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We study the dynamical spontaneous scalarization of charged black hole in asymptotically anti—de Sitter
spacetimes in Einstein-Maxwell-scalar models. Including various nonminimal couplings between the
scalar field and Maxwell field, an initial scalar-free black hole suffers tachyonic instability, and both the
scalar field and the black hole irreducible mass grow exponentially at early times and saturate exponentially
at late times. For fractional coupling, we find that, though there is negative energy distribution near the
horizon, the black hole horizon area never decreases during the evolution. But when the parameters are
large, the evolution end points of linearly unstable bald black holes will be spacetimes with a naked
singularity such that the cosmic censorship is violated. The effects of the black hole charge, cosmological
constant, and coupling strength on the dynamical scalarization process are studied in detail. We find that a
large enough cosmological constant can prevent spontaneous scalarization.
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I. INTRODUCTION

Black hole (BH) physics has been an intriguing subject
for decades. Recently, high-precision observations have
further stimulated interest to study this topic [1,2]. After the
detection of gravitational waves from BH binary mergers
[3-5] and the observation of a BH shadow by the Event
Horizon Telescope [6-9], we have more new windows to
disclose deep physics in BHs and examine the validity of
general relativity (GR). In GR, there is a no-hair theorem in
BH physics, which claims that, except the mass M, charge
0, and angular momentum J, there is no extra information
we can learn from BHs [10-12]. But the no-hair theorem
encounters challenges. Violations were observed in many
gravity theories which allow hairy BH solutions, such as
those with a Yang-Mills field [13-16], Skyrme field
[17,18], conformally coupled scalar field [19], and the
dilaton [20-22].

In addition to finding new hairy BH solutions to violate
the no-hair theorem, it is of great interest to examine
whether there are some relations between the no-hair
BHs and hairy BHs, especially whether there is a mecha-
nism to allow a transition between them. Recently, a
peculiar dynamical mechanism, spontaneous scalarization,
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generating the hairy BHs has been revived. This mecha-
nism was first found in the study of neutron stars in scalar-
tensor theory [23-25]. A black hole in this theory can also
be spontaneously scalarized if it is surrounded by a
sufficient amount of matter [26-28]. BH spontaneous
scalarization 1is triggered by the tachyonic instability of
the scalar field, through the nonminimal coupling between
the scalar field ¢ and a source term /. The backreaction
of the scalar instability can destroy the bald BH and lead
to the formation of a stable scalarized BH. The source term
I can be the Gauss-Bonnet invariant [29-32], Ricci scalar
for nonconformally invariant black holes [33], Chern-
Simons invariant [34], or Maxwell invariant, etc. [35].
Recent studies of BH spontaneous scalarization arose in
the extended scalar-tensor Gauss-Bonnet (eSTGB) theory
[36-44]. However, the equations of motion in the eSTGB
theory are difficult to solve because of the challenging ill-
posedness problem [45-49], so that many works limit their
dynamical studies in the decoupling limit [50-54]. The
Einstein-Maxwell-scalar (EMS) theory is considered as a
technically simpler model and has attracted much attention
in examining the dynamics of scalarization, without losing
the general interest [55-61].

Considering the special asymptotic boundary in anti—de
Sitter (AdS) spacetime, which behaves as a reflection
mirror, it is intriguing to examine whether there are some
special properties of spontaneous scalarization in AdS
spacetime [62—64]. We will reveal the influence of the
negative cosmological constant together on the dynamical
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spontaneous scalarization in detail. This can help to have a
further insight into the special properties of the scalariza-
tion in AdS spacetime. On the other hand, it is known that
the properties of the scalarized BH depend heavily on the
coupling function and the appropriate ranges of parameters
in the system [30-32]. In this work, we will carefully
investigate dynamical BH spontaneous scalarization in
EMS models with various coupling functions in asymp-
totically AdS spacetimes and uncover quantitatively the
dependence of the dynamical process on the coupling
strength between the scalar field and electromagnetic field.

