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We study a higher order conformally coupled scalar tensor theory endowed with a covariant geometric
constraint relating the scalar curvature with the Gauss-Bonnet scalar. It is a particular Horndeski theory
including a canonical kinetic term but without shift or parity symmetry for the scalar. The theory also stems
from a Kaluza-Klein reduction of a well-defined higher dimensional metric theory. Properties of an
asymptotically flat spherically symmetric black hole are analyzed, and new slowly rotating and radiating
extensions are found. Through disformal transformations of the static configurations, gravitating
monopolelike solutions and eternal wormholes are presented. The latter are shown to extract from
spacetime possible naked singularities, yielding completely regular and asymptotically flat spacetimes.
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I. INTRODUCTION

In recent years, scientific interest and research in black
holes, neutron stars and other more exotic compact objects,
such as wormholes [1], has increased considerably. This is
largely due to the plethora of recent astrophysical obser-
vations [2–4] which confirm or reaffirm, the existence of
compact objects as well as their defining properties. These
observations are in their vast majority in accordance with
general relativity (GR) at their current accuracy. Certain
unexpected results do emerge however, questioning certain
standard expectations from GR. For example, the recent
observation of the compact object merger GW190814 [3]
where the secondary compact object has a mass of
2.59þ0.08

−0.09 M⊙, placing it in the mass gap in-between neutron
stars and black holes for GR. From classical GR results such
as Buchdahl limit on compacity, such a compact object of
astrophysical origin could be explained only as a neutron
star with an unexpectedly stiff (or exotic) equation of state
(quite incompatible with GW170817), a neutron star with a
too rapid rotation, or a black hole with a small mass whose
origin is difficult to explain (for a discussion see [5] and
references within).
It is clear that we are entering a novel era in gravitational

observations, and technological/observational advances in
the near future will definitely bring to light new aspects of
gravitational physics, some of which probably not antici-
pated, that we will still have to comprehend. We are
presented therefore with quite a challenge in gravitational
theory with the need to extend our understanding concern-
ing the existence and properties of compact objects as
solutions of GR or other theories of gravity. It is also
important to emphasize that although the most current

observational data are in agreement with the theory of
GR, this should in no way prevent us from exploiting
alternative gravity theories as they provide a measurable
ruler of departure from classical relativity theory. In this
perspective, it is certain that the emergence of new gravi-
tational solutions (associated with modified theories) will
enrich our understanding of recent and future observations.
Therefore, it is crucial to search for modifications of GR and
to explore new promising theoretical possibilities in theories
of gravity. In order to carry out this project, we must specify
our modified theories of gravity so that they are physically
acceptable while also ensuring the existence of analytical
solutions, which are an important condition for making
accurate comparison of GR and its modifications using
observations.
Modifications of gravity can be realized with increas-

ingly complex formulations but, in the present case, we will
be restricting ourselves to scalar-tensor theories which are
the simplest, working, robust prototype of modified gravity
theories with a single additional degree of freedom. They
also appear as a limit of most modified gravity theories
however complex their nature. In recent years, higher order
scalar tensor theories (with second-order field equations)
have been rediscovered, and intensively studied highlight-
ing the precursor work of Horndeski [6] from the 1970s.
For latter convenience, we specify the Horndeski action
which is nothing but the most general (single) scalar-tensor
theory with second order equations of motion,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fL2 þ L3 þ L4 þ L5g; ð1Þ

with
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L2 ¼ G2; L3 ¼ −G3□ϕ;

L4 ¼ G4Rþ G4X½ð□ϕÞ2 − ðϕμνÞ2�;

L5 ¼ G5Gμνϕ
μν −

1

6
G5Xðð□ϕÞ3 − 3□ϕðϕμνÞ2

þ 2ϕμνϕ
νρϕμ

ρÞ;

where ϕμ ¼ ∇μϕ, ϕμν ¼ ∇μ∇νϕ, and the Gks are arbitrary
functions of ϕ and of the standard kinetic term X ¼
−ϕμϕ

μ=2 parametrizing the Horndeski theory.
Sectors of the Horndeski theory and beyond have been

exploited in the current literature (see [7–19] and references
therein) providing explicit compact object solutions and
related results. As it turns out, the theories which allow
analytic construction of solutions are mostly restricted to a
shift-symmetric and parity-preserving scalar field.1 The
shift symmetry of the scalar field yields a Noether con-
served current which proves extremely useful for integrat-
ing the equations of motion. The lesson to be learned from
these examples is that symmetries underlying the action of
the scalar tensor theories (1) are key in obtaining workable
analytic solutions. From this observation, it is natural to
focus in the classes of Horndeski theories possessing
symmetries simplifying the equations of motion. Such a
symmetry could also be the conformal invariance of the
equation of motion of the scalar field. The advantage of the
latter is the existence of a covariant purely geometric
constraint which does not involve the scalar field. This
idea is not new and finds its origin in the first counterex-
ample to the no-hair theorem with the discovery of
the so-called Bocharova-Bronnikov-Melnikov-Bekenstein
(BBMB) black hole [20,21] which corresponds to a static
solution of the Einstein equations with a conformally
coupled scalar field in four dimensions.2 In this case, the
purely geometric equation which allows the integration of
the equations of motion is the vanishing Ricci scalar,
R ¼ 0. In presence of a cosmological constant with a
self-interacting potential, this constraint is modified to
R ¼ cst, while conformal invariance for the scalar is not
spoilt. As a result analytic black hole solutions of de Sitter
and anti–de Sitter asymptotics were found in [23,24]. Quite
recently this approach was nicely extended to the most
general (higher order) Horndeski action with a conformally
invariant scalar field equation [25],

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π
fR − 2λe4ϕ − βe2ϕðRþ 6ð∇ϕÞ2Þ

− α½ϕG − 4Gμνϕμϕν − 4□ϕð∇ϕÞ2 − 2ð∇ϕÞ4�g; ð2Þ

and, cerise sur le gâteau, this action belongs to a nonshift
symmmetric Horndeski class (1) without parity symmetry.
Indeed all the Horndeski coupling functions are present
taking the form,

G2 ¼ −2λe4ϕ þ 12βe2ϕX þ 8αX2; G3 ¼ 8αX;

G4 ¼ 1 − βe2ϕ þ 4αX; G5 ¼ 4α ln jXj: ð3Þ

Here α, β and λ are constant parameters and G ¼ R2 −
4RμνRμν þ RμνρσRμνρσ is the Gauss-Bonnet scalar, while a
cosmological constant may also be added to the action (2).
The particularity of the construction in [25] however, is that
the trace of the metric equations together with the scalar
field equation associated to the action (2) combine to give a
purely geometric four-dimensional equation,

Rþ α

2
G ¼ 0: ð4Þ

With the help of this geometric constraint, two analytic static
solutions, with nontrivial scalar fields, were presented in
[25], for β ≠ 0. In fact, each of them exists for a precise
tuning between the coupling constants α, β, and λ in action
(2), so the associated theories are distinct. We will focus on
one of these solutions and its corresponding theory, which
presents the attractive feature of both a canonical kinetic
term and a well-defined scalar field in the whole spacetime
(minus the origin). Last but not least, the latter solution also
has a higher dimensional origin. Indeed it is interesting to
note that the above action (3) can be approached from an
alternative route involving the Kaluza-Klein compactifica-
tion of D-dimensional Einstein-Gauss-Bonnet theory [26].
There it was shown that starting from a D > 4 dimensional
solution of Lovelock gravity with a nontrivial horizon
[27,28], one can construct a scalar tensor black hole solution
in four dimensions [26]. These solutions, due to their higher-
dimensional origin, do not have a standard four-dimensional
Newtonian mass term. Crucially however, upon taking a
singular limit (as first considered by [29]), action (2) and the
latter solution from [25], can be obtained from [26] with a
standard four-dimensional mass term.
We thus provide a detailed analysis of this solution in the

first part of the present work, by studying the nature of the
singularities, depending on the sign of the coupling constant
α. Indeed, we show that the case α > 0 is well-behaved,
with a spacetime defined in the whole region r > 0, and
with a singularity at r ¼ 0 always hidden by a horizon,
while for α < 0, a naked singularity may appear. Then,
starting from the observation that the solutions of [25] do
not reduce to flat spacetime, we seek nontrivial flat
spacetime solutions of the given theory. We present two
classes of flat spacetime solutions with a nontrivial time-
dependent scalar field. We furthermore extend the solution
of [25] to find a slowly rotating black hole solution, as well

1These are Horndeski theories that are invariant under the
constant shift of the scalar field ϕ → ϕþ cst and parity symmetry
ϕ → −ϕ.

