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We present the ghost-free infinite-derivative extensions of the spherically reduced gravity (SRG) and
Callan-Giddings-Harvey-Strominger (CGHS) theories in two space-time dimensions. For the case of SRG,
we specify the Schwarzschild-type gauge and diagonalize the quadratic action for field perturbations after
taking the background fields to be those of the flat-space solution with a linear dilaton. Using the obtained
diagonalization, we construct ghost-free infinite-derivative modifications of the SRG theory. In the context
of this modified SRG theory we derive a nonlocal modification of the linearized spherically reduced
Schwarzschild solution. For the case of CGHS gravity, we work in the conformal gauge and diagonalize the
quadratic action associated with this theory for a general background solution. Using these results, we
construct the ghost-free infinite-derivative modifications of the CGHS theory and examine nonlocal
modifications to the linearized CGHS black-hole solution.
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I. INTRODUCTION

It is well known that the theory of gravity described by
the Einstein-Hilbert action together with two-dimensional
space-time is topological [1]. This is the result of the fact
that, in two dimensions, the space of two-form fields is of
dimension one which implies the vanishing of the Einstein
tensor [1–3]. Thus, one option to source gravity in two
space-time dimensions is to introduce a scalar field, dubbed
the dilaton field, coupled to the Ricci scalar. A number of
two-dimensional theories involving the dilaton field are then
possible (see [4–8] for a review). Among these there is the
so-called spherically reduced gravity (SRG) [4,9–18], and
Callan-Giddings-Harvey-Strominger (CGHS) gravity [19].
The CGHS theory, which is discussed in the seminal

paper [19], has also been studied extensively in [20–35].
The theory admits a black-hole (BH) vacuum solution
which was first presented in [36] and subsequently
examined further in [37–43]. For discussions on more
general dilaton gravity theories, we direct the reader to
[4,7,8,44–47].

In the present work, we construct nonlocal modifications
to the SRG and CGHS theories of gravity that are ghost-
free. One can introduce nonlocality into a given theory by
including infinitely many covariant derivatives in the action
[48–53]. In particular, one can construct ghost-free infinite-
derivative modifications of General Relativity; often called
infinite derivative gravity (IDG) [54–64]. As discussed in
[65,66], there is motivation from p-adic string theory for the
introduction of nonlocal operators and the first such
application of p-adic mathematics in string theory appeared
when studying scalar tachyon strings. In addition, it was
noted in [52,67–71] that certain quantum gravity models are
renormalizable through the inclusion of nonlocal operators.
The initial-value problem in the context of infinite-
derivative theories has been studied in [72–77] and the
Hamiltonian formulation for nonlocal theories is discussed
in [78–83]. Cosmological implications, such as the reso-
lution of cosmological singularities, of IDG are discussed in
[50,57,58,84–87]. Studies regarding the resolution of BH
singularities through the inclusion of infinitely many deriv-
atives in the action have been conducted in [51,88–90]. In
the present work, we shall study the effect of nonlocality in
the linearized regime. Linearized solutions in the context of
IDG have been studied in [51,53,91–95] and we employ
some of these methods in the present work.While we restrict
ourselves to the linearized regime, we note that exact
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solutions in the context of IDG have been found in [96–99]
whereas in two-dimensional gravity, ghost-free infinite-
derivative modifications of the Polyakov action have been
studied in [100].
This communication is organized as follows: In Sec. II,

we begin by considering a generalized dilaton action,
defined on a two-dimensional space-time, which generates
the SRG and CGHS theories of gravity. There, we shall
briefly review this generalized dilaton model and derive the
corresponding quadratic action without fixing the gauge. In
order to diagonalize such a quadratic action, we shall
consider the SRG and CGHS gravity theories separately.
Thus, we shall first study the SRG theory in the
Schwarzschild-type gauge in Sec. III. Herein, after speci-
fying that gauge, we shall diagonalize the quadratic action
in order to construct ghost-free infinite-derivative modifi-
cations to the SRG theory. We then construct a source term
that can be used to generate the linearized Schwarzschild
solution in the context of the local diagonalized theory.
Using the same source in the diagonalized nonlocal theory,
we obtain a nonlocal modification to the linearized spheri-
cally reduced Schwarzschild solution. We will show that the
singular nature of the linearized local solution is resolved in
the nonlocal theory through the appearance of the error
function. This is comparable to the linearized nonlocal
Schwarzschild solution of IDG obtained in [51] where the
singular nature is also resolved by the error function.
In Sec. IV, we shall turn our attention to the CGHS

theory. In this case, we shall resort to the conformal gauge
and review the well known CGHS BH solution in this
gauge. The corresponding quadratic action is then diagon-
alized for a general background solution in order to
construct ghost-free infinite-derivative modifications to
the CGHS theory. Accordingly we shall introduce a source
term that generates the CGHS BH solution of the local
theory in the linearized regime. Using the aforementioned
source term together with the nonlocal theory, we shall
examine how the linearized solution is modified as a result
of introducing nonlocality. We will show that the singular
nature appearing in the linearized local solution is resolved
in the nonlocal theory through the appearance of the
complementary error function.
We shall end up with Sec. V which encapsulates the

conclusions of this investigation.

II. LOCAL TWO-DIMENSIONAL
DILATON GRAVITY

A. Action and quadratic action

Let us consider the following dilaton action in two-
dimensional space-time:

Slocal≔4

Z
d2x

ffiffiffiffiffiffi
−g

p �
R
4
þkð∂ϕÞ2þλ2þa2

2
e2ϕ

�
e−2ϕ; ð2:1Þ

where gμν is the metric tensor, R is the Ricci scalar, ϕ is the
dilaton field, and k, λ and a are constants [4,7]. We note that
both λ and a have dimensions of length−1 while k is
dimensionless. By defining the field Φ ≔ e−ϕ, this action
(2.1) can be written as

Slocal ¼ 4

Z
d2x

ffiffiffiffiffiffi
−g

p �
Φ2R
4

þ kð∂ΦÞ2þΦ2λ2þa2

2

�
: ð2:2Þ

This generalized action describes a number of dilaton
gravity theories. In particular, by setting λ ¼ 0, k ¼ 1=2
and leaving a unspecified, the action (2.2) is that of SRG
[4,9–12]. The case where k ¼ 1, a ¼ 0, and leaving λ
unspecified corresponds to the vacuum CGHS theory [19].
Table I lists these two theories and their corresponding
parameter specifications. Although not examined in this
communication, the case where a ¼ 0, k ¼ 0 and leaving λ
unspecified is the so-called Jackiw-Teitelboim gravity
theory [101,102]. In addition, there are more general
dilaton gravity actions which are discussed in [4], however,
in this paper the only dilaton gravity models that we
consider are the SRG and CGHS theories.
In order to state the definition for the quadratic action, we

first perform perturbations of the metric and dilaton field as

gμν ¼ ḡμν þ δgμν; Φ ¼ Φ̄þ δΦ; ð2:3Þ

where ðḡμν; Φ̄Þ is a solution to the equations of motion and
δgμν and δΦ are the perturbed metric and perturbed dilaton
field respectively. We also require that the perturbed dilaton
field satisfies

jδΦj ≪ jΦ̄j; ð2:4Þ

and that the curvature scale of the metric perturbations be
much smaller than that of the background metric in order
for our approximations to be valid. These conditions placed
on the perturbed dilaton are referred to as the smallness
conditions. In this paper, we make use of the following
definition for the quadratic action:

TABLE I. Parameter specifications that, upon substitution into
the action (2.2), generate either the SRG or CGHS theories.

k λ a

SRG 1=2 0 a
CGHS 1 λ 0
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δ2Slocal ≔
Z

d2xd2x0
�
δΦðxÞδΦðx0Þ δ2Slocal

δΦðxÞδΦðx0Þ
����
ðḡμν;Φ̄Þ

þ δΦðxÞδgμνðx0Þ δ2Slocal
δΦðxÞδgμνðx0Þ

����
ðḡμν;Φ̄Þ

þ δgμνðxÞδΦðx0Þ δ2Slocal
δgμνðxÞδΦðx0Þ

����
ðḡμν;Φ̄Þ

þ δgμνðxÞδgαβðx0Þ δ2Slocal
δgμνðxÞδgαβðx0Þ

����
ðḡμν;Φ̄Þ

�
; ð2:5Þ

whose variation with respect to the fields gives the field
equations for the perturbations at first order.
Using the previous definition, we now wish to derive the

quadratic action associated with (2.2). Indeed, through the
variation of (2.2), one can obtain

δSlocal ¼−2
Z

d2x
ffiffiffiffiffiffi
−g

p
gμνδgμν

�
1

4
Φ2Rþ kð∂ΦÞ2

þΦ2λ2þa2

2

�
þ 4

Z
d2x

ffiffiffiffiffiffi
−g

p �
1

2
ΦδΦR

þΦ2

4
ðRμνδgμν −∇μ∇νδgμνþ gμν□δgμνÞ

þ kδgμν∂μΦ∂νΦþ 2k∂νΦ∂νδΦþ 2ΦδΦλ2
�
: ð2:6Þ

This expression (2.6) would allow us to compute the first-
order functional derivatives of the action. The functional
derivative with respect to the dilaton field Φ is

δSlocal
δΦ

¼ 4
ffiffiffiffiffiffi
−g

p �
1

2
ΦR − 2k□Φþ 2Φλ2

�
; ð2:7Þ

whereas the functional derivative of the action with respect
to the inverse metric gμν is

δSlocal
δgμν

¼ −2
ffiffiffiffiffiffi
−g

p
gμν

�
kð∂ΦÞ2 þΦ2λ2 þ a2

2

�

þ ffiffiffiffiffiffi
−g

p ½gμν□Φ2 −∇μ∇νΦ2 þ 4k∂μΦ∂νΦ�; ð2:8Þ

where in the three previous expressions □ ≔ gμν∇μ∇ν is
the usual space-time covariant d’Alembertian operator and
∇μ is the Levi-Civita covariant derivative. Also note that in
obtaining (2.8) we have made use of the fact that the
Einstein tensor vanishes identically in two dimensions, i.e.,
Rμν ¼ 1

2
Rgμν. This results in the Ricci tensor not appearing

in (2.8). It is worth mentioning that the trace of (2.8)
renders

gμν
δSlocal
δgμν

¼ ffiffiffiffiffiffi
−g

p �
□Φ2 − 4

�
Φ2λ2 þ a2

2

��
: ð2:9Þ

Thus, the relevant equations of motion are obtained by
setting expressions (2.7) and (2.8) equal to zero.
On the other hand, by computing the second-order

functional derivatives associated with the action (2.2),
we can use the definition (2.5) in order to arrive at the
quadratic action