Especially, for the EMS model with a fractional coupling
function, the phase diagrams disclosed in Ref. [55] are
very different with other couplings. The end point of the
instability of the RN-AdS BH in the region where the
charge to mass ratio and coupling parameter are large is an
open question and needs further studies from dynamical
simulation. We will show that in this parameter region
cosmic censorship is violated during the evolution and the
end point should be a spacetime with a naked singularity.
Cosmic censorship has been tested in EMS theory [65], in
which the authors found that naked singularities do not
form for a power coupling function. In eSTGB theory,
cosmic censorship has also been tested very recently
[66,67]. The authors simulated the mass loss due to
evaporation at the classical level using an auxiliary phan-
tom field and suggested that either weak cosmic censorship
is violated or horizonless remnants are produced. Here, we
find that, without introducing an exotic phantom field,
cosmic censorship can also be violated.

This work is organized as follows. In Sec. II, we discuss
the general framework, introduce the source terms in the
EMS theory, and write out the equations of motion in
the Eddington-Finkelstein coordinate. In Sec. III, we give
the conditions generating spontaneous scalarization, the
choices of coupling functions, and the boundary conditions
of AdS spacetime. The numerical results are presented in
Sec. IV. Finally, we summarize and discuss the results
obtained.

II. MODEL SETUP

A. The action and equations of motion

The action we consider in this work is

S=-1 6 d*x\/=g[R =2A =20,¢0"¢ — [ () (3 9)].
(1)

Here, R is the Ricci scalar, and A = -3/ L? is the
cosmological constant with the AdS radius L. The scalar
field ¢ is minimally coupled to the metric g,, and non-
minimally coupled to the source term I(y,g), which
generically depends on the spacetime metric g,, and the
extra matter fields, collectively denoted by y. The subscript

i in coupling function f;(¢) will be used to label the various
coupling choices. In EMS theory, the extra matter field is a
gauge field A, with

I(an) = F;wFlw (2)

in which F,, =9,A, —9,A, is the electromagnetic field
strength tensor. In eSTGB theory, the source term is Gauss-
Bonnet invariant [(y:g) = R — 4R, R" + R,,,,R""°
and y = 0, i.e., without any extra matter fields.

The field equations obtained by varying the action with
respect to g,,, ¢, and A, are

1 1
R 2Rg;w + Ag;w =2 |:a ¢a ¢ gﬂl/ /1¢a/)¢

1
+f(¢) (FﬂﬂFl/p - Zgﬂpran0>:| ,

()
Ldf(@) e

ST = P @

2T (D)) =0, 5)

B. Conditions for spontaneous scalarization
of black holes

We assume that the model admits scalar-free solutions,
i.e., ¢ = 0 satisfies the equations of motion (3)—(5). The
coupling function f(¢) must obey the following criteria.

(@) f(#)lp=0, -0 = 1.—The system approaches the

electromagnetlc vacuum in the far region.

(ii) d 7 | ¢—0 = 0.—This allows the existence of a
scalar—free solution.

(i) = 45"5 |j—o > 0.—This guarantees the appearance of
the tachyonic instability which drives the system
away from the scalar-free solution.

In fact, to guarantee the existence of nontrivial scalarized
BHs, one can also derive the constraints equivalent to
conditions (i) and (iii) from Eq. (4) in the case of purely
electric (or magnetic) RN BHs, which is the so-called
Bekenstein-type inequality f(¢) ,, > 0 and ¢f , > 0[58].

C. Selection of coupling function

In this work, we simulate the dynamical evolution of
the BH spontaneous scalarization in EMS theory in AdS
spacetime with coupling functions satisfying the above
conditions, which include

(i) a fractional coupling fr(¢) = W;

(ii) ahyperbolic cosine coupling f(¢p) =cosh(v/=2b¢);

and

(iii) a power coupling fp(¢) = 1 — bgp>.
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The parameter b is a dimensionless constant in all cases.
The couplings fy and fp were widely studied in the
context of holographic superfluid and superconductor [68].
The coupling fr was used to study the phase transitions
near black hole horizons [69]. It gives analytical sponta-
neously scalarized black hole solutions [35,70,71]. When b
is negative enough, all these three couplings can trigger the
spontaneous scalarization and have been studied in many
recent works [35,55,58,60,70-72]. However, these works
did not examine the dynamics in detail. Especially, the end
point of the unstable bald black hole with a large charge to
mass ratio in the EMS model with fractional coupling
function fr is unclear. We choose these three coupling
functions to clarify these interesting issues and explore
whether there are qualitatively different behaviors in the
dynamical spontaneous scalarization.

