in this case is given by

C ¼ E2 − P2

ð1 − E=ΛÞ : ð30Þ

Again, E ¼ P for massless particles.

C. Change of basis of κ-Poincaré

Let us notice that a very different situation arises if one,
instead of making a change of phase-space coordinates,
now changes the deformed generators of space-time trans-
lations, i.e., if one changes the basis of κ-Poincaré. This
implies that we change ðE;P; NÞ → ðĒ; P̄; NÞ, with

Ē ¼ Eþ Δ1

Λ
E2 þ Δ2

Λ
P2; P̄ ¼ Pþ Δ3

Λ
EP: ð31Þ

Then we have a new deformed algebra given by

fN; P̄g ¼ Ēþ w̄1

Λ
Ē2 þ w̄2

Λ
P̄2; fN; Ēg ¼ P̄þ w̄3

Λ
Ē P̄;

ð32Þ

with

w̄1 ¼ w1 − Δ1 þ Δ3; w̄2 ¼ w2 − Δ2 þ Δ3;

w̄3 ¼ w3 þ 2Δ1 þ 2Δ2 − Δ3; ð33Þ
and, as a consequence, the result for time delays is also
modified,

δt̄¼ L
2ðw̄1 þ w̄2 − w̄3Þ

3Λ
Π¼ L

2ðw1 þw2 −w3Þ
3Λ

Π

−L
2ðΔ1 þΔ2 −Δ3Þ

Λ
Π¼ δt−L

2ðΔ1 þΔ2 −Δ3Þ
Λ

Π:

ð34Þ
Different bases of κ-Poincaré, therefore, correspond to
different physical models going beyond SR.

IV. TIME DELAYS IN A
NONCOMMUTATIVE SPACETIME

Some works have considered a noncommutative space-
time as the physical spacetime where trajectories of
particles should be defined [43,46,47,49]. In particular,
the κ-Minkowski spacetime is associated naturally to a κ-
Poincaré deformation of the algebra of special relativity
[51], which has been extensively studied in connection with
DSR theories. In this section we will examine how the
previous discussion of time delays is modified if one
considers that the propagation and detection of photons
are described in such a spacetime.
In order to introduce this noncommutative spacetime, let

us consider the deformation of Poincaré transformations
acting on momentum space which include, together with

4Note that this is not the same as saying that the energy is equal
to the modulus of the momentum for a photon since the energy
and momentum of the photon are Ω and Π, respectively, and, in
general, they do not coincide with the generators of the space-
time translations E and P.
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the generator of boosts N, the deformed generators of
translations (X, T) acting on the momentum variables
(Π, Ω). Such a deformation is necessarily of the form5

fT; Xg ¼ 1

Λ
X; fN;Xg ¼ T; fN; Tg ¼ X þ 1

Λ
N:

ð35Þ

A general expression for these deformed generators that
is linear in the space-time coordinates is

X ¼ xþ b1
Λ
xΩþ b2

Λ
tΠ; T ¼ tþ b3

Λ
xΠþ b4

Λ
tΩ: ð36Þ

The coefficients bi are determined by the Lie algebra.
Using

fN;Xg ¼ tþ ðb1 þ b2 − 2a5Þ
Λ

xΠþ ðb1 þ b2 þ a6Þ
Λ

tΩ;

fN; Tg ¼ xþ ðb3 þ b4 þ 2a4Þ
Λ

xΩþ ðb3 þ b4 − a6Þ
Λ

tΠ;

fX; Tg ¼ ðb1 þ b3Þ
Λ

x; ð37Þ

and Eqs. (35) and (36), we get

b1 ¼
2a4 þ 2a5 þ a6

3
− 1; b2 ¼

−4a4 þ 2a5 − 2a6
3

þ 1;

b3 ¼
−2a4 − 2a5 − a6

3
; b4 ¼

−2a4 þ 4a5 þ 2a6
3

: ð38Þ

One can make a model in which the physical space-time
coordinates are (X,T) instead of the canonical ones (x,t)
used in the previous section. From Eq. (36), we find

dX
dt

¼ dx
dt

þ b1
Λ
dx
dt

Ωþ b2
Λ
Π;

dT
dt

¼ 1þ b3
Λ
dx
dt

Πþ b4
Λ
Ω;

