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The equatorial symmetry of the Kerr black hole is generically broken in models of quantum gravity.
Nevertheless, most phenomenological models start from the assumption of equatorial symmetry, and little
attention has been given to the observability of this smoking gun signature of physics beyond general
relativity. Extreme mass-ratio inspirals (EMRIs), in particular, are known to sensitively probe supermassive
black holes near their horizon; yet estimates for constraints on deviations from Kerr in space-based
gravitational wave observations (e.g., with LISA) of such systems are currently based on equatorially
symmetric models. We use modified “analytic kludge”waveforms to estimate how accurately LISA EMRIs
will be able to measure or constrain equatorial symmetry breaking, in the form of the lowest-lying
odd-parity multipole moments S2,M3. We find that the dimensionless multipole ratios such as S2=M3 will
typically be detectable with a measurement accuracy of ΔðS2=M3Þ ≃ 1%. This would be a precision test of
the equatorial symmetry of black holes.
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I. INTRODUCTION

Black holes will be probed to high precision by gravi-
tational wave astronomy in the coming decades. The
inspiral and capture of stellar mass compact objects into
supermassive black holes holds particular promise [1].
From such extreme mass-ratio inspiral (EMRI) events, it
is estimated that LISA, a space-based observatory [2],
could determine the mass and spin of the supermassive
black hole to about one part in 105 [3–5].
A remarkable prediction of general relativity (GR) is that

the mass and spin of the black hole are its only distinguish-
ing properties (in vacuum). EMRIs will be a powerful tool
to search for observational evidence to the contrary. In
particular, all of the nonzero multipoles of Kerr are
determined by its mass M0 ¼ M and spin S1 ¼ J ¼ Ma:

M2l ¼ Mð−a2Þl; S2lþ1 ¼ Mað−a2Þl: ð1Þ

The first multipole for which the Kerr solution then gives a
nontrivial prediction is the mass quadrupole moment
M2 ¼ −S21=M. LISA will be able to measure this dimen-
sionless multipole (M2=M3) below the 1% level [4–6].
The odd-parity multipoles M2lþ1, S2l vanish identically

for Kerr, implying it is equatorially symmetric: the metric
remains invariant when reflected over the equatorial plane.
This equatorial symmetry of Kerr is “accidental,” in the
sense that there is no underlying reason for its existence;

this is in contrast to axisymmetry, which is a consequence
of stationarity for vacuum black holes in GR [7]. As such,
there is no reason for equatorial symmetry not to be broken
in beyond-GR physics. Indeed, equatorial symmetry is
generically broken in many models such as (odd-parity)
higher-derivative corrections to GR [8–10], string theory
black holes [11,12], and compact, horizonless objects such
as fuzzballs [11–16].
The equatorial symmetry of Kerr is a testable prediction

of general relativity; many models of beyond-GR physics
explicitly realize the breaking of this symmetry. Yet, most
gravitational phenomenology (including EMRI investiga-
tions) either assume an equatorial reflection symmetry and
explicitly set M2lþ1 ¼ S2l ¼ 0 [17–20], or restrict to M2

deformations [4–6]. S2 and M3 are, a priori, the next most
important multipoles. However, they are also the first
multipoles that break equatorial symmetry, and are there-
fore of a qualitatively different nature; it is not obvious how
well results based on equatorially symmetric multipoles
should generalize. We are thus left with the burning
question: how well will we be able to detect this pheno-
menon with EMRI observations?
There are a few studies that have considered equatorial

symmetry breaking, although sometimes very briefly.
Various aspects of equatorial symmetry-breaking space-
times are discussed in [9,21–26], but none of these include
a detailed analysis on its measurability. Its influence on
accretion physics as relevant in x-ray binaries for instance,
was investigated in [26]. However, here its main observable
effect, related to the position of the innermost stable
circular orbit, was found to be degenerate with spin.
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Moreover, even for the determination of the spin in this
approach, the uncertainties are often large, in particular
compared to LISA EMRIs, and details of the accretion are
important, which could lead to significant systematic
errors [27,28].
On the other hand, the leading correction to the orbital

dynamics effectively contributes at 2.5 post-Newtonian (PN)
order, which is inaccessible in x-ray binary observations. The
same is true for binary pulsars or pulsar-black hole binaries
[29], evenwith the next generation of radio telescopes [30], as
well as for the stars that are observed in our galactic center
orbiting Sgr A* [31,32]. However, the observation of a pulsar
close to Sgr A* with the Square Kilometre Array (SKA)
would allow for a precise measurement of the spin and mass
quadrupole moment. For instance, the spin andmass quadru-
pole would be measured to respectively around 0.1% and 1%
after five years of observations for a system with eccentricity
0.5 orbiting Sgr A* 3 times a year [33,34]. It would be
interesting to investigate if such systems could also probe the
equatorial symmetry of Sgr A*. Nevertheless, to the best of
our knowledge, the analysis was not extended to the current
quadrupole moment, or equatorial symmetry breaking effects
more generally.
In the context of gravitational wave observations, multi-

pole moments of the equatorial symmetry-breaking Kerr-
NUT spacetime were considered in [35]; this included an
analysis of how its multipoles affect the orbital frequencies
and gravitational wave signals for near-circular, near-
equatorial orbits (generalizing Ryan [17] and similar to
our Sec. II)—note that Kerr-NUT breaks asymptotic flat-
ness as S0 ≠ 0. On the other hand, [8] discusses the
gravitational radiation effects due to (other) higher-
derivative corrections (including odd-parity ones), and
estimates that current measurements cannot constrain these
parameters much. Finally, odd-parity multipoles featured
briefly in “bumpy” black hole analyses [36,37], where it
was found that there was no average influence of odd-parity
bumps on orbital frequencies. These results seem discour-
aging for the measurability of equatorial symmetry
breaking—although we will show here that a pessimistic
conclusion would be too rash.
We will use the “analytic kludge” formalism developed

by Barack and Cutler [3,6] to investigate the accuracy
that LISA can measure the equatorial symmetry-breaking
dimensionless multipoles S2=M3 and M3=M4 for EMRIs.
We will find that these generally can be measured and
constrained to within ≃10−2. We also give an example of
how this result can be used to constrain beyond-GR
models, using the particular example of almost-BPS black
holes—we show that LISA will be able to measure or rule
out these models as long as the black hole is at least
moderately spinning. LISA’s observation of EMRIs will
thus give a precision measurement and stringently constrain
the breaking of equatorial symmetry, potentially a smoking
gun of beyond-GR physics.

Before turning to general EMRIs, we first discuss the
less general case of near-circular, near-equatorial orbits in
Sec. II. This was originally investigated by Ryan [17], and
an initial analysis of the measurement accuracies of various
(even-parity) multipoles for such orbits was performed also
by Ryan [38].
We then introduce the analytic kludge formalism for

generating EMRI waveforms in Sec. III and discuss how to
generalize it to include the effects of the equatorial symmetry-
breaking multipoles S2, M3. Our main results for LISA
parameter estimation accuracy, based on the analytic kludge
and a Fisher analysis, are presented in Sec. IV. We show that
S2=M3 can be measured to within ≃10−2, and discuss the
dependence of this prediction on the orbital parameters.
Finally, inSec.V,we discuss our results and their implications.

II. NEAR-CIRCULAR, NEAR-EQUATORIAL
ORBITS

Throughout we will consider the gravitational two-body
problem where the two bodies have masses μ, M with
μ ≪ M. These are called extreme mass-ratio inspirals
(EMRIs). The supermassive object will have a nontrivial
multipolar structure which we would like to constrain with
gravitational wave observations; the stellar mass object will
be modeled as a featureless point particle.1

Typical EMRIs are expected to have a rich and interest-
ing orbital evolution, which in particular will be eccentric
and inclined [5]. However, before dealing with this general
case, in this section we consider the adiabatic evolution of
near-equatorial circular orbits. When odd-parity, equatorial
symmetry-breaking multipoles such as S2 and M3 are
nonzero, a purely equatorial orbit is not possible [23]. In
this case, near-equatorial circular orbits are possible with
the relative separation vector2

r⃗¼ rsinξ

�
cos

�
2πνtþπ

2

�
; sin

�
2πνtþπ

2

�
; cotξ

�
: ð2Þ

Here, r is the radial separation, ν is the orbital frequency
and ξ is the relative inclination with respect to the direction
of the orbital angular momentum. Explicitly, in a large
separation expansion in terms of the fiducial relative
velocity v ¼ ð2πνMÞ1=3, this inclination is given by

cosξ¼−
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1We use geometric units G ¼ 1 and c ¼ 1.
2The coordinates used are those in (A1).
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On the other hand, the equatorially asymmetric multipoles
responsible for this inclination contribute only quadrati-
cally to the binding energy E and separation r in function of
the orbital frequency3

δrasym ¼ 19

2
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þ 12Mv9
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þMv10
�
15

4
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3
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þ 23789
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�
þ � � � ; ð4Þ
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�
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�
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¼−57v12
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þv14
�
−
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4
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3

M8
−
18577

54

S22
M6

�
þ���: ð5Þ

The contributions by the other, equatorially symmetric,
multipoles are well known [17]. We give the full expres-
sions up to respectively Oðv10Þ and Oðv14Þ in (A6) and
(A7) in Appendix A, where we also provide more details on
the derivation of these results.
The quadrupole formula provides the leading order

radiation reaction,4 which can again be seen to be corrected
only to quadratic order by S2, M3:

−
dE
dt

¼ 32μ2r4sin2ξð2πνÞ6
5

ð1þ cos2ξÞ: ð6Þ

Note that the emission pattern and frequency content are
already modified at linear order and behave as what would
ordinarily be a current quadrupole emission. This phenome-
nonoccurs also fromparity violating interactions [8]. Itwould
be interesting to investigate the signature of such emission, for
instance in the case of comparable mass binaries where it is
otherwise dynamically suppressed. Nevertheless, our focus
will remain on the likely scenario that only the dominant
gravitational wave emission is observed. For us, the influence
of (unexpected) multipole moments is then due to its
modification of the orbital dynamics.
From the orbital and radiated energies, (A7) and (6), as a

function of the frequency, one can derive, in an adiabatic
approximation, the correction of the multipoles to the
gravitational waveform.Wewill additionally use a stationary
phase approximation to go to the frequency domain. Finally,
we will focus on the change in phase such that the resulting
frequency-domain waveform has the following structure:

h̃ðfÞ ¼ Af−7=6eiψðfÞ; ψðfÞ ¼ ψ0ðfÞ þ δψðfÞ; ð7Þ

with f ¼ 2ν the gravitational wave frequency. Here, ψ0ðfÞ
represents the point-particle, or nonmultipolar contribution.