2It is interesting to note that the extension of the BBMB
solution in higher dimensions leads to singular metrics [22].

BABICHEV, CHARMOUSIS, HASSAINE, and LECOEUR PHYS. REV. D 106, 064039 (2022)

064039-2



as a radiating/accreting Vaidya-like solution for this modi-
fied gravity theory.
Another aspect that has been recently studied in the

literature for (beyond) Horndeski theories has to do with
disformal transformations of the metric, see Refs. [30,31].
Starting from a seed solution given by a scalar field ϕ and a
metric g of a given Horndeski theory, the deformed metric
g̃μν ¼ gμν þDðϕ; XÞ∂μϕ∂νϕ solves a beyond Horndeski
theory, along with an unchanged scalar field. Disformal
transformations are very useful in engineering solutions
with highly nontrivial properties from simpler seed solu-
tions. In particular, in Ref. [32], disformal versions of the
Kerr spacetime with a regular scalar field were explicitly
constructed and analyzed starting from a stealth Kerr
solution [33]. Such rotating black holes have particular
non-GR observational signatures [34], which in the near
future may be probed and contrasted with the Kerr solution.
Disformal transformations can also give rise to explicit
asymptotically flat wormhole solutions [35] (see also
[36,37] and also [38–40] for earlier works). We will exploit
this direction in the second part of the paper to construct
regular wormholes and regular monopolelike solutions.
In the next section, we will analyze the black holes in

question, portraying nontrivial flat spacetime solutions as
well as their slowly rotating and Vaidya-like counterparts.
Wewill then in the third section discuss ways to circumvent
certain shortcomings of the initial solution portraying in
particular eternal wormhole metrics as well as regular
monopolelike solutions. We will conclude our analysis
discussing future prospects. For clarity, we will include
slowly rotating and radiating extensions of other solutions
to action (2), as well as the specific disformed theories of
the latter action, in the Appendices.

II. A HAIRY BLACK HOLE SOLUTION, ITS FLAT
COUNTERPART, AND GENERALIZATIONS

A. Black hole analysis

The theory under consideration (2) presents several
noteworthy properties. For a start, it is the most general
scalar-tensor action with second-order equations of motion
endowed with a conformally coupled scalar field [25].
Second, action (2) has a higher dimensional origin from
a purely metric theory, namely Lovelock theory [41] (see
[42] for a review). In effect, the conformally coupled theory
can be also obtained in a two step fashion: from a consistent
Kaluza-Klein reduction of higher dimensional Lovelock
theory [26] where the dimension D is a continuous
parameter, followed by a singular limit of D → 4 as first
considered in [29], and later applied in this context in
[43,44]. A third important fact is the presence, when β ≠ 0,
of a canonical kinetic term [obtained by a simple field
redefinition Φ ¼ expðϕÞ], and the absence of shift or parity
symmetry. As a direct consequence, this theory is not
subject to the standard shift symmetric Horndeski no hair

theorem [45–47], and hence it is not clear a priori which
properties compact solutions of (2) may acquire. In fact, in a
recent elegant paper [25], the author finds distinct classes of
static solutions for the scalar tensor theory (2) with a
particular tuning in between the coupling constants λ, β,
and α (see also [43,44,48] and references within). Different
cases, along with new solutions, will be discussed in the
Appendices, but in the main body of the paper, wewill focus
on the unique solution of [25] with both β ≠ 0 and a scalar
field with a logarithmic behavior which is well defined
everywhere but the origin,3 and the couplings satisfying the

constraint λ ¼ β2

4α. This latter is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ; ð5Þ

with

fðrÞ ¼ 1þ r2

2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α

�
M
r3

þ α

r4

�s �
ð6Þ

and

ϕ ¼ ϕðrÞ ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2α=β

p
r

�
: ð7Þ

The solution depends on a unique integration constant
denoted by M (and corresponding to the mass, as proven
below), and exists provided the couplings α and β are of
opposite sign. It is therefore a black hole with secondary
hair, as are most scalar-tensor black holes. Indeed, solving
(4) leads to two integration constants, one of which is the
mass M, while the second is a priori associated to primary
hair of the scalar. But the remaining equations of motion fix
it with respect to the coupling constant of the theory α,
making the hair secondary. However, note that the scalar
charge of this solution is not trivial. Indeed, if we switch off
the integration constant, M ¼ 0, we do not end up with flat
spacetime, rather a singular solution at r ¼ 0 (with singu-
larity covered by an event horizon for α > 0), and this is
essentially due to the additional α2=r4 term under the square
root in (6). This latter term can be seen to be related to the
scalar charge of the black hole. Note in fact that at r ¼ 0 the
solution behaves as fðrÞ ∼ 1 − signðαÞ ffiffiffi

2
p þOðrÞ, which

is finite and certainly not equal to 1. This seemingly milder
singularity is a true curvature singularity at r ¼ 0, in
agreement with the logarithmically singular scalar field

3Note that to lowest order in α, this theory is nothing but the
BBMB theory [20,21] as can be easily verified by setting
Φ ¼ expðϕÞ. However, the presently considered solution for
the scalar field is quite different, since it only blows up at the
origin and not at the horizon of the black hole, one of the
notorious setbacks of the BBMB solution.
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there. Therefore we see that the canonical kinetic term does
come at the expense of a singular vacuum, therefore an
essential question that will occupy us later on in this section
is the existence of a flat solution in this theory.
For the moment, let us pursue the study of the spacetime

(5). The spacetime for the solution exhibits very distinct
properties depending on the sign of the coupling constant α.
For α < 0 (and hence β > 0), the standard kinetic term
has the usual sign in the action,4 and the coupling constant

of the potential term λ ¼ β2

4α < 0. For convenience, we
rewrite the spacetime (5) for the choice α < 0 as follows:

fðrÞ ¼ 1−
r2

2jαj þ
ffiffiffiffiffiffiffiffiffi
PðrÞp
2jαj ; PðrÞ≡ r4 − 8jαjMrþ 8jαj2;

ð8Þ
and we define the radius r ¼ rP and the values MNS
and Mmin,

PðrPÞ≡ 0;
jαj
M2

NS
≡ 3

4

ffiffiffi
3

2

r
;

jαj
M2

min

≡ 8

9
: ð9Þ

It is easy to see that for 0 ≤ M ≤ MNS, the spacetime admits
a naked singularity at r ¼ 0, while ifMNS < M < Mmin, the
naked singularity is brought forward to r ¼ rP. Only for
larger masses M ≥ Mmin (as compared to the coupling
constant jαj) does the spacetime describe a black hole with a
single event horizon at rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − jαj

p
covering the

singularity at r ¼ rP. Note that for α < 0 the event horizon
has smaller size compared to the standard Schwarzschild
radius rSch ¼ 2M. In particular the minimal horizon size is

rminþ ¼ ffiffiffiffiffiffiffiffi
2jαjp ¼ 4

3
Mmin. The behavior of the metric

function is illustrated in Fig. 1 (left panel), where fðrÞ is
shown for different M=

ffiffiffiffiffiffijαjp
.

For α < 0, the lower bound on the mass M ≥ Mmin

ensuring the existence of a black hole solution implies an
upper bound on the value of the coupling parameter jαj.
Indeed, following Ref. [5], one can obtain a constraint on α
using data on observed (candidates of) black holes. In the
event GW200115, one component was certainly identified
as a black hole of mass M ¼ 5.7þ1.8

−2.1 M⊙. This gives a
constraint

jαj≲ 253þ184
−152 km2: ð10Þ

If we include the events GW170817 and GW190814, then
we obtain stronger constrains, jαj≲ 59 km2 and
jαj≲ 52 km2, correspondingly; however the presence of
a black hole is only probable (but not certain) for these two
events.
The case α > 0 is more straightforward to analyze since,

independently of the value for α, the solution (5) describes a
black hole for any mass M, and with a unique horizon
rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ α

p
covering the singularity r ¼ 0. The

horizon is now at rþ > rSch ¼ 2M. The behavior of the
function fðrÞ is illustrated in Fig. 1.
To conclude the discussion, we would like to mention, in

the spirit of [5], that if a Birkhoff-like uniqueness theorem
were valid for the solution (5)–(7), it would inevitably lead
to the constraint α < 0. Indeed, if the solution (5) were
unique, any static and spherically symmetric object of mass
M would create an exterior gravitational field given by (5).
If α > 0, then this object would therefore be a black hole
with horizon rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ α

p
, unless this event hori-

zon is hidden below the surface of the object. An atomic
nucleus has radius R ∼ 10−15 m, and is not a black hole

FIG. 1. Metric function fðrÞ for different values ofM=
ffiffiffiffiffiffijαjp

for negative α (left plot) and positive α (right plot). On the left panel, for
M ≤ MNS, the upper curves correspond to the spacetime with a naked singularity at r ¼ 0. For M0 < M < Mmin, the spacetime has a
naked singularity at r ¼ rP, while forM ≥ Mmin the metric describes a black hole. On the right panel, the spacetime admits a singularity
at r ¼ 0, always covered by the horizon.

