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Higher-order photon rings can be expected to be detected in a more detailed image of the black hole
found in future observations. These rings are lensed images of the luminous matter surrounding the black
hole and are formed by photons that loop around it. In this paper we have succeeded to derive an analytical
expression for the shape of the higher-order rings in the form that is most convenient for application: the
explicit equation of the curve in polar coordinates. The formula describes the apparent shape of the higher-
order image of the circular ring with the given radius around Schwarzschild black hole as viewed by distant
observer with an arbitrary inclination. For the derivation, the strong deflection limit of the gravitational
deflection is used. Our formula is a simple and efficient alternative to the numerical calculation of ray
trajectories, with the main application to studying the shape of n ¼ 2 and n ¼ 3 photon rings.
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I. INTRODUCTION

One consequence of the gravitational deflection of light
is the formation of multiple images of the same source. In
the case of gravitational lensing by a black hole, so-called
higher-order images can appear. These images are formed
by photons that have experienced one or more turns around
the black hole before reaching the observer.
Higher-order images have been extensively studied, see,

e.g., reviews [1–3]; see also the Introduction in our
previous article [4]. Among early papers on the subject,
one can refer to [5–10]. More active research started about
two decades ago. Numerical studies of higher-order images
were presented in the paper by Virbhadra and Ellis [11] (the
authors introduced the term “relativistic images”), see also
[12,13]. In analytical studies, the strong deflection limit of
gravitational deflection was used: an analytical formula
describing the logarithmically diverging deflection angle of
photons making one or more revolutions around the black
hole [5,14,15]. Analytical calculations of relativistic images
were developed in the works of Bozza et al. [14–22]. The
strong deflection limit (also known as strong field limit) was
also used in the series of paper by Eiroa et al. [23–26].
Gravitational lensing beyond the weak deflection approxi-
mation was studied also in Frittelli et al. [27] and Perlick
[1,28]. Further, higher-order images have been also inves-
tigated both numerically and analytically by many groups
[29–52]. The strong deflection limit for massive particles
was first found by Tsupko [53], see also [54–56].
Most of the articles considered the case when the source

is compact and is at a large distance from the black hole,

where the gravity of the black hole can be neglected. The
important generalization has been made in the work of
Bozza and Scarpetta [57] who have developed the strong
deflection limit for sources at arbitrary distance from the
black hole. It was further used in the papers of Bozza et al.
[2,51,58]. In particular, this approach was used for ana-
lytical investigations of higher-order images of the accre-
tion disk in the work of Aldi and Bozza [58].
The recent emergence of great interest in the subject of

higher-order images is associated with an observational
breakthrough in black hole imaging. In 2019, the Event
Horizon Telescope has been presented the shadow of
supermassive black hole in the M87 galaxy [59–67] (see
also recent results about Sgr A* [68–73]). After that,
attention has been attracted to the study of higher-order
photon rings which can be expected in a more detailed
image, being concentrated near the edge of the black hole
shadow [74–92]. These rings are lensed images of the
luminous matter surrounding the black hole. It is now quite
common to denote these images by the number of half-
orbits n, e.g., [75–79,89–92]. The direct image is denoted
as n ¼ 0, secondary image has n ¼ 1, and we refer all
images n ≥ 2 to as higher-order photon rings (Fig. 1).
Numerical simulations are used to obtain a detailed

image of the black hole that can be compared with observa-
tions, see Event Horizon Telescope papers [60–65,67–73]
and, e.g., [59,93–103]. At the same time, a great number of
works are devoted to analytical studies of the black hole
shadow, in which the size and shape of the shadow
boundary (also known as the critical curve) are studied.
For example, the deformed shape of the shadow of the
Kerr black hole has known analytical representation, e.g.,
[104–107]; for an observer at an arbitrary distance from the*tsupko@iki.rssi.ru; tsupkooleg@gmail.com
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black hole, see [107–109]. Analytical investigations of
shape of Kerr black hole shadow can be found, e.g., in
[20,104–124]. For another examples of theoretical consid-
eration of black hole shadow see, e.g., [125–159]. We refer
to the recent review by Perlick and Tsupko [107] as an
overview of analytical studies of the shadow, see also the
review by Cunha and Herdeiro [106].
The shape of the higher-order photon rings is very close