δ2Slocal ¼
Z

d2x
ffiffiffiffiffiffi
−ḡ

p �
8kδΦ

�
□̄ Φ̄
Φ̄

− □̄

�
δΦþ 4δgμν

�
1

2
R̄ḡμνΦ̄δΦþ ðḡμν□̄ − ∇̄μ∇̄νÞðΦ̄δΦÞ

þ 4k∂μΦ̄∂νδΦ − ð1þ kÞḡμν∇̄αðδΦ∂
αΦ̄Þ þ ð1 − kÞḡμνδΦ□̄ Φ̄

�

þ δgμν
�
ḡμαð4k∂βΦ̄∂νΦ̄ − ∇̄ν∇̄βΦ̄2Þ þ ḡμν∇̄αΦ̄2∇̄β − ḡμ½νḡα�β∇̄σΦ̄2∇̄σ − ḡβμ∇̄αΦ̄2∇̄ν

�
δgαβ

	
; ð2:10Þ

whose derivation can be found in Appendix A where the
functional derivatives (2.7) and (2.8) are used.
Equation (2.10) is the quadratic action associated with

the general dilaton model (2.2) without any gauge fixing.
In addition, this quadratic action is valid for a general
background solution ðḡμν; Φ̄Þ provided that the smallness
conditions stated in (2.4) are satisfied. In Secs. III and IV
we shall consider the SRG and CGHS theories independ-
ently. For each of those two theories, we shall diagonalize
the quadratic action after a gauge fixing. Before proceed-
ing, we wish to make a note on the gauge fixing of
the action (2.2). In this work, we will either specify the

so-called conformal gauge or the Schwarzschild-type
gauge [4] which are defined in later sections. In both
cases, the gauge-fixed action contains all the dynamics of
the original action (2.2). That is, one obtains the same
dynamical equations of motion regardless of whether one
fixes the gauge at the level of the action or at the level of
the field equations. The constraint equations, on the other
hand, appear as a result of specifying a gauge. In
Appendixes B 1 and B 2 we show this explicitly for both
choices of gauges. For a more elaborate treatment of gauge
fixing in the context of two-dimensional dilaton gravity
models, the interested reader is directed to [103,104].
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B. Symmetries of the dilaton action

Let us briefly examine the redundancies present in the
gravitational theories generated by (2.2) (for a detailed
discussion, the interested reader is directed to [1,3,105]).
The metric tensor and dilaton field contribute three and one
degrees of freedom respectively. The action (2.2) admits
diffeomorphism invariance contributing two redundancies.
Given these two redundancies, after a gauge fixing, one can
write the action (2.2) as a functional of two scalar fields:
one scalar field describing the dilaton and the other
describing the metric. In the case of the SRG theory,
i.e., when we set λ ¼ 0 and k ¼ 1=2, this leaves us with two
propagating scalar fields. In the case of the CGHS theory,
i.e., when a ¼ 0 and k ¼ 1, there is one additional
symmetry described by the following transformation:

δgμν ¼ 2εgμν

Φ2
; δΦ ¼ ε

Φ
; ð2:11Þ

where ε ∈ R is a constant. We will return to this symmetry
in Sec. IV where the CGHS theory is discussed separately.

C. Source action

When studying the SRG and CGHS theories in the
linearized regime, we will introduce some source action in
addition to the geometric, either local or nonlocal, action.
The purpose of introducing such a source action is to
generate solutions for the local theories that satisfy the
following two properties:

(i) the local solutions are singular when considering the
entire space-time;

(ii) the local solutions coincide with the BH solution of
the relevant theory in the space-time region for
which the smallness conditions are satisfied.

Once we have identified a source action accomplishing
the two properties above in the local theory, we will make
use of the same source action when studying the nonlocal
theory. In particular, we shall be interested in examining
how the singular nature is resolved as a result of nonlocality
as well as how the local BH solutions of the SRG and
CGHS theories are modified in the region for which the
smallness conditions are satisfied. A similar analysis is
done for the case of four-dimensional IDG in [51] where a
nonlocal modification to the linearized Schwarzschild
solution of GR is obtained.
For our purposes, we consider a source action of the form

Ssource ¼ 4

Z
d2x

ffiffiffiffiffiffi
−g

p
UðΦ; ḡμν; Φ̄Þ; ð2:12Þ

where UðΦ; ḡμν; Φ̄Þ is some function of the dilaton field Φ
and the background solution ðḡμν; Φ̄Þ to the field equations
when U ¼ 0. Thus the total action under consideration
would be

Stotal ≔ Slocal þ Ssource; ð2:13Þ

where the local action Slocal and the source action Ssource are
given by (2.2) and (2.12) respectively. From the definition
given in [106], the stress-energy tensor is

Tμν ≔
1ffiffiffiffiffiffi−gp δStotal

δgμν

¼ −2gμν
�
kð∂ΦÞ2 þΦ2λ2 þ a2

2
þUðΦ; ḡμν; Φ̄Þ

�

þ gμν□Φ2 −∇μ∇νΦ2 þ 4k∂μΦ∂νΦ; ð2:14Þ

where we made use of Eq. (2.8). In addition, by making use
of Eq. (2.7) and varying the source action with respect to Φ
one can obtain

δStotal
δΦ

¼ 4
ffiffiffiffiffiffi
−g

p �
ΦR
2

− 2k□Φþ 2Φλ2 þ ∂UðΦ; ḡμν; Φ̄Þ
∂Φ

�
:

ð2:15Þ

To examine whether the stress-energy tensor (2.14) is
conserved, we take the divergence and write

∇μTμν ¼ −□∇νΦ2 þ∇ν□Φ2

− 2

�
2Φλ2 þ ∂UðΦ; ḡμν; Φ̄Þ

∂Φ
þ 2k□Φ

�
∂νΦ: ð2:16Þ

From the definition of the Riemann tensor, the first two
terms on the right-hand side can be written as

−□∇νΦ2 þ∇ν□Φ2 ¼ −Rμ
ν∇μΦ2: ð2:17Þ

Since the Einstein tensor is identically zero in two space-
time dimensions, i.e., Rμν ¼ 1

2
Rgμν, we have

∇μTμν ¼ −2
�
1

2
RΦþ 2Φλ2

þ ∂UðΦ; ḡμν; Φ̄Þ
∂Φ

− 2k□Φ
�
∂νΦ: ð2:18Þ

The right-hand side of the last expression can be identified
with the right-hand side of Eq. (2.15) which implies that the
divergence of the stress-energy tensor is

∇μTμν ¼ −
∂νΦ
2

ffiffiffiffiffiffi−gp δStotal
δΦ

: ð2:19Þ

As mentioned in [106], this implies that the stress-energy
tensor is conserved whenever the dilaton equation
of motion associated with Stotal is satisfied. Although
additional properties of the stress-energy tensor are studied
in [106], we do not discuss the topic further here and
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instead direct the interested reader to the aforesaid
reference.
In this work, we are interested in considering potentials

UðΦ; ḡμν; Φ̄Þ of the form

UðΦ; ḡμν; Φ̄Þ ¼ −
Φ2ḡμνAμν

2ðaΦ̄ − 4λΦ̄2Þ ; ð2:20Þ

where Aμν contains a Dirac delta function. Our motivation
for taking the potentialUðΦ; ḡμν; Φ̄Þ to be of the form given
in (2.20) is that, for an appropriate choice of Aμν, this
potential satisfies both properties (i) and (ii) for SRG and
CGHS gravity. We will show this explicitly in Secs. III and
IV for the SRG and CGHS theories respectively. When
generating linearized solutions in these theories, we will be
interested in obtaining static solutions perturbed around a
flat space-time. To this end, we will take the background
metric to be the Minkowski metric in Cartesian coordinates
ðt; rÞ, i.e., ḡμν ¼ ημν ≔ diagð−1; 1Þ. In this context, we will
take Aμν to be of the form

Aμν ¼ Mðημν þ δμνÞδ0ðr − bÞ; ð2:21Þ

where δμν ≔ diagð1; 1Þ, M ∈ R is a constant of dimension
length−1, b ∈ R is a constant describing the position of the
source and the prime 0 denotes differentiation with respect
to r. We will show that this choice for Aμν can be used to
generate the linearized BH solutions of the local SRG and
CGHS theories with the parameter M coinciding with the
BH mass.
As a concluding remark about the source action defined

here, we wish to examine whether the latter is invariant
under the symmetry transformation (2.11). While
Eq. (2.12) yields a stress-energy tensor that is conserved
when the dilaton equation of motion is satisfied, there is no
guarantee that the transformation (2.11), which is a
symmetry of the CGHS theory, will leave the source action
invariant for a general UðΦ; ḡμν; Φ̄Þ. However, for the
specific case where the potential is of the form (2.20),
the source action is invariant under the transformation
(2.11). This will be shown in Sec. IV when we consider the
CGHS theory independently.
Having now stated the source action to be used, we wish

to examine the total action (2.13) at quadratic order. By
expanding the total action to quadratic order in both δgμν
and δΦ around the U ¼ 0 background solution ðḡμν; Φ̄Þ,
one has

Stotal≈Slocal½ḡμν;Φ̄�þSsource½ḡμν;Φ̄�þδSlocal½ḡμν;Φ̄�

þδSsource½ḡμν;Φ̄;δgμν;δΦ�þ1

2
δ2Slocal½ḡμν;Φ̄;δgμν;δΦ�

þ1

2
δ2Ssource½ḡμν;Φ̄;δgμν;δΦ�: ð2:22Þ

The first two terms on the right-hand side of (2.22) are
constant with respect to functional differentiation while the
third term is zero since ḡμν and Φ̄ satisfy the vacuum
equations of motion. In addition, the source action is of the
order of the perturbations, i.e., Ssource ∼OðδgμνÞ þOðδΦÞ.
Therefore, at quadratic order, we can safely ignore the last
term on the right-hand side of (2.22). It follows that the
quadratic part of the total action is

δ2Stotal ≔ δSsource½ḡμν; Φ̄; δgμν; δΦ�

þ 1

2
δ2Slocal½ḡμν; Φ̄; δgμν; δΦ�: ð2:23Þ

It is important to note that the expansion in (2.22) is valid
provided that the smallness condition (2.4) is satisfied.

III. SRG GRAVITY

In this section, we consider the SRG theory which is
described by the action (2.2) with k ¼ 1=2, λ ¼ 0 and a left
unspecified. As already mentioned, there are two redun-
dancies present in Eq. (2.2) as a result of diffeomorphism
invariance. We can remove these two redundancies by
specifying the Schwarzschild-type gauge. In this choice of
gauge, a generic metric can be written in the form [4]

ds2 ¼ −fðr; tÞdt2 þ dr2

fðr; tÞ : ð3:1Þ

The SRG theory, which is obtained through the spherical
reduction of four-dimensional GR, admits the solution
described by

f ¼ 1 −
2M
a2r

; ð3:2Þ

whereas the dilaton field is given by

Φ ¼ ar: ð3:3Þ

The parameter M in Eq. (3.2) is the ADM mass1 and has
dimensions of length−1. In this note, we refer to this
solution as the spherically reduced Schwarzschild solution
[4]. It is important to note that the flat-space solution, i.e.,
when M ¼ 0, corresponds to the Minkowski metric with
f ¼ 1 while the dilaton remains Φ ¼ ar. The modification
of the Schwarzschild solution in the context of IDG is well
known and has been obtained in the linearized regime in
[51]. Here we construct a ghost-free infinite-derivative
modification of SRG and examine how the linearized

1When performing the spherical reduction of the Einstein-
Hilbert action of four-dimensional GR, the resulting action is
given by (2.2) with k ¼ 1=2, λ ¼ 0 and a prefactor proportional
to 1=a2 which we have dropped. When taking this prefactor into
account, the ADM mass is then rescaled to M=a2 which has
dimensions of length and coincides with the mass of the
Schwarzschild solution of GR [4].
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spherically reduced Schwarzschild solution is modified. In
order to construct a ghost-free infinite-derivative modifi-
cation of SRG, we first have to diagonalize the local
quadratic action (2.10).