We will simply approximate it with a 3.5PN TaylorF2
phasing [39]. Many other choices could have been made,
but this will not make a significant difference for our
purposes. In particular, we have verified this by comparing
with the choice of [38] which essentially amounts to a 4PN,
adiabatic extreme mass-ratio inspiral [40–43]. Instead,
δψðfÞ is the leading contribution of the multipoles. Of
particular interest here is the leading equatorial symmetry
breaking contribution:

δψ asymðfÞ ¼
3

128

�
M
μ

�
ðπMfÞ5=3

�
908

�
S2
M3

�
2

− 580ðπMfÞ1=3 S2M3

M7

−
1545

14
ðπMfÞ2=3

�
M3

M4

�
2
�
: ð8Þ

The full δψðfÞ ¼ δψ sym þ δψ asym is then found by includ-
ing also δψ sym which was previously derived [38] and is
reproduced here as (A9) in the Appendix A.
In order to provide an initial estimate of how well

multipoles can be measured given this waveform model, we
use a Fisher matrix analysis assuming a stationary,
Gaussian noise. This means that for a choice of free
parameters θ⃗ ¼ ðt�;ϕ�; μ;M; S1;M2; S22;…; Þ, where t�,
ϕ� are a reference time and phase, we compute

ðΓÞij ¼
�
∂h
∂θi

;
∂h
∂θj

�
; with

hh1; h2i ¼ 2

Z
∞

0

df
h̃�1ðfÞh̃2ðfÞ þ h̃1ðfÞh̃�2ðfÞ

SnðfÞ
; ð9Þ

to find the covariance matrix σ ¼ Γ−1. The measurement
accuracies are then approximated by the standard devia-
tions Δθi ¼ ffiffiffiffiffiffiffiffiffiffiðΣÞii

p
. We use the LISA noise curve from

[44] for the noise spectral density SnðfÞ, see (A10) for an
explicit expression. Importantly, at this stage we do not yet
take into account the movement of LISA and consequently
the amplitudeA in (7) is assumed to be constant, and set by
a choice of signal-to-noise ratio (SNR).
In Table I, the results of this analysis are shown as more

and more multipoles are included as free parameters, up to
M2

3, at which point the errors on the dimensionless ratios
are already well in excess of unity, so that the individual
multipoles are not meaningfully constrained—for example,
in order to determine if the object is a black hole or not. As
a check, we have ensured that, without the novel correc-
tions and with a matching noise spectral density [Sn in (9)],
we reproduce the results of [38].
Although the number of new parameters quickly pro-

liferates and undermines the determination of individual
multipoles in this approach, Table I still suggests that S̃2
could be constrained to ≲0.3. To support this, the same

3Note that we present this particular form of the frequency
derivative of E in order to allow for easy comparison with [17].

4The current quadrupole emission needs to be taken into
account for the contribution from the spin S1.
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analysis has been performed but only adding individual
extra multipoles as free parameters, one at a time. Such an
analysis yields, for instance, ΔðS22=M6Þ ≃ 10−1 as well as
ΔðM2

3=M
8Þ ≃ 10−1 given μ ¼ 10 M⊙, M ¼ 105 M⊙ at an

SNR of 30. For comparison, it gives ΔðM2=M3Þ ≃ 10−3.
An extended table of these results can be found in Table IV
in Appendix A. The degradation of measurement accu-
racies in Table I then indeed largely follows from the
increasing number of parameters.
To summarize, odd-parity multipoles, breaking equato-

rial symmetry, are qualitatively different from their even-
parity counterparts. It is therefore unlikely that the present
understanding of EMRIs as superb probes of multipolar
structures can simply be extrapolated to include them. On
the contrary, they do not affect the gravitational wave signal
to linear order for near-circular near-equatorial orbits.
Therefore, the ability of LISA to constrain them could
be a lot worse. However, as we show in the following
sections, this does not turn out to be the case when we
provide a more realistic estimate of LISA’s potential to
constrain equatorial symmetry breaking in the form of these
odd-parity multipoles.

III. GENERIC ORBITS: THE ANALYTIC KLUDGE

To get a better idea of how precisely equatorial symmetry
breaking would be measurable, wewant to move away from
near-equatorial, near-circular orbits as well as model LISA’s
detections more realistically. We need a way to simulate
inspiral waveforms for general EMRIs and investigate what
the effects on thesewaveforms are when nonzero odd-parity
multipoles S2, M3 are present. Generating accurate wave-
forms for generic (Kerr) orbits is a difficult problem [45–47],
which has so far been solved to adiabatic order [48] although
with additionally an understanding of the full first order self-
force [49]. It is an active area of research both to go beyond
adiabatic order [50,51] as well as to improve computational
efficiency [52–54].
In view of this, various approximate methods have been

developed. We will use as our starting point the analytic
kludge waveforms of Barack and Cutler [3]. These have the
advantage of being simpler to compute than other, more
accurate waveforms such as the “numerical kludge” meth-
ods [55–58], while also being easier to adapt to (unknown)

non-Kerr spacetimes than say “augmented analytic
kludges” [59,60]5 or “effective-one-body” models [62–64].
The analytic kludge waveforms were used by Barack and
Cutler to estimate that LISA could measure the masses of
both EMRI bodies as well as the massive BH spin to
fractional accuracy ≃10−5–10−4 [3], and the quadrupole
M2 to within ≃10−4–10−2 [6]. These numbers seem to be
robust, despite the shortcomings of the model [1,61,65].
Therefore, although the use of the analytic kludge is a
sacrifice in waveform accuracy, it is more than sufficient for
our initial, proof of principle analysis of measuring
equatorial symmetry breaking.

A. Setup and parameter space

In the analytic kludge, the EMRI is approximated as an
instantaneous Newtonian-orbit binary which emits a quad-
rupolar waveform. Post-Newtonian equations are used to
secularly evolve the orbit parameters. The approximated
EMRI orbit is then translated into an observed waveform,
taking into account the motion of the LISA detector using a
low-frequency approximation [66]. (For more details,
see [3,6].)
A binary system where both objects are Kerr black holes

would be described by 17 parameters. However, we will
follow [3,6] in neglecting the smaller object’s spin, reduc-
ing the number of parameters to 14. We then add three
additional parameters to allow for the possibility that the
multipoles M2, S2, M3 can differ from the Kerr values
M2 ¼ −S21=M and S2 ¼ M3 ¼ 0. We are left with 17
parameters, summarized in Table II.
The parameter t0 indicates the time at which the smaller

object reaches its last stable orbit (LSO), where we end the
integration and the inspiral transitions to a plunge. Themasses
of the smaller and large object are respectively μ and M.
The angles ðθS;ϕS; θK;ϕKÞ specify the orientation of the

orbit and central black hole spin with respect to an ecliptic-
based coordinate system. The distance to the source is
given by D.
The parameters e, γ̃, α, λ, Φ correspond to orbital

elements for the smaller object’s trajectory, as defined

TABLE I. The errors for the different parameters in the waveform model (7) when including more and more multipole moments given
one year of LISA observation before the ISCO for SNR ¼ 30, assuming the multipoles vanish, M ¼ 105 M⊙ and μ ¼ 10 M⊙. We
abbreviate log10ð…Þ ¼ Lð…Þ and S̃l ¼ Sl

Mlþ1, M̃l ¼ Ml

Mlþ1.

LðΔt�Þ LðΔϕ�Þ LðΔμμ Þ LðΔMM Þ LðΔS̃1Þ LðΔM̃2Þ LðΔS̃2
2Þ LðΔS̃2M̃3Þ LðΔM̃2

3Þ
0.8 −0.2 −5.1 −5.5
2.3 2.2 −3.1 −3.3 −2.9
2.5 2.3 −2.9 −3.1 −2.8 −3.2
3.3 2.8 −2.4 −2.6 −2.3 −3.0 −0.8
5.7 4.7 −0.3 −0.6 −0.8 0.4 1.8 2.2 3.4

5Although see, e.g., [61] for an adaption with a differing
quadrupole moment.
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relatively to the central black hole’s spin (i.e., taking the
unit vector Ŝ to lie along the positive z axis). The orbit
eccentricity is e. The angle γ̃ is the angle (in the plane of the
orbit) from L̂ × Ŝ to the pericenter (where L̂ is the unit
vector of the orbit’s angular momentum)—in standard orbit
element terminology, this would correspond to the argu-
ment of periapsis, i.e., the angle ω between the ascending
node to the periapsis [67,68]. The angle α describes the
azimuthal direction of L̂ around Ŝ—this corresponds in
terms of standard orbit elements to the longitude of
ascending node Ω. The angle λ is the inclination of the
orbit, i.e., the angle between Ŝ and L̂. Finally,Φ is the mean
anomaly with respect to the pericenter passage.
As mentioned, we neglect the structure of the smaller

object (i.e., its spin and other multipoles), but the larger
object’s multipoles feature importantly in our analysis. Its
dimensionless spin magnitude is S̃1 ¼ S1=M2, which for
Kerr lies between 0 (unspinning, Schwarzschild) and 1
(extremally rotating Kerr). Then, M̃2 is defined here as the
amount that the dimensionless quadrupole momentM2=M3

deviates from the Kerr value ðM2ÞKerr=M3 ¼ −ðS1Þ2=M4.6

Finally, S̃2 ¼ S2=M3 and M̃3 ¼ M3=M4 are the dimension-
less lowest-order odd-parity multipoles that break equato-
rial symmetry, which of course vanish for Kerr.

B. Evolution equations

The five extrinsic parameters ðθS;ϕS; θK;ϕK;DÞ define
the distance and orientation between the source and the
solar system and are constant during the inspiral. We

further take the six parameters that give the masses μ, M
and the multipoles S̃i, M̃i to be constants as well—a good
approximation if the central object is much larger than the
smaller one. We will also assume everywhere that
μ=M ≪ 1, and work to leading order in the ratio μ=M.
We are left with the six parameters Φ, ν, γ̃, α, e, λ, which

describe the orbit of the smaller object in coordinates
relative to the large BH spin Ŝ. Following Barack and
Cutler [3,6], we approximate λ to be constant—this is
known to be a good approximation [69] (see also especially
footnote 2 in [3] for further justification). We have also
explicitly checked that adding in time evolution of λ does
not change our main results; see Sec. III D.
We must then specify how the five orbital elements Φ, ν,

γ̃, α, e evolve in time. We are interested in timescales
comparable to the radiation timescale, which is much larger
than the timescale of individual orbits. This means we can
consider evolution equations which take into account
(only) the averaged, secular change of these orbit elements.
The secular change of these (Newtonian) parameters

can roughly be divided in two parts: the Newtonian
corrections which arise due to the nonzero multipoles
(here, we consider S1, M2, S2, M3), and (mixed-order)
post-Newtonian corrections. The former are conservative in
nature and include standard effects such as Lense-Thirring
precession due to S1. The latter include dissipative effects
on the orbital frequency ν and eccentricity e due to
quadrupolar radiation,7 and the general relativistic preces-
sion of the angle of the periapsis γ̃. Note that the dissipative
effects are also dependent on the central object’s multipole
moments since these affect the (Newtonian) orbit that is

TABLE II. Summary of the 17 parameters of the EMRI inspiral. Note that when the large central black hole is a Kerr BH, it satisfies
M̃2 ¼ S̃2 ¼ M̃3 ¼ 0 and 0 ≤ S̃1 ≤ 1.

