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We model the supermassive dark object M87� as a Schwarzschild lens and study the variations in
tangential, radial, and total (the product of tangential and radial) magnifications of images (primary,
secondary, and relativistic) against the changes in angular source position and the ratio of lens-source to the
observer-source distance. Further, we study the behavior of partial derivatives (with respect to the angular
source position) of total magnifications of images against the angular source position. Finally, we model
supermassive dark objects at centers of 40 galaxies as Schwarzschild lenses and study the variations in
tangential, radial, and total magnifications of images against the change in the ratio of mass of the lens to its
distance. These studies yield many nonintuitive results which are likely to be significant for next generation
Event Horizon Telescope observations. We hypothesize that there exists a distortion parameter such that its
signed sum for all images of singular gravitational lensing of a source identically vanishes. We test this with
images of Schwarzschild lensing in weak and strong gravitational fields and find that this esthetically
appealing hypothesis succeeds with flying colors.
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I. INTRODUCTION

The deflection of light in the gravitational field of a
massive object was discussed even before the discovery of
Einstein’s general theory of relativity, notably by Newton,
Michell, Cavendish, Laplace, Soldner, and Einstein himself
[1–4]. Later, after the advent of general relativity, Einstein,
using his theory of general relativity, obtained total light
deflection of a light ray tangentially grazing the surface
of the Sun. His result was twice the Newtonian value and
was supported by observation during the total solar eclipse
in 1919.
The spectacular detectable phenomena resulting from the

deflection of electromagnetic or gravitational radiation by a
spacetime is referred to as gravitational lensing [5]. The
basic theory of lensing was developed by Eddington,
Chwolson, Einstein, Liebes, Klimov, Refsdal, Bourassa
and Kantowski, and others (see in [1] and references
therein.) In 1979, Walsh, Carswell, and Weymann [6]
observed twin images of QSO 0957þ 561 A, B that were
separated by approximately 5.7 arcsec. Thereafter, Lynds
and Petrosian [7], in 1986, and Soucail et al. [8], in 1987,
observed giant luminous arcs which were unraveled as
distorted images of distant galaxies by Paczynski [9].
Hewitt et al. [10], in 1988, observed the first Einstein
ring. These observations made gravitational lensing one of
the hottest research topics in astrophysics and numerous
gravitational lensing cases have been observed by now.

Around two decades before the first gravitational lensing
(GL) was observed by Walsh et al., Darwin [11], in 1959,
carried out basic studies of the gravitational lensing due to
light deflection in the vicinity of the photon sphere of an
ultracompact Schwarzschild massive object. He obtained
an elegant formula for the Einstein bending angle:

α̂ðroÞ ¼ 2 ln

�
36Mð2 − ffiffiffi

3
p Þ

ro − 3M

�
− π; ð1Þ

where ro and M are, respectively, the closest distance of
approach of the light ray and the Schwarzschild mass. He
further showed that the images are too demagnified to be
observed and termed those ghosts probably because those
were not observable. Despite the theoretical elegance of
results obtained by Darwin, the research on gravitational
lensing in a strong gravitational field remained almost
abeyant for around 40 years for possibly two reasons:
Images were incredibly demagnified and there was no
adequate gravitational lens equation to study GL in a very
strong gravitational field.
Being unaware of Darwin’s work, we [12], in 2000,

initiated a research on this topic. We obtained a new
gravitational lens equation that allows arbitrary light deflec-
tion angles (very small through very large). We modeled the
Galactic supermassive “black hole” as a Schwarzschild lens
and obtained angular positions of primary-secondary aswell
as relativistic images (deflection angle α̂ > 3π=2) and their
magnifications. Like Darwin, we also found that relativistic
images (that he called ghosts) are very demagnified.*shwetket@yahoo.com
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However, the new lens equation being capable of studying
GL in a very strong gravitational field resurrected the strong
field gravitational lensing studies. Perlick [13] called this
new lens equation an almost exact lens equation. A large
number of research papers on strong gravitational field
lensing due to black holes [14–27] and exotic objects such as
naked singularities, wormholes, and boson stars [28–42]
have been published (see also references therein.)
In 2009, we [43] came back to this subject and carried