A. Local SRG gravity

After specifying the Schwarzschild-type gauge (3.1), we
can perturb the metric around the Minkowski solution by
writing f ¼ 1þ δf and expanding the metric to first order
in δf. In the perturbation, the background metric is
ḡμν ¼ ημν while the perturbed metric is δgμν ¼ δμνδf. In
addition, we take the background dilaton field to be
Φ̄ ¼ ar. With these specifications, the quadratic action
(2.10) simplifies considerably to

δ2SSRGlocal ¼ 4

Z
d2xð∂μδΦ∂

μδΦ − δμνδfΦ̄∂μ∂νδΦÞ; ð3:4Þ

where we lower and raise indices using the Minkowski
metric ημν. For a derivation of (3.4), the interested reader is
directed to Appendix C. While the quadratic action (3.4)
contains all the dynamics, we also have the Schwarzschild-
type gauge constraint equations

f∂2rΦ2 −
1

f
∂
2
tΦ2 þ f0∂rΦ2 þ

_f∂tΦ2

f2
− 2a2 ¼ 0; ð3:5Þ

and

∂t∂rΦ2 −
f0∂tΦ2

2f
þ

_f∂rΦ2

2f
− 2 _ΦΦ0 ¼ 0: ð3:6Þ

For a derivation of these constraint equations, the interested
reader is directed to Appendix B 2.
In order to diagonalize the quadratic action (3.4), we can

factorize the integrand and obtain

δ2SSRGlocal ¼ 4

Z
d2x

��
∂
μδΦþ 1

2
δμν∂νðΦ̄δfÞ

�
2

þ 1

4
Φ̄δf□̄ðΦ̄δfÞ

	
; ð3:7Þ

where the background d’Alembertian is now □̄ ¼ ημν∂μ∂ν.
Given this form of the quadratic action, it is convenient to
carry out a redefinition of fields with

δN ≔
1

2
Φ̄δf; ð3:8Þ

and

δVμν ≔ ημνδΦþ δμνδN: ð3:9Þ

In terms of these redefined fields, (3.7) can be written as

δ2SSRGlocal ¼ 4

Z
d2xðδN□̄δN − δVν

μ∂ν∂αδVμαÞ; ð3:10Þ

which corresponds to the diagonalized quadratic action
associated with SRG in the Schwarzschild-type gauge with
the background solution taken to be ðḡμν; Φ̄Þ ¼ ðημν; arÞ.
Having derived the diagonalized quadratic action for the

SRG theory, we turn our attention to solving the linearized
theory, provided the source action and UðΦ; ḡμν; Φ̄Þ are
given by (2.12) and (2.20), respectively. To accomplish
this, let us examine (2.12) in the Schwarzschild-type gauge
with ḡμν ¼ ημν. Under such a consideration, expression
(2.12) yields

SSRGsource ¼ −2
Z

d2x
Φ2ημνAμν

aΦ̄
: ð3:11Þ

We remind the reader that, by definition, we set λ ¼ 0 in the
SRG theory. By varying the source action above and
evaluating the result at the background fields we find

δSSRGsource ¼ −
4

a

Z
d2xδΦημνAμν; ð3:12Þ

which, in terms of the redefined fields δN and δVμν,
becomes

δSSRGsource ¼ −
4

a

Z
d2xðδVμν − δμνδNÞAμν; ð3:13Þ

where we have made use of the definitions (3.8) and (3.9).
Accordingly, we can now write down the total quadratic
action by substituting (3.10) and (3.13) into (2.23) which
renders

δ2SSRGtotal ¼ 2

Z
d2x

�
δN□̄δN − δVν

μ∂ν∂αδVμα

−
2

a
ðδVμν − δμνδNÞAμν

�
: ð3:14Þ

Let us now consider the equations of motion for the
perturbations δVμν and δN. Variation of the quadratic action
(3.14) with respect to δN, gives us

□̄δN ¼ −
1

a
δμνAμν: ð3:15Þ

As already mentioned, the purpose of introducing the
source action Ssource is to generate the linearized spherically
reduced Schwarzschild solution given by Eqs. (3.2) and
(3.3) provided the smallness condition (2.4) is satisfied. We
will now show that this choice of a source action allows us
to obtain the linearized spherically reduced Schwarzschild
solution. In addition, since the linearized spherically
reduced Schwarzschild solution is singular at r ¼ 0, we
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consider the case where b ¼ 0 in Eq. (2.21). By substitut-
ing Eqs. (3.8) and (2.21) into Eq. (3.15) and taking b ¼ 0,
we obtain

ΔðΦ̄δfÞ ¼ −
4M
a

δ0ðrÞ; ð3:16Þ

where the Laplacian is Δ ≔ ∂
2
r . We now proceed to solve

this equation for the perturbed metric δf by resorting to its
Fourier transform, F . Thus,

k2FfΦ̄δfg ¼ 4Mffiffiffiffiffiffiffiffiffiffi
2πa2

p
Z

dre−ikrδ0ðrÞ: ð3:17Þ

Integrating by parts and dividing the resulting expression
by k2 yields the following solution in Fourier space

FfΦ̄δfg ¼ 4iM

ak
ffiffiffiffiffiffi
2π

p : ð3:18Þ

Implementing the inverse Fourier transform on the last
expressions results in

Φ̄δf ¼ −
2M
πia

Z
dk

eikr

k
: ð3:19Þ

The integral returns a value of iπ for r > 0 while returning
−iπ for r < 0. By dividing both sides by Φ̄ ¼ ar we obtain
the solution

δf ¼ −
2M
a2jrj : ð3:20Þ

It now remains to compute the perturbed dilaton field.
Through the variation of Eq. (3.14) with respect to δVμν one
can obtain

∂
α
∂ðμδVνÞα ¼ −

1

a
Aμν: ð3:21Þ

Substituting the definition (3.9) into the above gives

∂μ∂νδΦþ δαðμ∂νÞ∂αδN ¼ −
1

a
Aμν: ð3:22Þ

By seeking static solutions and making use of Eq. (3.15),
the last expression reduces to

ΔδΦ ¼ 0; ⇒ δΦ ¼ c1rþ c2; ð3:23Þ

where c1 and c2 are constants of integration. By invoking
the constraint Eq. (3.5), we find that c2 ¼ 0. On the other
hand, through an appropriate coordinate transformation,
one can show that the parameter c1 simply results in a
constant rescaling of the metric. Therefore, without the loss
of generality, we can safely set c1 ¼ 0. The perturbed

dilaton is then δΦ ¼ 0. We also note that the second
constraint equation (3.6) is satisfied since the solution is
static.
Let us now examine this solution in the space-time

region for which the smallness conditions are satisfied.
Since δΦ ¼ 0, Eq. (2.4) is satisfied and we need only
consider the perturbed metric δf. The smallness condition
for the perturbed metric is jδfj ≪ 1. For the solution (3.20),
the smallness condition is satisfied whenever jrj ≫ 2M=a2.
Consequently for r ≫ 2M=a2, the metric takes the form

ds2 ≈ −
�
1 −

2M
a2r

�
dt2 þ

�
1þ 2M

a2r

�
dr2; ð3:24Þ

which is indeed the linearized spherically reduced
Schwarzschild solution.
We have thus shown that the source action (3.13) can

be used to generate the linearized spherically reduced
Schwarzschild solution in the context of the diagonalized
theory provided the smallness conditions hold. In the
following subsection, we construct a nonlocal modification
to the SRG theory and use the same source action to
determine if the solution (3.20) is modified.

B. Ghost-free infinite-derivative SRG gravity

The diagonalized quadratic action (3.10) of the local
SRG theory implies that its nonlocal modification does not
admit any additional degrees of freedom if its quadratic
action is of the form

δ2SSRGnonlocal ¼ 4

Z
d2x½δNað□̄Þ□̄δNμν

− δVν
μcð□̄Þ∂ν∂αδVαμ�; ð3:25Þ

where að□̄Þ and cð□̄Þ contain infinitely many derivatives
and are analytic with no zeros. It is through these infinite-
derivative operators that nonlocality is introduced. By
making use of this nonlocal quadratic action, we wish to
study how the local solution (3.20) would be modified. To
study this we consider the case where að□̄Þ ¼ cð□̄Þ ¼
e−l

2
□̄ and l ≥ 0 is the length scale of nonlocality.

The nonlocal analog of Eq. (3.14) can be obtained by
replacing the local quadratic action δ2Slocal with the non-
local quadratic action δ2Snonlocal given in Eq. (3.25). By
making this substitution, we have

δ2SSRGtotal ¼ 2

Z
d2x

�
δNað□̄Þ□̄δN − δVν

μcð□̄Þ∂ν∂αδVαμ

−
2

a
ðδVμν − δμνδNÞAμν

�
: ð3:26Þ

Through the variation of this total quadratic action (3.26)
with respect to δN, we find the following nonlocal analog
to Eq. (3.15)
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e−l
2
□̄□̄δN ¼ −

1

a
δμνAμν; ð3:27Þ

after choosing að□̄Þ ¼ e−l
2
□̄. Upon the substitution of the

definitions (3.8) and (2.21) with b ¼ 0 into the last
expression, we find

e−l
2ΔΔðΦ̄δfÞ ¼ −

4M
a

δ0ðrÞ; ð3:28Þ

which holds for static solutions. We can solve this equation
of motion by first implementing the Fourier transform,
dividing the resulting expression by k2el

2k2 and then
applying the inverse Fourier transform. By doing this,
we find the nonlocal analog of Eq. (3.19)