λ0 t0ð×1 mHzÞ Total inspiral orbit time
λ1 ln μ (log of) smaller object’s mass
λ2 lnM (log of) large, central BH’s mass
λ3 S̃1 ¼ S1=M2 Large BH’s dimensionless spin magnitude
λ4 e0 Final value (i.e., at LSO) of orbit eccentricity
λ5 γ̃0 Final value for γ̃ (the angle between L̂ × Ŝ and pericenter)
λ6 Φ0 Final value for mean anomaly Φ
λ7 μS ≔ cos θS (cosine of) source’s direction’s polar angle
λ8 ϕS Azimuthal direction to source
λ9 cos λ (cosine of) orbit inclination angle (L̂ · Ŝ)
λ10 α0 Final value of azimuthal angle α of L̂ in the orbital plane
λ11 μK ≔ cos θK (cosine of) polar angle of large BH spin
λ12 ϕK Azimuthal direction of large BH spin
λ13 lnðμ=DÞ (log of) smaller object’s mass divided by distance to source
λ14 M̃2 ¼ M2=M3 þ S̃21 Large BH’s dimensionless (mass) quadrupole moment
λ15 S̃2 ¼ S2=M3 Large BH’s dimensionless current quadrupole moment
λ16 M̃3 ¼ M3=M4 Large BH’s dimensionless mass octupole moment

6Note that this is slightly different from the parametrization of
Barack and Cutler [6], who took the (entire) dimensionless
quadrupole moment M2=M3 as parameter instead.

7Although note that we only take into account the effects of S1
on the orbit when considering the radiation corrections to e.
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used to calculate the average quadrupolar radiation. See Appendix B (and [3]) for more details. The evolution equations we
use are then

dΦ
dt

¼ 2πν; v ≔ ð2πMνÞ1=3; E ≔ ð1 − e2Þ−1=2; ð10Þ

dν
dt

¼ 96

10π

μ

M3
v11E9ffν;0ðeÞ þ v2fν;1ðeÞ − v3ES̃1fν;S1ðeÞ cos λ

−v4E4M̃2½fν;M2;1ðeÞð1þ 3 cos 2λÞ þ e2fν;M2;2ðeÞsin2λ cos 2γ̃� − v5E3S̃2e−1fν;S2ðeÞ sin 2λ sin γ̃
−v6E6M̃3e−1 sin λ½fν;M3;1ðeÞð3þ 5 cos 2λÞ sin γ̃ þ e4fν;M3;2ðeÞsin2λ sin 3γ̃�g; ð11Þ

dγ̃
dt

¼ 6πνv2E2

�
1þ 1

4
v2E2ð26 − 15e2Þ

�
þ πν

	
−12v3E3S̃1 cos λ −

3

4
v4E4M̃2ð3þ 5 cos 2λÞ

þ6v5E5S̃2e−1½ð1þ 5e2Þ cos 2λ − ð1þ 3e2Þ� cot λ sin γ̃

þ 3

32
v6E6M̃3e−1½ð5þ 35e2Þ cos 4λ − 4 cos 2λ − ð1þ 3e2Þ� csc λ sin γ̃



; ð12Þ

dα
dt

¼ πν

	
4v3E3S̃1 þ 3v4E4M̃2 cos λ − 12v5E5S̃2e csc λ cos 2λ sin γ̃ −

3

8
v6E6M̃3e cot λð−7þ 15 cos 2λÞ sin γ̃



; ð13Þ

de
dt

¼ −
e
15

μ

M2
v8E7

	
ð304þ 121e2Þð1 − e2Þð1þ 12v2Þ− 1

56
v2ðð8Þð16705Þ þ ð12Þð9082Þe2 − 25211e4Þ

−v3ES̃1
�
654þ 6000e2 þ 789

2
e4
�
cos λ



þ πν

	
6v5E3S̃2 sin 2λ cos γ̃ þ

3

8
v6E4M̃3 sin λð3þ 5 cos 2λÞ cos γ̃



: ð14Þ

The functions fiðeÞ are simple polynomials in the (squared)
eccentricity e2, which we give in Appendix B.
We derived the Newtonian effects of the multipoles Si,

Mi using the method of osculating elements; for more
details, see Appendix B. Note that our S1, M2-dependent
terms are different from those used by Barack and Cutler
[3,6] (although our S1 terms agree with Ryan [70], which
was not true for [3,6]); this is also explained in Appendix B.
We explicitly checked that our differing evolution equa-
tions do not change any of the conclusions or main
quantitative estimates of [3,6]. Note further that the S̃2,
M̃3 terms in de=dt are nondissipative, but arise simply from
the nonconservation (on a Newtonian level) of the orbital
angular momentum when the multipoles S2, M3 are non-
vanishing.8 In principle, de=dt should also have dissipative
terms proportional to M2, S2, M3 which we neglect (as in
[6] for M2). Finally, we note that the dissipative terms in
dν=dt and de=dt are correct up to 3.5PN order (i.e., 1 order
higher than 2.5PN, which is the leading order radiation
reaction); see [3]. At the order that the S̃2, M̃3 dissipative
terms in dν=dt arise, however, there should then also in

principle be additional competing terms at the same order.
These come from, for instance, higher-order multipolar
radiation such as octupolar radiation. We describe a test in
Sec. III D, inspired by [6], which nevertheless indicates the
robustness of our analysis even though we are not strictly
operating at a consistent PN order (as is characteristic for
kludge models).
Finally, we will set initial conditions for the system of

evolution equations at the approximate Schwarzschild last
stable orbit,

ν0 ¼ ð2πMÞ−1
�

1 − e20
6þ 2e0

�
3=2

: ð15Þ

This is conservative in that it is generally expected to
lead to an underestimate of the parameter estimation
accuracies [5].

C. Waveform and signal analysis

With a model for the orbital evolution in hand, we
construct the observed waveform based on the quadrupole
approximation for Newtonian binaries following Peters and
Matthews [71,72]. Concretely, this means the metric
perturbation is given by

8The multipoles S1, M2 also break conservation of orbital
angular momentum, but actually conserve this angular momen-
tum when averaged over orbits.
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hij ¼
2

D

�
PikPjl −

1

2
PijPkl

�̈
Ikl; ð16Þ

where Pij ¼ ηij − ninj with n the direction to the source,
and the inertial tensor, Iij ¼ μrirj, is expanded in harmon-
ics of ν as in [71]—see also [3].
To extract the LISA response from this waveform, we

project it onto the time-dependent LISA antenna pattern
functions, which are found for instance in [66].
Importantly, this means we now do take into account the
motion of LISA, in contrast to Sec. II. These choices, as
well as an implementation of Doppler modulation
due to the motion of LISA and a mode by mode reweighing
for a time-domain computation of the Fisher matrix (9), are
thus kept the same as in the work of Barack and
Cutler [3,6]. We have based our implementation of these
on code shared by the BLACK HOLE PERTURBATION

TOOLKIT [73], which in turn was modified from this
original work. The main difference in our signal analysis
is that we have used an updated noise curve [44] (as also
used in Sec. II).

D. Numerical and calculational checks

We mention here a number of robustness checks that we
performed on our calculations. For all of these checks, we
take as baseline simulation parameters those given in
Table III, unless otherwise specified.
In our main analysis, we keep the inclination angle λ

fixed, as in [3,6]. As mentioned above, dissipative effects
that alter λ during the evolution are small and can be
ignored [3,69]. However, for nonzero S̃2, M̃3, there are also
Newtonian precession effects that alter λ at a lower order
than the dissipative effects. The corresponding evolution
equation (B1) is given in the Appendix B. We checked that
including λ as a dynamical variable, using (B1) to evolve it
along the trajectory, does not alter our results significantly.
Specifically, for λ ¼ fπ=6; π=3; 2π=3; 5π=6g and the other
parameters chosen as in Table III, the result ΔM̃1 changes
at most by ≃2 × 10−5.
The presence of the 1=e terms in the evolution equations

may seem worrying for low-eccentricity orbits.9 Of course,
these terms are physical, and the e → 0 divergence is an
artifact of the ill-suitedness of the orbital elements to
describe circular orbits. As long as S̃2=e and M̃3=e remain
small, we expect our linear-order multipole analysis to
remain valid. Nevertheless, we have also checked that our
evolution equations and their results are robust despite the
1=e terms, by redoing the analysis with the evolution
equations modified by deleting (by hand) (a) the 1=e terms

in dν=dt (which are dissipative), (b) the 1=e terms in dν=dt
and the Newtonian precession 1=e terms in dγ̃=dt. We
performed both checks (a) and (b) for the simulation
parameters in Table III and for eccentricities e ¼ 0.1,
0.01, 0.3. The check (a) gives barely any change at all;
by contrast, the error deteriorates to ΔM̃1 ≃ 10−1 for (b)—
this shows that the Newtonian precession effect on γ̃ is
relatively important to distinguish equatorial symmetry
breaking.
We also repeated the “post-Newtonian robustness check”

of [6], checking that deleting the highest PN-order dis-
sipative terms in the evolution equations [i.e., the Oðv13Þ
term in (11), the Oðv4M̃0

2Þ terms in (12), and the Oðv10Þ
term in (14)] does not affect our results significantly. For
example, repeating the simulation of Table III without these
higher-order PN terms, the measurement accuracy on the
multipoles ΔS̃1, ΔM̃2, ΔM̃1 changes at most by a factor
of 2.
Finally, we have implemented the analysis with higher

precision arithmetic in order to be able to confidently
establish the convergence of the numerical derivatives used
to compute the Fisher information matrix (9). In addition, it
is well known that such Fisher matrices are typically not
well conditioned. It is not uncommon to find condition
numbers of order 1019, although this can generally be
reduced by judicious rescalings. Therefore, we have
checked that the inversion is robust with respect to, for
instance, the variations induced when varying the step size
of the numerical derivative. The same is true when
using a different inversion method, based on singular-value
decomposition. An exception is when parameters are
strongly degenerate (e.g., the angles θK , ϕK , λ when
S → 0), but even then, the inversion is robust for
other parameters such as the masses and the multipoles.
We defer more quantitative details on these checks to
Appendix C.