ð39Þ

and then, merging both equations and expanding until order
1=Λ, we get that the velocity in the noncommutative
spacetime is given by

dX
dT

¼ dx
dt

þðb1þb2−b3 −b4Þ
Λ

Π

¼
�
1−

2ða4þa5 −a6Þ
3Λ

Π
�
þ 2ða4þa5−a6Þ

3Λ
Π¼ 1;

ð40Þ

where in the next-to-last step we have substituted the values
of ðb1; b2; b3; b4Þ, given by Eq. (38). Then, we get that the

velocity of a massless particle in this noncommutative
spacetime is simply ðdX=dTÞ ¼ 1.
A point with coordinates ðx; tÞ ¼ ð0; 0Þ has coordinates

ðX; TÞ ¼ ð0; 0Þ. Then, the detection of the high-energy
photon happens at ðX; TÞ ¼ ð0; 0Þ for observer O and its
emission at ðX0; T 0Þ ¼ ð0; 0Þ for observerO0. The worldline
for the photon is then X ¼ T for observer O, and X0 ¼ T 0
for observer O0. Imposing once more that one can go from
observer O to observer O0 by a translation with parameters
ðϵ1; ϵ0Þ, one has

X0 ¼ X þ ϵ0fE;Xg − ϵ1fP;Xg;
T 0 ¼ T þ ϵ0fE; Tg − ϵ1fP; Tg: ð41Þ

Applying the translation to the worldline X ¼ T of the
observer O, one has to find the worldline X0 ¼ T 0 for the
observer O0. This implies the relation

ϵ0½fE; Tg − fE;Xg� ¼ ϵ1½fP; Tg − fP;Xg�: ð42Þ

Combining the expressions of the noncommutative
space-time coordinates, in terms of the canonical phase-
space variables in (36), with the expressions of (E, P), in
terms of the momentum variables (Ω, Π) in (1), one has

fE; Tg ¼ 1þ ðb4 þ 2a1Þ
Λ

Ω; fE;Xg ¼ ðb2 − 2a2Þ
Λ

Π;

fP; Tg ¼ ð−b3 þ a3Þ
Λ

Π; fP; Xg ¼ −1 −
ðb1 þ a3Þ

Λ
Ω:

ð43Þ

Using once more the energy-momentum relation, Eq. (5),
one finds

ϵ0
ϵ1

¼ 1þ ðb1 þ b2 − b3 − b4Þ
Λ

Π −
2ða1 þ a2 − a3Þ

Λ
Π

¼ 1þ 2ða4 þ a5 − a6Þ
3Λ

Π −
2ða1 þ a2 − a3Þ

Λ
Π: ð44Þ

The parameters of the translation between observers O and
O0 defined in a noncommutative spacetime satisfy exactly
the same relation, Eq. (16), obtained previously. This is just
a consequence that a point with coordinates ðx; tÞ ¼ ð0; 0Þ
is a point with coordinates ðX; TÞ ¼ ð0; 0Þ, which is what
defines the two observers, O and O0, in the model of time
delays. Since for the trajectory of the low-energy photon,
which allows one to define the time delay, there is no
distinction between commutative and noncommutative
coordinates, the result for the time delay δT coincides
with the result for δt, Eq. (19), obtained in Sec. III.

5Note that the first parenthesis of (35) is a definition of the
scale Λ used in the previous sections.
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V. MODIFIED COMPOSITION LAW AND
RELATIVE LOCALITY IN DSR

DSR contains an essential feature in comparison with SR
and LIV: a nonadditive composition law for momenta,
which can be seen as a reflection of a curved momentum
space. As a consequence of this feature, a relative locality
of interactions arises since translations in spacetime must
be deformed accordingly [52]. In this section we will
explore how the properties of a modified composition law
and relative locality are related to the discussion of time
delays of the preceding sections.