to the boundary of the black hole shadow (critical curve),
however, it differs from it and is of considerable interest
from the observational point of view, e.g., [75,77]. Even in
the simplest case of Schwarzschild black hole, for which
the shadow boundary is a circle, the photon ring is a circle
only for an observer on the axis of symmetry. For observer
with inclination, this is a deformed curve, the shape of
which would be very useful to know in an analytical form.
In this paper, we will restrict our attention to equatorial

rings of emission and will use the term “photon ring” to
refer to the higher-order images of such rings.
Here, we derive the analytical expression for the shape of

higher-order rings in the form that is most convenient for
application: the explicit equation of the curve in polar
coordinates. The formula describes the apparent shape of
higher-order image of circular orbit with given radius
around the Schwarzschild black hole for distant observer
with an arbitrary inclination. A simple analytical formula
for the curve allows us to find a number of properties of the
ring images.1

In our derivation, we use the strong deflection limit of
light deflection for arbitrary source position mentioned
above [2,57]. Since photon rings are formed by light
sources near the black hole, this method is very convenient
to use for analytical calculation of their properties (strong
deflection approximation is appropriate for n ≥ 2 rings).
For example, in our previous work [4], we have considered
the thin accretion disk around Schwarzschild black hole
and the observer located on the symmetry axis (polar view).
For that configuration, we calculated analytically the
angular radii, thicknesses, and solid angles of higher-order
rings in the form of compact analytical expressions; we also
made estimates for fluxes. In our present article, we
consider the observer with arbitrary inclination angle and
focus only on the deformed shape of photon ring images of
higher orders (n ≥ 2).
The paper is organized as follows. In the next section we

derive an explicit analytic formula for the shape of the
higher-order rings. In the Sec. III we present graphs, and
discuss properties of higher-order rings that are derived
analytically using our results. Section IV is our conclu-
sions. In the Appendix, we present the alternative deriva-
tion of our formula based on results of Aldi and Bozza [58],
finding complete agreement.

II. POLAR CURVE FOR THE SHAPE OF
HIGHER-ORDER PHOTON RINGS

In this section we derive the explicit analytical expres-
sion for the shape of the higher-order photon rings, using
the strong deflection limit of gravitational deflection. First
we consider n ¼ 2 ring and make the full derivation for it,
then we consider n ¼ 3 ring, then we obtain the general
formula for the arbitrary n.
We write the Schwarzschild metric as

ds2 ¼ −
�
1 −

2m
r

�
c2dt2 þ dr2

1 − 2m=r

þ r2ðdϑ2 þ sin2ϑdϕ2Þ; m ¼ GM
c2

; ð1Þ
wherem is a mass parameter of dimension of length, andM
is the black hole mass. In these notations [4]: the horizon is
located at radial coordinate 2m; unstable circular orbit of
photons has rph ¼ 3m (photon sphere radius); innermost
stable circular orbit for massive particles is located at
rISCO ¼ 6m. The critical value of the impact parameter,
corresponding to photons flying from infinity and arriving
at the photon sphere, is bcr ¼ 3

ffiffiffi
3

p
m. This value defines the

linear size of the shadow of Schwarzschild black hole,
e.g., [107].
We consider the circular ring of fixed constant radius rS

in the equatorial plane ϑ ¼ π=2 (Fig. 2). The observer is
assumed to be located at a large distanceDd from the black
hole, Dd ≫ m. The observer’s inclination angle is ϑO. To a
distant observer, the circle will be visible as the sequence of

FIG. 1. The first three images in an infinite series of images
of the accretion disk around the black hole, numbered by
the number n of half-orbits. Direct (primary) image has n ¼ 0.
Secondary image has n ¼ 1. Images with n ≥ 2 are denoted
as higher-order rings, starting from n ¼ 2 photon ring
(tertiary image).