4This can be seen from the scalar field redefinition
Φ ¼ expðϕÞ.
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since it can be experimentally probed, therefore rþ < R,
yielding

0 < α < RðR − 2MÞ ∼ 10−30 m2; ð11Þ

essentially rendering α > 0 irrelevant.

B. Black hole thermodynamics

Let us now turn to the thermodynamic properties of the
black holes of (2). Since the theory in question can be
understood as descending from a spin 2 metric Lovelock
theory, its thermodynamic aspects can be quite intriguing
[49,50]. In particular, one may ask whether the one-quarter
area law of the entropy is preserved or not. In order to give
a clear answer we choose to use the Euclidean approach for

a general class of spherically symmetric metrics para-
metrized as

ds2Eucl ¼ NðrÞ2fðrÞdτ2 þ dr2

fðrÞ þ r2dΩ2; ð12Þ

where τ is the Euclidean time. To avoid a conical
singularity at the horizon, the Euclidean time is made
periodic with period 1=T, where T is the Hawking
temperature. Since we are interested in a static solution
with a radial scalar field, we can restrict ourselves to a
reduced action. The latter can be obtained by substituting
the Euclidian metric (12) in the action (2) and performing
several integrations by parts,

IE ¼
Z

∞

rþ
dr

�
−

N
2T

½rð1 − βe2ϕÞ þ ð2αð3f − 1Þ − βr2e2ϕÞϕ0 þ 6fαrðϕ0Þ2 þ 2r2αðϕ0Þ3f�f0

−
N
2T

½2fð2αf − 2α − βr2e2ϕÞ þ 8αf2rϕ0 þ 4r2αf2ðϕ0Þ2�ϕ00

−
N
2T

½−r2αf2ðϕ0Þ4 þ ð2αf þ 2α − βr2e2ϕÞfðϕ0Þ2 − 4βrfe2ϕϕ0 − 1þ f þ βe2ϕð1 − fÞ þ λr2e4ϕ�
�
þ B: ð13Þ

Here, B is a boundary term that is fixed by requiring that the
solution of the equations of motion is an extremum of the
Euclidean action. This condition implies that

δB ¼ N
2T

½rð1 − βe2ϕÞ þ ð2αð3f − 1Þ − βr2e2ϕÞϕ0

þ 6fαrðϕ0Þ2 þ 2r2αðϕ0Þ3f�ðδfÞ þ ½� � ��ðδϕ0Þ
þ ½� � ��ðδϕÞ; ð14Þ

where the terms proportional to ðδϕÞ; ðδϕ0Þ are omitted for
simplicity as they vanish identically on shell. It is worth
noticing an interesting feature of the solution we consider
here. In general, the boundary term depends on the
parameter β, as can be seen from the above equation.
However, on shell the terms proportional to δϕ and δϕ0 drop
out, while inside the first bracket, terms involving the β
parameter also cancel out. Therefore the resulting thermo-
dynamic expression does not depend on β for the solution
(5)–(7), as we will see below. Indeed, on shell the variation
of the boundary term reduces to the following simple
expression:

δB ¼ 1

2Tr
½2αð1 − fÞ þ r2�ðδfÞ: ð15Þ

From the above expression it follows that

ðδBÞj∞¼−
1

2T

�
1þ α

r2þ

�
ðδrþÞ⇒Bj∞¼−

1

2T

�
rþ−

α

rþ

�
;

while, for the variation at the horizon,

ðδBÞjrþ ¼ −2π
�
rþ þ 2α

rþ

�
ðδrþÞ

⇒ Bjrþ ¼ −π½r2þ þ 4α lnðrþÞ�:

Hence, on shell, the Euclidean action (13) has value

IE ¼ −
1

2T

�
rþ −

α

rþ

�
þ ½πr2þ þ 4πα lnðrþÞ�: ð16Þ

Comparing the above expression with the relation of the
Euclidean action to the mass M and the entropy S in the
grand canonical ensemble, IE ¼ −M

T þ S, we find that for
the black hole solution (5)–(7),

M¼ 1

2

�
rþ −

α

rþ

�
¼M; S ¼ πr2þ þ 4πα lnðrþÞ: ð17Þ

Hence, one concludes that the usual one-quarter area law of
the entropy for general relativity is violated, as to be
expected from standard results in Lovelock gravity [49].5

5In Lovelock gravity the higher order term (in α) provides a
correction from the induced curvature of the horizon surface
while the GR term is simply the tension associated to the horizon
surface [42]. This can be understood from the general formalism
of Iyer and Wald [51].
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Nevertheless, the first law of thermodynamics holds,
dM ¼ TdS, with the Hawking temperature given by

T ¼ r2þ þ α

4πrþð2αþ r2þÞ
: ð18Þ

As things stand we note that for α < 0, the temperature
diverges, i.e. T → ∞ as M goes to the minimal mass of the
black hole Mmin. This is not a priori a problem, however,
the free energy F≡M − TS then also diverges at a finite
mass. This can be remedied noting that the entropy is
defined up to a constant s, namely

Sα<0 ¼ π

�
r2þ − 2jαj ln r2þ

sjαj
�
: ð19Þ

We now fix s ¼ 2
expð1Þ ¼ 2

e to have vanishing entropy as

M → Mmin and therefore a finite free energy (similar to the
case of a Schwarzschild black hole in GR). For this choice of
s, the free energy is positive (see also [50]) and finite for any
mass, decreasing fromM toM=2 asM runs fromMmin to∞.
For positive α there is no lower limit on the black hole

mass, and T does not diverge forM ¼ 0. We can fix the free
constant s so that the entropy vanishes for the minimal mass
M ¼ 0, resulting in

Sα>0 ¼ π

�
r2þ þ 2α ln

r2þ
e1=2α

�
: ð20Þ

For α > 0 the free energy increases from 0 to M=2 as M
runs from 0 to ∞. Let us finally mention that, as for the
Schwarzschild black hole, the heat capacity is negative for
any sign of α.

C. A nontrivial vacuum, the slowly rotating
and Vaidya-like extensions

As we pointed out in the beginning of the section, the
solution (5)–(7) does not reduce to flat spacetime in the
limit of zero black hole mass, M → 0. Moreover, as
mentioned before, the zero mass spacetime has a singu-
larity at r ¼ 0which is either naked (α < 0) or covered by a
horizon (α > 0). One can also show that a trivial scalar field
does not lead to a flat spacetime solution. This means that
any flat geometric vacuum implies a nontrivial scalar field.
Indeed, solving the field equations with a general ϕ ¼
ϕðt; rÞ and a flat metric, i.e. Eq. (5) with f ¼ 1, we find two
solutions where the time dependence of the scalar field
must be nontrivial,

ϕðtÞ ¼ ln

0B@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−2α=βÞð3� ffiffiffi

6
p Þ

q
jtþ μj

1CA;

ϕðt; rÞ ¼ ln

0B@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−8μα=βÞð3� ffiffiffi

6
p Þ

q
jr2 − t2 þ μj

1CA; ð21Þ

and μ is an arbitrary constant. None of these profiles is
differentiable in the whole spacetime. The solution (5)–(7)
and the flat configurations presented above cannot be
smoothly deformed into each other, which suggests that
they belong to different, disconnected sectors. Similar
solutions have been discussed for nonminimally coupled
scalar fields in Refs. [52,53]. In a somewhat different
context, the so-called Fab 4 theory, nontrivial flat vacua
exist with self-tuning properties [9,54], although there is no
hint of self tuning within the presently considered theory.
It would be very interesting if one could generalize the

static solution (5)–(7) to its stationary version. A fully
analytic solution is not seemingly easily found, one can
however, as a first step, find the slowly rotating solution in
the manner described by Hartle and Thorne in GR [55,56].
The Hartle-Thorne formalism in the presence of matter is
very useful for calculating, for example, the moment of
inertia for neutron stars. In particular, for most observed
pulsars the Hartle-Thorne formalism is a good approxima-
tion of their gravitational field. Here, in the absence of
matter, we will seek the slowly rotating version of our static
solution.
For the slowly rotating solution, we start with an ansatz

for the metric of the form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2 − 2δωðrÞr2 sin2 θdtdφ;