A. Modified composition law

In all the previous discussion we have considered a
deformation of the Poincaré transformations acting on the
one-particle system. This is an ingredient required to study
the presence of time delays in the detection of photons of
different energies emitted simultaneously by a local source
as a possible consequence of the relativistic deformation of
SR. But the physical content of a relativistic deformation is
in thenontrivial step going fromone-particle tomulti-particle
states. This ismanifest in the algebraic framework at the level
of the coalgebra involved in the Hopf algebra that character-
izes the deformed relativistic symmetry [20]. In the purely
kinematic perspective, a DSR theory has a nonsymmetric
composition law of momenta as the ingredient defining the
deformation of the kinematics.Wewill now see how this key
feature of DSR is related with the ingredients used in the
calculation of the time delay.
Let us consider a translation in momentum space, with

generators (X,T) and parameters (π, ω). Using Eq. (36), we
get

Π0 −Π¼ πfX;Πg−ωfT;Πg ¼ πþ b1
Λ
πΩ−

b3
Λ
ωΠ;

Ω0 −Ω¼ πfX;Ωg−ωfT;Ωg ¼ ω−
b2
Λ
πΠþ b4

Λ
ωΩ: ð45Þ

Defining a composition of two momentum variables
q ¼ ðq1; q0Þ ¼ ðΠ;ΩÞ and p ¼ ðp1; p0Þ ¼ ðπ;ωÞ as the
momentum variable that results from the previous trans-
lation

ðp ⊕ qÞ1 ¼ p1 þ q1 þ
γ1
Λ
p0q1 þ

γ2
Λ
p1q0 ≐ Π0;

ðp ⊕ qÞ0 ¼ p0 þ q0 þ
β1
Λ
p0q0 þ

β2
Λ
p1q1 ≐ Ω0; ð46Þ

one has

γ1 ¼ −b3; γ2 ¼ b1; β1 ¼ b4; β2 ¼ −b2: ð47Þ

The coefficients defining the deformed composition of
momenta ðβ1; β2; γ1; γ2Þ are in one-to-one correspondence
with the coefficients (b1, b2, b3, b4). This way, the

deformed composition of momenta determines the coef-
ficients (a4, a5, a6) of the deformed boost generator using
Eq. (38). The latter also determines the modified energy-
momentum relation, or dispersion relation, given by
Eq. (5). In fact, one has

α1 ¼
2a4 − 4a5 − 2a6

3
¼ −b4 ¼ −β1;

α2 ¼ 2a5 ¼ b1 þ b2 − b3 ¼ γ1 þ γ2 − β2; ð48Þ

which are the golden rules of a relativistic kinematics
derived in a previous work [55] from the compatibility of
the deformed composition of momenta and the implemen-
tation of Lorentz transformations in a two-particle system.
A DSR theory always has a modified composition law of

momenta, giving rise to nonstandard conservation laws in
particle processes, and therefore, to possible observable
effects beyond time delays. This fact is what makes a DSR
model without time delays different from standard SR (see,
however, [56–58] for recent works discussing a possible
effect of DSR in the lifetime of particles).

B. Relative locality

A modified composition law leads to a loss of absolute
locality in canonical spacetime [48,49,52,54,59–61].
Qualitatively, since the total momentum, which is con-
served in an interaction, is a nonlinear composition of
momenta, translations (generated by the total momentum)
of the worldlines participating in the interaction are not
constant displacements (as it would be the case if the total
momentum were a linear sum of momenta) but momentum-
dependent displacements: a local interaction for one
observer is then seen as nonlocal for a translated observer.
A realization of the relative locality of interactions in

DSR is the action formulation of an interaction that was
introduced in Ref. [52]. The action is of the form

S ¼
X
i

Sfreei þ Sint; ð49Þ

where i labels the particles (both incoming and outgoing)
participating in the interaction. The free part is

Sfreei ¼
Z

dτ ðxi _Πi − ti _Ωi þN iCiÞ; ð50Þ

where the integral extends from −∞ to 0 (if we set the
interaction to take place at τ ¼ 0 for each of the particles) in
the case of the in particles and from 0 to þ∞ in the case of
the out particles. In the previous expression, N i are
Lagrange multipliers that impose the modified dispersion
relations Ci ¼ 0. The interacting part is