Hereafter, we consider b < 0. We emphasize that these
three coupling functions have the same leading-order
expansion 1—hb¢? for small ¢. Since the tachyonic
instability of the initial bald black hole is determined by
the quadratic term, they have almost the same existence
lines in the domains of existence of scalarized BHs in
asymptotically flat spacetime, as shown in Fig. 3 in
Ref. [55]. However, the critical sets of domains of existence
of scalarized BHs are significantly different. This implies
the higher-order terms in the coupling function expansion
have strong influence on the properties of the scalarized

BHs. Note that, for fractional coupling fr = HIW, the

expansion near ¢ = 0 cannot be continued to |¢| > ﬁ.

It diverges at |¢| = ﬁ and becomes negative when

lp| > ThlS will lead to qualitatively different proper-

ties of the scalarized BH and the dynamics, such as negative
energy density and violation of cosmic censorship.

III. NUMERICAL SETUP

A. Equations of motion in Eddington-Finkelstein
coordinate

We study the dynamical formation of a charged scalar-
ized BH from a spherically symmetric scalar-free RN-AdS
BH suffering tachyonic instability in EMS theory, by
adopting the ingoing Eddington-Finkelstein coordinate
ansatz

ds*=—a(t,r)dr* +2dtdr+¢(t,r)*(d0* +sin’0dg?).  (6)

Here, a(t, r) and {(t, r) are the metric functions. They are
regular on the BH apparent horizon which satisfies
9"0,£9,{ = 0. We choose the gauge field as

A dx* = A(t,r)dt. (7)
Plugging the above ansatz into Eq. (5) yields the first
integral

Qo
f(¢)
in which Q is an integral constant interpreted as the electric

charge of the BH. To implement the numerical method, we
introduce auxiliary variables

0,A =

(8)

S=00,+ %aa,c. (9)
P= a[¢+%aar¢. (10)

Substituting these into Eq. (3), we get

250,¢ % )

08 =50+ 5 (g 300+ g )~
(11)

450, -2 407

2a = —4Po - , 12

S TR
1-280,{ (A Q?

0, =—7T-—"7"-"-- , 13
' 20 2 20f(¢) .
07 = ~((0,). (14)

The scalar equation (4) gives
2

op_ PUEESUD O d@) g

¢ AZNf(¢)? dp

As long as the initial ¢ is given, we can integrate constraint
equations (12)—(15) to get initial a, S, £, and P. The ¢ on
the next time slice can be obtained from the evolution
equation (10). This formulation has been widely used to
simulate the nonlinear dynamics in AdS spacetimes due to
its simplicity and high accuracy [63,64,73-79].

B. Boundary conditions of AdS spacetime

To solve the set of differential equations numerically, we
have to implement suitable boundary conditions. An
asymptotic approximation of the variables in the far region
takes the form

p=P0 0 2 b s 0. (16
A 2M 2 A
a= —§r2+1—7+%+§¢3( n+o0(r), (17)
33 3
c=r= B0 300 g2 —sgi) + 067, (18)
A 1 2 3A
S:—grz—l—i—g—k% r4¢§(t)+0(r_5), (19)
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A 1 [(-b0? 3
Pt 5 (-0 gt -0

(20)

in which ¢4(r) = %f”. This series expansion contains
three constants: the Arnowitt-Deser-Misner (ADM) mass
M, the charge Q of the BH, and the cosmological constant
A. Hereafter, we fix the value of the ADM mass as M =1
in this work to implement the dimensionless of the physical
quantities. Meanwhile, we study the BH irreducible mass
M;, and the rescaled Misner-Sharp mass M, which are,
respectively, defined as