ð22Þ

where δ is a first order parameter, such that the angular
momentum per unit mass is given by δa for slowly rotating
solutions. At first order, the only new contribution in the
equations of motion in comparison with the static case is
the off-diagonal tφ component, while the geometric con-
straint Rþ α

2
G ¼ 0 is not affected at first order. As a direct

consequence, one finds that the metric function fðrÞ and
the scalar field ϕ have the same profile (5)–(7) as in the
static case, while the solution for ωðrÞ is

ωðrÞ ¼ −6aM
Z

r

∞

dr

r4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αðMr3 þ α

r4Þ
q : ð23Þ

As r → ∞, the integral gives to leading order the GR
behavior, with δJ ¼ δaM the total angular momentum,

ωðrÞ ¼ 2J
r3

�
1 −

2αM
r3

−
12α2

7r4
þO

�
1

r6

��
;

and higher order correction terms in α. The variable ω, as in
GR, describes the speed at which a geodesic observer
rotates because of frame dragging.
Yet another interesting feature of the static solution

(5)–(7) within the action (2) is that it can be extended to a
radiating (or absorbing) Vaidya-like solution. The Vaidya
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solution in GR describes a black hole with varying mass
due to either radiation or accretion of pressureless lightlike
matter. It is relevant, as a paradigm for Hawking radiation
or classically simulating gravitational collapse of null
dust. In the case of GR, the recipe for the construction of
the Vaidya solution is to use the retarded u (or advanced v)
null coordinate, and then to promote the mass parameter to
a function of this null coordinate. In GR the Vaidya
solution contains a nontrivial energy-momentum tensor in
the form of lightlike dust, whose only nonvanishing
components are along the retarded (or advanced) time.

We will consider the same energy momentum tensor here
in addition to (2). What turns out to be crucial in finding
the Vaidya extension is that the trace of the effective
energy-momentum tensor vanishes identically (as so
happens for an electromagnetic charge [25]). Therefore
for our action (2), the geometric constraint Rþ α

2
G ¼ 0 is

not modified in the presence of minimally coupled
null dust.
Indeed, we find that the theory (2) admits a radiating

Vaidya extension,

8>><>>:
ds2 ¼ −fðu; rÞdu2 − 2dudrþ r2dΩ2; fðu; rÞ ¼ 1þ r2

2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α

�
MðuÞ
r3 þ α

r4

�s �
ϕ ¼ ln

� ffiffiffiffiffiffiffiffiffiffi
−2α=β

p
r

�
; Tuu ¼ −M0ðuÞ

4πr2 ≥ 0;

ð24Þ

as well as an accreting Vaidya extension,

8>><>>:
ds2 ¼ −fðv; rÞdv2 þ 2dvdrþ r2dΩ2; fðv; rÞ ¼ 1þ r2

2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α

�
MðvÞ
r3 þ α

r4

�s �
ϕ ¼ ln

� ffiffiffiffiffiffiffiffiffiffi
−2α=β

p
r

�
; Tvv ¼ M0ðvÞ

4πr2 ≥ 0:

ð25Þ

The energy-momentum tensor, as in GR, satisfies standard
energy conditions. For example, the latter spacetime de-
scribes an accreting black hole that is irradiated by null dust
from mass M1 to mass M2 > M1. Here, for α < 0 we want
M1 > Mmin in order for spacetime to be well defined. As for
GR, at each instant v such thatM1 < MðvÞ < M2, the zeros
of f describe the location of the apparent horizon. Note
finally that whereas the radiating/accreting solutions of GR
verify R ¼ 0, the solutions presented here have nonzero
scalar curvature and satisfy instead the relation Rþ α

2
G ¼ 0.

III. EXTRACTING SINGULARITIES
BY DISFORMAL TRANSFORMATION

Our findings in the previous section tell us that solution
(5) for α > 0 describes a black hole with a singularity at
r ¼ 0 always hidden by a horizon. In contrast, for the
choice α < 0, the solution always has a naked singularity

for sufficiently small masses M < Mmin ¼ 3
ffiffiffiffi
jαj

p
2
ffiffi
2

p and in

particular for M ¼ 0. This may not necessarily be a
problem. Indeed it may be that, unlike GR, our theory
(2) presents no mass gap between (neutron) star solutions
and black holes (see [5] for a recent study where this mass
gap is not present) or again, that there exists another black
hole solution with no such minimal mass constraint. Either
way, the existence of naked singularities is surely an

undesirable feature of a theory. In this section we will
consider two different ways of eliminating this problem
using disformal transformations. We will construct gravi-
tating monopolelike and wormhole solutions in beyond
Horndeski theory, such that either spacetime is regularized
at the origin for M ¼ 0, or singularities for any M are
excised altogether from spacetime.
For the former case it was noted that (M ¼ 0) vacua,

which were well behaved in Horndeski theory, were
developing singularities at the origin when transformed
via a disformal transformation in beyond Horndeski [19].
Here we saw, quite the opposite for the initial (seed)
solution in Horndeski theory, i.e. that at the origin our
vacuum is ill-behaved as fð0Þ ≠ 1. Can we fix the
singularity present at the origin for M ¼ 0 by disformal
transformation to a beyond Horndeski theory?
For the latter case, wormholes were recently constructed

in shift-symmetry Horndeski theories with a throat that
shrinks to zero as the mass parameter goes to zero [35]. For
the case of our interest we will seek solutions that will have
a well-defined and crucially permanent throat at r ¼ r0.
Such an eternal wormhole will be shown to remove any
naked singularity of the spacetime whatever the mass
parameter of the solution. Furthermore during this con-
struction, we will uncover a subtlety, concerning the action
of the resulting beyond Horndeski theory.
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Let us consider disformal transformations of the follow-
ing form:

g̃μν ¼ gμν þDðϕ; XÞϕμϕν; ð26Þ

where D is a function of both ϕ and of the kinetic term
X ¼ −ϕμϕ

μ=2. If the disformal coefficient D depends only
on ϕ, D ¼ DðϕÞ, then any Horndeski theory transforms
into another theory in the Horndeski class [57]. On the
other hand, for more general transformations with
D ¼ Dðϕ; XÞ, the transformation (26) leads to extensions
beyond Horndeski, see [30,31,58]. From an action point of
view, we can deduce that one possible way to excise naked
singularities is to couple matter nonminimally to a par-
ticular disformed metric. Or on the other hand, in terms of
the new disformal metric to which matter couples mini-
mally, this amounts to making a disformal transformation
of the initial theory (2) towards a new (beyond Horndeski)
theory.
For definiteness as our seed metric we consider a static

black hole (5)–(7) with α < 0, which for small enough
mass has a naked singularity at rS ¼ 0 or rS ¼ rP.
Applying the disformal transformation (26) to (5), we find
the disformed metric,

ds̃2 ¼ −fðrÞdt2 þ dr2

fðrÞW−1ðϕ; XÞ þ r2ðdθ2 þ sin2 θdφ2Þ;

ð27Þ

where

Wðϕ; XÞ≡ 1 − 2Dðϕ; XÞX:

Note that, as usual, the resulting solution for the scalar ϕ
remains unchanged and is given by (7).