out a comprehensive study of Schwarzschild lensing in a
weak as well as the strong gravitational field in the vicinity
of the photon sphere. We obtained important results not
only for relativistic images but also for primary-secondary
images which were thought to be completely understood.
We list a few of those results in brief: (i) We obtained a
formula for computing masses of compact objects with
astounding accuracy. Distances and angular source position
play no (extremely insignificant) role in this formula. [See
Eq. (19) in [43].] (ii) The angular separations between any
two relativistic images are extremely insensitive to changes
in the lens-source distance and angular source position.
Thus, having the mass of the compact object and separation
between angular positions between two relativistic images,
we can compute a very accurate value for the distance of the
compact massive object. (iii) The dependence of (absolute)
magnification ratios of relativistic images of the same order
on the potential (the ratio of the mass of the lens to the lens-
observer distance) is insignificantly small. Therefore, the
measurements of the flux ratio would give a very accurate
value of the lens-source distance. (iv) We showed that the
time delays of primary images are always (for any angular
source position) smaller for nearer sources for the otherwise
same situation. This is obviously a counterintuitive result.
We also explained the reason for this long prevailing
misconception. Usually, differential time delays are mea-
sured. However, this conceptually fascinating counterin-
tuitive result is also measurable. Rafikov and Lai [44] gave
a method to measure time delay as well. For recent papers
on the gravitational lensing in strong gravitational fields,
see [45–51] and references therein.
Despite the wonderful implications of relativistic images

for astrophysics (as these could bestow a powerful means to
unveil the secrets of the universe with astounding accu-
racy), these are not observed. To this end, after a long
period of technical and theoretical developments, the event
horizon telescope (EHT)—an international collaboration
frommany countries and institutions was launched in 2009.
The EHT was composed of radio telescopes around the
world to produce a giant high sensitivity and resolution
virtual telescope. In 2017 the EHT carried out observations
ofM87� over 4 days (April 5–11) at approximately 1.3 mm
with unprecedented angular resolution. They surprised the
world by releasing the first image on April 10, 2019 and
published their landmark results in a series of six papers
[52–57]. The bright region around the silhouette seems to

be of secondary, relativistic, and orphaned images. (The
images due to gravitational mirroring, also called retro-
lensing, of a source do not have primary-secondary images
as their “parents” and due to this reason we called those
orphaned images, or simply orphans [43].) The relativistic
images are easy to be differentiated from orphans because
these appear along with the primary and secondary images.
The present EHT is not capable of resolving relativistic
images from secondary as well as orphaned images and
therefore we are not sure whether the EHT observed
relativistic images. However, the next generation Event
Horizon Telescope [58] is very likely to resolve secondary,
relativistic, and orphaned images and also take necessary
measurements.
In order to observe and analyze relativistic images, we

need to study characteristics of these images in detail. This is
the main aim of this paper. We first model the M87� as the
Schwarzschild lens and study variations in tangential, radial,
and total magnifications of images with respect to the change
in the angular source positions (keeping lens-source distance
fixed). Then, we study derivatives of total magnifications
(with respect to angular source position) as the angular
source position increases. We further study variations in
magnifications with respect to the change in distance
parameter (the ratio of lens-source to observer-source dis-
tances) keeping the angular source position fixed. Last, we
model the supermassive compact objects of 40galaxies as the
Schwarzschild lenses and study the variations of magnifi-
cations with respect to the ratio of the mass to the distance of
the lens, keeping the ratio of lens-source to the observer-
source distances and angular source position fixed. Last, but
not least important,we define a novel distortion parameterof
images such that the sum of signed (not absolute) distortions
of all images is zero. With numerical computations, we
demonstrate that the distortion parameter has this character-
istic with high accuracy. The inclusion of this distortion
parameter in the theory of gravitational lensing could be very
helpful in identifying images of the same source and the order
as well as searching for missing image(s).
This paper is arranged as follows. In Sec. II, we give lens

equation, magnifications, and definition of distortion
parameter. In Sec. III, we carry out computations and
present results. In Sec. IV, we give a summary and discuss
the results. We use geometrized units (the universal
gravitational constant G ¼ 1 and the speed of light in
vacuum c ¼ 1) and therefore the mass M≡MG=c2. We
use Mathematica [59] for computations.

II. LENS EQUATION, MAGNIFICATION,
AND DISTORTION

In order to study gravitational lensing due to light
deflection in weak as well as strong gravitational fields
(such as in the vicinity of photon surfaces of compact
massive objects), we obtained a novel lens equation which
is expressed as [12]
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tan β ¼ tan θ − α; ð2Þ

where

α ¼ D½tan θ þ tan ðα̂ − θÞ� ð3Þ

with

D ¼ Dds

Ds
: ð4Þ

Symbols β and θ, respectively, stand for the angular
positions of the unlensed source and image. α̂ represents
the Einstein bending angle of the light ray. The impact
parameter

J ¼ Dd sin θ: ð5Þ

The symbols Dd, Dds, and Ds denote, respectively, the
observer-lens, lens-source, and observer-source angular
diameter distances. The subscript d stands for the deflector
(lens). The values of the dimensionless distance parameter,
D, lie in the interval (0,1). However, its values should not
be chosen too close to zero (sources not too close to photon
surfaces) in order for the lens equation to work well.
The magnification of an image is defined as the ratio of

the flux of the image to the flux of the unlensed source.
However, according to Liouville’s theorem, the surface
brightness is conserved in light deflection and therefore this
ratio turns out to be the ratio of solid angles of the image
and of the unlensed source. Thus, the total magnification of
an image of a circularly symmetric gravitational lensing is