Mir:\/izzg(f,rH)» (21)
T

m 1 A
Mms_E_ECf(l—ng—g’”aﬂ@uC) (22)
Here, Ay = 4x¢%(t,ry) and ry stands for the coordinate
location of the BH apparent horizon. The irreducible mass
equals the horizon area radius. At the static case, ¢»; can be
viewed as the scalar charge indicating the existence of
scalar hair. But it is unknown here and needs to determined
by evolution. Notice that some of the variables in the series
expansion above like «, {, and S are divergent at infinity.
Therefore, the following new variables are introduced for
numerical calculation:

1

¢ =ro, a=rla, S = r2s, P= ;p. (23)
In addition, the scalar perturbation in AdS spacetime can
reach spatial infinity at a finite coordinate time and be
bounced back to the bulk. So spatial infinity must be included
in the computational domain. The effective way is to compact
the radial direction by a coordinate transformation, i.e.,
z = .37 In this new coordinate, the computational domain
that we take is (z;, 1), where z; is close to but smaller than the
initial BH apparent horizon and z = 1 corresponds to spatial
infinity. From the above conditions, we can obtain the
boundary conditions at infinity:

c=1 c =0 s:—é s'=0

, , G’ ,
s"=6(M-1), p=0,

A / "
a=-=. a =0, a’=12(M - 1). (24)

Here, the prime denotes the derivative with respect to z. For
the initial profiles of the scalar field, we take the Gaussian
wave packet

b = ae T’ (25)

Here, a, ¢, and w parametrize the initial amplitude, center,
and width of the Gaussian wave, respectively.

IV. NUMERICAL RESULTS

In this section, we will show that for all three coupling
functions considered here, in the parameter region where
the bald RN-AdS BH and scalarized BH coexist, the RN-
AdS BH suffers tachyonic instability and evolves into a
scalarized BH. The dynamical behaviors are qualitatively
similar to those found in the EMS model with exponential
coupling function fz(¢) = e ??" [63]. The scalar field
grows exponentially at early times and saturates to a final
value at late times. However, as shown in Fig. 3 in
Ref. [55], the domain of existence of scalarized BHs in
EMS models with fractional coupling f in asymptotically
flat spacetime is rather different from those with hyperbolic
cosine or power couplings. Especially when both the
charge to mass ratio Q/M and —b are large, the bald
BH still suffers tachyonic instability, but the end point of
the instability is unclear. Here, we will show that, in
asymptotically AdS spacetime, the end point of tachyonic
instability of a RN-AdS BH with large Q/M and —b should
be a spacetime with a naked singularity. Note that tachyonic
instability happens near the horizon so that the qualitative
behaviors will not be changed by the AdS boundary at
spatial infinity. So we can conclude that, in asymptotically
flat spacetime, the end point of the RN BH with large Q/M
in the EMS model with fractional coupling should also be a
spacetime with a naked singularity.

A. Results for fractional coupling

1. Scalar field for fractional coupling fr(¢)

We first investigate the final spatial distribution of the
scalar field when the system reaches equilibrium starting
from an unstable RN-AdS BH with a fractional coupling
function under initial scalar perturbation. As shown in
Fig. 1, an obvious feature is that the scalar field piles up at
the horizon. It is nodeless and monotonically tends to zero
in all situations. The final scalar field value on the BH
horizon grows with Q and —b while decreasing with A.
Note that the coupling function f is negative near the
horizon and positive in the far region. It diverges at ¢ =

_\/;IE at a certain radius. However, this divergence is

benign, since the coupling function always appears in

ot 1 2 1 dfeld) _ _
combinations ol ¢)—1+b¢ and g7 54) = —2b¢

for fractional coupling in the equations in Sec. III A. So
the geometry and the scalar field are smooth therein.