Sint ¼ z1½Pinð0Þ − Poutð0Þ� − z0½Einð0Þ − Eoutð0Þ�; ð51Þ
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where E and P are the total energy and momentum, which
are obtained from the modified composition law of the
incoming or outgoing momenta, and ðz1; z0Þ are again
Lagrange multipliers.
From the variational principle, one obtains that the “in”

and “out”worldlines are characterized by constantmomenta,
independent of τ, and gets the space-time coordinates of their
corresponding end or starting points,

tið0Þ ¼ −z1
∂P
∂Ωi

þ z0
∂E
∂Ωi

¼ −z1fP; tig þ z0fE; tig;

xið0Þ ¼ z1
∂P
∂Πi

− z0
∂E
∂Πi

¼ −z1fP; xig þ z0fE; xig: ð52Þ

The set of momenta and the values of ðz1; z0Þ determine the
end or starting points of the in and out worldlines, respec-
tively, and the interaction is seen as local only for theobserver
which establishes the origin of space-time coordinates at the
interaction vertex (corresponding to z1 ¼ z0 ¼ 0), as shown
in Eq. (52). An observer who assigns a different value of the
pair ðz1; z0Þ to the interaction is related with the local
observer by a translation generated by the total energy
and momentum with parameters ðz1; z0Þ, as the expressions
in terms of Poisson brackets in Eq. (52) indicates.
Translations correspond then to constant displacements in
the Lagrange multipliers, and translated observers with
respect to the local one do not see the worldlines meet at
a single space-time point.

Note that the notion of relative locality allows one to
define an observer with the property of seeing a given high-
energy process [that is, one which includes corrections of
order E=Λ or P=Λ in the notation of Eq. (51)] as a local
event. This property also defines the origin of space-time
coordinates for this observer. The approach that we have
followed in Sec. III for calculating the time delay of a high-
energy photon is consistent with this idea since we
introduced two observers, O and O0, who establish their
respective origin of space-time coordinates using specific
high-energy interactions that they see as local: the detection
and the emission of a high-energy photon, respectively.
Since the procedure presented in Sec. III allowed us to

relate the space-time coordinates of the worldline of the
particle, whose detection and emission defines the observ-
ersO andO0, we may ask how observerO would “see” the
process of emission of this particle, which must be nonlocal
for this observer, or how O0 would see the process of its
detection, that is, which coordinates they would associate to
the starting or ending points of worldlines of particles
participating in these interactions.
If we would know the values of ðz1; z0Þ in the description

by observer O of the interaction that produces the high-
energy photon, then one could use Eq. (52) to obtain the
space-time coordinates that this observer would assign to the
end or start of the worldlines of all the particles participating
in the interaction, including the starting point of the trajectory
of the high-energy photon. Alternatively, one can determine
these last coordinates from Eq. (13) with x0 ¼ t0 ¼ 0,

x ¼ ϵ1fP; xg − ϵ0fE; xg ¼ −L
�
1þ ð−2a2 þ a3Þ

Λ
Π
�
;

t ¼ ϵ1fP; tg − ϵ0fE; tg ¼ −L
�
1þ ð−2a2 þ a3Þ

Λ
Πþ 2ða4 þ a5 − a6Þ

3Λ
Π
�
: ð53Þ

The compatibility of the two expressions for the coordinates ðx; tÞ that observer O assigns to the starting point of the
worldline of the high-energy photon allows us to determine the values of the parameters ðz1; z0Þ in the description of the
emission by observer O. One finds

z1 ¼ −L
�
1þ ð−2a2 þ a3Þ

Λ
Πþ

�
1þ ∂E

∂Π
−
∂P
∂Π

��
;

z0 ¼ −L
�
1þ ð−2a2 þ a3Þ

Λ
Πþ 2ða4 þ a5 − a6Þ

Λ
Πþ

�
1 −

∂E
∂Ω

þ ∂P
∂Ω

��
: ð54Þ

One has corrections to the result in SR, z1 ¼ z0 ¼ −L, due
to the deformation of the generators ðE;PÞ of translations
[terms proportional to ð−2a2 þ a3Þ], to the deformation of
the boost generator [term proportional to ða4 þ a5 − a6Þ],
and to the modification of the composition of energy and
momentum (terms depending on the derivatives of the total

energy (E) and total momentum (P) with respect to the
energy (Ω) and momentum (Π) of the high-energy photon).
The method used to determine the parameters ðz1; z0Þ in

the description of the emission by observer O can also be
used to determine the parameters ðz01; z00Þ, in the description
of the detection by observerO0, reproducing the space-time
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coordinates ðx0; t0Þ of the end point of the trajectory of the
high-energy photon.
It is remarkable that the derivation of the time delay of a