μ ¼ μtμr; ð6Þ

where the tangential μt and radial μr magnifications are,
respectively, given by

μr ¼
�
dβ
dθ

�
−1

and μt ¼
�
sin β
sin θ

�
−1
: ð7Þ

The sign of the magnification of an image determines parity
of the image: positive parity for μ > 0, negative parity for
μ < 0, and zero parity for the images formed when the
angular source position β ¼ 0. However, β ¼ 0 does not
always give images [28–30]. If the tangential magnification
μt of an image is negative, then we define absolute tangential
magnification (but may be simply called tangential magni-
fication) jμtj for plotting and analysis of results. The same
convention applies to radial and total magnifications.
In this paper, we study gravitational lensing by static

spherically symmetric compact objects. The exterior gravi-
tational field of such objects is given by the Schwarzschild
spacetime described by the following line element:

ds2 ¼
�
1 −

2M
r

�
dt2 −

�
1 −

2M
r

�
−1
dr2

− r2ðdϑ2 þ sin2ϑdϕ2Þ; ð8Þ

where the real constant parameter M is the Schwarzschild
mass. The deflection angle α̂ and the impact parameter J of
a light ray with the closest distance of approach ro are
given, respectively, by [60]

α̂ðroÞ ¼ 2

Z
ro

∞ dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð rroÞ2ð1 − 2M

ro
Þ − ð1 − 2M

r Þ
q − π ð9Þ

and

JðroÞ ¼ ro

�
1 −

2M
ro

�
−1=2

: ð10Þ

Like in our previous papers [12,28], we introduce radial
distance in terms of the Schwarzschild radius 2M,

ρ ¼ r
2M

; ρo ¼
ro
2M

; ð11Þ

and write

α̂ðρoÞ ¼ 2

Z
ρo

∞ dρ

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ρρoÞ2ð1 − 1

ρo
Þ − ð1 − 1

ρÞ
q − π ð12Þ

and

JðρoÞ ¼ 2Mρo

�
1 −

1

ρo

�
−1=2

: ð13Þ

In order to compute magnifications of images, we need
derivative of the deflection angle α̂ with respect to the
angular position of the image which is given by [see
Eq. (32) in [28]]

dα̂
dθ

¼ α̂0ðρoÞ
dρo
dθ

; ð14Þ

α̂0ðρoÞ¼
3−2ρo

ρo
2ð1− 1

ρo
Þ
Z
ρo

∞ ð4ρ−3Þdρ
ð3−2ρÞ2ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ρρoÞ2ð1− 1

ρo
Þ−ð1− 1

ρÞ
q ;

ð15Þ

and

dρo
dθ

¼
ρoð1 − 1

ρo
Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2MDd

Þ2ρo2ð1 − 1
ρo
Þ−1

q
M
Dd

ð2ρo − 3Þ : ð16Þ

Different images of the same source are usually identified
by the similar spectra, same flux ratio in the optical as well
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as radio wave band, and knots in the different images.
However, there is no way to know if there is/are any
missing image(s) of the same source for whatever
reasons. Inspired by this problem, we hypothesize the
following: There exists a distortion parameter such that the
signed (not absolute) sum of distortions of all images of a
realistic and singular gravitational lensing of a source is
identically zero. (We assume that no image is occulted.) In
order to find a parameter like this, we define a distortion
parameter as

Δ ¼ μt
μr

: ð17Þ

The signed sum of distortions of all images of a given
source

Δsum ¼
Xk
i¼1

Δi; ð18Þ

where k is the total number of images. We also define a
logarithmic distortion parameter of an image

δ ¼ log10

���� μtμr
���� ð19Þ

for the convenience in plotting. We use the subscripts p and
s for the primary and secondary images and subscripts p1

and p2 for the relativistic images of the first and second
orders, respectively, on the primary image side. Similarly,
we use subscripts s1 and s2 for relativistic images on the
secondary image side. We defined a (signed) distortion
parameter Δ with the aim that sum of distortions of all
images be zero. In order to test whether images of the same
order have the same absolute distortions, we now define
percentage difference in distortions of images of the same
order as follows:

Pps ¼
Δp þ Δs

Δp
× 100;

P1p1s ¼
Δ1p þ Δ1s

Δ1p
× 100;

P2p2s ¼
Δ2p þ Δ2s

Δ2p
× 100; ð20Þ

where the subscript ps stands for the primary-secondary
pair, and 1p1s and 2p2s, respectively, for the first- and
second-order relativistic images pairs. As the primary
image and relativistic images on the primary image side
have positive parity in Schwarzschild lensing, the distor-
tions of these images (i.e., Δp, Δ1p, and Δ2p) are also
positive. Similarly, distortions of secondary image and
relativistic images on the secondary image side (i.e., Δs,
Δ1s, and Δ2s) are negative and due to this reason these

appear with a positive sign in the numerators of the absolute
percentage difference formulae given above.