To figure out how the system evolves from the initial
bald RN-AdS BH to the final hairy BH, we show the
evolution of the scalar field value on the horizon ¢ in the
upper row in Fig. 2. One can find that the BH is decorated
with scalar hair faster and more heavily for larger O and
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z z z
FIG. 1. The spatial distribution of the scalar field ¢ outside the horizon for various charge Q, coupling constant b, and cosmological

constant A when the system reaches equilibrium.

stronger coupling —b between the scalar field and Maxwell
field. On the contrary, the cosmological constant A sup-
presses this phenomenon. These are consistent with the
results from Fig. 1.

In the middle and lower rows in Fig. 2, we show the
evolution of log ¢y (f) — ¢r(t)| and log ¢y (1) — ¢p(i)].
Here, ¢y (i) = 0 and ¢y (f) are the initial and final scalar
field value on the horizon, respectively. The lower row
implies that, if the RN-AdS BH is in the unstable regime,
any initial arbitrarily small perturbation will result in an
exponential growth of the scalar field at early times. The
middle row implies that the scalar field saturates to an
equilibrium value at late times and the final equilibrium BH
is endowed with scalar hair. Hence, the evolution of the
scalar field on the horizon can be approximated by

early times,

Here, v; is the growth rate of ¢4 at early times, and v is the
imaginary part of dominant mode frequency at late times.
vy, are some subdominant terms depending on Q, b, and A.
The lower row in Fig. 2 reveals that v; is positively related
to Q and —b and negatively related to —A, which means
that the time of a scalarized BH bifurcating from the initial
RN-AdS BH will be shortened during the growth stage for
larger Q and —b and prolonged for larger —A. At late times,
however, the central row in Fig. 2 shows that, during the
saturation stage, ¢y takes a longer time to converge to its
final value for larger Q and —b and smaller —A. On the
other hand, the relations between Vs and Q, b, and A are
contrary to those of v;.

2. Misner-Sharp mass of fractional coupling

The Misner-Sharp mass M, of scalarized solutions is a

exp(v;t + v1), . ) ) . A
° = . 26)  function of the radius and time. Its final distribution when
bu(f) —exp(=vyt +1v3), late times. the system reaches equilibrium is exhibited in the upper
0.0 0.0 0.0
-0.1 -0.1 -0.1
~0.2 -0.2 -0.2
$-03 Z-03 5703
~0.4 -04 04
05 -05 -05
' -0.6
~06 -06
0 0 0
5 - S -5 3 s
) [-b=5.00,-A=0.03) é [Q=0.90,-A=0.03] é [Q=0.90,-b=5.00]
= Q=0.875 Q=0.880 = he b= = A= A=
é _10 % 10 b=4.40 b=4.60 s 10 A=0.02 A=0.03
3“ Q=0885 = Q=0.8% e ~b=4.80 — -b=5.00 _%]" -A=0.05 — -A=0.07
—15} T Q=0900 — 15— -b=5.20 I 5l -A=0.09
0 0 ‘ B ;
e e s
T 2 2
< -10 < -10 < -10
S s s
8 -15 8 -15 g 15
-20 -20 -20
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500

t

t t

FIG. 2. The upper row shows the evolution of the scalar field value ¢y on the horizon. The lower and center rows indicate that ¢
grows exponentially at first and then saturates to an equilibrium value with damped oscillation.
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FIG. 3.

Fractional coupled scalarized BH solutions exhibit negative energy densities p in the vicinity of the horizon. Note that the left

end points locate on the BH horizon, and we show only the distribution outside the horizon.

row in Fig. 3. It increases to the ADM mass M = 1 as the
radius tends to infinity. However, in the near horizon
region, the M, decreases with radius for large Q and
—b and small —A. This implies that there is negative energy
distribution near the black hole. In fact, for a static solution,
the energy density can be expressed as

p:9<%>2 o :E(%>2+M

2\or) T2rrg) "2 \or 2
(27)

which follows from p = T,,Z*Z". Here, T,, is the stress
energy tensor in Eq. (3), and Z* = (9,)#/+/a. The energy
density distribution is shown in the lower row in Fig. 3. One
can find that the scalarized BH solution obtained with
fractional coupling does have negative energy density in the
vicinity of the horizon. This is similar to the results found in
asymptotically flat spacetime [55]. Actually, the negative
energy originates from the second term in Eq. (27), since
1 + bgp* < 0 in the vicinity of the horizon. The negative
contribution is more significant for stronger coupling and
larger charge.