high-energy photon emitted by a source that we got from a
model describing its propagation from the source to the
detector is consistent with the nonlocality obtained with the
action formulation of either its emission or its detection,
which incorporates the modified kinematics (modified
dispersion relation and modified composition law) of the
corresponding interaction. The description of each process
by one of the two observers is very complicated and
depends on the four-momenta of all the particles involved
in the interaction, but the result of the time delay itself is
independent of them and depends only on the four-
momentum of the high-energy photon.
Note that we did not try to build a model of multiple

interactions, which is not as well defined as the action
formulation of one interaction (49), and which poses
important difficulties, such as the spectator problem
[60], to try to obtain an expression for the time delay in
DSR. In such a model we would not have been able to treat
independently the two interactions (emission and detection
of the high-energy photon), and we would have found an
obstruction to reproduce the photon’s trajectory used in the
calculation of the time delay in Sec. III.

VI. CONCLUSIONS

In the present work we have analyzed in detail the
calculation of time delays in doubly special relativity
theories in terms of the parameters that define the defor-
mation of special relativity at first order. We have clarified
long-standing questions related to this problem: first, the
independence of the result of an observable, the time delay,
of the energy-momentum variables one is free to choose;
second, the consistency of the calculation of the time delay
with the relative locality of the interactions, leading to a
result which is independent of the details of the emission or
detection of the high-energy photon; and third, the exist-
ence of DSR models without time delays.
The fact that observables in DSR should be independent

of the choice of energy-momentum variables seems rea-
sonable and is normally advocated in the literature [62], but
its physical interpretation was not clear because a change of
energy and momentum was usually related to a change of
bases in a Hopf algebra, which are assigned to different
DSR models [23,51]. However, already in Sec. II we have
been very careful to distinguish between the physical
energy and momentum, ðΩ;ΠÞ, which are variables in a
canonical phase space, and the generators of translations in
spacetime, E, P, which are the operators that appear in the
deformed Poincaré algebra. We showed in Sec. III A that
the result for time delays is, indeed, independent from the
choice of phase-space variables.
On the other hand, the use of a canonical phase space as

the physical spacetime and energy-momentum is consistent

with the action formulation of relative locality that we
reviewed in Sec. V B. This formalism gives the space-time
coordinates of ending and starting points of worldlines of
particles participating in an interaction, as a function of the
momenta of all those particles, the total momentum which
is conserved in the interaction, and the Lagrange multipliers
that a given observer assigns to it. A consequence of
relative locality is that each (high-energy) process is only
seen as local by a single observer, who assigns zero
Lagrange multipliers, corresponding to the origin of
space-time coordinates, to the interaction. The procedure
of calculation of time delays carried out in Sec. III was
indeed compatible with this formulation of relative locality.
Remarkably, we obtained a formula for time delays in DSR,
which depends on the four-momentum of the high-energy
photon but is independent of the details of its emission and
detection. We also showed in Sec. IV that considering the
propagation and detection of the photon in a noncommu-
tative spacetime is an equivalent description up to order
ð1=ΛÞ that leads to same result for the time delay.
An important observation is that the nonstandard space-

time translations generated by E and P, which was the
starting point in Sec. II, have nothing to do with imple-
menting the relative locality of interactions, but with the
choice of phase-space variables. In fact, there exists a
choice of these variables (when Ω ¼ E, Π ¼ P) where
space-time translations are undeformed in the one-particle
system. The translational invariance of DSR is, indeed,
different from that of SR because in DSR, the total
momentum which is conserved is not a sum of momenta,
but a nonlinear combination of them. Translations are not,
then, constant displacements in the coordinates of the
different particles. Deformed translation generators in the
one-particle system do not correspond to a translation
between observers in the DSR formulation of an inter-
action, which has the total energy and momentum as
the generators of the transformations, and not the func-
tions of the energy and momentum of a single particle E
and P.
Finally, we have seen that the expression for the time