III. COMPUTATIONS AND RESULTS

In our paper [43], we studied variations of total absolute
magnifications of primary, secondary, and first- and second-
order relativistic images (on the primary image side)
against the angular source position β as well as the lens
mass to lens-observer distance M=Dd only for three values
of lens-source to the observer-source distances ratio D.
However, in order to have a better knowledge of shapes of
images of Schwarzschild lensing, we now study variations
of tangential and radial magnifications along with total
magnifications of the primary, secondary, and first- and
second-order relativistic images (on both sides of the optic
axis) against β, D, and M=Dd. These studies are at present
mostly of theoretical interest; however, these could later be
useful to reveal important information about the lenses as
well as sources.
We first model the M87� (mass M ¼ 6.5 × 109 M⊙ and

distance Dd ¼ 16.8 Mpc [57]) as a Schwarzschild lens and
study point-source gravitational lensing. In [43] we showed
that, as opposed to cases for the primary and secondary
images, total magnifications of relativistic images of
sources with smaller values of D are higher, i.e., relativistic
images of sources closer to lens have higher magnifica-
tions. Therefore, as the central thread of this paper is
relativistic images, we take a small value of D ¼ 0.005 for
computations. For the M87� Schwarzschild lens with
D ¼ 0.005,M=Dds ≈ 3.68052 × 10−9. As the gravitational
field due to the lens at the source location is weak, the lens
equation holds good.
We solve the gravitational lens equation (2) for a large

number of values of the angular source position β and
obtain positions of primary, secondary, and relativistic
images of orders 1 and 2 on both sides of the optic axis.
(We do not present image positions in this paper because
variations of images positions with β are studied in [43].)
Then we obtain their tangential, radial, and total magni-
fications. In Fig. 1, we plot these magnifications vs the
angular source position. The figures in the top row show
that the tangential magnifications of both primary and
secondary images, represented by μpt and jμstj, decrease
with an increase in the value of β. The radial magnifications
of primary and secondary images, respectively, increase
and decrease with an increase in β. The total magnifications
μp and jμsj of both images however decrease with an
increase in β. The second and third rows in Fig. 1,
respectively, show the variations of these magnifications
with respect to β for relativistic images of orders 1 and 2.
The graphs are qualitatively similar (but quantitatively a lot
different) to the primary-secondary images pair. The plots
for relativistic images on the primary image side are
qualitatively similar to those for the primary image and
those on the secondary image side are similar to those for
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the secondary image. The tangential magnifications for all
images decrease with an increase in the value of β. The
radial magnifications of the primary as well as relativistic
images on the primary image side increase with β; however,
for secondary as well as relativistic images on the secon-
dary image side decrease with an increase in β. The total
magnifications of all images decrease with an increase in β.
All three magnifications of images are smaller for images of

higher order. However, the radial magnifications of rela-
tivistic images decrease hugely faster (compared to their
tangential magnifications) as the order of images increases.
We now numerically obtain partial derivatives of total

magnifications of three sets of images (two images in
each set) with respect to the angular source position β at a
large number of values for β and plot those in Fig. 2. All
graphs are qualitatively similar. The partial derivatives of

FIG. 1. First row: the tangential magnification of the primary image μpt (red dashed), the absolute tangential magnification of the
secondary image jμstj (green dotted), the radial magnification of the primary image μpr (red dashed), the radial magnification of the
secondary image μsr (green dotted), the total magnification of the primary image μp (red dashed), and the absolute total magnification
of the secondary image jμsj (green dotted) are plotted against the angular source position β. Second and third rows: the same
three magnifications are plotted against β for the first (see the second row) and the second (see the third row) order relativistic images. The
subscripts 1p and 2p stand for the first- and second-order relativistic images on the side of the primary imagewhereas subscripts 1s and 2s
for the first- and second-order relativistic images on the secondary image side. The colors of symbols and corresponding graphs are kept the
same for graphs to be identified. The supermassive dark object (SMDO) at the galactic center ofM87 ismodeled as the Schwarzschild lens,
which has massM ¼ 6.5 × 109 M⊙ and is situated at the distanceDd ¼ 16.8 Mpc so thatM=Dd ≈ 1.84951 × 10−11. The dimensionless
parameter D ¼ 0.005.
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magnifications being negative for all images at all values of
β show, as expected, that the total magnifications decrease
with an increase in β. However, rates of fall decrease with
an increase in the value of β. The rates of fall in total
magnifications decrease with the increase in the order of
images. For a given value of β, the rate of fall is maximum
for the images of zero order (i.e., primary-secondary
images) and least for the second-order relativistic images.
The rates of fall in total magnifications for a pair of images
of the same order are very close to each other. We will
explain this in the last section.
We now again model the same SMDO (i.e., M87�) as a