1Throughout the article, by “circular orbit” or “circular ring”
we mean thin circular radiating ring of given constant radius
orbiting the black hole in the equatorial plane (e.g., Luminet
[160]). Specifically, in the title, we refer to this ring as the
“equatorial emission ring.” This ring should be not confused with
the “photon ring,” which is a lensed higher-order image of
circular ring of emission on the observer’s sky. See also the
discussion on p. 7 of [107].
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lensed images. Primary and secondary images of circular
orbits can be found, e.g., in Luminet’s paper [160] who call
them “isoradial curves,” see also, e.g., [9,161]. In the case
of polar observer, ϑO ¼ 0, circular orbits are seen as
nondeformed circles; the analytical results for this case
are presented in [4].
We are interested in the deformed shape of higher-order

ring image appeared to the distant observer. The observed
shape in the observer’s frame is described by the impact
parameter b (measured in units ofm) and the polar angle φ
(Fig. 2). If one is interested in angular values, then the
following relation (valid for observer at large distances)
should be applied: θ ¼ b=Dd, where θ is the observed
angular radius. For example, the angular radius of black
hole shadow for the observer at large distances is
αsh¼ 3

ffiffiffi
3

p
m=Dd.

Our derivation consists of three steps. In the first step, we
will obtain the impact parameter b as a function of the angle
γ in plane of ray path.
Consider a point source with radial coordinate rS located

outside the photon sphere. Since we are interested in
higher-order images, we consider a light ray that starts
at rS, first moves towards the black hole, makes one or
more revolutions around it near the photon sphere, and then
flies away to infinity. The distance of the closest approach
R (the minimum value of the radial coordinate) of such ray
is close to the photon sphere radius rph, while the impact
parameter b is close to its critical value bcr.
Working in the plane of ray trajectory, we write the

change of the angular coordinate Δϕ̃ (azimuthal shift) of
such ray in the strong deflection limit as [2,51,57]:

Δϕ̃ ¼ − ln ϵþ ln fðrSÞ; ð2Þ

where

ϵ ¼ b − bcr
bcr

≪ 1; bcr ¼ 3
ffiffiffi
3

p
m; ð3Þ

fðrSÞ ¼
65ð1 − 3m

rS
Þ

ð3þ ffiffiffi
3

p Þ2
�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 18m

rS

s �−2

: ð4Þ

Note that the variable ϕ̃ is defined in the ray plane and
therefore should not be confused with the variable ϕ in (1).
We start from Eq. (2) and find

b ¼ bcr½1þ fðrSÞe−Δϕ̃�: ð5Þ

Figure 2 shows the light ray which forms n ¼ 2 image.
For this ray we have

Δϕ̃ ¼ 2π þ γ: ð6Þ

Using Eq. (6) in (5), we find

bðγÞ ¼ 3
ffiffiffi
3

p
m½1þ fðrSÞe−2π−γ�: ð7Þ

The second step of derivation is to relate the angle γ
characterizing the trajectory with some angle in the
observer’s frame. A convenient way to do this is to follow
Luminet’s paper [160] who used the polar angle α and got
the following simple relation:

FIG. 2. Geometry of the problem and the variables used. The left panel shows the circular orbit of radius rS and the light ray from an
element of circular orbit making one complete revolution around the black hole and arriving at the observer with inclination ϑO. Such ray
gives the tertiary (n ¼ 2) image of the source. The angle γ is measured in the plane of the ray trajectory. The picture on the right shows
the observer’s reference frame. The angle γ in the plane of the ray is related to the angle α in the observer’s sky by the formula (8), see
article [160] and Fig. 3 there. The angle α is then converted to the more familiar angle φ, measured counterclockwise from the horizontal
axis, see Eq. (10). The final shape b2ðφÞ of the n ¼ 2 lensed image of the circular orbit is given by the formula (11).
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cos γ ¼ cos αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 αþ cot2 ϑO

p ; ð8Þ

see Fig. 2 here and Fig. 3 in [160].
Using Eq. (8) in (7), we find the apparent shape of image

of circular orbit as the function bðαÞ:

bðαÞ¼ 3
ffiffiffi
3

p
m

�
1þfðrSÞ

×exp

�
−2π− arccos

�
cosαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2αþ cot2ϑO
p ���

: ð9Þ

Our third step, for purposes of convenience mainly, is to
rewrite the formula (9) through the polar angle φ, measured
in the “usual” way: counterclockwise from the horizontal
axis (Fig. 2). We write

cos α ¼ cosð3π=2 − φÞ ¼ − sinφ: ð10Þ

Using the relation arccosð−xÞ ¼ π − arccos x, we obtain
finally the shape of tertiary image (n ¼ 2 photon ring) of
circular orbit with radius rS as the polar curve b2ðφÞ:

b2ðφÞ¼3
ffiffiffi
3

p
m

�
1þfðrSÞ

×exp

�
−3πþarccos

�
sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2φþcot2ϑO
p ���

: ð11Þ

To obtain a complete curve, the angle φ must vary from 0
to 2π.
The next image (n ¼ 3 photon ring) is formed by

photons that have passed behind the black hole and then
turned around once more before reaching the observer.
Such ray experiences the following change of the azimuthal
coordinate:

Δϕ̃ ¼ 3π þ ðπ − γÞ: ð12Þ

Compared to the n ¼ 2 image, the light ray forming n ¼ 3
image reaches the point in opposite part of the observer’s
sky. Therefore we have to replace α with π þ α in the
Eq. (8). We get

cos γ ¼ − cos αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 αþ cot2 ϑO

p : ð13Þ

Correspondingly, we find the dependence bðαÞ for n ¼ 3
image as

bðαÞ¼ 3
ffiffiffi
3

p
m

�
1þfðrSÞ

×exp

�
−4πþ arccos

�
−cosαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2αþ cot2ϑO
p ���

: ð14Þ

Transforming from α to φ with Eq. (10), we obtain finally
the shape of n ¼ 3 photon ring as the polar curve b3ðφÞ:

b3ðφÞ ¼ 3
ffiffiffi
3

p
m

�
1þ fðrSÞ

× exp

�
−4π þ arccos

�
sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2φþ cot2ϑO
p ���

:

ð15Þ

To obtain the formula for general n, we notice that for
rings with n ¼ 2; 4; 6;… we have

Δϕ̃ ¼ nπ þ γ; ð16Þ

and Eq. (8) should be used, whereas for n ¼ 3; 5; 7;… we
have

Δϕ̃ ¼ nπ þ ðπ − γÞ ¼ ðnþ 1Þπ − γ; ð17Þ

and Eq. (13) should be used.
As a result, we can write the general formula valid for all

higher-order images of nth order:

bnðφÞ¼ 3
ffiffiffi
3

p
m

�
1þfðrSÞexp

�
−ðnþ1Þπ

þ arccos

�
sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2φþ cot2ϑO
p ���

; n≥ 2: ð18Þ

For the reader’s convenience, we remind our notations here.
Equation (18) describes the apparent shape of higher-order
image (photon ring of nth order) of circular orbit with
constant radius rS in the equatorial plane of Schwarzchild
black hole. Angle ϑO defines the observer’s inclination
angle measured from the axis of symmetry. Variable bn is
the impact parameter in the observer’s sky; polar angle φ is
set in the usual way: counterclockwise from the horizontal
axis (Fig. 2). Function fðrSÞ is given by (4). Mass
parameter m is defined in (1), and the shadow boundary
has the radius bcr ¼ 3

ffiffiffi
3

p
m.