Φ̄δf ¼ −
2M
iπa

Z
dk

eikr−l
2k2

k
: ð3:29Þ

We can write this integral as

Φ̄δf ¼ −
2M
aπ

Z
∞

−∞
dke−l

2k2
Z

r

0

dueiku

¼ −
2M
aπ

Z
r

0

du
Z

∞

−∞
dke−l

2ðk− iu
2l2

Þ2− u2

4l2 : ð3:30Þ

Evaluating it over k yields

Φ̄δf ¼ −
2M

al
ffiffiffi
π

p
Z

r

0

due−
u2

4l2 : ð3:31Þ

Performing the change of variables v ¼ u=2l gives us

Φ̄δf ¼ −
4M
a

ffiffiffi
π

p
Z

r=2l

0

dve−v
2

; ð3:32Þ

where the integral above is nothing more than the error

function
ffiffi
π

p
2
Erfðr=2lÞ. Dividing both sides by the back-

ground dilaton field Φ̄ ¼ ar, we find the nonlocal modi-
fication to (3.20),

δf ¼ −
2M
a2r

Erf

�
r
2l

�
: ð3:33Þ

It is worth noting that the 1=r nature appearing in the
linearized Schwarzschild solution of GR is also resolved by
the error function in IDG [51]. As remarked in the aforesaid
reference, when r → ∞ the error function returns a value of
unity implying that the nonlocal solution has the same
asymptotic limit as the local solution. In addition, this is
also the case when we send r → −∞. On the other hand,
when we send r → 0, the error function behaves as
Erfðr=2lÞ ∼ r=2l thus resolving the singularity in the
linearized regime. It is also important to note that in the
limit l → 0 the error function approaches 1 for r > 0 and

−1 for r < 0; recovering the local solution as expected. For
the perturbed dilaton, we find that the nonlocal analog of
Eq. (3.23) is

e−l
2ΔΔδΦ ¼ 0; ð3:34Þ

which once again yields δΦ ¼ c1rþ c2. We can safely set
c1 ¼ 0 using the same argument as for the local case. In
addition, by examining the constraint Eq. (3.5) to first order
and invoking the smallness conditions, one can show that
c2 ¼ 0. The perturbed dilaton therefore takes on the same
form as that of the local case, i.e., δΦ ¼ 0. The second
constraint Eq. (3.6) is satisfied since the solution is static.
In Figs. 1 and 2 we plot the perturbed metric δf and Ricci

scalar R respectively for the local case as well as three
nonlocal scenarios. The solid blue curves correspond to the
local (l ¼ 0) case whereas the dashed green, dotted orange
and dash-dotted red curves correspond to the nonlocal cases
with length scale of nonlocality parameters al ¼ 0.05,
al ¼ 0.1 and al ¼ 0.2 respectively. Given the perturbed
metric δf we compute the Ricci scalar to first order, i.e., by
using the expression R ¼ −Δδf þOðδf2Þ.

IV. CGHS GRAVITY

We now wish to follow a similar procedure to study
ghost-free infinite-derivative modifications of the CGHS
theory.

A. Conformal gauge

The vacuum CGHS theory is given by the action (2.2)
with k ¼ 1, a ¼ 0 and λ left unspecified [19]. While for the
case of SRG we worked in the Schwarzschild-type gauge,

FIG. 1. Perturbed metric δf radial dependence for the SRG
theory as given by Eqs. (3.20) and (3.33) for the local and
nonlocal cases respectively. The solid blue curve shows the local
case, i.e., l ¼ 0. The remaining three curves correspond to
nonlocal solutions with the dashed green, dotted orange, and
dash-dotted red curves corresponding to al ¼ 0.05,
al ¼ 0.1, and al ¼ 0.2 respectively. In producing these plots,
we have set a ¼ M ¼ 1.
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for the CGHS theory we shall implement the conformal
gauge, i.e., we fix

gμν ¼ e2wημν; ð4:1Þ

where ημν is the Minkowski metric in Cartesian coordinates
and we refer to w as the conformal scalar.
In the conformal gauge and starting from Eq. (2.2), we

write the CGHS action as

SCGHSlocal ¼ 4

Z
d2x

�
λ2Φ2e2w þ ð∂ΦÞ2 − 1

2
Φ2

□w

�
; ð4:2Þ

where we have used the fact that, in this scenario, the Ricci
scalar becomes

R ¼ −2e−2w□w; ð4:3Þ

where □ ≔ ημν∂μ∂ν is the d’Alembertian operator in
Minkowski space-time R1;1. We emphasize that we now
raise and lower indices using the Minkowski metric ημν. In
addition, we have the conformal gauge constraint equations

δμνð4∂μΦ∂νΦþ 2∂μw∂νΦ2 − ∂μ∂νΦ2Þ ¼ 0; ð4:4Þ

and

4∂μΦ∂νΦþ 2∂ðμw∂νÞΦ2 − ∂μ∂νΦ2 ¼ 0; ðμ ≠ νÞ: ð4:5Þ

Variation of the gauge-fixed action (4.2) yields

δSCGHSlocal ¼ 4

Z
d2x

�
2λ2ΦδΦe2w þ 2λ2Φ2e2wδw

þ 2∂νΦ∂
νδΦ −ΦδΦ□w −

1

2
Φ2□δw

�
: ð4:6Þ

As mentioned in Sec. II B, in addition to the two redun-
dancies appearing as a result of diffeomorphism invariance,
there is the additional symmetry described by Eq. (2.11).
Let us verify that the CGHS action is indeed left invariant
under this transformation. In the conformal gauge, Eq.
(2.11) reads

δw ¼ −
ε

Φ2
; δΦ ¼ ε

Φ
: ð4:7Þ

Substituting (4.7) into Eq. (4.6) gives us

δSCGHSlocal ¼ 4ε

Z
d2x

�
2∂νΦ∂ν

�
1

Φ

�
þ 1

2
Φ2

□

�
1

Φ2

�
−□w

�
:

ð4:8Þ

The last step required to verify that Eq. (4.7) is a symmetry
of the CGHS action is to show that the integrand in the
above is a total derivative. To accomplish this, we note that

∂
ν

�
Φ2

∂ν
1

Φ2

�
¼ Φ2

□

�
1

Φ2

�
þ 4∂νΦ∂ν

�
1

Φ

�
: ð4:9Þ

It now follows that Eq. (4.8) reads

δSCGHSlocal ¼ −4ε
Z

d2x∂ν
�
∂νΦ
Φ

þ ∂νw

�
; ð4:10Þ

showing that the integrand is a total derivative and therefore
the CGHS action is invariant under the transformation (4.7).

B. Diagonalization of the quadratic action

We now turn our attention to examining the quadratic
CGHS action in the conformal gauge. The functional
derivative of the action (4.2) with respect to the dilaton
field yields

δSCGHSlocal

δΦ
¼ 8ðλ2Φe2w −□Φ −Φ□w=2Þ; ð4:11Þ

while the functional derivative with respect to the con-
formal scalar leads to

δSCGHSlocal

δw
¼ 8½λ2Φ2e2w − ð∂ΦÞ2=2 −Φ□Φ=2�: ð4:12Þ

The corresponding field equations are obtained by setting
both Eqs. (4.11) and (4.12) equal to zero. To study the
quadratic action for this theory, we perturb the dilaton field

FIG. 2. Radial dependence of the Ricci scalar R=a2 for the
SRG theory when calculated to first order in δf using
R ¼ −Δδf þOðδf2Þ. The solid blue curve shows the local case,
i.e., l ¼ 0, which is singular at the origin. The remaining three
curves correspond to nonlocal solutions with the dashed green,
dotted orange, and dash-dotted red curves corresponding to
al ¼ 0.05, al ¼ 0.1, and al ¼ 0.2 respectively. The vertical
line through the origin is included to show the distributional
character of the Ricci scalar for the local case as well as how it is
regularized in the nonlocal cases. In producing these plots, we
have set a ¼ M ¼ 1.
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and conformal scalar around some background solution
ðΦ̄; w̄Þ. That is, we write

w ¼ w̄þ δw; Φ ¼ Φ̄þ δΦ; ð4:13Þ

where ðΦ̄; w̄Þ solves the equations of motion and δΦ and
δw are the perturbations. In order for the quadratic action to
be a valid approximation, we require that the smallness
conditions are satisfied. The smallness condition for the
dilaton field remains jδΦj ≪ jΦ̄j. To first order in δw the
metric tensor is

gμν ¼ e2w̄ημν½1þ 2δwþOðδw2Þ�; ð4:14Þ

which follows from Eq. (4.1). From this expression, we can
extract the smallness condition for the perturbed conformal
scalar

jδwj ≪ 1

2
: ð4:15Þ

Provided that these two conditions are satisfied, the
quadratic action will be a valid approximation. In
Eq. (2.5) we defined the quadratic action for a general
background metric ḡμν. In the conformal gauge, Eq. (2.5)
becomes

δ2SCGHSlocal ≔
Z

d2xd2x0
�
δΦðxÞδΦðx0Þ δ2Slocal

δΦðxÞδΦðx0Þ
����
ðw̄;Φ̄Þ

þ δΦðxÞδwðx0Þ δ2Slocal
δΦðxÞδwðx0Þ

����
ðw̄;Φ̄Þ

þ δwðxÞδΦðx0Þ δ2Slocal
δwðxÞδΦðx0Þ

����
ðw̄;Φ̄Þ

þ δwðxÞδwðx0Þ δ2Slocal
δwðxÞδwðx0Þ

����
ðw̄;Φ̄Þ

�
: ð4:16Þ

Let us now compute the quadratic action for the CGHS
theory in the conformal gauge for a general background
solution. The second-order functional derivatives being

δ2SCGHSlocal

δΦðx0ÞδΦðxÞ ¼ 8ðλ2e2w −□ −□w=2Þδð2Þðx − x0Þ; ð4:17Þ

δ2SCGHSlocal

δwðx0ÞδΦðxÞ ¼ 8

�
2λ2e2wΦ −

1

2
Φ□

�
δð2Þðx − x0Þ; ð4:18Þ

δ2SCGHSlocal

δΦðx0ÞδwðxÞ ¼ 8

�
2λ2Φe2w − ∂

μΦ∂μ −□Φ=2 −
1

2
Φ□

�

× δð2Þðx − x0Þ; ð4:19Þ

and

δ2SCGHSlocal

δwðx0ÞδwðxÞ ¼ 16λ2Φ2e2wδð2Þðx − x0Þ: ð4:20Þ

The substitution of the above second-order functional
derivatives when evaluated at the background solution
ðw̄; Φ̄Þ renders Eq. (4.16) into

δ2SCGHSlocal ¼ 8

Z
d2xfδΦ½λ2e2w̄ −□−□w̄=2�δΦ

þ δw½2λ2e2w̄Φ̄− ∂
μΦ̄∂μ −□Φ̄=2− Φ̄□=2�δΦ

þ δΦ½2λ2Φ̄e2w̄ − Φ̄□=2�δwþ 2λ2δwΦ̄2e2w̄δwg;
ð4:21Þ

which can be further simplified by using the equation of
motion (4.11) in the first bracket and integrating by parts in
the second bracket. Doing this brings the quadratic action
to a more tractable form

δ2SCGHSlocal ¼ 8

Z
d2x

�
2λ2δwΦ̄2e2w̄δw

þ δΦ
�
□Φ̄
Φ̄

−□

�
δΦþ δΦð4λ2Φ̄e2w̄ − Φ̄□Þδw

�
:

ð4:22Þ

From here, we proceed with the diagonalization. First, we
define the field

δψ ≔ δwþ δΦ
Φ̄

; ð4:23Þ

which is a linear combination of the perturbed metric and
dilaton. Substituting this definition for the perturbed
conformal scalar δw in the quadratic action (4.22) results in

δ2SCGHSlocal ¼ 8

Z
d2x

�
2λ2Φ̄2e2w̄

�
δΦ2

Φ̄2
þ δψ2

�
− δΦΦ̄□δψ

þ δΦ
�
−4λ2δΦe2w̄ þ Φ̄□

�
δΦ
Φ̄

�

þ
�
□Φ̄
Φ̄

−□

�
δΦ

�	
: ð4:24Þ

At this stage we can make use of the fact that the following
combination is a total derivative

Φ□ΦþΦ2ð∂Φ̄Þ2
Φ̄2

−ΦΦ̄□

�
Φ
Φ̄

�
¼ ∂ν

�
Φ2

∂
νΦ̄

Φ̄

�
; ð4:25Þ

so Eq. (4.24) can be rewritten as
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δ2SCGHSlocal ¼ 8

Z
d2x

�
−2λ2δΦ2e2w̄ þ 2λ2Φ̄2e2w̄δψ2

þ δΦ2

Φ̄2
∂νðΦ̄∂

νΦ̄Þ− δΦΦ̄□δψ − ∂ν

�
δΦ2

∂
νΦ̄

Φ̄

��
:

ð4:26Þ

The last term in the integrand is a total derivative and
therefore has no contribution. Now, since the background
solution ðw̄; Φ̄Þ satisfies the equations of motion, we can
make use of Eq. (4.12) in the above expression in order to
obtain the following, much simpler, form of the quadratic
CGHS action

δ2SCGHSlocal ¼ 8

Z
d2xf2λ2Φ̄2e2w̄δψ2 − δψ□ðΦ̄δΦÞg: ð4:27Þ

We can further simplify the action if we vary Eq. (4.27)
with respect to the perturbation δψ which gives

δw ¼ −
δΦ
Φ̄

þ □ðΦ̄δΦÞ
4λ2Φ̄2e2w̄

; ð4:28Þ

after substituting in the definition (4.23) for the original
fields. It follows from this last expression that δw is an
auxiliary field. By substituting this constraint equation into
the quadratic action (4.27) and defining

δχ ≔
□ðΦ̄δΦÞffiffiffi
8

p
λΦ̄ew̄

; ð4:29Þ

we can write schematically the diagonalized quadratic
CGHS action as

δ2SCGHSlocal ¼ −8
Z

d2xδχ2; ð4:30Þ

which describes the one propagating off shell degree of
freedom. Equation (4.30) is the desired diagonalized quad-
ratic action in terms of the redefined field δχ. In Sec. IV E
we shall return to the latter expression in order to construct a
ghost-free infinite derivative modification of the CGHS
quadratic action. Before doing this, let us briefly discuss the
CGHS BH solution in the conformal gauge.

C. CGHS BH solution

Let us now study the CGHS BH solution [19] in the
conformal gauge. We will first discuss the full local CGHS
BH solution in the conformal gauge and then move on to
discuss the solution in the linearized regime.

1. General solution

By dividing the equation of motion (4.12) by Φ and then
subtracting this from Eq. (4.11), one obtains

□ðwþ lnΦÞ ¼ 0: ð4:31Þ

At this point, we can remove the redundancy arising from
(2.11) by fixing on shell2 the following

ewΦ ¼ eλr; ð4:32Þ

which allows for Eq. (4.31) to be satisfied. With this choice
of gauge, the equation of motion (4.12) gives us

□Φ2 ¼ 4λ2e2λr: ð4:33Þ

Equation (4.33) is easily solvable to find an expression for
the dilaton

Φ2 ¼ e2λr þ E; ð4:34Þ

where E ∈ R is a constant. From Eq. (4.31), it now follows
that the metric is of the form

ds2 ¼ −dt2 þ dr2

1þ Ee−2λr
; ð4:35Þ

with the conformal scalar written as

w ¼ −
1

2
ln ð1þ Ee−2λrÞ: ð4:36Þ

As it is done in [4,19], one can show that the constant E is
related to the ADM mass M, which has dimensions of
length−1, through jEj ¼ M=λ. When E is positive, the
metric (4.35) describes the region exterior to the CGHS BH
with ðt; rÞ ∈ ð−∞;∞Þ × ð−∞;∞Þ. When E ¼ −M=λ the
metric describes the interior region of the BH with
coordinate range ðt; rÞ ∈ ð−∞;∞Þ × ð−∞; 1

2λ ln ðM=λÞÞ
where r ¼ 1

2λ ln ðM=λÞ is the singularity and r ¼ −∞ is
the horizon.

2. Linearized local solution

Setting E ¼ M=λ in Eq. (4.35) gives the metric that
describes the exterior region of the CGHS BH with massM
for r ∈ ð−∞;∞Þ and horizon located at r ¼ −∞. To first
order in M=λ, the conformal scalar is

w ¼ −
M
2λ

e−2λr þO
�
M2

λ2

�
; ð4:37Þ

while the dilaton field reads

Φ ¼ eλr þM
2λ

e−λr þO
�
M2

λ2

�
: ð4:38Þ

2Let us note that such a fixing can only be done on shell,
because if performed off shell, information about the field
dynamics would be lost.
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From this expansion, the background fields correspond to
the linear dilaton solution

w̄ ¼ 0; and Φ̄ ¼ eλr; ð4:39Þ

while the perturbed fields are

δw ¼ M
2λ

e−2λr; and δΦ ¼ −
M
2λ

e−λr: ð4:40Þ

It is clear that the smallness conditions are satisfied
provided r ≫ 1

2λ ln
M
λ .

D. Local diagonalized theory with source action

Let us consider the source action (2.12) for the case of
the local CGHS theory in the conformal gauge. By setting
a ¼ 0 and specifying the conformal gauge, the source
action reads

SCGHSsource ¼
1

2λ

Z
d2x

e2wΦ2ḡμνAμν

Φ̄2
; ð4:41Þ

whose variation renders

δSCGHSsource ¼
1

λ

Z
d2x

e2wΦðΦδwþ δΦÞḡμνAμν

Φ̄2
: ð4:42Þ

At this stage we wish to verify that this source action is
invariant under the transformation (4.7). From Eq. (4.7) it is
readily seen that Φδwþ δΦ ¼ 0 which implies the vanish-
ing of Eq. (4.42). Consequently, the symmetry (2.11) is
preserved when introducing the source action (4.41).
Moreover, when evaluating the above expression at the
background fields Φ ¼ Φ̄ ¼ eλr and w ¼ w̄ ¼ 0 we have

δSCGHSsource ¼
1

λ

Z
d2x

�
δwþ δΦ

Φ̄

�
ημνAμν; ð4:43Þ

which in terms of the field δχ as defined in (4.29), renders
the last expression into

δSCGHSsource ¼
1ffiffiffi
2

p
λ2

Z
d2x

δχημνAμν

Φ̄
: ð4:44Þ

Since the total quadratic action to be considered in the
following would be of the form given in (2.23), let us use
Eq. (4.30) for δ2Slocal as well as Eq. (4.44) for δSsource.
Thus, the total quadratic action becomes

δ2SCGHStotal ¼ −4
Z

d2x

�
δχ2 −

δχημνAμν

4
ffiffiffi
2

p
λ2Φ̄

�
: ð4:45Þ

Then, the variation of Eq. (4.45) with respect to the
perturbation δχ yields the following equation of motion:

δχ ¼ ημνAμν

4
ffiffiffi
8

p
λ2Φ̄

; ð4:46Þ

with the tensor field Aμν given in Eq. (2.21). We will now
show how this tensor field correctly generates the linearized
CGHS BH solution provided the smallness condition is
satisfied. Indeed, the substitution of Eqs. (4.29) and (2.21)
transforms (4.46) into

e−λrΔðeλrδΦÞ ¼ Me−λr

2λ
δ0ðr − bÞ; ð4:47Þ

provided we focus on static solutions. We now proceed to
solve Eq. (4.47) by performing the Fourier transform,
which results in

1ffiffiffiffiffiffi
2π

p
Z

dre−rðikþλÞΔðeλrδΦÞ

¼ M

2λ
ffiffiffiffiffiffi
2π

p
Z

dre−rðikþλÞδ0ðr − bÞ: ð4:48Þ

Integration by parts twice on the left-hand side and once on
the right-hand side provides the following solution in
Fourier space:

FfδΦg ¼ Me−bλ

2λi
ffiffiffiffiffiffi
2π

p e−ikb

k − iλ
; ð4:49Þ

whose inverse Fourier transform yields

δΦ ¼ Me−bλ

4πiλ

Z
dk

eikðr−bÞ

k − iλ
: ð4:50Þ

Upon the evaluation of the integral, we obtain the following
expression for the perturbed dilaton

δΦ ¼ Me−λr

2λ
Θðr − bÞ; ð4:51Þ

where Θðr − bÞ is the usual Heaviside step function. We
now turn our attention to obtaining an expression for the
perturbed conformal scalar δw. This can be achieved by
substituting Eq. (4.51) into the constraint equation (4.28) in
order to find

δw ¼ −
Me−2λr

2λ
Θðr − bÞ þMe−2λr

8λ3
δ0ðr − bÞ: ð4:52Þ

ULRICH K. BECKERING VINCKERS et al. PHYS. REV. D 106, 064037 (2022)

064037-12



From Eq. (4.52) we see that the perturbed metric is singular
at r ¼ b. In addition, for b < 1

2λ ln
M
λ ≪ r, Eqs. (4.51) and

(4.52) coincide with the linearized CGHS BH solution
(4.40). This shows that the solution to the quadratic action
(4.45) coincides with the linearized CGHS BH solution
provided we consider the space-time region for which the
smallness conditions are satisfied. It is straightforward to
verify that the conformal gauge constraints (4.4) and (4.5)
at first order are satisfied when the smallness conditions are
taken into account.