delay has a sum of two contributions, one due to the
momentum dependence of the velocity of propagation of a
massless particle, and a second one due to the nontrivial
implementation of translational invariance. We have shown
that it is possible to have a DSR theory without time delays
when these two contributions cancel each other. From the
perspective of the representation of deformed Poincaré
transformations in terms of the canonical phase-space
coordinates, the absence of such an effect requires the
condition (20) to be satisfied. However, one can also see
the condition in a coordinate-free form, as a condition over
the deformed algebra of the generators, Eq. (28). As a
consequence, we find the possibility to identify the exist-
ence of time delays directly from the deformation of the
Casimir. It is also relevant to note that one can have an
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absence of time delays, and still, a photon dispersion
relation (which, let us remark once again, must be seen
as a relation between Ω and Π, and not between E and P),
which is different from the one of special relativity.
The absence of time delays in a DSR theory does not

contradict the existence of a modified composition law
(which we related to the parameters of the relativistic
deformation in Sec. VA), nor the relative locality of the
interactions. As commented in the introduction, in the case of
DSR there are cancellations of corrections due to the
modification of the dispersion relation and the modification
of the composition ofmomenta in the kinematics of processes
at energies below the energy scale of the deformation. As a
consequence, in contrast to the case of a Lorentz invariance
violation, there are no observable effects in the high-energy
interactions of particles that are relevant in high-energy
astroparticle physics when the scale of the deformation is
of the order of the Planck energy scale. This raises the
question of which is the most restrictive present bound on the
scale of aDSRwithout time delays andwhat could be the first
observable effect of such a deformation of SR. The first steps

to answer this question have already started [30], but it
certainly deserves further investigation.

ACKNOWLEDGMENTS

This work is supported by Spanish Grants No. PGC2018-
095328-B-I00, funded byMinisterio de Ciencia e Innovación
(MCIN)/Agencia Estatal de Investigación(AEI)/10.13039/
501100011033 and by European Regional Development
Fund (ERDF) A way of making Europe, and Diputación
General deAragón-FondoSocial Europeo (DGA-FSE)Grant
No. 2020-E21-17R. J. J. R. acknowledges support from the
Unión Europea-NextGenerationEU (“Ayudas Margarita
Salas para la formación de jóvenes doctores”). The work
of M. A. R. is supported by Ministerio de Ciencia, Inno-
vación y Universidades(MICIU)/AEI/FSE (FPI Grant
No. PRE2019-089024). This work has been partially sup-
ported by Agencia Estatal de Investigación (Spain) under
Grant No. PID2019–106802 GB-I00/AEI/10.13039/
501100011033. The authors would like to acknowledge
the contribution of the COST Action CA18108 “Quantum
gravity phenomenology in the multimessenger approach”.

[1] S. Mukhi, Classical Quantum Gravity 28, 153001 (2011).
[2] O. Aharony, Classical Quantum Gravity 17, 929 (2000).
[3] K. R. Dienes, Phys. Rep. 287, 447 (1997).
[4] H. Sahlmann, arXiv:1001.4188.
[5] M. Dupuis, J. P. Ryan, and S. Speziale, SIGMA 8, 052

(2012).
[6] R. Loll, Classical Quantum Gravity 37, 013002 (2019).
[7] P. Wallden, J. Phys. Conf. Ser. 453, 012023 (2013).
[8] P. Wallden, J. Phys. Conf. Ser. 222, 012053 (2010).
[9] J. Henson, in Approaches to Quantum Gravity: Toward a

New Understanding of Space, Time and Matter, edited by
D. Oriti (Cambridge University Press, Cambridge, England,
2009), pp. 393–413.

[10] D. J. Gross and P. F. Mende, Nucl. Phys. B303, 407
(1988).

[11] D. Amati, M. Ciafaloni, and G. Veneziano, Phys. Lett. B
216, 41 (1989).

[12] L. J. Garay, Int. J. Mod. Phys. A 10, 145 (1995).
[13] A. Addazi et al., Prog. Part. Nucl. Phys. 125, 103948

(2022).
[14] D. Colladay and V. A. Kostelecky, Phys. Rev. D 58, 116002

(1998).
[15] V. A. Kostelecky and N. Russell, Rev. Mod. Phys. 83, 11

(2011).
[16] G. Amelino-Camelia, Living Rev. Relativity 16, 5 (2013).
[17] S. Majid and H. Ruegg, Phys. Lett. B 334, 348 (1994).
[18] J. Lukierski, H. Ruegg, A. Nowicki, and V. N. Tolstoi, Phys.

Lett. B 264, 331 (1991).
[19] J. Lukierski, H. Ruegg, and W. Ruhl, Phys. Lett. B 313, 357

(1993).