The extremum of p and the negative energy band Az are
shown in Fig. 4. The p(min) decreases monotonically with
Q or —b, while Az first remains zero and then increases.
This result can also be explained by Eq. (27), in which the
first term is always positive outside the horizon. For small
Q or —b, the final scalarized BH has less hair so that the
first term is larger than the second term, so the energy
density p is positive and the negative energy band Az is
zero. On the one hand, the right row in Fig. 4 shows that the
increase of —A suppresses the negative energy distribution
outside the horizon.

3. Naked singularity

The above subsection shows that the negative energy
becomes more significant for stronger coupling parameter
—b. Here, we show that —b cannot be too large; otherwise,
a naked singularity will appear inevitably. The left panel in
Fig. 5 shows the evolution of the Ricci scalar for Q = 0.9,
—A = 0.03, and —b = 20. The Ricci scalar explodes in the
interior of the apparent horizon. Although our code crashes
at late times, we suggest that the curvature singularity
moves outward rapidly and finally passes through the

0.04F

0.02} .02k 0.05}

0.00 i 0.00
_0.02F -0.02} 0.00
Coouf  [Fb=5.00,-A=003] -0.04F [Q=0.90,-A=0.03] [Q=0.90,-b=5.00]

p(min) p(max) —0.06F p(min) p(max) ~0.05F p(min) p(max)]
-0.06r......... a2 ‘ ‘ ‘ 0,08 o N 2 N I — AZ
0.870 0.875 0.880 0.885 0.890 0.895 0.900 4.2 4.4 4.6 4.8 5.0 52 0.05 0.10 0.15 0.20
Q -b o

FIG.4. The maximum and minimum of the energy density p outside the horizon, the negative energy band Az, and the minimum of the

Misner-Sharp mass versus Q, b, and A.
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[Q=0.90,-A=0.03]
6F 3t —b=7.00
Q=0.90,-b=20.00,~A\=0.03

= 4r t=59.339, At=1.849 =
& ~
=% =
E g

oF"

_27;2‘ : ]

0.58 0.60 0.62 0.64 066 068 0.70

z

0 50 100 150
t

FIG. 5. Left: the evolution of scalar curvature R when Q = 0.9, —A = 0.03, and —b = 20. The time step between adjacent curves is
At = 1.8546. The uppermost curve corresponds to ¢ = 59.3390, after which our code crashes soon. The dashed parts represent the
results in the interior of the apparent horizon. Right: the evolution of scalar curvature on the apparent horizon Ry for various b when

0 = 0.9 and —A = 0.03 before our code crashes.

apparent horizon such that a naked singularity forms. From
another viewpoint, we show the evolution of the scalar
curvature on the apparent horizon Ry in the right panel.
The Ry also explodes with time. For larger —b, the Ry
increases faster and our code crashes earlier. We conclude
that, for large —b, the evolution end point of a linearly
unstable RN-AdS black hole is a spacetime with a naked
singularity such that weak cosmic censorship is violated
[80]. In eSTGB theory, cosmic censorship violation has
also been suggested when they simulate the mass loss due
to evaporation at the classical level using an exotic phantom
field [66,67]. Here, we find that, without introducing
the exotic phantom field, cosmic censorship can also be
violated. In EMS theory with fractional coupling, the
negative energy density and violation of cosmic censorship
follows not from the presence of an exotic form of matter

but from the synergy of the scalar field coupling with the
Maxwell term.