TABLE III. The measurement accuracies for a number of
parameters related to the smaller object’s orbit (μ, e0, cos λ,
γ0) and the properties of the larger black hole (M, S̃1, M̃2, M̃1) for
an SNR of 30. The large black hole parameters for this simulation
are M ¼ 106 M⊙, S̃1 ¼ S1=M2 ¼ 0.25, M̃2 ¼ M2=M3 þ S̃21 ¼ 0
and the equatorial symmetry breaking parameter is set to
M̃1 ¼ 0. The small black hole’s orbit parameters are given by
μ ¼ 1 M⊙, e0 ¼ 0.1, together with the angles γ̃0 ¼ α0 ¼ Φ0 ¼ 0
and λ ¼ π=3. The other angles are ðθS;ϕS; θK;ϕKÞ ¼
ð2π=3; 5π=3; π=2; 0Þ.
Δðln μÞ Δðe0Þ Δðcos λÞ Δγ̃0
7.4 × 10−4 3.9 × 10−4 9.04 × 10−3 2.4 × 10−1

ΔðlnMÞ ΔS̃1 ΔM̃2 ΔM̃1

8.2 × 10−4 7.0 × 10−4 4.4 × 10−3 1.8 × 10−2

9The ≃λ−1 divergences in the evolution equations could
similarly be worrying. However, we keep λ fixed for most of
our analyses, and moreover checked that varying λ according to
its Newtonian evolution equation (B1) does not qualitatively
affect the results.
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IV. MEASURING EQUATORIAL SYMMETRY
BREAKING WITH LISA

The analytic kludge formalism for EMRIs, pioneered by
Barack and Cutler [3,6], and expanded here by us to include
effects of odd-parity multipoles S2, M3 that break equato-
rial symmetry, was introduced in the previous section. We
now use this formalism to simulate candidate EMRI events
of which LISA detects one year of data before the final
plunge. These simulations and their Fisher analysis then
give us the accuracy to which we estimate LISAwill be able
to detect or constrain equatorial symmetry breaking of the
central, supermassive black hole.
We introduce a single dimensionless parameter M̃1 to

parametrize equatorial symmetry breaking:

M̃1 ≔ S̃2 ¼ M̃3: ð17Þ

In this way, we artificially “link” the value of the two odd-
parity multipoles S2, M3 to a single value—this is actually
relatively natural if the breaking of equatorial symmetry is
due to the black hole having effectively a “gravitational
dipole moment” such as in string theory black holes [11–
13]. A prototypical result for the measurement accuracies
of some of the EMRI parameters is given in Table III (see
the caption for the specific simulation parameters used). We
always take the reference simulation parameters, at which
(9) is computed, of the large black hole to be those of Kerr,
i.e., M̃2 ¼ M2=M3 þ S̃21 ¼ 0 and S̃2 ¼ M̃3 ¼ 0.
For the particular simulation in Table III at a signal-to-

noise ratio (SNR) of 30, we project LISA can measure or
rule out equatorial symmetry breaking to ≃1.8%. Note that
an SNR of ∼30 corresponds roughly to the estimated
detection threshold for EMRIs [74], although in ideal
conditions SNR ≃ 15 might be sufficient [75]. Therefore,
our estimate covers the weaker end of detectable signals
and could actually be improved by an order of magnitude
for a lucky “golden” EMRI. In addition, our result is rather

robust; the rest of this section is dedicated to discussing
how (little) it changes when the simulation parameters are
varied.10 We also present tables of results for simulations
with many other parameters in Appendix C 2 for reference.
The choice of angles θS, ϕS, θK , ϕK , λ does not qualita-

tively alter the result forΔM̃1. We confirmed this by keeping
all parameters fixed to their values as in Table III and varying
these angles one by one, considering (inspired by the values
analyzed in [6]): θS ¼ fπ=6; π=2g, ϕS ¼ f0; π=3g, θK ¼
fπ=20; 3π=4g, ϕK ¼ fπ=2; πg, and λ ¼ fπ=6; 2π=3;
5π=6g. Varying these angles affected the result ΔM̃1 (com-
pared to that of Table III) at most by a factor of 2.
We considered the effects of varying the parameters M,

μ, e0, S̃; we simulated all combinations of the values M ¼
f105; 106g M⊙, μ ¼ f1; 10g M⊙, e0 ¼ f0.01; 0.1; 0.3g,
S̃1 ¼ f0; 0.25; 0.5; 0.75g, except certain e0 ¼ 0.3 trajecto-
ries which led to too high eccentricities along the trajectory.
How the measurement accuracy varies with these param-
eters is summarized in Figs. 1 and 2. As we see from Fig. 1,
the accuracy ΔM̃1 is essentially insensitive to varying S̃1,
and μ and M affect the result minimally.
The (initial) eccentricity e0 seems to have the largest

effect on ΔM̃1, as shown in Fig. 2 (where we have also
included additional data points): low initial eccentricities
≃0.01 lead to much better measurement accuracies
ΔM̃1 ≃ 10−3.11 On the other hand, higher eccentricity
orbits e0 ≃ 0.3 lead to poorer measurement accuracies

(a) (b)

FIG. 1. The measurement accuracyΔM̃1 for equatorial symmetry breaking, for varying values ofM, μ, S̃1; with e0 ¼ 0.1 (and all other
parameters kept fixed to their values of Table III).

10We will not discuss varying the unimportant initial param-
eters γ̃0, Φ0, α0. The distance is always fixed by setting
SNR ¼ 30.

11This may seem suspect, and in particular a consequence of
the ∼1=e terms in the evolution equations (10)–(14). However, as
mentioned in Sec. III D, we explicitly checked that “leaving out”
these 1=e terms does not alter the result significantly. Note that,
for example, theOðe−1Þ and theOðeÞ terms in (11)—see fν;S2ðeÞ
in (B6)—are of the same order for e ¼ 0.1; 3=e ≈ 30 and
ð209=2Þe ≈ 10.5.
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ΔM̃1 ≃ 10−1. Note that this analytic kludge analysis is not
reliable for high eccentricities [3,6], so we cannot extrapo-
late our results to arbitrary high eccentricities.
Finally, we also considered the case where S̃2, M̃3 are

separate parameters, and not “linked” by M̃1 ¼ S̃2 ¼ M̃3.
We find that including S2 alone yields results comparable
(roughly within 10%) to the combined analysis. However,
including independently M3 can significantly worsen
individual measurement accuracies. As such, in future
analysis, it might be advisable to focus on S2 but, rather
than taking the results at face value for this particular
multipole, consider it a proxy for the capability of LISA to
detect equatorial symmetry breaking.

V. DISCUSSION

From our analysis, it follows that LISA will be able to
perform, by astrophysical standards, a precision test of
equatorial symmetry breaking with EMRIs. The effects of
odd-parity (dimensionless) multipoles such as S̃2 can be
measured to within 10−2 for a large range of EMRI
parameters. The conclusion is clear: LISA will test the
symmetry of black holes, an elementary prediction of
general relativity, and place constraints on the breaking
of equatorial symmetry at the percent level.
It is remarkable that LISA will be able to measure this

potentially smoking-gun signal of beyond-GR physics.
Odd-parity multipoles such as S2 are higher order and
their effects are even further suppressed around too
symmetric (quasi)equatorial orbits, so the naive expectation
could be that measuring them very precisely would not be
possible. However, we find here that this is not the case;
robust and precise measurements of these multipoles are
possible.
Given the rough nature of both the waveform used in this

work (analytic kludge) as well as the data analysis
technique (Fisher analysis), there is still a lot of room
for potential improvement of the estimates of measurement

accuracies we calculated here. First, a full Bayesian
analysis should be conducted to assess the detectability
of equatorial symmetry breaking, possibly with the incor-
poration of a realistic EMRI population model. Second, on
the level of waveforms, significant improvements will
likely require further assumptions about the nature of the
equatorial symmetry breaking. A more complete picture of
the relevant supermassive black hole spacetime is needed,
given the reliance on gravitational waves from the highly
relativistic region close to the horizon. Fortunately, as we
have mentioned, there is no shortage of beyond-GR models
in which equatorial symmetry breaking occurs. Below, we
briefly discuss how our work gives a rough estimate on how
such models can be constrained. However, as mentioned,
an in-depth, model-specific analysis (and one that is more
suited to the highly relativistic region close to the horizon)
would likely be able to improve such constraints
considerably.

A. Constraining beyond-GR physics

We mentioned in Sec. I that many models of beyond-GR
physics give rise to equatorial symmetry breaking. Since
LISA can constrain S̃2 ¼ S2=M3 to within 10−2, we can
also wonder how well this would constrain such models.
Here, we give one example of such a model, to give an
example of how big equatorial symmetry breaking can be
in certain beyond-GR models, and how the constraint LISA
on equatorial symmetry breaking can then constrain these
models.
We consider the family of almost-BPS black holes of

[12].12 These have multipoles determined by a single
parameter h; the lowest-order nontrivial multipoles M2,
S2 are given by [12]

(a) (b)

FIG. 2. The measurement accuracy ΔM̃1 for equatorial symmetry breaking, for varying values of M, μ, e0; with S̃ ¼ 0.25 (and all
other parameters kept fixed to their values of Table III).

12Parameters of other, more general string theory black holes
that break equatorial symmetry [11] can be similarly constrained.
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MðaBPSÞ
2 ¼ −M

�
S1
M

�
2
�
1 − h2

h2

�
;

SðaBPSÞ2 ¼∓ 2S1

�
S1
M

��
1 − h2

h2

�
1=2

: ð18Þ

We can set h−1 ¼ ffiffiffi
2

p
to fix M2 to be the Kerr value

M2 ¼ −S21=M. (Since we expect to be able to measure
M2=M3 to within 10−2–10−4 [6], this is a reasonable first
analysis.) In this case, we find

SðaBPSÞ2

M3
¼∓ 2

S21
M4

: ð19Þ

Our results then imply that such black holes can be ruled
out (or detected) with LISA EMRIs as long as the central
object has a spin S̃1 ¼ S1=M2 ≳ 0.1.
Other beyond-GR models can be similarly constrained.