E. Ghost-free infinite-derivative CGHS gravity

We now turn our attention to constructing infinite-
derivative modifications of the CGHS theory that are
ghost-free at the quadratic level. To this end, the local
quadratic action (4.30) implies that the nonlocal quadratic
action

δ2SCGHSnonlocal ¼ −8
Z

d2xδχað□Þδχ ð4:53Þ

admits no additional degrees of freedom provided that
að□Þ, which contains infinitely many derivatives, is analytic
with no zeros. Thus, this will not add any new degrees of
freedom off shell, and hence no ghosts. Replacing the local
quadratic action δ2Slocal in Eq. (2.23) with the nonlocal
quadratic action δ2Snonlocal given above, and using the same
source action as before, we find the nonlocal analog of
Eq. (4.45),

δ2SCGHStotal ¼ −4
Z

d2x

�
δχað□Þδχ − δχημνAμν

4
ffiffiffi
2

p
λ2Φ̄

�
: ð4:54Þ

Through the variation of Eq. (4.54) with respect to the
perturbation δχ we obtain

að□Þδχ ¼ ημνAμν

4
ffiffiffi
8

p
λ2Φ̄

: ð4:55Þ

By substituting Eqs. (4.29) and (2.21) into the above
expression and seeking static solutions we obtain the
nonlocal analog of Eq. (4.47),

aðΔÞ½e−λrΔðeλrδΦÞ� ¼ −
Me−λr

2λ
δ0ðr − bÞ: ð4:56Þ

Performing the Fourier transform gives us the nonlocal
solution in Fourier space,

FfδΦg ¼ Me−bλ

2λi
ffiffiffiffiffiffi
2π

p e−ikb

að−k2Þðk − iλÞ : ð4:57Þ

In order to obtain the solution in position space, we first
need to specify the form of the operator að□Þ. Here, we use
the same choice that was used in the case of SRG and
consider að□Þ ¼ e−l

2
□ where l is the length scale of

nonlocality as before. With this choice for the operator
að□Þ, the inverse Fourier transform of Eq. (4.57) gives

δΦ ¼ Me−bλ

4πiλ

Z
dke−l

2k2 e
ikðr−bÞ

k − iλ
; ð4:58Þ

which corresponds to the nonlocal analog of expression
(4.49). By evaluating the integral on the right-hand side, we
obtain the nonlocal solution for the perturbed dilaton field

δΦ ¼ Mel
2λ2−λr

4λ
Erfc

�
λlþ b − r

2l

�
; ð4:59Þ

where Erfc denotes the complementary error function. The
interested reader seeking a derivation of Eq. (4.59) is
directed to Appendix D.
Let us now consider the local limit l → 0 and verify that

we recover the solution (4.51). In this limit, we have
liml→0 el

2λ2 ¼ 1. For the factor containing Erfc, we have

lim
l→0

Erfc

�
λlþ b − r

2l

�
¼ 2Θðr − bÞ: ð4:60Þ

We therefore conclude that Eq. (4.59) reduces to (4.51) in
the local limit l → 0.
Substituting Eq. (4.59) into the constraint equation (4.28)

gives the perturbed conformal scalar

δw ¼ −
Mel

2λ2−2λr

4λ
Erfc

�
λlþ b − r

2l

�

þMðλlþ b−r
2l Þe−λðrþbÞ−ðr−bÞ2

4l2

16
ffiffiffi
π

p
λ3l2

: ð4:61Þ

In Figs. 3–5 we plot δΦ, δw and R=λ2 respectively with
parameter values: b ¼ 0, λ ¼ 35 and M ¼ 10. We have
chosen these parameter values to illustrate the resolution of
the singularity at r ¼ b as well as how the nonlocal
solutions approach the local solution as the length scale
of nonlocality l decreases.
We now wish to examine the effect of nonlocality on the

linearized CGHS BH solution by taking into account the
smallness condition (2.4). By considering r ≫ b and taking
b to be large and negative in Eqs. (4.59) and (4.61) we
obtain

δΦ ≈
Mel

2λ2−λr

2λ
; ð4:62Þ

and
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δw ≈ −
Mel

2λ2−2λr

2λ
; ð4:63Þ

respectively. For these nonlocal solutions, the smallness
conditions are satisfied provided r ≫ l2λ2 þ 1

2λ ln
M
λ . In

summary, from Eqs. (4.62) and (4.63) we have found that,
in a nonlocal CGHS theory with að□Þ ¼ e−l

2
□, the CGHS

BH mass M is modified by a multiplicative constant factor
el

2λ2 . This factor, however, can be absorbed through an
appropriate coordinate transformation. It is once again
straightforward to verify that the conformal gauge con-
straint Eqs. (4.4) and (4.5) are satisfied at first order when

the smallness conditions are taken into account since the
nonlocal solution differs from the local solution by the
aforesaid multiplicative factor in such a case.

V. CONCLUSIONS

In this paper, we constructed ghost-free infinite-derivative
modifications for the SRGandCGHSdilaton gravity theories.
For the SRG theory, we assumed the Schwarzschild-type
gauge and diagonalized the quadratic action which contains
two off shell degrees of freedom. We constructed a source
action that, upon taking into account the smallness conditions,
could be used to generate the linearized spherically reduced
Schwarzschild solution of the local theory. Inspired by the
diagonalized quadratic action in the local theory, we con-
structed ghost-free infinite-derivative modifications of the
SRG theory. By taking the two operators containing infinitely
many derivatives to be the exponential operator e−l

2
□ wewere

able to obtain a nonlocal modification of the spherically
reduced Schwarzschild solution after including the same
source action used in the local case. We found that, in the
context of this ghost-free infinite-derivative SRG theory, the
1=r factor in the linearized metric is weighted by the error
function Erfðr=2lÞ; resolving the singular nature of the local
linearized solution at r ¼ 0. In [51], it was found that the 1=r
nature in the linearized Schwarzschild solution of GR is also
resolved through the error function in four-dimensional IDG.
In the case of the local CGHS theory, we specified the

conformal gauge and studied perturbations around a general
background solution. We diagonalized the CGHS quadratic
action and isolated its one propagating off shell degree of

FIG. 3. Radial dependence of the perturbed dilaton field δΦ for
the local and nonlocal CGHS cases. The solid blue curve
corresponds to the local case (l ¼ 0), the dashed green curve
corresponds to λl ¼ 0.25, the dotted orange curve corresponds to
λl ¼ 0.4, and the red dash-dotted curve corresponds to λl ¼ 0.6.
For these plots, we have set M ¼ 10 and λ ¼ 35.

FIG. 5. Radial dependence of the Ricci scalar R for both the
local and nonlocal CGHS cases when computed up to first order,
i.e., R ¼ −2ΔδwþOðδw2Þ. The solid blue curve corresponds to
the local case (l ¼ 0), whereas the dashed green, dotted orange,
and red dash-dotted curves correspond to λl ¼ 0.25, 0.4, and 0.6
respectively. For the local case, the vertical line through the origin
is included to illustrate the distributional character of the Ricci
scalar as well as how it is regularized in the nonlocal cases. For
these plots, we have set M ¼ 10 and λ ¼ 35.

FIG. 4. Radial dependence of the perturbed conformal scalar δw
for both the local and nonlocal CGHS cases. The solid blue curve
corresponds to the local case (l ¼ 0), whereas the dashed green,
dotted orange, and red dash-dotted curves correspond to
λl ¼ 0.25, 0.4 and 0.6 respectively. For the local case, the vertical
line through the origin is included to illustrate the distributional
character of δw as well as how it is regularized in the nonlocal
cases. For these plots, we have set M ¼ 10 and λ ¼ 35.
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freedom. The ghost-free infinite-derivative modification
of the CGHS quadratic action then involved the inclusion
of one nonzero analytic differential operator containing
infinitely many derivatives. We made use of the source
action (4.41) to generate a solution in the local theory which
coincides with the linearized CGHS BH solution when
taking the smallness conditions into account. The obtained
solution is also singular at some given position b.
Nonetheless, in the nonlocal theory with form factor
e−l

2
□, we found that the solution is weighted by the

complementary error function Erfcðλlþ ðb − rÞ=2lÞ
which allowed for the singular nature appearing in the
local solution to be resolved.
While we have only considered ghost-free infinite-

derivative modifications of the SRG and CGHS gravity
theories, there is still a multitude of two-dimensional
dilaton gravity theories (discussed extensively in [4]) for
which similar modifications as the ones presented here can
be constructed. One example would be to construct ghost-
free infinite-derivative modifications of the dilaton action
obtained through the spherical reduction of GR in dimen-
sions other than four. Another example would be to study
ghost-free infinite-derivative modifications of the CGHS
theory containing additional scalar matter fields such as the
model considered in [19]. In this context, one could
investigate how solutions generated through so-called
f-waves are modified as a result of introducing nonlocality.
There are also two-dimensional dilaton gravity models that
include fermionic matter [8,47] for which one could
investigate ghost-free infinite-derivative modifications.
We also note that we were unable to obtain full solutions

to these infinite-derivative dilaton gravity theories and were
only able to examine how linearized local solutions were
modified in the nonlocal theories. Thus, there is still the
question of whether one can find full nonlocal solutions to
ghost-free infinite-derivative dilaton gravity in two space-
time dimensions.
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APPENDIX A: DERIVATION OF EQ. (2.10)

Here, we provide the main steps to obtaining the
quadratic action associated with the general dilaton model
(2.2) without any gauge fixing or the specification of a
particular background solution. We begin by first obtaining
the necessary second-order functional derivatives. To this
end, we vary Eq. (2.7) and write

δ
δSlocal
δΦ

¼ −2
ffiffiffiffiffiffi
−g

p
gμνδgμν

�
1

2
ΦR − 2k□Φþ 2Φλ2

�

þ 4
ffiffiffiffiffiffi
−g

p �
1

2
RδΦþΦ

2
ðRμνδgμν −∇μ∇νδgμν

þ gμν□δgμνÞ − 2kδð□ÞΦ − 2k□δΦþ 2δΦλ2
�
:

ðA1Þ

We can simplify the right-hand side of this expression by
using the fact that the Einstein tensor is zero in two space-
time dimensions. In addition, we can evaluate the δð□Þ
term by using the expression [59]

δð□ÞΦ ¼ δgμν∇μ∇νΦþ∇μΦ∇νδgμν −
1

2
gμν∇αΦ∇αδgμν;

ðA2Þ

which follows directly from

δð∇μ∇νÞΦ ¼ ∂αΦ
�
gσðν∇μÞδgασ −

1

2
gμρgνβ∇αδgρβ

�
: ðA3Þ

We can now write Eq. (A1) as

δ
δSlocal
δΦ

¼ −4
ffiffiffiffiffiffi
−g

p
gμνδgμν½Φλ2 − k□Φ�

þ 4
ffiffiffiffiffiffi
−g

p �
1

2
RδΦ−

1

2
Φ∇μ∇νδgμν þ

1

2
Φgμν□δgμν

− 2kδgμν∇μ∇νΦ− 2k∇μΦ∇νδgμν

þ kgμν∇αΦ∇αδgμν − 2k□δΦþ 2δΦλ2
�
: ðA4Þ

In this form, we can now use Eq. (A4) to extract the second
order functional derivatives

δ2Slocal
δΦðx0ÞδΦðxÞ¼4

ffiffiffiffiffiffi
−g

p �
1

2
R−2k□þ2λ2

�
δð2Þðx−x0Þ; ðA5Þ
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and

δ2Slocal
δgμνðx0ÞδΦðxÞ ¼ 4

ffiffiffiffiffiffi
−g

p �
−gμν½Φλ2 − k□Φ� þ 1

2
Φgμν□ −

1

2
Φ∇μ∇ν − 2k∇μ∇νΦ

− 2k∇μΦ∇ν þ kgμν∇αΦ∇α

	
δð2Þðx − x0Þ; ðA6Þ

where δð2Þðx − x0Þ is the two-dimensional Dirac delta function. It now remains to derive the two remaining second order
functional derivatives. Through the variation of Eq. (2.8) one obtains