A. From a singular vacuum to a gravitational
monopolelike solution

As a first working example, we will see that a simple
choice of the functionWðϕ; XÞ in (27) enables to regularize
the vacuum spacetime for M ¼ 0. Indeed, the metric
solution (5) admits the following behavior at the origin

fðrÞ¼1þ
ffiffiffi
2

p
−

Mr

jαj ffiffiffi
2

p −
�
1þ M2

jαj2 ffiffiffi
2

p
�

r2

2jαjþOðr3Þ: ð28Þ

One can see that the vacuum metric M ¼ 0 would admit a
regular core if the value at the origin, fð0Þ ¼ 1þ ffiffiffi

2
p

, could
be rescaled to 1. A glance at the disformed metric (27)
shows that choosing Wðϕ; XÞ ¼ 1þ ffiffiffi

2
p

enables us to
remove the pathologic behavior, yielding a disformal
function DðXÞ ¼ −1=ð ffiffiffi

2
p

XÞ and a new metric

ds̃2 ¼ −f̃ðrÞdt2 þ dr2

f̃ðrÞ þ r2dΩ2; ð29Þ

where f̃ðrÞ ¼ fðrÞ=ð1þ ffiffiffi
2

p Þ, and where the time coor-
dinate has been rescaled. Satisfyingly, this rescaling is not
fine tuned, since it is independent of the theory parameter α.
The regularity of the resulting metric can be better
appreciated by looking at the Kretschmann scalar at r ¼ 0,

R̃μνρσR̃μνρσ ¼ 4ð3 − 2
ffiffiffi
2

p ÞM2

α2r2
þ ð6 ffiffiffi

2
p

− 9ÞMðM2 − 2
ffiffiffi
2

p
αÞ

α3r
þOð1Þ: ð30Þ

Indeed, the diverging pieces of the Kretschmann invariant
are now proportional to M, boding well that the massless
solution is now regular. Of course, this naive rescaling of
the metric at r ¼ 0 is not without consequence on the
nature of the spacetime asymptotically: at r → ∞, the
metric function behaves as

f̃ðrÞ ¼
ffiffiffi
2

p
− 1 −

2ð ffiffiffi
2

p
− 1ÞM
r

þO
�
1

r2

�
; ð31Þ

such that, at leading order, the asymptotic metric displays a
solid angle deficit of 2πð1 − 1ffiffi

2
p Þ, which is the characteristic

signature of a global gravitating monopole [59] embedded in
GR. In summary, the metrics (29), parametrized by the
integration constant M, describes a regular, asymptotically
monopolelike spacetime ifM ¼ 0, a naked singularity in an
asymptotically monopolar background if M < Mmin, and a
black hole in an asymptotically monopolar background if
M ≥ Mmin. It is worth mentioning that the scalar field, which
is unchanged, diverges at r ¼ 0, although the spacetime is
regular in the massless case. A theory endowed with such
scalar vacua would present very particular strong lensing
properties, in particular double images [59]. The associated
beyond Horndeski theory is given in the Appendices.

B. An eternal wormhole excising a naked singularity

Wewill now consider a general dependence ofD on both
ϕ and X, and this will be essential for the construction of
wormhole solutions as well as the robust definition of the
beyond Horndeski theory at hand. To simplify expressions,
we redefine the scalar field as

ψ ¼
ffiffiffiffiffiffiffiffiffiffi
−
2α

β

s
e−ϕ ⇒ ψon�shell ¼ r; ð32Þ

with ψ of dimension 1. We look for such Wðψ ; XÞ that the
disformed metric (27) describes a wormhole geometry. We
have to impose three requirements on Wðψ ; XÞ:
(1) We require that W−1 vanishes at a point r ¼ r0 such

that r0 > frS; rþg if the spacetime admits a naked
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singularity r ¼ rS or an event horizon r ¼ rþ, so
that r ¼ r0 corresponds to the wormhole throat,
since g̃rrðr0Þ ¼ 0 while g̃ttðrÞ > 0 for any r ≥ r0.

(2) The asymptotic flatness and the absence of solid
deficit angle of the disformed metric is obtained by
imposing that W → 1 as r goes to infinity.

(3) The disformal transformation should be invertible,
which implies that the determinant of the Jacobian of
the metric transformation (26) is not zero or infinity.
This latter property is not manifest in the solution
itself but is essential for the robustness of the
resulting beyond Horndeski action.

To this aim, we choose Wðψ ; XÞ to have the relatively
simple form,

W−1ðψ ; XÞ ¼ ð1 − 1=aÞ−1
�
1þ 2ψ2X

Aðψ= ffiffiffiffiffiffijαjp Þ

�
: ð33Þ

The non-negative function Aðr= ffiffiffiffiffiffijαjp Þ is such that
Aðr → ∞Þ ¼ a where a ≠ 0, 1 in order for condition 2

to be fulfilled. Given that, for our solution, X ¼ − fðrÞ
2r2 , the

throat r ¼ r0 of the wormhole is given at the intersection of
fðrÞ with Aðr= ffiffiffiffiffiffijαjp Þ, namely

fðr0Þ ¼ A

�
r0ffiffiffiffiffiffijαjp �

: ð34Þ

This is not all—the presence of the scalar field ψ , para-
metrized by the form of function A, is essential to guarantee
that condition 3 is fulfilled as we will now see. Indeed
condition 3 is not manifest on the solution itself but is rather
a requirement for the resulting beyond Horndeski action.
The disformal transformation becomes noninvertible at two

points. First at the throat r ¼ r0, due to the infinite
determinant of the transformed metric, the disformed
spacetime cannot be mapped to the original spacetime.
This is however a mere coordinate singularity as we will see
below in Eqs. (42) and (43). The second singular point is
given by the equation 1þ 2X2DX ¼ 0, where DX stands
for the derivative with respect to X of the disformal factor
(26). For our choice of W as in (33), this point is located at
radius r ¼ r� such that

fðr�Þ ¼
1

2
A

�
r�ffiffiffiffiffiffijαjp �

: ð35Þ

At r ¼ r�, the transformation (26) becomes noninvertible
since the determinant of the Jacobian becomes infinite,6 i.e.
condition 3 of the above is not satisfied. In order for the
wormhole solution to originate from a unique, well-defined
action, A should be chosen such that the location r ¼ r� is
smaller than the location r ¼ r0, that is r� < r0, so that
r ¼ r� is also excised from the wormhole spacetime. This
allows infinitely many possibilities for A, but for our
purposes, one can easily prove that the simple choice

A

�
ψffiffiffiffiffiffijαjp �

¼ aþ
ffiffiffiffiffiffijαjp
ψ

ð36Þ

satisfies these requirements for any 0 < a < 1. This is
illustrated in the left plot of Fig. 2. Conversely, in the right
plot, the disformal mapping D does not depend on the

FIG. 2. The functions A (black curve) and A=2 (gray curve) are shown as functions of r=
ffiffiffiffiffiffijαjp

for two different cases: (36) with
a ¼ 0.1 (left plot), and Aðr= ffiffiffiffiffiffijαjp Þ ¼ r2=ð5jαjÞ (right plot); while the metric function f is shown for several values ofM=

ffiffiffiffiffiffijαjp
, in color.

The throat radius r0 (the singular radius r�) is the largest intersection of f with the black (gray) curve. On the left plot, r� is covered
by the wormhole throat and the conditions for the disformal transformation formulated in the main text are satisfied. This is not the case
for the right plot. The meaning of the green and black curve intersection at ML=

ffiffiffiffiffiffijαjp
≈ 0.8213, corresponding to the appearance of a

discontinuity in the throat radius r0 ¼ r0ðMÞ, will be clarified later in the text.

6As it is shown in the Appendices, the presence of r ¼ r�
prevents the disformed metric from solving a well-defined
variational principle for the beyond Horndeski action, obtained
via the transformation (26).
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scalar field, that is to say A ∝ ψ2 [see (33)]. As a result
condition 3 is not satisfied because the singularity of the
disformal transformation at r ¼ r� is hit before the throat,
r0 < r�. Note that the crossing point r ¼ r� is not a singular
point of the disformed metric, but the disformed metric
ceases to solve well-defined field equations below r ¼ r�.
At the end, the wormhole solution satisfying all three

requirements reads (reinstating the original scalar ϕ),

ds2 ¼ −fðrÞdt2 þ dr2

hðrÞ þ r2dΩ2; ð37Þ

ϕðrÞ ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2α=β

p
r

�
; ð38Þ

where

hðrÞ ¼ fðrÞ
1 − 1=a

�
1 −

fðrÞ
aþ

ffiffiffiffi
jαj

p
r

�
; ð39Þ

and fðrÞ is given in (6). The wormhole configuration
(37)–(39) is a solution of a beyond Horndeski theory (given
in the Appendix B), for anyM. In addition to the parameters
α and β of the original theory (2), the new theory is also
parametrized by a dimensionless parameter a ∈ �0; 1½.
One can compute the throat radius r0 as a function of the

mass M of the wormhole, provided the function A is
invertible [which is of course the case for (36)]. Let f0 be
the value of the metric function at the throat, which
essentially quantifies the compactness of the wormhole,