Schwarzschild lens with the angular source position
β ¼ 1 mas. We study the behavior of tangential, radial,
and total magnifications of primary, secondary, and rela-
tivistic images of orders 1 and 2 (on both sides of the optic
axis) as the values of D increases from 0.001 to 0.5. All
graphs are plotted in Fig. 3. The tangential magnifications
for the primary as well as the secondary images increase
with the increase in the value of D and both curves are
concave down at all points. However, the behavior of
tangential magnifications vs D graphs for relativistic
images are quite different. The tangential magnifications
of relativistic images on the primary side decrease whereas
those on the secondary side increase with the increase in the
value of D. The μ1pt and μ2pt vs D graphs are concave up
whereas jμ1stj and jμ2stj vs D graphs are concave down
everywhere. The radial magnifications of primary and
secondary images, respectively, decrease and increase with
the increase in the value of D. The μpr vs D curve is
concave up whereas jμsrj vs D curve is concave down.
However, radial magnification of relativistic images of
orders 1 and 2 on the primary as well as a secondary side all
decrease with an increase in the value D and all curves are

concave up. The total magnifications of the primary and
secondary images increase with an increase in the value of
D whereas those for relativistic images decrease with an
increase in D. The graphs for the total magnifications (for
primary and secondary images) vs D are concave down,
whereas those for relativistic images are concave up.
We now consider SMDOs at galactic centers of 40

galaxies. The masses and distances of these SMDOs are
listed in Table IVon page 14 in [43] (see references therein
for the source of data.) For SgrA� and M87�, we however
consider the recently known values of masses and distances
[57,61]. As the main thread of this paper is to study
relativistic images we consider small values of the angular
source position β ¼ 1 mas and D ¼ 0.005 so that magni-
fications of these images are not extremely low. We
compute the same magnifications (tangential, radial, and
total) of the primary, secondary, and relativistic images of
orders 1 and 2 on both sides of the optic axis for all 40
SMDOs as Schwarzschild lenses. In Fig. 4, we plot the
magnifications vs M=Dd. All magnifications of these
images (excluding the radial magnification of the primary
image) increase with the increase in the value of M=Dd.
The radial magnification of the primary image decreases
with the increase in the value of M=Dd.
We now proceed to test the distortion hypothesis for the

simplest gravitational lensing, i.e., the weak field
Schwarzschild lensing. Under the weak gravitational field
limit with small angular source position, our lens equation
reduces to the well-known lens equation [1,2]:

β ¼ θ − α̂D; ð21Þ

where the Einstein bending angle α̂ ¼ 4M=r0 (r0 is the
closest distance of approach). Solving the above lens

FIG. 2. Left: the partial derivatives of total magnifications of primary and secondary images, denoted, respectively, by ∂βμp (red
dashed) and ∂βjμsj (green dotted) are plotted against the angular source position β. Middle: the partial derivatives of total magnifications
of the first order relativistic images on primary and secondary sides, denoted, respectively, by ∂βμ1p (magenta dashed) and ∂βjμ1sj (blue
dotted) are plotted against β. Right: the partial derivatives of total magnifications of the second-order relativistic images on primary and
secondary sides, denoted, respectively, by ∂βμ2p (brown dashed) and ∂βjμ2sj (black dotted) are plotted against the angular source
position β. The gravitational lens, as well as the parameter D, are the same as for Fig. 1. Angular source positions are expressed in
arcsec.
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equation gives the angular positions of the primary and
secondary images of the Schwarzschild lensing, respec-
tively, by [1]:

θp ¼ 1

2

�
β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4θ2E

q 	
and

θs ¼
1

2

�
β −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4θ2E

q 	
; ð22Þ

where the angular radius of the Einstein ring θE ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DM=Dd

p
. Using (22) with (7) in (17), we calculate

distortions of the primary image Δp and the secondary
image Δs:

Δp ¼ −Δs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 16D M

Dd

q
β

: ð23Þ

Therefore, the signed sum of these distortions Δsum ¼
Δp þ Δs identically vanishes. This supports our distortion
hypothesis for weak gravitational field lensing where the
higher order terms in the bending angle have been