1ffiffiffiffiffiffi−gp δ
δSlocal
δgμν

¼ δgαβ
�
½gαβgμν þ 2gμαgνβ�

�
kð∂ΦÞ2 þΦ2λ2 þ a2

2

�
−
1

2
gαβ½gμν□Φ2 −∇μ∇νΦ2

þ 4k∂μΦ∂νΦ� þ gμν½∇α∇βΦ2 − 2k∂αΦ∂βΦ� − gμαgνβ□Φ2

	
þ∇σδgαβ½gμνδσβ∇αΦ2

− gμ½νgα�β∇σΦ2 − gβðνδσμÞ∇αΦ2� þ 2½gμν□ðΦδΦÞ −∇μ∇νðΦδΦÞ þ 4k∂ðμΦ∂νÞδΦ

− 2kgμν∂αΦ∂
αδΦ − 2gμνΦδΦλ2�: ðA7Þ

Equation (A7) can be used to extract

δ2Slocal
δΦðx0ÞδgμνðxÞ ¼ 2

ffiffiffiffiffiffi
−g

p ½ðgμν□ −∇μ∇νÞðΦδð2Þðx − x0ÞÞ þ ð4k∂ðμΦ∂νÞ − 2kgμν∂αΦ∂
α − 2gμνΦλ2Þδð2Þðx − x0Þ�; ðA8Þ

and

δ2Slocal
δgαβðx0ÞδgμνðxÞ ¼

ffiffiffiffiffiffi
−g

p �
½gμνgαβ þ 2gμαgνβ�

�
kð∂ΦÞ2 þΦ2λ2 þ a2

2

�
−
1

2
gαβ½gμν□Φ2 −∇μ∇νΦ2

þ 4k∂μΦ∂νΦ� þ gμν½∇α∇βΦ2 − 2k∂αΦ∂βΦ� − gμαgνβ□Φ2 þ ½gμνδσβ∇αΦ2 − gμ½νgα�β∇σΦ2

− gβðμδσνÞ∇αΦ2�∇σ

	
δð2Þðx − x0Þ: ðA9Þ

The desired quadratic action can be found by substituting
Eqs. (A5), (A6), (A8), and (A9) into the definition (2.5). In
order to obtain this, let us write the quadratic action as

δ2Slocal ¼
X4
i¼1

Ii; ðA10Þ

where we define

I1 ≔
Z

d2xd2x0δΦðxÞδΦðx0Þ δ2Slocal
δΦðxÞδΦðx0Þ

����
ðḡμν;Φ̄Þ

; ðA11Þ

I2≔
Z

d2xd2x0δΦðxÞδgμνðx0Þ δ2Slocal
δΦðxÞδgμνðx0Þ

����
ðḡμν;Φ̄Þ

; ðA12Þ

I3≔
Z

d2xd2x0δgμνðxÞδΦðx0Þ δ2Slocal
δgμνðxÞδΦðx0Þ

����
ðḡμν;Φ̄Þ

; ðA13Þ

and

I4≔
Z

d2xd2x0δgμνðxÞδgαβðx0Þ δ2Slocal
δgμνðxÞδgαβðx0Þ

����
ðḡμν;Φ̄Þ

:

ðA14Þ

Let us now consider each of the Ii individually. Evaluating
Eq. (A5) at the background solution ðḡμν; Φ̄Þ and substitut-
ing this into Eq. (A11) gives

I1 ¼ 4

Z
d2x

ffiffiffiffiffiffi
−ḡ

p
δΦ

�
1

2
R̄ − 2k□̄þ 2λ2

�
δΦ; ðA15Þ

where R̄ and □̄ ≔ ḡμν∇̄μ∇̄μ are the background Ricci scalar
and d’Alembertian respectively. The equation of motion
resulting from (2.7) tells us that

1

2
R̄þ 2λ2 ¼ 2k

□̄ Φ̄
Φ̄

; ðA16Þ

and thus, Eq. (A15) becomes
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I1 ¼ 8k
Z

d2x
ffiffiffiffiffiffi
−ḡ

p
δΦ

�
□̄ Φ̄
Φ̄

− □̄

�
δΦ: ðA17Þ

We now turn our attention to finding I2. By evaluating (A6)
at the background solution, substituting this into Eq. (A12)
and again using the equation of motion (A16), one finds

I2 ¼ 4

Z
d2x

ffiffiffiffiffiffi
−ḡ

p
δgμν

�
1

4
R̄ḡμνΦ̄δΦþ 1

2
ḡμν□̄ðΦ̄δΦÞ

−
1

2
∇̄μ∇̄νðΦ̄δΦÞ þ 2k∂μΦ̄∂νδΦ

− kḡμν∇̄αðδΦ∂
αΦ̄Þ

�
: ðA18Þ

Similarly, by evaluating Eq. (A8) at the background
solution and substituting this into (A13) we obtain

I3 ¼ 4

Z
d2x

ffiffiffiffiffiffi
−ḡ

p
δgμν

�
1

2
ðḡμν□̄ − ∇̄μ∇̄νÞðΦ̄δΦÞ

þ 2k∂μΦ̄∂νδΦ − ḡμν∇̄αðδΦ∂
αΦ̄Þ þ ð1 − kÞḡμνδΦ□̄ Φ̄

þ 1

4
R̄ḡμνΦ̄δΦ

�
; ðA19Þ

where we have once again made use of the equation of
motion (A16).
It now remains to compute I4. By considering the second

order functional derivative (A9) at the classical solution and
substituting the result into Eq. (A14) one finds the integral

I4 ¼
Z

d2x
ffiffiffiffiffiffi
−ḡ

p
δgμν

�
ḡαβ

�
ḡμν

�
kð∂Φ̄Þ2 þ Φ̄2λ2 þ a2

2

�

−
1

2
ðḡμν□̄Φ̄2 − ∇̄μ∇̄νΦ̄2 þ 4k∂μΦ̄∂νΦ̄Þ

�

þ ḡμα

�
2ḡνβ

�
kð∂Φ̄Þ2 þ Φ̄2λ2 þ a2

2

�
− ḡνβ□̄Φ̄2

�

þ ½ḡμνδσβ∇̄αΦ̄2 − ḡμ½νḡα�β∇̄σΦ̄2

− ḡβμδσν∇̄αΦ̄2�∇̄σ

	
δgαβ: ðA20Þ

The integral above can be simplified significantly by
leveraging the equation of motion obtained by setting
(2.8) to zero. More specifically, using this equation of
motion, the first square bracket in the integral (A20)
vanishes while the second bracket can be simplified.
This allows us to write Eq. (A20) as

I4 ¼
Z

d2x
ffiffiffiffiffiffi
−ḡ

p
δgμνfḡμα½4k∂βΦ̄∂νΦ̄ − ∇̄ν∇̄βΦ̄2�

þ ḡμν∇̄αΦ̄2∇̄β − ḡμ½νḡα�β∇̄σΦ̄2∇̄σ

− ḡβμ∇̄αΦ̄2∇̄νgδgαβ: ðA21Þ

Substituting Eqs. (A17), (A18), (A19), and (A21) into
(A10) gives the desired quadratic action (2.10).

APPENDIX B: DILATON GRAVITY IN THE
CONFORMAL AND SCHWARZSCHILD-TYPE

GAUGES

1. Dilaton gravity in the conformal gauge

In this section, we wish to show that the action

Slocal ¼ 4

Z
d2x

�
Φ2e2wλ2 þ a2

2
e2w þ kημν∂μΦ∂νΦ

−
1

2
Φ2ημν∂μ∂νw

�
; ðB1Þ

which is obtained by specifying the conformal gauge
gμν ¼ e2wημν in Eq. (2.2) where ημν ¼ diagð−1; 1Þ is the
Minkowski metric in Cartesian coordinates contains all the
dynamics of the original action (2.2). We wish to show that
the same dynamical equations of motion are obtained
irrespective of whether we specify the conformal gauge
at the level of the action or at the level of the field equations.
Such a check is necessary since the two approaches are not
equivalent in general.
Let us begin by stating the field equations associated

with the gauge-fixed action (B1). Variation with respect to
the dilaton field gives

δSlocal
δΦ

¼ 8
h
Φe2wλ2 − kημν∂μ∂νΦ −

1

2
Φημν∂μ∂νw

i
; ðB2Þ

while variation with respect to the conformal scalar w gives

δSlocal
δw

¼ 4

�
2Φ2e2wλ2 þ 2

a2

2
e2w −

1

2
ημν∂μ∂νΦ2

�
: ðB3Þ

We now turn our attention to specifying the conformal
gauge in Eqs. (2.7) and (2.9).
Let us first study the action of the space-time covariant

d’Alembertian operator □ ≔ ∇μ∇μ on some smooth test
function h. Written in terms of the connection coefficients
Γα
μν we have

□h ¼ gμν∂μ∂νh − gμνΓα
μν∂αh: ðB4Þ

In the conformal gauge, we have

gμνΓα
μν ¼ e−2wηασð2 − ημνη

μνÞ∂σw ¼ 0: ðB5Þ

It follows that

□h ¼ e−2wημν∂μ∂νh: ðB6Þ

By specifying the conformal gauge in Eq. (2.7) one obtains
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δSlocal
δΦ

¼ 4e2w½−Φe−2wημν∂μ∂νw

− 2ke−2wημν∂μ∂νΦþ 2Φλ2�; ðB7Þ

where we made use of Eqs. (4.3) and (B6). Upon
simplification, it is readily seen that Eq. (B7) is nothing
more than Eq. (B2). Fixing the conformal gauge in
Eq. (2.9) gives

−2gμν
δSlocal
δgμν

¼ −2e2w
�
e−2wημν∂μ∂νΦ2 − 4

�
Φ2λ2 þ a2

2

��
:

ðB8Þ

Simplifying the last result shows that the right-hand side of
Eq. (B8) is nothing more than Eq. (B3).
Finally, notice that in this case the equivalence with the

trace of the field equations is sufficient to prove the validity
of the gauge-fixing approach, since such equation contains
all the dynamics to obtain the solution. On the other hand,
the trace-free part of the field equations provides us with the
constraint equations

δμνð4k∂μΦ∂νΦþ 2∂μw∂νΦ2 − ∂μ∂νΦ2Þ ¼ 0; ðB9Þ

and

4k∂μΦ∂νΦþ 2∂ðμw∂νÞΦ2 − ∂μ∂νΦ2 ¼ 0; ðμ ≠ νÞ; ðB10Þ

associated with the imposing of the conformal gauge. We
therefore conclude that the consideration of the gauge-fixed
action (B1) together with the constraint equations (B9) and
(B10) above is equivalent to the consideration of the
original action (2.2).