If one considers an accretion disk with given inner rinS
and outer routS radii, then the photon ring will also have the
inner binn ðφÞ and outer boutn ðφÞ boundaries, determined by
the values of these radii. The thickness of n-photon ring as
the function of φ will be

ΔbnðφÞ≡ boutn ðφÞ − binn ðφÞ

¼ 3
ffiffiffi
3

p
m½fðroutS Þ − fðrinS Þ� exp

�
−ðnþ 1Þπ

þ arccos

�
sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2φþ cot2ϑO
p ��

; ð19Þ

and the area of n-photon ring will be
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ΔSn ¼
1

2

Z2π
0

ðb2outðφÞ − b2inðφÞÞdφ ≃ 3
ffiffiffi
3

p
m
Z2π
0

ΔbnðφÞdφ;

ð20Þ

or ΔSn ¼ 6
ffiffiffi
3

p
mπhΔbnðφÞi; where

hΔbnðφÞi ¼
1

2π

Z2π
0

ΔbnðφÞdφ: ð21Þ

We note that an analog of Eq. (18) has been derived for
the Kerr case in Appendix A of Hadar et al. [162]. See in
particular Eq. (A.14), which is not derived using the strong
deflection limit but rather the matched asymptotic expan-
sion derived in Appendix B of Gralla and Lupsasca [76].
Since this approximation breaks down for large source
radius rS, it would be interesting to apply a different
method (such as the strong deflection limit) to obtain an
analytic formula valid for all source radii.2

III. DISCUSSION

In this section, we present graphs for the higher-order
photon rings based on our formula, and derive some
analytical properties of the rings.

A. Shape of photon rings

First of all, our analytical formula allows us to plot
graphs showing the shape of photon rings. Figure 3 shows
graphs for different radii of the emitting circle and different
angles of inclination of the observer. It should be kept in
mind that the difference between the shape of the higher-
order rings and the shadow boundary is difficult to notice
by looking at the ring itself, because the higher-order
images are exponentially close to the shadow edge. In
particular, for the Schwarzschild black hole considered
here, the shape of the higher-order rings differs very little
from the circle.
To demonstrate the shape of the n ¼ 2 ring, in Fig. 3 we

plot the impact parameter b2 as the function of φ, where φ
is presented on the horizontal axis (left panels).
In addition, for a better understanding of the shape, we

use the following technique: instead of the plotting the
impact parameter itself, we make the polar plot of the
“excess”

b̃2ðφÞ ¼ b2ðφÞ − 3
ffiffiffi
3

p
m: ð22Þ

Such a graph shows the radial offset of the image point
from the shadow boundary in each polar direction, see right
panels in Fig. 3.

In the graph for the angle ϑO ¼ 17° in Fig. 3, one can
notice a sinusoidal oscillation of the impact parameter; see
also Fig. 7 in [77] for Kerr case. Having an analytical
formula for the curve allows us to derive this property
analytically. Expanding Eq. (18) in small angle ϑO, we find

bnðφÞ ≃ 3
ffiffiffi
3

p
mf1þ fðrSÞe−ðnþ1Þπ=2ð1 − ϑO sinφÞg: ð23Þ

As can be seen, the linear term of the expansion is
proportional to sinφ. We conclude that for nearly polar
observer, ϑO ≪ 1, the ring size oscillates sinusoidally.
We also mention that for polar observer (zero inclination,

ϑO ¼ 0), the higher-order images have the circular shape
with radius (in terms of impact parameter):

bn ¼ 3
ffiffiffi
3

p
mf1þ fðrSÞe−ðnþ1Þπ=2g; ð24Þ

which agrees with the results of our previous paper [4].