4. Irreducible mass of fractional coupling

Figure 6 displays the evolution of the BH irreducible mass
M, for various Q, —b, and —A. The irreducible mass equals
the BH apparent horizon area radius. In the upper row, one
can find that the irreducible mass never decreases during the
evolution, although the weak energy condition is violated, as
discussed in the above subsection. This is permissible, since
the weak energy condition is a sufficient but not necessary
condition for the black hole area increase law [81,82]. The
nonlinear evolution exhibits no other obvious pathologies
apart from the negative energy density. The scalarized
solutions are both thermodynamically and dynamically
preferred.
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FIG. 6. The evolution of irreducible mass M, for various coupling constant b, charge Q, and cosmological constant A.
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The irreducible mass increases with Q and —b. This can
be understood from the coupling term between the
Maxwell field and the scalar field in the action. For larger
Q or —b, the coupling is stronger. More energy will
be transferred from the Maxwell field to the scalar field.
The BH can swallow more scalar field, and its area grows.
The cosmological constant A, however, puts a more stringent
condition for spontaneous scalarization. Comparing the
evolution of M, at different A in the upper-left inset in
Fig. 6, within certain parameter ranges, the original scalar-
free BH is stabilized due to the increase of —A. In fact, in
asymptotic AdS spacetime, the tachyonic instability occurs
only when its effective mass squared is less than the
Breitenlohner-Freedman bound g =3 [62,63,83]. For
large enough —A, the tachyonic instability can be quenched.

Another interesting feature is that the evolution of
irreducible mass M, can be roughly divided into two
stages. The center and lower rows in Fig. 6 illustrate that
both the early stage and the late stages follow exponential
evolution:

{

Here, y; and y, are the exponential growth rate and
saturation rate of M, respectively. M (i) and M;.(f) are
the initial and final irreducible mass of the BH, respectively.
Y1, are some terms less important. Note that M (i) of the
initial RN-AdS BH depends on Q and A. From the middle
row in Fig. 6, the relationship between y; and Q, b, and A is
analogous to those of the ¢y at the horizon. However, the
saturation stage is stepped rather than damped oscillation,
as shown in the lower row in Fig. 6.

M (i) +exp(rit +71),
M,(f) - eXp(—}/ft +7,), late times.

early times,
M ir (t )

~

t t

although the sign is reversed (upper row). The lower row shows the

5. @3 of fractional coupling

Now we investigative the evolution of coefficient ¢; of
the scalar field at spatial infinity. Figure 7 shows that the
evolution of ¢; resembles the evolution of ¢y, which can
also be divided roughly into two stages. At early stage, it
increases exponentially. At late time, it converges to the
equilibrium value ¢;(f) with damped oscillation which
resembles the quasinormal mode. Its evolution can be
approximated by

3~

{ exp(n;t +m). early times, 29)
¢3(f) —exp(—nst +1,), late times.

Here, n; is the growth rate of ¢ at early times and 7, the
imaginary part of the dominant mode frequency of ¢; at
late times. 77, , are some terms less important. The lower
row in Fig. 7 shows that ; is positively related to Q and —b
and negatively related to A. Meanwhile, n, has contrary
relations to Q, —b, and A.
There are universal and robust relationships between ¢,
M., and ¢3 during the evolution:
vi =2v; =2n;, Yr=2vp = 2ny. (30)
This relationship can be understood for an intermediate
solution which can be approximated by a static solution.
For a static solution, the variables S, a, and P are zero on
the horizon. So combining Egs. (9), (10), (11), (13), and
(15) one can find 9,8, 9,  8¢p*> for the intermediate
solution. Since S(ry,7) =0 and Eq. (21) states that
M, = ¢(ry.1), we can deduce that M; = (ry.1)
—%ag + 9.1, m(jﬁ%{. Since, at early and late times,
the evolution can be approximated by the perturbations
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FIG. 8. Left column: the evolution of the irreducible mass M;, for models with a hyperbolic coupling function. Middle column: the

evolution of ¢; and ¢y. Right column: the final profiles of the Misner-Sharp mass and r2¢ for different A.

for the initial and final BHs, respectively, this leads to the
relations (30). These relations have been found in other
cases [22,63,64,84].