For example, higher-derivative corrections to GR can be
divided into even-parity and odd-parity corrections. As
mentioned in Sec. I, the odd-parity corrections give rise to
equatorial symmetry-breaking corrections to the Kerr
metric. In terms of multipoles, to linear order in the
higher-derivative correction parameters, only the even-
parity corrections contribute to deviations of M2 from its
Kerr value, while only the odd-parity corrections contribute
to S2 ≠ 0. The analytic kludge EMRI estimate of measuring
M2 as discussed by Barack and Cutler [6], and measuring
S2 as discussed here, then give a rough estimate of
constraining both types of higher-derivative corrections
[76]. However, note that the analytic kludge does not
capture the dynamical modifications to gravity due to the
higher-derivative corrections, so a more model-specific,
dynamical analysis is necessary (such as in [8]) for a more
accurate estimate of the constraints.
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APPENDIX A: DETAILS OF NEAR-CIRCULAR,
NEAR-EQUATORIAL ANALYSIS

In this Appendix, we provide further details for the near-
circular, near-equatorial analysis discussed in Sec. II.
Effectively, this will follow the seminal work of Ryan
[17,38,77] with the crucial difference that reflection sym-
metry across the equatorial plan is not imposed.
First, in absence of radiation reaction, one can determine,

in a large separation expansion, the properties of near-
equatorial circular orbits by studying geodesics in an
axisymmetric spacetime of a specified multipole structure:

ds2 ¼ −Fðr; ξÞðdt − ωðr; ξÞdϕÞ2

þ 1

Fðr; ξÞ ðe
2γðr;ξÞðdr2 þ r2dξ2Þ þ r2sin2ξdϕ2Þ:

ðA1Þ

Similar to [17], we find it most convenient to determine
the functions F, γ, ω starting from a complex function Ξ̃
related to the Ernst potential E [78],

E ¼ F þ iψ ¼ r − Ξ̃
rþ Ξ̃

; ðA2Þ

where the real part of the Ernst potential is the F appearing
in (A1). One then has [17]

ω ¼ −
Z

∞

ρ

ρ0

F2

∂ψ

∂z
dρ0; ðA3Þ

and

γ¼1

4

Z
∞

ρ

ρ0

F2

��
∂F
∂ρ

�
2

þ
�
∂ψ

∂ρ

�
2

−
�
∂F
∂z

�
2

−
�
∂ψ

∂z

�
2
�
dρ0;

ðA4Þ

using z ¼ r cos ξ and ρ ¼ r sin ξ. Now, expanding Ξ̃ as13

Ξ̃ ¼
X∞
j;k¼0

ajk
sinjξcoskξ

rjþk ; ðA5Þ

all coefficients ajk are determined in terms of aj0 and aj1 by
means of the recurrence relation (24) in [17], see also [81–
83]. Finally, the Ernst potential can in turn be related to the
multipole moments, in the formulation of Geroch-Hansen
[81,84,85], which can thus be fixed by the coefficients ajk.
We do not repeat the procedure here; it can again be found
in Sec. III (D) of [17], or is alternatively described in
e.g., [81,83].

13At this point reflection symmetry would be characterized by
reality of ajð2kÞ while ajð2kþ1Þ are purely imaginary [79,80].
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Having fixed (A1) in this way in terms of its multipole moments up to the desired order, one can then straightforwardly
look for solutions of the geodesic equation with constant r and ξ. Expressing those in terms of the frequency 2πν ¼ dϕ

dt or
equivalently v ¼ ð2πνMÞ1=3, one finds the results quoted in the main text (3) and

r ¼ Mv−2
	
1 − v2 −

2S1
3M2

v3 þ v4
�
−
1

2
−

M2

2M3

�
þ v6

�
−
1

2
−
5M2

6M3
−

4S21
9M4

�


þMv−2
	
−v7

�
S1
3M2

þ 4M2S1
3M5

−
S3
M4

�
þ v8

�
−
5

8
−
25M2

14M3
−
3M2

2

4M6
þ 5M4

8M5
−

29S21
28M4

�


−Mv7
�
2S1
3M2

þ 40M2S1
9M5

þ 40S31
81M6

−
10S3
3M4

�

þMv8
�
−
7

8
−
25M2

6M3
−
19M2

2

6M6
þ 21M4

8M5
−
115S21
36M4

−
28M2S21
9M7

þ 19S22
2M6

þ 8S1S3
3M6

�

−Mv9
�
11S31
6M6

þ 9M2
2S1

2M8
þ 73M2S1

6M5
−
5M4S1
2M7

þ 5S1
4M2

−
12M3S2
M7

−
3M2S3
M7

−
53S3
6M4

þ 5S5
4M6

�

þMv10
�
−

160S41
243M8

−
257309M2S21
16632M7

−
471S21
56M4

þ 2609S3S1
198M6

−
11M3

2

6M9
−
6980M2

2

693M6

�

þMv10
�
15M2

3

4M8
þ 23789S22

792M6
−
9899M2

1008M3
þ 5M2M4

2M8
þ 4355M4

528M5
−
35M6

48M7
−
21

16

�
: ðA6Þ

Similarly, one can find the associated energy and angular momentum (the conserved charges associated to the Killing
vectors ∂t and ∂ϕ). For easy comparison with [17], we instead quote the variation with frequency ΔE ¼ −ν dE

dν:

ΔE
μ

¼ v2

3
−
v4

2
þ20S1
9M2

v5þv6
�
−
27

8
þM2

M3

�
þ28S1
3M2

v7þv8
�
−
225

16
þ 80S21
27M4

þ70M2

9M3

�

þv9
�
81S1
2M2

þ6M2S1
M5

−
6S3
M4

�
þv10

�
−
6615

128
þ935M2

24M3
þ35M2

2

12M6
−
35M4

12M5
þ115S21
18M4

�

þv11
�
165S1
M2

þ968M2S1
27M5

þ1408S31
243M6

−
352S3
9M4

�

þv12
�
−
45927

256
þ9147M2

56M3
þ93M2

2

4M6
−
99M4

4M5
−
123S21
14M4

þ24M2S21
M7

−
57S22
M6

−
24S1S3
M6

�

þv13
�
20475S1
32M2

þ32435M2S1
252M5

þ260M2
2S1

9M8
−
325M4S1
18M7

þ15080S31
567M6

−
6305S3
36M4

þ65M2S3
3M7

�

þv13
�
−
65M3S2
M7

þ65S5
6M6

�
þv14

�
8624S41
729M8

þ13766M2S21
81M7

−
77995S21
432M4

−
161S3S1

M6
þ385M3

2

36M9

�

þv14
�
100411M2

2

864M6
þ2160829M2

3456M3
−
385M2M4

24M8
−
38045M4

288M5
þ385M6

72M7
−
617463

1024

�
þv14

�
−
77M2

3

4M8
−
18577S22
54M6

�
: ðA7Þ

(This expression can be compared to the similar, less general expression in [35] for the Kerr-NUT spacetime; note that there,
S0 ≠ 0, so asymptotic flatness is broken along with equatorial symmetry.)
These results can now be further combined with the quadrupole emission (6), in an adiabatic approximation, to find the

frequency-domain phase ψðfÞ in (7). In particular [39],

ψðfÞ ¼ 2πft� − ϕ� þ 2π

Z
f�

f
ðf − f0Þ dE

df

�
dE
dt

�
−1
df0 −

π

4
; ðA8Þ

where one should take care to use the gravitational wave frequency f ¼ 2ν, and t�, ϕ� are a reference time and phase. The
leading order corrections due to the equatorially asymmetric multipole moments can then be found to be (8) while for the
others they are given by [38]
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δψ sym ¼ 3

128

�
M
μ

�
ðπMfÞ−5=3

�
−

X
even l≠4

ð−1Þl=240ð2lþ 1Þðlþ 1Þ!!ðπMfÞ2l=3
3ð2l − 5Þðl − 4Þl!!

Ml

Mlþ1

�

þ 3

128

�
M
μ

�
ðπMfÞ−5=3

�
−

X
odd l≥3

ð−1Þðl−1Þ=280ð2lþ 5Þl!!ðπMfÞð2lþ1Þ=3

3ðl − 2Þð2l − 7Þðl − 1Þ!!
Sl

Mlþ1

�

þ 3

128

�
M
μ

�
ðπMfÞ−5=3

�
−50

M4

M5
ðπMfÞ8=3 ln πMf þ 113

3

S1
M2

ðπMfÞ
�
; ðA9Þ

where one should take care to also include the current
quadrupole radiation reaction for S1.
We use the LISA sensitivity curve as given in [44]:

SnðfÞ ¼
10

3L2

�
2ð1þ cos2ðf=f�ÞÞ

SIðfÞ
ð2πfÞ4 þ SIIðfÞ

�

×

�
1þ 6

10

�
f
f�

�
2
�
þ ScðfÞ; ðA10Þ

with14 L ¼ 2.5 Gm, f� ¼ 19.09 mHz and

SIðfÞ ¼ ð3 × 10−15 ms−2Þ2
�
1þ

�
0.4 mHz

f

�
2
�

×

�
1þ

�
f

8 mHz

�
4
�

Hz−1; ðA11Þ

SIIðfÞ ¼ ð1.5 × 10−11 mÞ2
�
1þ

�
2 mHz

f

�
4
�

Hz−1;

ðA12Þ

ScðfÞ ¼ Aðf=HzÞ−7=3e−ðf=HzÞαþβðf=HzÞ sin ðκf=HzÞ

× ð1þ tanhðγðfk − f=HzÞÞÞ Hz−1; ðA13Þ

where the confusion noise ScðfÞ was estimated in [86]. We
use here the four year values of the associated parameters

A ¼ 9 × 10−45; α ¼ 0.138; β ¼ −221;

κ ¼ 521; γ ¼ 1680; fk ¼ 0.00113: ðA14Þ

APPENDIX B: DERIVING THE ANALYTIC
KLUDGE EVOLUTION EQUATIONS

In this Appendix, we give the details of how we arrived
at various elements of the evolution equations (10)–(14).
Note that the frequency ν is essentially defined via the
evolution equation (10) of the mean anomaly Φ, which
covers an angle of precisely 2π between pericenter
passages.

1. Overview and discussion

The ≤ 3.5PN nonmultipolar dissipative terms in dν=dt
[terms on first line of (11) proportional to fν;0ðeÞ and
fν;1ðeÞ], and de=dt [first line of (14)], as well as the 2PN
expression for dγ̃=dt [the term partially enclosed by square
brackets in the first line of (12)] were taken directly from
[3] and were originally given in [87]; we do not rederive
these. The dissipative radiation terms proportional to S̃1 [on
the first line of (11) for dν=dt and the second line of (14) for
de=dt] were derived by Ryan [70]. We rederive and
confirm here (see below) the dissipative S̃1 term in (11)
but not that in (14), although it would be straightforward to
generalize our methods to rederive this as well. Note that
the S̃1 dissipative terms we give here are indeed compatible
with [70], whereas the terms in Barack and Cutler [3,6] are
actually not: [3,6] do not account for the shift in the
definition of the parameter a in [70] with respect to the
energy and thus the orbital frequency [see Eqs. (6), (11),
(14), (15) in [70]].
All other termswere (re)derived by us using themethod of

osculating elements with multiscale evolution; see Sec. B 2.
In this way, we arrive at the conservative, secular “pre-
cession” effects which are given in the entire expression of
dγ̃=dt in (12) except the term partially enclosed by square
brackets in the first line, the entire expression for dα=dt in
(13), and the second line in de=dt in (14) except the term

TABLE IV. The errors for the different parameters in the
waveform model (7) when including multipole moments indi-
vidually given one year of LISA observation before the ISCO for
SNR ¼ 30, assuming the multipoles vanish, M ¼ 105 M⊙ and
μ ¼ 10 M⊙. We abbreviate log10ð…Þ ¼ Lð…Þ and S̃l ¼ Sl