FIG. 3. First row: the tangential magnification of the primary image μpt (red dashed), the absolute tangential magnification of the
secondary image jμstj (green dotted), the radial magnification of the primary image μpr (red dashed), the radial magnification of the
secondary image μsr (green dotted), the total magnification of the primary image μp (red dashed), and the absolute total magnification of
the secondary image jμsj (green dotted) are plotted against the parameter D. Second and third rows: the same three magnifications are
plotted against the parameter D for the first (see the second row) and the second (see the third row) order relativistic images. The
subscripts 1p and 2p stand for the first- and second-order relativistic images on the side of the primary image whereas subscripts 1s and
2s for the first- and second-order relativistic images on the secondary image side. The colors of symbols and graphs are kept the same for
graphs to be identified. The gravitational lens is the same as for Figs. 1 and 2. The angular source position β ¼ 1 mas.
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FIG. 4. First row: the tangential magnification of the primary image μpt (red dashed), the absolute tangential magnification of the
secondary image jμstj (green dotted), the radial magnification of the primary image μpr (red dashed), the radial magnification of the
secondary image μsr (green dotted), the total magnification of the primary image μp (red dashed), and the absolute total magnification of
the secondary image jμsj (green dotted) are plotted against M=Dd (the ratio of the mass of the lens to the lens-observer distance).
Second and third rows: the same three magnifications are plotted against M=Dd for the first (see the second row) and the second
(see the third row) order relativistic images. The subscripts 1p and 2p stand for the first- and second-order relativistic images on the side
of the primary image whereas subscripts 1s and 2s for the first- and second-order relativistic images on the secondary image side.
The colors of symbols and corresponding graphs are kept the same for graphs to be identified. The angular source position
β ¼ 1 mas and D ¼ 0.005.
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neglected. Therefore, it is imperative to test our hypothesis
when no such approximation is taken and relativistic
images are also included. We carry out numerical compu-
tations with a very high accuracy. Our computations are
exact in the sense that we neither take weak nor strong field
approximation.
In order to obtain Fig. 1, we modeled M87�

(M=Dd ≈ 1.85 × 10−11) as a Schwarzschild lens with
the lens-source to observe-distances ratio D ¼ 0.005. We
obtained tangential, radial, and total magnifications of the
primary-secondary and relativistic images of the first and
second orders of both sides of the optic axis for a large
number of angular source positions β. Using tangential and
radial magnifications of images, we now use Eq. (19) to
compute logarithmic distortions of all these images. We
then plot logarithmic distortions δ of six images (primary,
secondary, and relativistic images of order 1 and 2 on both
sides of the optic axis) against β. The logarithmic dis-
tortions of images of the same order are so close to each
other that their graphs are not resolved on plots. The
logarithmic distortion of all images decreases fast near
β ¼ 0 and then slowly with an increase in the value of β.
For a given value of β, the logarithmic distortion of images
increases with the order of images, i.e., the primary-
secondary images are least distorted. Now to study the
variation of logarithmic distortion of images with respect to
the change in the value ofD, we use the results obtained for
plotting Fig. 3. We compute logarithmic distortions of all

six images and plot againstD. The logarithmic distortion of
all images increases fast near a very small value of D and
then increases slowly asD increases. At last, we use results
obtained for Fig. 4 to obtain logarithmic distortions of six
images for 40 different SMDOs modeled as Schwarzschild
lenses. We plot the logarithmic distortion vs M=Dd. The
distortions of all images increase with the increase in
the value of M=Dd. The graphs in Fig. 5 show that the
logarithmic distortions of higher-order images are higher;
however, distortions of the same-order images are too close
to appear resolved. Results in Fig. 5 show that images of the
same order have incredibly close values for distortions with
of course opposite signs that make the sum of signed
distortions close to zero. Equation (23) shows that the
absolute distortions of the primary as well as secondary
images increase with the increase in the values of M=Dd
and D; however, these decrease with the increase in the
value of β. These effects reflect in Fig. 5 not only for the
primary and secondary images, but also for relativistic
images. Moreover, distortion increases with the increase in
the order of images.
Now in order to analyze how close distortions of images

of the same order are, we use the distortions of images and
compute absolute values of the percentage difference in
distortions of images of the same order. That is, using
Eq. (20), we compute jPpsj, jP1p1sj, and jP2p2sj for all
three cases: (1) the lens is M87�, D ¼ 0.005, and the
angular source position is changing, (2) the lens is M87�,