B. Thickness of photon rings

In order to discuss the thickness (19) of the photon rings,
consider a thin luminous accretion disk with given inner
and outer radii, rinS and routS .
Let us discuss the tertiary image of such a disk, as

viewed at different inclinations. If the observer looks at the
disk with zero inclination (polar view, ϑO ¼ 0), all parts of
the ring will have the same thickness. All of them will be
formed by photons for which the change of angular
coordinate during the motion to observer is equal to
Δϕ̃ ¼ 5π=2, see (24) with n ¼ 2. In this case, the thickness
is so small that it is rather difficult to show in the picture,
see Fig. 7 in [4].
To make the thickness of the ring on the graph more

noticeable, it is better to consider the observer at a high
inclination (close to the equatorial view, ϑO ≲ π=2). For
such observer, different parts of the photon ring will have
quite different thicknesses. The lower parts of the image
will have the biggest thickness because they are formed by
photons with a smaller total bending. Namely, for the
tertiary ring, the lowest points of the image are formed by
photons with Δϕ̃ ∼ 2π and the upper points of the image
will have Δϕ̃ ∼ 3π.
Based on the discussion above, in Fig. 4(a) we try to

show the thickness of the ring on a real scale, for the case
when observer is close to equatorial plane and, correspond-
ingly, the lower part of the ring is relatively thick. The
dependence of thickness on the polar direction can be
understood from Figs. 4(b) and 4(c).
The higher-order ring image of accretion disk of given

size has the maximum thickness at φ ¼ 3π=2, see Eq. (19).
The maximum thickness of the n ring ðΔbnÞmax depends on
the inclination ϑO as2We thank the anonymous referee for pointing us to this result.
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ðΔbnÞmax ∝ exp

�
arccos

�
−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cot2 ϑO
p ��

; ð25Þ

or, using arccosð−xÞ ¼ π − arccos x, as

ðΔbnÞmax ∝ exp

�
− arccos

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cot2ϑO
p ��

: ð26Þ

In Fig. 5, we present the graph of the right-hand side of the
Eq. (26). We can also conclude that the observation of the

FIG. 3. Apparent shape of tertiary image (n ¼ 2 photon ring) of concentric equatorial rings of different radii rS for different
inclinations ϑO of the observer. The curves are plotted according to the analytical formula (11). Each left panel shows the impact
parameter b2 as the function of angle φ in the observer’s sky, for the following values of ring radii rS: 3.3m, 4m, 6m, 10m, 20m. Each
right panel shows the corresponding excess b̃2ðφÞ plotted in polar coordinates, see Eq. (22), which can provide better understanding of
the deformed shape of the image. The small circles show the results of numerical calculations, see Sec. III D for details.
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tertiary ring might be most promising for the observer
located slightly above the equatorial plane.
A discussion of the accuracy of the ring thickness

calculation is given in Sec. III D.

C. Area occupied by the ring

Let us calculate the area (20) of nth photon ring, as
viewed at the small inclination, ϑO ≪ 1. Up to the linear
order in angle ϑO, we find

ΔSn ≃ 54πm2½fðroutS Þ − fðrinS Þ�e−ðnþ1Þπ=2: ð27Þ

The term, linear in ϑO in (23), gives zero contribution when
integrated over φ.
We can conclude that, for the nearly polar observer, the

area occupied by the image does not depend on the
inclination of observer (up to the first order in ϑO). This
means that some of the results obtained in the paper [4] for
zero inclination can be used to make estimations for the
case of nonzero inclination as well.
A numerical example of the accuracy of the area

calculation is given in the Sec. III D.

D. Accuracy of approximations

The accuracy of our approximate formula (18) and other
formulas and the graphs obtained from it are entirely

(a) (b)

(c)

FIG. 4. Thickness and shape of tertiary (n ¼ 2) ring image of luminous accretion disk with inner and outer boundaries rinS ¼ 6m and
routS ¼ 30m, as seen by nearly equatorial observer, ϑO ¼ 85°. All graphs are based on the analytical formula (11). Panel “a” shows the
photon ring in real scale. The shape of the curve is almost indistinguishable from a circle (we are reminded that the shadow of
Schwarzschild black hole is a circle with the radius bcr ¼ 3

ffiffiffi
3

p
m ≃ 5.196m). However, it is still possible to notice the thickness of the

ring at the lower half of the image. Panel “b” shows the impact parameter b2 in the observer’s sky as the function of φ. Panel “c” shows
the polar plot of the excess b̃2ðφÞ, defined by Eq. (22). The small circles show the results of numerical calculations, see Sec. III D for
details.