[20] J. Lukierski, A. Nowicki, and H. Ruegg, Phys. Lett. B 293,
344 (1992).

[21] J. Lukierski and A. Nowicki, Int. J. Mod. Phys. A 18, 7
(2003).

[22] J. M. Carmona, J. L. Cortés, and J. J. Relancio, Phys. Rev. D
100, 104031 (2019).

[23] J. Kowalski-Glikman and S. Nowak, Int. J. Mod. Phys. D
12, 299 (2003).

[24] A. Borowiec and A. Pachol, J. Phys. A 43, 045203
(2010).

[25] D. Mattingly, Living Rev. Relativity 8, 5 (2005).
[26] S. Liberati, Classical Quantum Gravity 30, 133001 (2013).
[27] G. Albalate, J. M. Carmona, J. L. Cortés, and J. J. Relancio,

Symmetry 10, 432 (2018).
[28] J. M. Carmona, J. L. Cortés, L. Pereira, and J. J. Relancio,

Symmetry 12, 1298 (2020).
[29] J. Relancio and S. Liberati, Phys. Rev. D 102, 104025

(2020).
[30] J. M. Carmona, J. L. Cortés, J. J. Relancio, M. A. Reyes, and

A. Vincueria, Eur. Phys. J. Plus 137, 768 (2022).
[31] J. R. Ellis, N. Mavromatos, D. V. Nanopoulos, and A. S.

Sakharov, Astron. Astrophys. 402, 409 (2003).
[32] M. Rodriguez Martinez and T. Piran, J. Cosmol. Astropart.

Phys. 04 (2006) 006.
[33] U. Jacob and T. Piran, J. Cosmol. Astropart. Phys. 01

(2008) 031.
[34] A. Abramowski et al. (HESS Collaboration), Astropart.

Phys. 34, 738 (2011).
[35] H. Abdalla et al. (H.E.S.S. Collaboration), Astrophys. J.

870, 93 (2019).

TIME DELAYS, CHOICE OF ENERGY-MOMENTUM VARIABLES, … PHYS. REV. D 106, 064045 (2022)

064045-11

https://doi.org/10.1088/0264-9381/28/15/153001
https://doi.org/10.1088/0264-9381/17/5/302
https://doi.org/10.1016/S0370-1573(97)00009-4
https://arXiv.org/abs/1001.4188
https://doi.org/10.3842/SIGMA.2012.052
https://doi.org/10.3842/SIGMA.2012.052
https://doi.org/10.1088/1361-6382/ab57c7
https://doi.org/10.1088/1742-6596/453/1/012023
https://doi.org/10.1088/1742-6596/222/1/012053
https://doi.org/10.1016/0550-3213(88)90390-2
https://doi.org/10.1016/0550-3213(88)90390-2
https://doi.org/10.1016/0370-2693(89)91366-X
https://doi.org/10.1016/0370-2693(89)91366-X
https://doi.org/10.1142/S0217751X95000085
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1103/PhysRevD.58.116002
https://doi.org/10.1103/PhysRevD.58.116002
https://doi.org/10.1103/RevModPhys.83.11
https://doi.org/10.1103/RevModPhys.83.11
https://doi.org/10.12942/lrr-2013-5
https://doi.org/10.1016/0370-2693(94)90699-8
https://doi.org/10.1016/0370-2693(91)90358-W
https://doi.org/10.1016/0370-2693(91)90358-W
https://doi.org/10.1016/0370-2693(93)90004-2
https://doi.org/10.1016/0370-2693(93)90004-2
https://doi.org/10.1016/0370-2693(92)90894-A
https://doi.org/10.1016/0370-2693(92)90894-A
https://doi.org/10.1142/S0217751X03013600
https://doi.org/10.1142/S0217751X03013600
https://doi.org/10.1103/PhysRevD.100.104031
https://doi.org/10.1103/PhysRevD.100.104031
https://doi.org/10.1142/S0218271803003050
https://doi.org/10.1142/S0218271803003050
https://doi.org/10.1088/1751-8113/43/4/045203
https://doi.org/10.1088/1751-8113/43/4/045203
https://doi.org/10.12942/lrr-2005-5
https://doi.org/10.1088/0264-9381/30/13/133001
https://doi.org/10.3390/sym10100432
https://doi.org/10.3390/sym12081298
https://doi.org/10.1103/PhysRevD.102.104025
https://doi.org/10.1103/PhysRevD.102.104025
https://doi.org/10.1140/epjp/s13360-022-02920-3
https://doi.org/10.1051/0004-6361:20030263
https://doi.org/10.1088/1475-7516/2006/04/006
https://doi.org/10.1088/1475-7516/2006/04/006
https://doi.org/10.1088/1475-7516/2008/01/031
https://doi.org/10.1088/1475-7516/2008/01/031
https://doi.org/10.1016/j.astropartphys.2011.01.007
https://doi.org/10.1016/j.astropartphys.2011.01.007
https://doi.org/10.3847/1538-4357/aaf1c4
https://doi.org/10.3847/1538-4357/aaf1c4