Mlþ1,

M̃l ¼ Ml

Mlþ1.

x LðΔt�Þ LðΔϕ�Þ LðΔμ=μÞ LðΔM=MÞ LðΔS̃1Þ LðΔxÞ
M̃2 2.5 2.3 −2.9 −3.1 −2.8 −3.2
S̃3 2.4 2.3 −2.9 −3.1 −2.8 −2.8
M̃4 2.5 2.3 −2.9 −3.1 −2.8 −2.2
S̃2
2 3.1 2.6 −2.6 −2.8 −2.5 −1.0

S̃5 2.4 2.4 −2.9 −3.1 −2.7 −1.3
M̃3S̃2 2.4 2.4 −2.9 −3.1 −2.7 −2.1
M̃6 2.5 2.4 −2.8 −3.1 −2.7 −0.4
M̃2

3 2.5 2.4 −2.8 −3.1 −2.7 −1.0
14These expressions are only used explicitly here so duplicate

definitions should not cause any confusion.
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proportional to S̃1. Note that our M̃2 contribution to dγ̃=dt
has a different λ dependence than given in [3,6]; however,
our terms are consistent with [88].
This method also gives Newtonian, secular effects for an

average evolution dλ=dt, which we ignore in the evolution
(10)–(14). For completeness, we give the result here:

dλ
dt

¼ πν

	
−12v5E5S̃2e−1cos2λ cos γ̃

−
3

8
v6E6M̃3e−1 cos λð3þ 5 cos 2λÞ cos γ̃



: ðB1Þ

As discussed in Sec. III D, we explicitly checked that
including additionally evolving λ using (B1) does not alter
our results appreciably.
The dissipative terms can also be calculated using the

osculating elements (see Sec. B 2). In this way, we obtain
the multipolar dissipative terms in (11) for dν=dt [all
contributions except those proportional to fν;0ðeÞ,
fν;1ðeÞ]. The functions fiðeÞ in (11) are given by

fν;0ðeÞ ¼
�
1þ 73

24
e2 þ 37

96
e4
�
ð1 − e2Þ; ðB2Þ

fν;1ðeÞ ¼
1273

336
−
2561

224
e2 −

3885

128
e4 −

13147

5376
e6; ðB3Þ

fν;S1ðeÞ ¼
193

12
þ 647

8
e2 þ 1171

32
e4 þ 65

64
e6; ðB4Þ

fν;M2;1ðeÞ ¼
7

4
þ 821

192
e2 −

1855

192
e4 −

2979

512
e6 −

59

256
e8;

ðB5Þ

fν;M2;2ðeÞ ¼
897

64
−
1919

192
e2 −

31055

1536
e4 −

79

64
e6; ðB6Þ

fν;S2ðeÞ¼3þ209

2
e2þ2097

8
e4þ8951

96
e6þ685

256
e8; ðB7Þ

fν;M3;1ðeÞ ¼
1

8
þ 373

48
e2 þ 1367

128
e4 −

26869

1024
e6 −

100637

8192
e8 −

6473

16384
e10 þ 683

196608
e12

þ 67

49152
e14 þ 175

262144
e16 þOðe18Þ; ðB8Þ

fν;M3;2ðeÞ ¼
18595

768
−
78145

6144
e2 −

247775

12288
e4 −

12455

12288
e6:

ðB9Þ

The dissipative term in dν=dt proportional to S̃1 is not the
same as that given in [3,6], but is precisely equivalent to that
found by Ryan [70], as mentioned above. The term in dν=dt
proportional to M̃2 is also different than that in [6]: in [6], this
termwas taken from theKerr value given in [57]. However, in
any case, this term from [57] is only accurate toOðλ0Þ (as also
mentioned in [6]), and moreover mixes contributions from
M2 and−S21=M as these are indistinguishable inKerr. Indeed,
for near-circular, near-equatorial orbits (e ¼ λ ¼ 0) the
coefficient 33=16 given in dν=dt in [6] [Eq. (5) therein] is
clearly amixof a contribution of 2 fromM2 anda contribution
of 1=16 from −S21=M—see e.g., Eq. (55) in [17].
It is in principle possible to redefine the parameters (such

as e) that we are using to parametrize the orbits. Such a
redefinition could shift the actual coefficients appearing in
the evolution equations. For example, if we shift e →
e½1þ S1ðc0 þ c2e2 þ � � �Þ� with arbitrary constants ci, then
all of the Oðe2Þ and higher order coefficients would
change. Such a redefinition could then be interpreted to
be the source of the discrepancies between our coefficients
and those of [3,6]. However, while this reasoning could in
principle apply for the e-dependent terms, it is reasonable

to demand that the e → 0 limit remains well defined and
finite. This means the Oðe0Þ term can never be altered,
and also this term does not match between our expressions
and those of [3,6]. The fact that our calculations give the
same expressions for the S1 terms as in Ryan [70] shows
that our definitions of parameters (including e) are com-
patible with those of [70] [see Eqs. (2) and (6) therein].
Finally, we discuss briefly some of the more peculiar

features of the S2,M3 terms in the evolution equations (11)–
(14). We notice that the odd-parity terms in dν=dt all have a
∝ sin λ dependence, which is consistent with there being no
such term linear in the odd-parity multipoles in the near-
equatorial analysis of Sec. II. The dependence on ∝ csc λ in
other evolution equations gives a divergence as λ → 0; there
are also divergences as e → 0. However, these divergences
are an artifact of the parametrization using orbital elements,
which are not alwayswell suited for orbitswith λ ∼ 0 or e ∼ 0.
In particular, the divergence as λ → 0 for the S2,M3 terms are
simply reflecting the fact that the orbiting object must
experience a finite force in the z direction when its orbit is
(temporarily) aligned with the equatorial plane. The diver-
gence as e → 0 can be thought of physically as if the object is
“chasing” its ownperihelionduring its orbitwhen eccentricity
is very low, resulting in a ∼1=e divergence in dγ̃=dt. In
addition, this results in the period (which is defined between
perihelion passes) diverging as ∼1=e, which in turn features
as a ∼1=e divergence in the radiation dissipation (in dν=dt).
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2. Method

Here, we describe the method of osculating elements with multiscale evolution. This is described in [68], Secs. 3.3 and
12.9; we summarize the key elements here. The following relations between the object’s distance r to the central object, and
the parameters p, e are explicitly kept fixed:

r ¼ p
1þ e cosψ

; p ¼ að1 − e2Þ; h ¼
ffiffiffiffiffiffiffiffi
Mp

p
; ðB10Þ

where ψ is the true anomaly and h is the orbital angular momentum. The position and velocity of the orbiting object are
parametrized by r⃗Kepler ≡ ðx; y; zÞ and v⃗Kepler ≡ ðvx; vy; vzÞ with

x ¼ rðcos α cosðγ̃ þ ψÞ − cos λ sin α sinðγ̃ þ ψÞÞ;
y ¼ rðsin α cosðγ̃ þ ψÞ þ cos λ cos α sinðγ̃ þ ψÞÞ;
z ¼ r sin λ sinðγ̃ þ ψÞ;

vx ¼ −

ffiffiffiffiffi
M
p

s
ðcos αðsinðγ̃ þ ψÞ þ e sin γ̃Þ þ cos λ sin αðcosðγ̃ þ ψÞ þ e cos γ̃ÞÞ;

vy ¼
ffiffiffiffiffi
M
p

s
ðsin αðsinðγ̃ þ ψÞ þ e sin γ̃Þ − cos λ cos αðcosðγ̃ þ ψÞ þ e cos γ̃ÞÞ;

vz ¼
ffiffiffiffiffi
M
p

s
sin λðcosðγ̃ þ ψÞ þ e cos γ̃Þ; ðB11Þ

which further define γ̃, α, λ. The orbital elements μ̃a ¼ ðp; e; λ; α; γ̃;ψÞ completely define the orbit. For a purely
(unperturbed) Newtonian orbit, all elements except ψ would be constants. Since we are perturbing the orbit (by the
multipoles of the central, gravitating object), we allow these to be explicit functions of time. We then use

r⃗ ¼ r⃗Keplerðt; μ̃aÞ; v⃗ ¼ v⃗Keplerðt; μ̃aÞ; ðB12Þ
to describe the orbit’s position and velocity along the perturbed orbit. In order for these to be compatible, we must have

X
a

∂rKepler
∂μ̃a

dμ̃a

dt
¼ 0;

X
a

∂vKepler
∂μ̃a

dμ̃a

dt
¼ fperturb; ðB13Þ

where fperturb ¼ f − fKepler is the perturbing force. These give six constraints, entirely fixing the first order evolutions of μa.
Explicitly, the linear order equations are [see [68], (3.69) and (3.70)]:

dp
dψ

¼ 2
p3

GM
1

ð1þ e cosψÞ3 S; ðB14Þ

de
dψ

¼ p2

GM

�
R

sinψ
ð1þ e cosψÞ2 þ

2 cosψ þ eð1þ cos2ψÞ
ð1þ e cosψÞ2 S

�
; ðB15Þ

dλ
dψ

¼ p2

GM

�
cosðγ̃ þ ψÞ

ð1þ e cosψÞ3W
�
; ðB16Þ

sin λ
dα
dψ

¼ p2

GM

�
sinðγ̃ þ ψÞ

ð1þ e cosψÞ3 W
�
; ðB17Þ

dγ̃
dψ

¼ 1

e
p2

GM

�
−R

cosψ
ð1þ e cosψÞ2 þ

2þ e cosψ
ð1þ e cosψÞ3 S sinψ − e cot λ

sinðγ̃ þ ψÞ
ð1þ e cosψÞ3W

�
; ðB18Þ

dψ
dt

¼
ffiffiffiffiffiffiffiffi
GM
p3

s
ð1þ e cosψÞ2 þ 1

e

ffiffiffiffiffiffiffiffi
p

GM

r �
R cosψ −

2þ e cosψ
1þ e cosψ

sinψS
�
; ðB19Þ
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where the projections of the perturbation force fperturb are
defined as (these are respectively the component along the
separation vector, the one orthogonal to this in the orbital
plane and the one along the orbital angular momentum)

S¼ f⃗perturb ·
r⃗
r
; W¼ f⃗perturb ·

�
h⃗
h
×
r⃗
r

�
; R¼ f⃗perturb ·

h⃗
h
:

ðB20Þ

If we simply integrate these evolution equations “as is,”
the solutions will have terms ∼ψ (i.e., not sinψ or cosψ )
which indicate a slow, secular evolution over timescales
larger than the orbit. To take these into account more
consistently and systematically, it is useful to introduce a
multiscale evolution. The five evolution equations (B14)–
(B18) can be written schematically as

dμa

dψ
¼ ϵFaðμb0;ψÞ; ðB21Þ

where Fa is the right of the evolution equations and
μa ¼ ðp; e; λ; γ̃; αÞ are the five orbit elements excluding
ψ ; the parameter ϵ is the small parameter that governs the
perturbing force.
We then introduce a “slow scale” ψ̃ ≔ ϵψ , so that the