FIG. 5. Left: the logarithmic distortions of the primary image δp (red dashed), secondary image δs (green dotted), the first order
relativistic image on primary side δ1p (magenta dashed), the first order relativistic image on secondary side δ1s (blue dotted), the second
order relativistic image on primary side δ2p (brown dashed), and the second order relativistic image on secondary side δ2s (black dotted)
are plotted against the angular source position β. The SMDO at the galactic center of M87 is modeled as the Schwarzschild lens, which
has mass M ¼ 6.5 × 109 M⊙ and is situated at the distance Dd ¼ 16.8 Mpc so that M=Dd ≈ 1.84951 × 10−11. The dimensionless
parameter D ¼ 0.005. Middle: the same six quantities (as for the figure on the left) are plotted against the parameter D. The lens is also
the same and the angular source position β ¼ 1 mas. Right: the same six quantities (as for the figure on the left) are plotted against
M=Dd (the ratio of the mass of lens to the lens-observer distance). SMDOs at the centers of 40 galaxies are modeled as Schwarzschild
lenses. The angular source position β ¼ 1 mas and D ¼ 0.005. The colors of symbols and graphs are kept the same for graphs to be
identified.
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β ¼ 1 mas, and D is changing, and (3) D ¼ 0.005 and
β ¼ 1 mas, andM=Dd is changing. These three families of
curves are plotted separately in Fig. 6. The graphs show that
the absolute percentage differences in distortions of the
images of the same order are incredibly small supporting
the hypothesis that the sum of signed distortions of all
images in gravitational lensing is zero. But, why are these
not more close to zero? This appears to be due to the
approximate lens equation (as the percentage difference is
higher for larger β and smallerD where lens approximation
is not good for computing P). Even if the chosen distortion
parameter does not work great with the hypothesis, the
parameter is likely to be very useful to study and analyze
images of GL.

IV. DISCUSSION AND SUMMARY

We modeled the supermassive dark object M87� as a
Schwarzschild lens and first studied the variations of three
magnifications (tangential jμtj, radial μr, and the total jμj)
of images of orders 0, 1, and 2 against the angular source
position β. The variations of the tangential as well as the
total magnifications for all images are qualitatively similar;
these decrease with increase in the angular source position.
However, the most spectacular graphs are for radial
magnifications. The radial magnifications of the primary
as well as the relativistic images on the primary image side
increase with increase in the value of β. However, those of
the secondary image as well as relativistic images on the
secondary image side decrease with increase in the value of
β. We plotted these results in Fig. 1. The relativistic images

are usually very demagnified (compared to primary and
secondary images) and therefore it is important to inves-
tigate whether their magnifications decrease very fast as the
source moves away from the optic axis (i.e., β increases). In
view of this, we computed partial derivatives of total
magnifications with respect to β of six images (primary,
secondary, and relativistic images of orders 1 and 2 on both
sides of the optic axis) for a large number of values of β. To
a great surprise, magnifications of relativistic images are
much more stable (compared to primary and secondary
images) with respect to change in β. The computations
show that images of higher orders are less unstable with
change in β. These are shown in Fig. 2. Then, we studied
the behavior of the three magnifications of six images as
the distance parameter D increases, keeping the angular
source position β fixed. Among 18 graphs in Fig. 3, more
fascinating and nonintuitive ones are radial magnifications
of the primary-secondary pair and tangential magnifica-
tions of relativistic images. The radial magnifications of
primary images and tangential magnification of relativistic
images (on the primary image side) decrease with increase
in D where the radial magnifications of secondary images
as well as tangential magnifications of relativistic images
on the secondary image side increase with increase in D.
After the completion of magnification studies withM87�

as a Schwarzschild lens, we modeled SMDOs at the centers
of 40 galaxies (including M87 and the Milky Way) as
Schwarzschild lenses. We computed tangential, radial, and
total magnifications for six images (primary, secondary, and
relativistic images of order 1 and 2 on both sides of the
optic axis). We kept the angular source position β and the

FIG. 6. Left: the absolute percentage difference in distortions for the primary-secondary images pair jPpsj, the first order relativistic
images pair jP1p1sj, and the second order relativistic images pair jP2p2sj are plotted against the angular source position β. The MDO at
the galactic center of M87 is modeled as the Schwarzschild lens, which has mass M ¼ 6.5 × 109 M⊙ and is situated at the distance
Dd ¼ 16.8 Mpc so that M=Dd ≈ 1.84951 × 10−11. The dimensionless parameter D ¼ 0.005. Middle: the same three quantities (as for
the figure on the left) are plotted against the parameterD. The lens is also the same and the angular source position β ¼ 1 mas. Right: the
same three quantities (as for the figure on the left) are plotted against M=Dd. SMDOs at centers of 40 galaxies are modeled as
Schwarzschild lenses. The angular source position β ¼ 1 mas and D ¼ 0.005.
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dimensionless distance parameterD fixed. These results are
shown in Fig. 4. Excluding the radial magnification of the
primary image, the variations of magnifications with
increase in the value of M=Dd are reasonably intuitive.
All these magnifications increase with the increase in the
value of M=Dd. However, the behavior of the radial
magnifications of the primary image with respect to the
increase in the value ofM=Dd is counterintuitive and indeed
magnificent. The radial magnifications of the primary and
secondary images, respectively, decrease and increase with
an increase in the value ofM=Dd and the separation between
the graphs decreases as M=Dd increases.
We hypothesized that there must exist a distortion