f0 ¼ fðr0Þ ¼ aþ
ffiffiffiffiffiffijαjp
r0

: ð40Þ

Indeed, if f0 ≪ 1, then7 the redshift is important and the
wormhole behaves very much like a black hole horizon for
far away observers (see for example [60]). Equation (40)
enables us to get r0 and M as functions of f0. Cautiously
inverting the latter relation yields f0 as a function of M,
which finally gives r0 as a function of M.
This procedure enables to show that there exists a value8

a0 ≈ 0.87396 of the parameter a, such that for a ≥ a0, r0 is
a smooth function of M, while for a < a0, the function
r0 ¼ r0ðMÞ undergoes a discontinuous increase at a certain
value of the mass, which we call ML and which depends
on a. Figure 3 illustrates these different behaviors for the
values a ¼ 0.9 (left plot) and a ¼ 0.1 (right plot). One can
easily understand this behavior by taking a look at the left
plot of Fig. 2, which corresponds to a ¼ 0.1: for lighter
masses than the critical mass, M < ML (blue curve), the
throat is close to the origin and blueshifted, since
fðr0Þ > 1. For M > ML (yellow curve), the throat is at
a bigger radius and redshifted with 0 < fðr0Þ < 1.
Whenever fðr0Þ ∼ 0, maximizing redshift, the wormhole
throat behaves very similarly to an event horizon of a black
hole. Indeed an observer sitting far away from the worm-
hole throat, will then measure infinite time for a traveller
going in and out of the wormhole throat region.
Obviously, the size of the throat increases with the

parameter a. For example, it is easy to show that the throat
radius quickly approaches r0 ≈ 2M=ð1 − aÞ as soon asM >ffiffiffiffiffiffijαjp

(which corresponds at most to the order of magnitude
M > 10 M⊙, according to the bounds on jαj given in the

FIG. 3. The plot shows the throat radius r0 as a function of M=
ffiffiffiffiffiffijαjp

, for a ¼ 0.9 (left plot, where there is no discontinuity in r0 as a
function ofM) and a ¼ 0.1 (right plot, where there is a discontinuity of the throat radius r0 atM ¼ ML). The discontinuity corresponds
to a change of branch in the solution of (34). In Fig. 2, different branches correspond to intersections of A (black dashed curve) and f
(colored curves).

7We will see that r0 → ∞ for large M, so f0 ∼ a, and f0 ≪ 1
happens if a ≪ 1.

8More precisely, a0 is the unique root in �0; 1½ of the equation
−1127þ 2956a− 2948a2 þ 1532a3 − 120a4 − 480a5 þ 224a6−
32a7 ¼ 0.
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previous section). Hence a throat radius enhanced by a
factor ð1 − aÞ−1 with respect to the Schwarzschild radius for
the corresponding mass.
We conclude our discussion by presenting the wormhole

solutions using everywhere nonsingular coordinates
(including the throat). To do this we change the radial
coordinate r by introducing l with range l ∈ � −∞;∞½
defined by

r2 ¼ l2 þ r20: ð41Þ

In this coordinate system, any wormhole metric, with
throat r0 of the form (37), is given by

ds2 ¼ −FðlÞdt2 þ dl2

HðlÞ þ ðl2 þ r20ÞdΩ2; ð42Þ

where

FðlÞ ¼ fð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ r20

q
Þ; HðlÞ ¼ hð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ r20

q
Þ l

2þ r20
l2

: ð43Þ

Note that the function HðlÞ is regular everywhere, and in
particular at the throat l → 0 we have

HðlÞ ¼ r0
2
h0ðr0Þ þOðl2Þ: ð44Þ

Since hðr > r0Þ > 0, hence HðlÞ ≥ 0 everywhere.9 The
other metric function, FðlÞ, is regular and non-negative
everywhere. In Fig. 4, we plot the functions FðlÞ and HðlÞ
for different masses M, when a ¼ 0.1. The masses of the
yellow and red plots are chosen very close to the mass ML

where occurs the r0 discontinuity: for the yellow plot, the
mass is still sufficiently low so that the throat r0 is close to
r ¼ 0 and blueshifted, while, for the red plot, the throat r0
is much larger and the spacetime is redshifted there. This is
not just a sharp evolution of the FðlÞ behavior as a function
of the mass, but a true discontinuity at M ¼ ML.

IV. CONCLUSIONS

In this paper we have studied solutions of the theory (2)
as well as certain of its disformal versions. The theory (2) is
in the class of Horndeski theory, and, thanks to underlying
symmetries as well as a particular choice of relation
between coupling constants, exact solutions can be found
analytically.
We analyzed in detail the metric of a spherically sym-

metric solution (5)–(7), first found in [25]. Depending on the
sign of the coupling α (and hence λ), the physical meaning of
the solution may differ drastically. For positive α the
spacetime (5) with (6) always describes a black hole with
a singularity hidden by a horizon, similar to GR black holes.
It is worth noting that, for α > 0, either other spherically
symmetric solutions describing spacetime outside a gravi-
tating body exist, or α satisfies the tight constraint (11),
implying virtually no modifications of GR for any present-
day and near future observations. The case of α < 0 is more
involved. Indeed, in this case there is a limiting mass Mmin
given in terms of the parameters of the theory, Eq. (9). For
M > Mmin, the spacetime (5) with (6) describes a black hole.
For M ≤ Mmin, the solution (5), (6) corresponds to a naked
singularity.
The analysis of the black hole thermodynamics showed

that the entropy of the black hole receives a log-correction,
Eq. (17), that depends only on the parameter α of the
theory. Meanwhile, the first law of thermodynamics holds,
with the Hawking temperature given by (18), that also

FIG. 4. Functions FðlÞ and HðlÞ of metric (42) (with parameter a ¼ 0.1), for different values of M=
ffiffiffiffiffiffijαjp

given by the legend. The
values ðMLÞ− and ðMLÞþ are as close as possible to the limit massML with our numerical precision, namely ðMLÞ� ¼ MLð1� 10−15Þ,
illustrating the discontinuity occurring at this mass. For huge masses, the redshift function converges to the value að¼ 0.1 here) at
the throat.

9HðlÞ ¼ 0 occurs for l ¼ 0 and h0ðr0Þ ¼ 0. This corresponds
to the particular value of M where a discontinuity in r0 occurs,
see Fig. 3.
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depends on the coupling α, while the mass is indeed given
by M.
We then presented three new classes of solutions of (2).

The first type is a nontrivial flat solution, given by Eq. (21).
The solution has a nontrivial scalar field, while the metric
remains flat, i.e. the backreaction of the scalar field is absent
in this case. The second solution is an extension of the black
hole solution (5), (6) to a slowly rotating case, Eqs. (22),
(23). Probably the most interesting case is the third new
solution we found, an analog of the Vaidya solution of GR.
The solutions (24) and (25) describe correspondingly
radiating and accreting solutions of the theory (2), that
are counterparts of the Vaidya solution in GR. The mass of
the black hole M ¼ MðvÞ [M ¼ MðuÞ] grows (decreases)
due to the infall (radiation) of light dust.
The last part of the paper is devoted to the disformal

transformations of theory (2) and its solutions. We focused
on the case α < 0 where the theory admits naked singu-
larities for small enough massesM < Mmin. We proposed a
remedy to avoid the pathology by coupling matter to a
disformed metric, which amounts to making a disformal
transformation of the theory (26). We first showed that a
very simple choice of disformal parameter D ¼ DðXÞ led
to a theory admitting gravitating monopolelike solutions,
and where the M ¼ 0 spacetime is regular at r ¼ 0. On the
other hand, we found a general form of the disformal
parameter D ¼ Dðϕ; XÞ, such that the naked singularity of
the original theory is transformed to a wormhole whose
metric is regular everywhere, for any mass M. An interest-
ing feature of the obtained solutions is that wormholes with
both redshift and blueshift at the throat exist. The blueshift
at the throat implies that, if light is emitted by a source near
the throat, an observer located far away from the throat will
see it blueshifted. This is in contrast to the standard
behavior, e.g. in the case of GR, where light emitted near
gravitating sources always appears redshifted for far away
observers.
Several questions arise on other choices of disforming

functionsDðϕ; XÞ, as well as the analysis of stability for the
obtained wormhole solutions. It has been shown before that
there are no stable wormholes in Horndeski theory [61],
while the extensions of Horndeski theory have a chance to
support stable wormholes [62,63]. Therefore it remains to
be seen whether our wormhole solutions beyond Horndeski
theory are stable or not. It would be also important to
explore in detail observational features of the wormholes,
such as light rings, shadows, and contrast them with
compact objects of GR. It would also be interesting to
look for stationary metrics within this theory (2). The
presence of the covariant geometric constraint (4) may give
a hint on the form of stationary solutions. Last but not least,
it would be interesting to study neighboring theories to (2),
i.e. theories with similar properties, and find spherically
symmetric solutions there. These are some of the intriguing
questions we hope will be studied in the near future.
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APPENDIX A: THEORIES AND SOLUTIONS
ARISING FROM THE INITIAL ACTION