“total” ψ derivative becomes

d
dψ

¼ ∂

∂ψ
þ ϵ

∂

∂ψ̃
; ðB22Þ

and we can then expand the orbital elements to first order as

μa ¼ μa0ðψ̃Þ þ ϵðμ1;oscðψ ; ψ̃Þ þ μ1;secðψ̃ÞÞ þOðϵ2Þ: ðB23Þ

Note that F ¼ Fðμa0;ψÞ only depends on the slow scale ψ̃
through μa. Using that ∂μa0=∂ψ ¼ 0, μa0 and μa1;osc are then
determined by [see [68], Eqs. (12.235) and (12.237)]

∂μa0
∂ψ̃

¼ 1

2π

Z
2π

0

dψ Faðμb0;ψÞ; ðB24Þ

μa1;osc ¼
Z

dψ
�
Faðμb0;ψÞ −

∂μa0
∂ψ̃

�
: ðB25Þ

The expansion has been constructed in such a way that
μ1;osc is precisely the OðϵÞ piece that is periodically
oscillating in ψ . At OðϵÞ the secular part μ1;sec is an
“integration constant” from the perspective of the integral
over ψ that determines μ1;osc, but, at higher order, it will
again be fully determined by F [see [68], Eq. (12.238)]. We
will simply restrict ourselves to the leading secular (not
fast-oscillating) part of the orbit elements, μa ≈ μa0 , so that
μa0 is the obvious and natural choice to parametrize the
evolution—in other words, the e, λ, γ̃, α appearing in the

evolution equations (11)–(14) are precisely these quan-
tities μa0 .
We will also need the period of the orbit, which to OðϵÞ

is given by

T ¼ T0 þ ϵT1 ¼
Z

2π

0

dψ

�
dt
dψ

�
ðμa;ψÞ; ðB26Þ

where we need to integrate using the entire expres-
sion (B23).
We are interested in the averaged change of the orbital

elements over timescales of multiple periods. Then, the ψ̃
dependence of μa0 is the only important contribution to
OðϵÞ. (Since μa1;osc is periodic in ψ , it does not contribute to
the averaged, secular evolution.) The averaged, secular
change in time of an element is then given to OðϵÞ by�

dμa

dt

�
ave

¼ ϵ
2π

T0

∂μa0
∂ψ̃

; ðB27Þ

where T0 is the Oðϵ0Þ period in (B26). This directly gives
the conservative, secular “precession” effects in dμa=dt in
(12)–(14) and (B1) for the multipolar deformations given
by the Lagrangian deformation:

δL ¼ −2μS1
sin θ2 _ϕ

r
þ μM2

P2ðcos θÞ
r3

− 6μS2
cos θ sin θ2 _ϕ

r2
þ μM3

P3ðcos θÞ
r4

; ðB28Þ

where each of the Si, Mi are taken to be OðϵÞ, and we are
using spherical coordinates where the spin S1 is oriented
along the z axis. Note that the full Lagrangian is then

L ¼ μ

2
_r⃗ · _r⃗þ μM

r
þ δL: ðB29Þ

To calculate the dissipative terms in (11) for dν=dt, we
use the expression�
dE
dt

�
ave

¼ −
1

5

1

T

Z
2π

0

dψ

�
dt
dψ

�
M
…

ijðμa;ψÞM
…

ijðμa;ψÞ;

ðB30Þ

to calculate the average rate of energy loss due to radiation
over an orbital period, with T the entire expression (B26).
The system quadrupole Mijðμa;ψÞ is given by

Mij ¼ ½rirj�STF; ðB31Þ

where STF means we take the symmetric, traceless part. To

calculate time derivatives M
…

ij, we can use the equations of
motion to eliminate any second-order or third-order deriv-
atives, and use (B11) to express the remaining zeroth and
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first derivatives of xiðμa;ψÞ in terms of the elements μa.
The result (B30) is a function of the orbital elements μa; we
then use

νðμaÞ ≔ 1

T
; ðB32Þ

to invert the relation and find pðνÞ. Finally, we relate dE=dt
to dν=dt by using

dν
dt

¼
�
dE
dν

�
−1 dE

dt
; ðB33Þ

where we take E ¼ ð∂L=∂_r⃗Þ · _r⃗ − L to be the orbit energy.
This then gives the dissipative terms for M2, S2, M3 for
dν=dt in (11). For the S1 term, we must also take into
account the current quadrupole radiation as this contributes
at the same order as the mass quadrupole radiation. The
only change in procedure is to replace (B30) by�
dE
dt

�
ave

¼ −
1

5

1

T

Z
2π

0

dψ

�
dt
dψ

�
M
…

ijðμa;ψÞM
…

ijðμa;ψÞ

−
16

45

1

T

Z
2π

0

dψ

�
dt
dψ

�
S
…

ijðμa;ψÞS
…

ijðμa;ψÞ;

ðB34Þ

Sij ¼
�
riϵjklrk _rl −

3

2
S1riδj3

�
STF

; ðB35Þ

where we are explicitly using that the orientation of the spin
S1 is along the z axis in these coordinates.
In practice, to compute the integral in (B30) or (B34)

analytically, we expand and integrate the integrand order by
order in e. In this way, we find the full expansion in e of the
integral after repeating this procedure to a sufficiently high
order of e such that the series expansion stops. The
exception is one of the contributions of M3, which we
only obtain to Oðe16Þ—see (B7).

APPENDIX C: ADDITIONAL NUMERICAL
RESULTS

In this Appendix, we present additional numerical
results. First, we give further details to support the analysis
and discussion in Sec. III D, and in particular, the claim
that our results are robust despite traditional problems
associated with the Fisher matrix for EMRIs [89,90].
Subsequently, more explicit numerical results are provided
to supplement Sec. IV.

1. Fisher matrix analysis

As a representative example, consider first the setup of
Table III. Here, we find a condition number of the Fisher
matrix of κ ¼ 5 × 1018. This means that errors could be

strongly amplified by the matrix inversion that is used to
derive, for instance, ΔM̃1. However, by judiciously rescal-
ing the units associated to the parameters, this condition
number can at least be reduced to κ ¼ 6 × 109. This is
similar to what was found in [6], which reports condition
numbers as high as ∼1022 that could be reduced to ∼1012
by a suitable rescaling. A more recent example is [91],
which reports condition numbers κ ∼Oð1014Þ. The con-
dition number indicates that the roundoff error could be
amplified by a factor κ in the worst case scenario. For
instance, in double precision arithmetic, a condition num-
ber ≲1014 might only just suffice to trust the leading digits
of the inverse. We use higher-precision numerics (as do
[91]) as a first mitigation for this issue. Moreover, taking
the inverse of our (rescaled) better conditioned matrix, with
κ ¼ 6 × 109, and rescaling back to the original units, we
nevertheless find the same results as from simply inverting
the original matrix—indicating a certain numerical robust-
ness of the results. To take the matrix inverse, we generally
used the implementation of Gauss-Jordan elimination from
[92], but we have also checked this against the routines of
both Mathematica and the linalg module of numpy.
Yet another possible approach to calculate the inverse

Fisher matrix is to take a singular value decomposition of
the Fisher matrix

Γ ¼ UΣV†; ðC1Þ

and to construct the (pseudo)inverse using the (nonzero)
singular values σi, the columns vi of V and ui of U:

Γ−1 ¼
X
i

1

σi
viu

†
i : ðC2Þ

This alternative approach again yields the same results. It
also gives some insight on the (combination of) parameters
most sensitive to errors and the extent to which these could
be amplified. For instance, a ðσ15Þ−1 ≈ 107 is associated to
a right eigenvector u15 mostly aligned with the direction of
the parameter M, while on the other end of the spectrum
one has ðσ0Þ−1 ≈ 10−11 associated mostly to e0 but con-
taining also (at the 10% level) components along μ
and cos λ.
By artificially introducing noise in the Fisher matrix, one

can observe that random relative errors of order 10−7 in the
Fisher matrix can induce order unity relative errors in the
inverse. Specifically, Δ logM, Δ log μ and Δ cos λ are
among the worst affected by such errors (the trace compo-
nent of e0 in u15 is orders of magnitude smaller than those
of μ and cos λ).
However, we note that even in this worst case scenario

where several of the final error estimates are changed to
leading order, the estimate of ΔM̃1 is robust. One way to
understand this is simply from (C2): the eigenvectors
associated to the highest and lowest eigenvalues (whose
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ratio gives rise to the high condition number) have a
component in the M̃1 direction smaller than one part in
a 106.
Yet, the numerical errors are more under control than the

∼10−7 errors just discussed. From convergence tests, we
estimate that the error associated to the numerical derivative
yields relative errors of 10−12 or smaller, with a median of
roughly 10−24. Artificially introducing relative errors of

order 10−12 to all elements in the Fisher matrix does not
modify the results in the main text, to (at least) the quoted
accuracy.
We noted above that the Fisher matrix estimate for ΔM̃1

is more robust than other parameters. This is because it is
almost uncorrelated with the other parameters; this is
illustrated in Fig. 3. There, we can also see that the
correlations do increase with eccentricity, which also

(a) (b)

(c) (d)

FIG. 3. Selected correlations as inferred from the inverse Fisher matrix. At low to moderate eccentricity, the effect of equatorial
symmetry breaking is essentially uncorrelated with other parameters. Aside from the eccentricity, the parameters chosen here are those
of Table III but with M ¼ 105 M⊙, for which the increase with eccentricity is more pronounced.
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partially explains why one could expect ΔM̃1 to go up at
such higher eccentricity. In contrast to the (lack of)
correlations between the equatorial symmetry breaking
and other parameters, note that the quadrupole deviation
M̃2 does correlate strongly with the spin.
As in the main text, the previous discussion focused on

the setup of Table III as a representative example. However,
the same checks have been performed for different
parameters discussed in the main text and the same
conclusions hold except when the measurement accuracies
become significantly worse as a result of a clear
degeneration among different parameters. An obvious
example is S → 0. For instance, using the parameters of
Table III but with S̃1 ¼ 0, the condition number becomes
significantly higher, κ ¼ 1027—in fact, the matrix is really
expected to be singular. Nevertheless, applying similar
procedures as in the more generic case, the condition
number can be reduced at least to κ ¼ 1020. The key
difference in the analysis is that now using the recondi-
tioned matrix does change certain results at the leading
order accuracy. However, these changes are restricted to the
quantities that become ill defined and which are actually
expected to be singular—such as Δðcos λÞ. This was also
noted already in [6]. We stress that these degeneracies do
not affect ΔM̃1.