B. Results for power-law and hyperbolic coupling

In this subsection, we consider the dynamics of the
spontaneous scalarization with coupling functions fy =

cosh\/=2b¢ and fp = 1 — b¢p*. The results for hyperbolic
coupling are shown in Fig. 8. For the power coupling, the
dynamical features are qualitatively similar. In fact, the
dynamical features of the spontaneous scalarization for
power and hyperbolic couplings in asymptotically AdS
spacetime are qualitatively similar to those found in the
model with coupling fj = exp(—b¢?) which has been
studied in Ref. [63]. For both f, fp, and f, the evolution
of M;,, ¢y, and ¢5 still obeys the exponential growth at
the early stage and exponentially saturates to the equilib-
rium value at late times. The spontaneous scalarization is
enhanced by Q and —b but suppressed by A. On the other
hand, the final distribution of the Misner-Sharp mass
monotonically increases to the ADM mass at spatial
infinity. There is no negative energy distribution outside
the BH horizon. This is very different than the case with f,
in which negative energy appears near the horizon. This can
be explained by Eq. (27) from which we see that the energy
density can be negative for f only when b < 0.

V. CONCLUSION

We have focused attention on the dynamical spontaneous
scalarization in the asymptotically AdS spacetime in EMS
models. We have discussed three different coupling

functions fr(¢), fu(¢p), and fp(¢). They have the same
leading quadratic order expansion 1 — b¢? in the limit of a

small scalar field with exponential coupling fz(¢). Since
the tachyonic instability which triggers the spontaneous
scalarization is mainly determined by the quadratic term,
the dynamical evolution features of fx(¢), fx(¢), and
fp(@) are qualitatively similar to those with the exponential
coupling f(¢) [63]. In the parameter region where the
tachyonic instability is triggered, we found that a bald RN-
AdS BH can be spontaneously transformed into a scalar-
ized BH, which is also preferred in thermodynamics. We
have explored the effects of the BH charge Q, coupling
strength parameter b, and cosmological constant A on the
dynamical process in the scalarization. When the system
reaches equilibrium, the extreme value of ¢ always locates
at the horizon (denoted as ¢py;). Starting from the initial bald
RN-AdS BH, we find that ¢5; grows exponentially at the
early stage of the dynamical evolution in the scalarization.
At the late stage in the process of scalarization, ¢y
converges to an equilibrium value through damped oscil-
lation. We find that the scalarization is enhanced by larger
values of Q and —b but suppressed with the increase of A.
We have also investigated the evolution of ¢; and find that
¢ evolves similarly to ¢y.

The irreducible mass M; never decreases during the
dynamical spontaneous scalarization of the BH. Since M,
is the horizon area radius and the BH entropy is propor-
tional to the horizon area, this feature is a signal that the
second law of thermodynamics is obeyed, although the
weak energy condition is violated in models with a frac-
tional coupling function. M;. grows exponentially at early
times and saturates also exponentially to the final value at
late times. The corresponding growth coefficient y; and
saturation coefficient y, increase with Q and —b. The
increase of y; ; can shorten the growth and saturation time
of M;,. On the other hand, the cosmological constant plays
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a contrary role that prolongs the time for dynamical
scalarization.

For the EMS model with fractional coupling, there is
negative energy distribution near the BH horizon. The
negative energy region is stretched with the increase of Q
and —b and narrowed with A. However, Q and —b cannot
be too large. Once these parameters reach maximum
thresholds, a naked singularity will appear during the
dynamical evolution and cosmic censorship is violated.
Compared with fractional coupling f(¢), the cases with
hyperbolic coupling fy(¢), power coupling fp(¢), and
exponential coupling fz(¢) in AdS spacetime do not have
negative energy distribution. The difference comes from
the fact that fy, fp, and fy are always positive, since
the spontaneous scalarization occurs only for negative b.
However, the fractional coupling fr can be negative in

some space region such that the kinetic term of the
Maxwell field has the “wrong sign” in the action. Note
that the negative energy density and violation of cosmic
censorship follow not from the presence of an exotic form
of fundamental matter but from the synergy of the scalar
field coupling with the Maxwell term. This is different from
the violation of cosmic censorship induced by the exotic
phantom field used in the study of eSTGB theory [66,67].
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