parameter such that its signed sum for all images of
realistic and singular gravitational lensing of a source
identically vanishes. We proposed such a distortion para-
meter [see Eq. (17)] and, as a first step to support the
hypothesis, we demonstrated that our hypothesis holds
good for images of Schwarzschild lensing in weak gravi-
tational field. However, as the weak field lensing example is
not enough to say that the hypothesis is correct, we carried
out numerical computations (without either weak or strong
field approximations) for the images formed due to light
deflections in weak as well as strong gravitational fields. In
order to conveniently plot, we first defined a logarithmic
distortion parameter δ in Eq. (19) and plotted it against the
angular source position β, the dimensionless distance
parameter D, and the ratio of the mass to the distance of
the lens M=Dd for the six images (primary, secondary,
relativistic images of orders 1 and 2 on both sides of the
optic axis). We found that, for all images, the logarithmic
distortion parameter decreases with an increase in β, and a
decrease in D as well asM=Dd. The graphs for logarithmic
distortion of the images of the same order appear unresolved
(see in Fig. 5) because their values are too close to each
other. The sum of signed distortions of all images is
extremely close to zero. Now, in order to see how close
are the values of distortions of images of the same order, we
defined and computed the absolute percentage differences
of images of the same order and found these to be extremely
small, and therefore these results very strongly support the
distortion hypothesis. This parameter increases with an
increase in β and a decrease in D, and remains almost
constant with an increase in the value of M=Dd. These
results suggest that the nonvanishing (though extremely
small) values of the absolute percentage difference in
distortions are very likely to be due to approximations
involved in the lens equation and numerical computations.
Thus, our hypothesis passes the Schwarzschild lensing with
flying colors. However, this still remains to be tested with
many other realistic gravitational lensing.
Our hypothesis does not insist that there has to be a

unique distortion parameter supporting our hypothesis.
After the completion of this work, we found another
distortion parameter

Δ� ¼ μt − μr: ð24Þ

With this, we obtain distortions of the primary image Δ�
p

and the secondary image Δ�
s :

Δ�
p ¼ −Δ�

s ¼
8D M

Dd

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16D M

Dd
þ β2

q : ð25Þ

Thus, their signed sum Δ�
p þ Δ�

s identically vanishes. This
supports our hypothesis. However, it still remains to be
tested if we include relativistic imageswhich are formed due
to light deflections in very strong gravitational fields. It is
possible that our hypothesis works well only for certain
types of realistic lensing. If so, the examples and counter-
examples could be useful for classifying types of gravita-
tional lensing. The theory behind the measurements of any
distortion parameter satisfying our hypothesis is still to be
developed. During these studies, we found some interesting
relationship which are though not much related to the
present topic, is worth putting here: μtpþμts¼μrpþμrs¼1

for weak field Schwarzschild lensing. Around two decades
ago, we (the present author) noticed, based on numerical
computations, a relation: the signed sum of (total) magni-
fications of images of the same order is approximately 1.
This explains why the curves in Fig. 2 are too close to appear
separately. It seems that the weak field part of the result,
μp þ μs ¼ 1, is known in the literature.
Despite many industrious efforts there is neither a proof

nor a disproof of the weak cosmic censorship hypothesis
which basically states that, generically, spacetime singu-
larities of physically realistic gravitational collapse are
hidden within event horizons (see details in [62–64] and
references therein.) Spacetime singularities not covered
inside an event horizon are called naked singularities. We
studied gravitational lensing due to naked singularities and
found that these serve as better cosmic telescopes than
regular massive objects as well as black holes of the same
Arnowitt-Deser-Misner mass due to the following reasons:
Naked singularity lenses give rise to (i) higher value for the
sum of absolute total magnifications of all images,
(ii) smaller time delays, and (iii) smaller magnification
centroid shift that enables us locate the source position
better. Thus, naked (visible) singularities are not just
visible to observers, these make our universe more visible
to us. We also showed that strongly naked singularities (i.e.,
those not covered inside any photon sphere) can give rise to
images of negative time delays. Naked singularities
(excluding strongly naked ones) are one of the best
mimickers of black holes and therefore, studies in this
paper should be extended to those naked singularities.
As SMDOs have rotation, it is extremely important to
thoroughly study magnifications and distortions of images
of the Kerr lensing (including retrolensing).
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