[36] V. A. Acciari et al. (MAGIC, Armenian Consortium:
ICRANet-Armenia at NAS RA, A. Alikhanyan National
Laboratory, Finnish MAGIC Consortium: Finnish Centre of
Astronomy with ESO Collaborations), Phys. Rev. Lett. 125,
021301 (2020).

[37] S.-S. Du et al., Astrophys. J. 906, 8 (2021).
[38] M. Martinez and M. Errando, Astropart. Phys. 31, 226

(2009).
[39] V. Vasileiou, A. Jacholkowska, F. Piron, J. Bolmont, C.

Couturier, J. Granot, F. W. Stecker, J. Cohen-Tanugi, and F.
Longo, Phys. Rev. D 87, 122001 (2013).

[40] M. L. Ahnen et al. (MAGIC Collaboration), Astrophys. J.
Suppl. Ser. 232, 9 (2017).

[41] H. Xu and B.-Q. Ma, Astropart. Phys. 82, 72 (2016).
[42] C. Li and B.-Q. Ma, Phys. Rev. D 104, 063012 (2021).
[43] G. Amelino-Camelia, N. Loret, and G. Rosati, Phys. Lett. B

700, 150 (2011).
[44] N. Loret, Phys. Rev. D 90, 124013 (2014).
[45] G. Rosati, G. Amelino-Camelia, A. Marciano, and M.

Matassa, Phys. Rev. D 92, 124042 (2015).
[46] S. Mignemi and A. Samsarov, Phys. Lett. A 381, 1655

(2017).
[47] J. M. Carmona, J. L. Cortes, and J. J. Relancio, Classical

Quantum Gravity 35, 025014 (2018).
[48] J. M. Carmona, J. L. Cortés, and J. J. Relancio, Symmetry

10, 231 (2018).

[49] J. M. Carmona, J. L. Cortes, and J. J. Relancio, Symmetry
11, 1401 (2019).

[50] D. Frattulillo, Presentation delivered at the Second Annual
Conference of the COST Action CA18108 (2021).

[51] J. Kowalski-Glikman and S. Nowak, Phys. Lett. B 539, 126
(2002).

[52] G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and
L. Smolin, Phys. Rev. D 84, 084010 (2011).

[53] J. Magueijo and L. Smolin, Phys. Rev. Lett. 88, 190403
(2002).

[54] J. M. Carmona, J. L. Cortés, and J. J. Relancio, Phys. Rev. D
101, 044057 (2020).

[55] J. M. Carmona, J. L. Cortes, and F. Mercati, Phys. Rev. D
86, 084032 (2012).

[56] M. Arzano, J. Kowalski-Glikman, and W. Wislicki, Phys.
Lett. B 794, 41 (2019).

[57] I. P. Lobo and C. Pfeifer, Phys. Rev. D 103, 106025 (2021).
[58] I. P. Lobo, C. Pfeifer, P. H. Morais, R. A. Batista, and V. B.

Bezerra, arXiv:2112.12172.
[59] J. M. Carmona, J. L. Cortes, and J. J. Relancio, Phys. Rev. D

97, 064025 (2018).
[60] G. Gubitosi and S. Heefer, Phys. Rev. D 99, 086019 (2019).
[61] J. M. Carmona, J. L. Cortés, and J. J. Relancio, Universe 7,

99 (2021).
[62] A. Bevilacqua and J. Kowalski-Glikman, in 1st COST

CA18108 First Training School (2022), arXiv:2203.04091.
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