2. Measuring equatorial symmetry

In this section, we give the explicit numerical results that
were discussed in Sec. IV, as well as certainminor additions.
As mentioned in Sec. IV, we have not systematically
sampled the full parameter space, but have nevertheless
explored several directions of the parameter space with
respect to Table III, for which M ¼ 106 M⊙, μ¼1M⊙,
e0 ¼ 0.1, S̃1 ¼ 0.25, M̃1 ¼ M̃2 ¼ 0 and ðγ̃0; α0;Φ0; λ; θS;
ΦS; θK;ϕKÞ ¼ ð0; 0; 0; π=3; 2π=3; 5π=3; π=2; 0Þ at SNR of
30. The choice of reference angles in particular was based on
[6]. Note that the results seem to vary smoothly with the
explored variations, which further indicates that the matrix
inversion is robust to small changes in source parameters.
In Table V, we give the results associated to varying the

spin for different binary masses used in Fig. 1. We show
only the measurement accuracies for the intrinsic source
parameters that are not phases. Moreover, we include S̃ ¼ 0

mainly for ΔM̃1; the measurements on the other parameters
are more strongly correlated to the degenerate parameters,
making them less reliable here.
Similar results associated to the variation of e0 as shown

in Fig. 2 are given Tables VI and VII, while those for
varying the angles ϕS, θS, ϕK , θK and λ are given in
Tables VIII–X. The variation of M̃1 with λ and θK is further
illustrated in Fig. 4.

FIG. 4. The measurement accuracy ΔM̃1 for equatorial symmetry breaking, for varying values of λ and θS; with all other parameters
kept fixed to their values for Table III.
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TABLE V. The measurement accuracies of the intrinsic source parameters that are not phases for an SNR of 30. The large black hole
mass and spin as well as the small black hole mass are varied, while the other system parameters are fixed to e0 ¼ 0.1,
M̃2 ¼ M2=M3 þ S̃21 ¼ 0, M̃1 ¼ 0, γ̃0 ¼ α0 ¼ Φ0 ¼ 0, λ ¼ π=3, and ðθS;ϕS; θK;ϕKÞ ¼ ð2π=3; 5π=3; π=2; 0Þ.

M=M⊙ × 10−5 μ=M⊙ S̃ ΔðlnMÞ × 104 Δðln μÞ × 104 Δðe0Þ × 104 Δðcos λÞ × 103 ΔS̃1 × 104 ΔM̃2 × 103 ΔM̃1 × 102

1 1 0 0.05 0.06 0.02 0.22 0.19 1.6
1 1 0.25 0.30 0.17 0.05 0.26 0.39 0.32 1.6
1 1 0.5 0.25 0.17 0.04 0.12 0.40 0.30 1.5

1 1 0.75 0.19 0.15 0.03 0.06 0.40 0.29 1.4

1 10 0 0.06 0.05 0.006 0.17 0.19 5.4
1 10 0.25 0.09 0.18 0.02 0.40 1.6 1.5 5.0
1 10 0.5 0.06 0.15 0.02 0.16 1.3 1.1 4.7

1 10 0.75 0.06 0.17 0.004 0.009 0.27 0.27 4.0

10 1 0 1.1 3.5 3.7 3.5 2.3 1.9
10 1 0.25 8.2 7.4 3.9 9.0 7.0 4.4 1.8
10 1 0.5 8.9 8.6 4.2 5.5 10 5.9 1.8

10 1 0.75 10 17 4.8 4.9 17 9.6 1.8

10 10 0 0.29 0.47 0.39 1.3 0.96 3.1
10 10 0.25 1.5 1.3 0.07 1.5 2.4 1.6 3.0
10 10 0.5 1.4 1.3 0.62 0.71 2.6 1.7 2.9
10 10 0.75 1.2 1.2 0.06 0.05 2.9 1.8 2.8

TABLE VI. The measurement accuracies of the intrinsic source parameters that are not phases for an SNR of 30. The large black hole
mass, small black hole mass, and eccentricity are varied, while the other system parameters are fixed to S̃1 ¼ 0.25,
M̃2 ¼ M2=M3 þ S̃21 ¼ 0, M̃1 ¼ 0, γ̃0 ¼ α0 ¼ Φ0 ¼ 0, λ ¼ π=3, and ðθS;ϕS; θK;ϕKÞ ¼ ð2π=3; 5π=3; π=2; 0Þ.

M=M⊙ × 10−5 μ=M⊙ e0 ΔðlnMÞ × 104 Δðln μÞ × 104 Δðe0Þ × 104 Δðcos λÞ × 103 ΔS̃1 × 104 ΔM̃2 × 103 ΔM̃1 × 102

1 1 0.05 0.20 0.08 0.08 0.21 0.37 0.30 0.84
1 1 0.1 0.30 0.17 0.05 0.26 0.39 0.32 1.6
1 1 0.15 0.07 0.08 0.01 0.12 0.44 0.36 2.3
1 1 0.20 0.04 0.05 0.01 0.08 0.29 0.22 2.7
1 1 0.25 0.02 0.06 0.005 0.01 0.10 0.07 3.1
1 1 0.30 0.04 0.10 0.007 0.03 0.18 0.13 3.2

1 10 0.01 0.36 0.11 0.19 0.48 1.2 1.2 0.6
1 10 0.025 0.39 0.11 0.08 0.51 1.2 1.2 1.6
1 10 0.05 0.47 0.13 0.04 0.50 1.2 1.2 3.1
1 10 0.075 0.13 0.15 0.02 0.34 1.4 1.3 4.3
1 10 0.1 0.10 0.18 0.02 0.39 1.6 1.5 5.1
1 10 0.125 0.05 0.21 0.03 0.33 1.4 1.3 5.6
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TABLE VII. The measurement accuracies of the intrinsic source parameters that are not phases for an SNR of 30. The large black hole
mass, small black hole mass, and eccentricity are varied, while the other system parameters are fixed to S̃1 ¼ 0.25,
M̃2 ¼ M2=M3 þ S̃21 ¼ 0, M̃1 ¼ 0, γ̃0 ¼ α0 ¼ Φ0 ¼ 0, λ ¼ π=3, and ðθS;ϕS; θK;ϕKÞ ¼ ð2π=3; 5π=3; π=2; 0Þ.

M=M⊙ × 10−5 μ=M⊙ e0 ΔðlnMÞ × 104 Δðln μÞ × 104 Δðe0Þ × 104 Δðcos λÞ × 103 ΔS̃1 × 104 ΔM̃2 × 103 ΔM̃1 × 102

10 1 0.01 18 17 123 17 6.6 4.1 0.18
10 1 0.05 11 9.5 13 11 6.7 4.2 0.9
10 1 0.1 8.2 7.4 4.0 9.0 7.0 4.4 1.8
10 1 0.15 8.5 8.6 2.0 9.4 7.7 4.8 2.8
10 1 0.2 11 13 1.4 12 9.1 5.7 3.8
10 1 0.25 8.4 8.6 2.0 9.4 7.7 4.8 2.8

10 1 0.30 29 49 5.6 26 16 9.8 6.0

10 10 0.01 4.8 3.5 21 4.2 2.3 1.6 0.3
10 10 0.05 2.4 1.8 2.1 2.2 2.3 1.6 1.5
10 10 0.1 1.5 1.3 0.66 1.5 2.4 1.6 3.0
10 10 0.15 1.4 1.4 0.38 1.4 2.6 1.8 4.4
10 10 0.2 1.9 2.3 0.35 1.9 3.0 2.0 5.8
10 10 0.25 2.3 3.5 0.37 2.2 3.3 2.2 7.2
10 10 0.30 0.79 1.9 0.25 0.81 3.5 2.4 8.5

TABLE VIII. The measurement accuracies of the intrinsic source parameters that are not phases for an SNR of 30. The source
direction ðθS;ϕSÞ is varied, while the other system parameters are fixed toM ¼ 106 M⊙, μ ¼ M⊙, S̃1 ¼ 0.25, M̃2 ¼ M2=M3 þ S̃21 ¼ 0,
M̃1 ¼ 0, γ̃0 ¼ α0 ¼ Φ0 ¼ 0, λ ¼ π=3, and ðθK;ϕKÞ ¼ (π=2, 0).

θS ϕS ΔðlnMÞ × 104 Δðln μÞ × 104 Δðe0Þ × 104 Δðcos λÞ × 103 ΔS̃1 × 104 ΔM̃2 × 103 ΔM̃1 × 102

1.989 5π
3

7.9 7.1 3.9 8.5 7.1 4.4 1.7
1.989 π 10.8 9.2 3.7 12.3 9.0 5.6 1.9

1.989 π
3

9.6 8.7 3.6 10.4 7.1 4.5 2.1

1.571 5π
3

5.7 5.8 3.6 5.8 7.5 4.8 1.7
1.571 π 9.1 7.8 3.2 1.1 11.0 7.0 1.7

1.571 π
3

7.1 7.0 3.7 7.3 7.4 4.7 1.8

1.153 5π
3

9.1 8.2 4.5 10.0 8.3 5.2 1.9
1.153 π 8.2 7.1 3.3 9.2 7.8 4.9 1.8
1.153 π

3
10.9 9.9 4.2 11.7 8.2 5.1 1.9

TABLE IX. The measurement accuracies of the intrinsic source parameters that are not phases for an SNR of 30. The spin orientation
ðθK;ϕKÞ is varied, while the other system parameters are fixed toM ¼ 106 M⊙, μ ¼ M⊙, S̃1 ¼ 0.25, M̃2 ¼ M2=M3 þ S̃21 ¼ 0, M̃1 ¼ 0,
γ̃0 ¼ α0 ¼ Φ0 ¼ 0, λ ¼ π=3, and ðθS;ϕSÞ ¼ ð2π=3; 5π=3Þ.

θK ϕK ΔðlnMÞ × 104 Δðln μÞ × 104 Δðe0Þ × 104 Δðcos λÞ × 103 ΔS̃1 × 104 ΔM̃2 × 103 ΔM̃1 × 102

1.989 5π
3

8.2 7.7 4.0 9.3 11.7 7.4 1.8
1.989 π 8.4 7.4 4.0 9.5 7.8 4.9 1.8
1.989 π

3
8.4 7.4 4.0 9.5 7.8 4.8 1.8

1.571 5π
3

8.4 7.4 3.9 9.1 7.5 4.7 1.8
1.571 π 8.7 7.5 4.0 9.8 7.7 4.8 1.8
1.571 π

3
8.7 7.5 4.0 9.8 7.6 4.7 1.8

1.153 5π
3

8.2 7.4 3.9 9.1 6.8 4.2 1.8
1.153 π 8.8 7.6 4.1 10.0 7.5 4.7 1.8
1.153 π

3
8.8 7.6 4.1 10.0 7.6 4.7 1.8
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