1. Known solutions

We evoked in the introduction the existence of other
relevant theories arising from the original action (2), with
λ ¼ 3β2=ð4αÞ or β ¼ 0 ¼ λ. It was shown in [25] (see also
[5]) that they admit the following asymptotically flat,
spherically symmetric solution:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; fðrÞ

¼ 1þ r2

2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αM

r3

r �
; ðA1Þ

for any Arnowitt-Deser-Misner mass M, along with the
respective scalar field profiles:

ϕ ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2α=β

p
r

�
− ln cosh

�
c3 �

Z
dr
r

ffiffiffi
f

p
�
;

ϕ ¼
Z

dr
�1 −

ffiffiffi
f

p
r

ffiffiffi
f

p : ðA2Þ

The scalar field constant c3 is unconstrained, while the
second profile is defined up to an additive constant, since
(2) with β ¼ 0 ¼ λ is the shift-symmetric four-dimensional
Einstein-Gauss-Bonnet theory, see [64]. We can thus, for
this latter theory, add a linear time dependence for the scalar
field: ϕ ¼ μtþ ψðrÞ, with μ a constant, without breaking
the spherical symmetry of the scalar field derivatives. This
was done in [5] and leads to

ψ ¼
Z

dr
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2r2 þ f

p
− f

rf
; ðA3Þ

and one finds that for any μ, this profile is solution, along
with an unchanged spacetime (A1). For μ ¼ 0, the linear
time dependence disappears, and one recovers the previous
profile of (A2). We will now, in a similar fashion to the
body of the paper, focus on flat spacetime, slowly rotating
and radiating solutions for the above two theories.
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2. Flat spacetime solutions

As opposed to what we studied in the main text, the
obtained spacetime (A1) does reduce to flat spacetime as
M → 0, that is to say fðrÞ → 1. In this case, the scalar fields
of (A2) reduce to

ϕ ¼ ln

�
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8α=β

p
1þ μ2r2

�
; ðA4Þ

where μ ¼ exp ð�c3Þ for the first one, and

ϕ ¼ 0 or ϕ ¼ −2 ln r ðA5Þ
up to an additive constant for the second one, for the
respective choice of plus or minus sign. As regards the
solution (A3) with ϕ ¼ μtþ ψðrÞ, it corresponds to
the same spacetime and therefore gives another possibility
for a stealth flat spacetime solution as M → 0, with a scalar
field reducing to

ϕ ¼ μt − ln r� ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2r2 þ 1

q
− arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2r2 þ 1

q
Þ: ðA6Þ

We can nevertheless question if other flat spacetime sol-
utions, with ϕ ¼ ϕðt; rÞ, exist. We find the following
solutions: on the one hand, when λ ¼ 3β2=ð4αÞ,

ϕ ¼ ϕðrÞ ¼ ln

�
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8α=β

p
1þ μ2r2

�
; ðA7Þ

ϕ ¼ ϕðtÞ ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2α=β

p
jtþ μj

�
; ðA8Þ

ϕ ¼ ϕðt; rÞ ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8μα=β

p
jr2 − t2 þ μj

�
: ðA9Þ

The first line, as shown above, comes directly from the black
hole scalar field asM → 0, while the other lines are different
branches. In each case, μ is an integration constant. Only the
first branch is differentiable in the whole spacetime. On the
other hand, when β ¼ 0 ¼ λ, one gets up to a constant

ϕ ¼ 0; ðA10Þ

ϕ ¼ ϕðrÞ ¼ −2 ln r; ðA11Þ

ϕ¼ϕðt;rÞ ¼ μt− lnr�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2r2þ1

q
− arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2r2þ1

q
Þ;

ðA12Þ

ϕ ¼ ϕðt; rÞ ¼ − ln jr2 − t2j: ðA13Þ

The only new solution not described above is the last one.
The constant profile and the þ branch of (A12) are differ-
entiable for any r ≥ 0.

3. Slowly rotating solutions

Let us now turn to the slowly rotating solutions. The
ansatz metric is the same (22) as in the main text, and the
same discussion is still valid: one gets the same fðrÞ (A1)
and scalar fields (A2) [or also the time-dependent scalar
field ϕ ¼ μtþ ψðrÞ, (A3)] as in spherical symmetry.
Finally, ωðrÞ is given by

ωðrÞ ¼ −6aM
Z

r

∞

dr

r4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αM

r3

q ¼ −
a
2α

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αM

r3

r �
;

ðA14Þ

where, once again, the GR limit is fulfilled asymptotically.
The slowly rotating metric is therefore the same for both
theories, with different scalar fields. Note that, for
β ¼ 0 ¼ λ, the slowly rotating solution has already been
given in [5].

4. Radiating solutions

We proceed with the Vaidya-like solutions. While we
ended up with an unchanged spherically symmetric scalar
field in the body of the paper, this is no longer the case: the
dependence of the scalar field on the null coordinate u or v
is no longer trivial. In fact, one finds that the scalar field
must satisfy a nonlinear partial differential equation (PDE)
which does not admit any obvious solution. But, assuming
this PDE is satisfied, i.e. taking it as an implicit definition
for the scalar field, all field equations are satisfied, and one
ends up with the following outgoing-Vaidya-like solution

8<: ds2 ¼ −fðu; rÞdu2 − 2dudrþ r2dΩ2; fðu; rÞ ¼ 1þ r2
2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αMðuÞ

r3

q �
0 ¼ 2αðfðrϕ0 þ 1Þ2 − 2r _ϕðrϕ0 þ 1Þ − 1Þ − βr2e2ϕ; Tuu ¼ −M0ðuÞ

4πr2 ≥ 0;

ðA15Þ

and the following ingoing-Vaidya-like solution8<: ds2 ¼ −fðv; rÞdv2 þ 2dvdrþ r2dΩ2; fðv; rÞ ¼ 1þ r2
2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αMðvÞ

r3

q �
0 ¼ 2αðfðrϕ0 þ 1Þ2 þ 2r _ϕðrϕ0 þ 1Þ − 1Þ − βr2e2ϕ; Tvv ¼ M0ðvÞ

4πr2 ≥ 0:

ðA16Þ
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The PDE taken as an implicit definition of the scalar field is
given below the metric, and with, of course, β ¼ 0 for the
shift-symmetric four-dimensional Einstein-Gauss-Bonnet
case. A prime denotes derivation with respect to r, while
a dot stands for derivation with respect to u or v.

APPENDIX B: DISFORMAL
TRANSFORMATIONS

1. General formulas for disformed Horndeski action

We present the disformed Horndeski action which arises
through a disformal transformation (26) of a general initial

Horndeski action (1). The disformed Horndeski action
belongs to the so-called beyond Horndeski class of theories
and is given by

S¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
fL̃2 þ L̃3 þ L̃4 þ L̃5 þ L̃4b þ L̃5bg; ðB1Þ

where appear the two additional beyond Horndeski Lag-
rangians that read

L̃4b ¼ F̃4ðϕ; X̃Þf2X̃½ðg□ϕÞ2 − ðϕ̃μνÞ2� þ 2½g□ϕϕ̃μϕ̃μνϕ̃
ν − ϕ̃μϕ̃

μνϕ̃νρϕ̃
ρ�g;

L̃5b ¼ F̃5ðϕ; X̃Þf2X̃½ðg□ϕÞ3 − 3g□ϕðϕ̃μνÞ2 þ 2ϕ̃μνϕ̃
νρϕ̃μ

ρ�
þ 3½ðg□ϕÞ2ϕ̃μϕ̃μνϕ̃

ν − 2g□ϕϕ̃μϕ̃
μνϕ̃νρϕ̃

ρ − ϕ̃μνϕ̃
μνϕ̃ρϕ̃ρσϕ̃

σ þ 2ϕ̃μϕ̃
μρϕ̃ρνϕ̃

νσϕ̃σ�g;

where ϕ̃μ ¼ ∇̃μϕ, etc., and X̃ ¼ X
1−2DX. The disformed Horndeski functions G̃kðϕ; X̃Þ are given by