2. Dilaton gravity in the Schwarzschild-type gauge

In this section, we wish to show that the action (2.2)
gives the same dynamical equations of motion regardless of
whether we specify the Schwarzschild-type gauge at the
level of the action or at the level of the field equations. The
Schwarzschild-type gauge is stated in Eq. (3.1). Given this
form of the metric, the nonvanishing components of the
connection coefficients are

Γt
tt ¼ −Γr

rt ¼ −f2Γt
rr ¼

_f
2f

; ðB11Þ

and

Γt
rt ¼ −Γr

rr ¼
1

f2
Γr
tt ¼

f0

2f
; ðB12Þ

where f0 and _f denote differentiation with respect to r and t
respectively. From the above we can compute the non-
vanishing Ricci tensor components

Rtt ¼
ff00

2
þ f̈
2f

−
_f2

f2
; ðB13Þ

and

Rrr ¼ −
f̈
2f3

þ
_f2

f4
−
f00

2f
: ðB14Þ

From the last two expressions it follows that the Ricci
scalar is

R ¼ −
f̈
f2

− f00 þ 2_f2

f3
: ðB15Þ

By specifying the Schwarzschild-type gauge in the action
(2.2) we have

Slocal ¼
Z

d2x
h
RΦ2 −

4k
f

_Φ2 þ 4kfΦ02 þ 4Φ2λ2 þ 2a2
i
;

ðB16Þ

and it is understood that the Ricci scalar is given by
Eq. (B15). The variation of this gauge-fixed action yields

δSlocal¼
Z

d2x

�
δRΦ2þ2RΦδΦþ4kδf

f2
_Φ2

þ4kδfΦ02þ8kgμν∂μΦ∂νδΦþ8ΦδΦλ2
�
: ðB17Þ

Let us turn our attention to the variation of the Ricci scalar
δR. From Eq. (B15) we have

δR ¼ −∂2t
�
δf
f2

�
− ∂

2
rδf: ðB18Þ

In terms of the perturbed inverse metric δgμν the last
expression is nothing more than

δR ¼ −∂μ∂νδgμν: ðB19Þ

We can now write Eq. (B17) as

δSlocal ¼ 2

Z
d2x

�
δΦðRþ 4k∇2 þ 4λ2ÞΦþ δf

×

�ð2k − 1Þ _Φ2

f2
þ ð2k − 1ÞΦ02 −

ΦΦ̈
f2

−ΦΦ00
�	

:

ðB20Þ

The first functional derivatives of the gauge-fixed action
with respect to Φ and f are now found to be

δSlocal
δΦ

¼ 2ðR − 4k∇2 þ 4λ2ÞΦ; ðB21Þ
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and

1

2

δSlocal
δf

¼ ð2k− 1Þ _Φ2

f2
þ ð2k− 1ÞΦ02 −

ΦΦ̈
f2

−ΦΦ00; ðB22Þ

respectively. We now wish to show that these are the same
equations of motion that are obtained when gauge fixing at
the level of the field equations. It is immediately clear that
Eqs. (B21) and (2.7) coincide. We therefore turn our
attention to imposing the Schwarzschild-type gauge
in Eq. (2.8).
It is worth mentioning that the perturbed metric δgμν is

traceless in the Schwarzschild-type gauge, i.e., gμνδgμν ¼ 0.
We therefore examine the trace-free part of Eq. (2.8)

�
δSlocal
δgμν

�
TF

≔
δSlocal
δgμν

−
1

2
gμνgαβ

δSlocal
δgβα

; ðB23Þ

where we have used the superscript TF to denote the trace-
free part. From Eq. (2.8) we have the following after
imposing the Schwarzschild-type gauge

�
δSlocal
δgrr

�
TF

¼ 2kΦ02 þ 2k _Φ2

f2

−
1

2f2
∇t∂tΦ2 −

1

2
∇r∂rΦ2: ðB24Þ

By replacing the Levi-Civita covariant derivatives in the
above with partial derivatives and connection coefficients,
we have

�
δSlocal
δgrr

�
TF

¼ 2kΦ02 þ 2k
_Φ2

f2
−
∂
2
tΦ2

2f2
−
1

2
∂
2
rΦ2

þ 1

2f2
Γα
tt∂αΦ2 þ 1

2
Γα
rr∂αΦ2: ðB25Þ

From Eqs. (B11) and (B12) we have

Γα
tt ¼ −f2Γα

rr: ðB26Þ

Upon substituting this expression into Eq. (B25), we find
that the result is nothing more than the right-hand side
of Eq. (B22).
Finally, using a similar argument as in the previous

subsection, the equivalence with respect to the trace-free
part is enough to motivate the gauge fixing approach since
it contains all the dynamics to obtain the solution. While the
action (B16) contains all the dynamics, we also have the
constraint equations obtained from the trace Eq. (2.9) and
the ðt; rÞ component of (2.8) with the former providing us
with

f∂2rΦ2 −
1

f
∂
2
tΦ2 þ f0∂rΦ2 þ

_f∂tΦ2

f2

− 4Φ2λ2 − 2a2 ¼ 0; ðB27Þ

and the latter yielding

∂t∂rΦ2 −
f0∂tΦ2

2f
þ

_f∂rΦ2

2f
− 4k _ΦΦ0 ¼ 0: ðB28Þ

APPENDIX C: DERIVATION OF EQ. (3.4)

Here we derive the quadratic action associated with the
SRG theory which is given in Eq. (3.4). We will obtain this
result by specifying the Schwarzschild-type gauge in
Eq. (2.10) for the case of the SRG theory and taking the
background fields to be the flat space-time solution with a
linear dilaton. We remind the reader that the SRG theory is
described by the dilaton model (2.2) for the choice of
parameters: λ ¼ 0, k ¼ 1=2 and a left unspecified.
We fix the Schwarzschild-type gauge by taking the metric
to be of the form given in Eq. (3.1). We take the background
metric to be ḡμν ¼ ημν while taking the background dilaton
field to be Φ̄ ¼ ar which corresponds to the flat space-time
solution. As already discussed in Sec. III, in the
Schwarzschild-type gauge the perturbed metric takes the
form δgμν ¼ δμνδf.
With the specifications mentioned above, we now pro-

ceed to derive Eq. (3.4). To accomplish this, we examine the
integrals Ii defined in Appendix A that make up the
quadratic action. By setting Φ̄ ¼ ar and k ¼ 1=2 in
Eq. (A17) and carrying out an integration by parts we obtain

ISRG1 ¼ 4

Z
d2x∂μδΦ∂μδΦ; ðC1Þ

where □̄ ≔ ημν∂μ∂ν is the d’Alembertian in flat space-time.
In order to compute the remaining ISRGi integrals, we
substitute in δgμν ¼ δμνδf. Using the fact that δμνημν ¼ 0,
the remaining ISRGi integrals simplify considerably since the
contributions involving contractions δgμνημν will vanish.
For ISRG2 and ISRG3 we find

ISRG2 þ ISRG3 ¼ 4

Z
d2xδμνδf½2∂μΦ̄∂νδΦ − ∂μ∂νðΦ̄δΦÞ�:

ðC2Þ

Since the background dilaton is Φ̄ ¼ ar, we have ∂μ∂νΦ̄ ¼ 0

and thus (C2) becomes

ISRG2 þ ISRG3 ¼ −4
Z

d2xδμνδfΦ̄∂μ∂νδΦ: ðC3Þ

We now turn our attention to ISRG4 . From Eq. (A21) we have
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ISRG4 ¼ a2
Z

d2xδfδμν
�
ημα½2∂βr∂νr − ∂ν∂βr2�

þ 1

2
ημαηνβ∂

σr2∂σ − ημβ∂αr2∂ν

	
δfδαβ; ðC4Þ

where we have once again used δμνημν ¼ 0. By evaluating
the derivatives, the contribution contained in the square
brackets vanishes and we are left with

ISRG4 ¼ a2
Z

d2xrδfðημνημν − 2Þ∂rδf: ðC5Þ

It follows that, since the trace of the Minkowski metric in two
space-time dimensions is ημμ ¼ 2, the integral above vanishes
and we have

ISRG4 ¼ 0: ðC6Þ

Upon the substitution of Eqs. (C1), (C3), and (C6) into (A10)
we obtain the desired result (3.4).

APPENDIX D: DERIVATION OF EQ. (4.59)

In this section, we evaluate the integral appearing in
Eq. (4.58) and obtain the nonlocal modification to the
perturbed dilaton field (4.59). We begin by writing
Eq. (4.58) as

δΦ ¼ Me−λr

4πiλ

Z
∞

−∞
dke−l

2k2

×

�
i
Z

r−b

0

dueiuðk−iλÞ þ 1

k − iλ

�
: ðD1Þ

We first wish to compute the second term on the right-hand
side of the above expression. In order to accomplish this,
we need to evaluate the integral

L1 ≔
Z

dk
e−l

2k2

k − iλ
: ðD2Þ

The real part of the integral given above is

RefL1g ¼
Z

dk
e−l

2k2k
k2 þ λ2

¼ 0; ðD3Þ

which vanishes since the integrand is an odd function of k.
This implies that the integral L1 is purely imaginary.
That is,

L1 ¼ iImfL1g ¼ iλ
Z

dk
e−l

2k2

k2 þ λ2
: ðD4Þ

The last expression can be written as

L1 ¼ −iλel2λ2
Z

∞

−∞
dk

Z
l2

∞
due−uðk2þλ2Þ: ðD5Þ

By evaluating the integral over k, one finds

L1 ¼ −iλ
ffiffiffi
π

p
el

2λ2
Z

l2

∞
du

e−uλ
2

ffiffiffi
u

p : ðD6Þ

Performing a change of variables with u ¼ v2=λ2 gives

L1 ¼ 2iel
2λ2

ffiffiffi
π

p Z
∞

lλ
dve−v

2

: ðD7Þ

The integral is nothing more than
ffiffi
π

p
2
ErfcðlλÞ where Erfc is

the complementary error function. We therefore have

L1 ¼ iπel
2λ2ErfcðlλÞ: ðD8Þ

We now wish to compute the first term on the right-hand
side of Eq. (D1). We therefore turn our attention to
evaluating the integral

L2 ≔ i
Z

∞

−∞
dk

Z
r−b

0

due−l
2k2þikuþλu

¼ i
Z

r−b

0

du
Z

∞

−∞
dke−l

2ðk− iu
2l2

Þ2− u2

4l2
þλu: ðD9Þ

Evaluating the integral over k gives us

L2 ¼ i
ffiffiffi
π

p
l

Z
r−b

0

due−
1

4l2
ðu−2λl2Þ2þλ2l2 : ðD10Þ

By performing the change of variables v ¼ ð2λl2 − uÞ=2l
we obtain

L2 ¼ 2i
ffiffiffi
π

p
el

2λ2
Z

λl

λl−r−b
2l

dve−v
2

: ðD11Þ

By adding Eqs. (D7) and (D11) we find

L1 þ L2 ¼ iπel
2λ2Erfc

�
lλ −

r − b
2l

�
: ðD12Þ

Substituting Eq. (D12) into (D1) gives the desired
result (4.59).
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Phys. Rev. D 102, 044016 (2020).
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