G̃2 ¼ G2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2DX̃

p
− 2X̃ðH3 þH4 þH5Þϕ −

2X̃2G3Dϕ

ð1þ 2DX̃Þ3=2 ;

G̃3 ¼
G3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2DX̃
p − ðH3 þH4 þH5Þ

þ 2X̃

�
HR;ϕϕ −H□;ϕ þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2DX̃

p �
2DG4ϕ −Dϕ

�
2X̃G4X̃

1 − 2X̃2DX̃

−G4

���
;

G̃4 ¼ G4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2DX̃

p
þ X̃

�
HR;ϕ −

X̃G5Dϕ

ð1þ 2DX̃Þ3=2
�
;

G̃5 ¼
G5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2DX̃
p þHR;

while the beyond Horndeski functions F̃kðϕ; X̃Þ read

F̃4 ¼
DX̃

2

�
2X̃G4X̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2DX̃

p
1 − 2X̃2DX̃

−
G4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2DX̃
p �

−
1

2
HR;ϕX̃ −

X̃3G5X̃DX̃Dϕ

ð1 − 2X̃2DX̃Þð1þ 2DX̃Þ3=2

þ G5ϕD

2ð1þ 2DX̃Þ3=2 þ
G5

2ð1þ 2DX̃Þ5=2 fX̃ð1þ 2DX̃ÞDϕX̃ þDϕ½1 − X̃ðDþ 3X̃DX̃Þ�g;

F̃5 ¼ −
X̃G5X̃DX̃

6ð1 − 2X̃2DX̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2DX̃

p :

For clarity, we have defined the following functions

H□ ¼ X̃G5Dϕ

ð1þ 2DX̃Þ3=2 ; HR ¼
Z

dX̃
G5ðDþ X̃DX̃Þ
ð1þ 2DX̃Þ3=2 ; H5 ¼

Z
dX̃ðH□;ϕ −HR;ϕϕÞ;

and
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H3 ¼
Z

dX̃
−G3ðDþ X̃DX̃Þ
ð1þ 2DX̃Þ3=2 ; H4 ¼

Z
dX̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2DX̃
p �

Dϕ

�
2X̃G4X̃

1 − 2X̃2DX̃

− G4

�
− 2DG4ϕ

�
;

thus following the notations of [57], with the difference that we are including an X dependence for the disformal function.
With these formulas at hand, we can now write down explicitly the beyond Horndeski theories whose equations of motion
are solved by the gravitating monopolelike solution or the wormhole solution, respectively.

2. Beyond Horndeski theory for the monopolelike solution

The gravitating monopolelike solution solves the equations of motion obtained from the following beyond Horndeski
theory, where for readability, the variables ϕ and X̃ (the disformed kinetic term) are replaced, respectively, by y and x,

G̃2ðy; xÞ ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

ffiffiffi
2

p
þ 7

q
αx2 þ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
þ 1

q
βxe2y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
− 1

p
β2e4y

2α
þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð

ffiffiffi
2

p
− 1Þ

q
βxe2y ln jxj;

G̃3ðy; xÞ ¼ 8ð
ffiffiffi
2

p
þ 1Þ3=2αxþ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð

ffiffiffi
2

p
− 1Þ

q
βe2y þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð

ffiffiffi
2

p
− 1Þ

q
βe2y ln jxj;

G̃4ðy; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
− 1

q
þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
þ 1

q
αx −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
− 1

q
βe2y;

G̃5ðy; xÞ ¼
4α ln jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

− 1
p ;

F̃4ðy; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
− 1

p
ðβe2y − 1Þ

2
ffiffiffi
2

p
x2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ffiffiffi

2
p þ 1Þ

q
α

x
;

F̃5ðy; xÞ ¼
ð ffiffiffi

2
p

− 2Þα
3ð ffiffiffi

2
p

− 1Þ3=2x2 :

The main differences (apart from the beyond Horndeski terms) with the original theory (3) are the terms proportional
to ln jxj in G̃2 and G̃3.

3. Beyond Horndeski theory for the wormhole solution

Let us now apply the disformal transformation formulas to our specific action (2) and its solution (5)–(7) with the
following choice of W−1,

W−1ðϕ; XÞ≡ ð1 − 2Dðϕ; XÞXÞ−1 ¼ ð1 − 1=aÞ−1ð1þ 2BðϕÞXÞ; 0 < a < 1; ðB2Þ

see Eq. (33) with

BðϕÞ ¼ ψ2

Aðψ= ffiffiffiffiffiffijαjp Þ ; ψ ¼
ffiffiffiffiffiffiffiffiffi
−2α
β

s
e−ϕ:

Since X̃ is a second-order polynomial in X, one gets two possible solutions for X given by

X ¼ −1
4BðϕÞ ð1� Sðϕ; X̃ÞÞ; Sðϕ; X̃Þ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8BðϕÞ

�
1 −

1

a

�
X̃

s
: ðB3Þ

Depending on which sign is chosen (þ or −), one is led to two distinct disformed actions, Sþ and S−, respectively. One must
therefore identify which variational principle is solved by the disformed metric (37)–(39). To this aim, one has to analyze
the situation on shell where

Sðϕ; X̃Þ ¼ jsðrÞj; sðrÞ≡ 1 − 2BðϕÞ fðrÞ
r2

; ϕ ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2α=β

p
r

�
: ðB4Þ

This in turn implies that
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−fðrÞ
2r2

¼ −1
4BðϕÞ ð1� jsðrÞjÞ ðB5Þ

and, this is consistent only by choosing the þ sign when sðrÞ ≤ 0, and the − sign when sðrÞ ≥ 0. As a consequence, the
disformed metric solves the equations of motion of Sþ (respectively, of S−) if and only if sðrÞ ≤ 0 [respectively, if sðrÞ ≥ 0].
In particular, it will be problematic to define an action principle for the disformed theory if the function sðrÞ has a
nonconstant sign. Note that sðrÞ changes sign precisely at the singular radius r� identified in (35), thus, we retrieve the
necessity of hiding r� below the wormhole throat. This is for instance ensured by our choice (36), for which sðrÞ < 0 in the
whole physical spacetime, and hence a well-defined action principle is shown to exist. The corresponding beyond Horndeski
theory is given by [for readability, we write coefficients as functions of variables ðy; xÞ, where y stands for ϕ and x for X̃]:

F̃5ðy; xÞ ¼
2ða − 1Þα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− xBðyÞ

Sðy;xÞþ1

q
ðaSðy; xÞ þ 4ða − 1ÞxBðyÞ − 2Sðy; xÞ þ aÞ

3ax2Sðy; xÞðaðSðy; xÞ − 1Þ − 4ða − 1ÞxBðyÞÞ ;

G̃5ðy; xÞ ¼
2α ln

�
Sðy;xÞþ1

4BðyÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− xBðyÞ

Sðy;xÞþ1

q þ
8α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðy; xÞ − 1

p
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðy;xÞ−1

p ffiffi
2

p
�
− 4

ffiffiffi
2

p
α ln

�
Sðy;xÞþ1

4BðyÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−aSðy;xÞ

a−1

q ;

G̃4ðy; xÞ ¼
1

BðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− xBðyÞ

Sðy;xÞþ1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−aSðy;xÞ

a−1

q
ðað−Sðy; xÞÞ þ 8ða − 1ÞxBðyÞ þ aÞ

�
4αxB0ðyÞðða − 1ÞxBðyÞ

×

�
8

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

xBðyÞ
Sðy; xÞ þ 1

s
−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a − aSðy; xÞ
a − 1

r
− 2

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

xBðyÞ
Sðy; xÞ þ 1

s �
ln

�
Sðy; xÞ þ 1

4BðyÞ
��

−
ffiffiffi
2

p
aðSðy; xÞ − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

xBðyÞ
Sðy; xÞ þ 1

s ��
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

xBðyÞ
Sðy; xÞ þ 1

s �
−
αðSðy; xÞ þ 1Þ

BðyÞ − βe2y þ 1

�
;

and where the expressions for G̃2, G̃3, and F̃4 are too cumbersome to report.
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