FIG. 5. Right-hand side of Eq. (26) as the function of ϑO.
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determined by the accuracy of the strong deflection limit
approximation (2)–(5). All other geometric relations used
are exact.
In this paper, we consider only higher-order images

(n ≥ 2). For such images, the strong deflection approxi-
mation is known to have a high accuracy [2,57,58]. Below
wewill discuss the tertiary n ¼ 2 image only. For images of
higher orders than n ¼ 2, the strong deflection approxi-
mation works even better.
Calculating the exact values of the impact parameter is

straightforward. For a given value rS of the initial point, the
change in the angular coordinate Δϕ̃ of the ray for a known
impact parameter b is found by integrating the orbit
equation of light ray within the required limits. In our
case, we first choose the emission ring radius rS and the
angle of the observer’s inclination ϑO. Then, for every value
of angle φ, one can find Δϕ̃ by formulas (6), (8), and (10).
Knowing the value of Δϕ̃, one can numerically find the
corresponding impact parameter b.
In Figs. 3 and 4, together with analytical curves, we plot

the numerical points of b. Since each pair of left and right
panels are drawn for the same case, and also have about
the same scale, one can get a good idea of the calculation
errors. For example, to understand the behavior of the
upper parts of the curve for ϑO ¼ 85°, 60°, it is better to
look at the left-hand graphs, because on the right-hand
graphs this part is very compacted. In Fig. 3, the difference
is noticeable only for large values of the radius rS and for a
large inclination ϑO of the observer. For an observer close
to polar (lower pair of panels in Fig. 3), the numerical
points are almost indistinguishable from the analyti-
cal ones.
Additionally, to demonstrate the magnitude of the

errors in the Figs. 3 and 4 more clearly, we will present
the following illustrative example. As already discussed in
Sec. III B, for a polar observer, all photons forming
the tertiary image experience the same change of angular
coordinate equal to Δϕ̃ ¼ 5π=2. At the same time, for
nearly equatorial observer (ϑO ≲ π=2), different parts of
the tertiary image will be formed by photons with very
different values of Δϕ̃, from Δϕ̃ ∼ 2π to Δϕ̃ ∼ 3π.
Therefore, as numerical example, we find and plot the
error of approximation of b for three values of the
azimuthal shift: Δϕ̃ ¼ 2π; 5π=2; 3π. We take the values
of the radius rS of the emitting circular ring the same as
used in the Figs. 3 and 4, see Fig. 6.
According to the discussion above, panels in Fig. 6 cover

the whole range of values that the error of calculating the
impact parameter for the tertiary image may have, within all
possible angles of inclination: the upper graph can be
considered as the maximum possible error, the middle one
shows the typical error, and the lower one can be inter-
preted as the minimum error.
Also, it is clear that for the n ¼ 3 and all subsequent

images the error in all pictures will be absolutely negligible,

because for such curves the change of angle for all points
will be Δϕ̃ > 3π.
In order to illustrate the accuracy of the ring thickness

calculations (Sec. III B) and, in particular, of Eq. (26), we
present the following numerical example. We consider the
accretion disk with the given inner and outer radii the same
as in Fig. 4. For this disk, we calculate the width of the

FIG. 6. Difference between the exact value of b and analytical
approximation of b by Eq. (5), in units of m (absolute error), as
function of rS, plotted for three values of photon angular shift
Δϕ̃ ¼ 2π; 5π=2; 3π. Since the analytical calculations used here
differ only in the value of the angle Δϕ̃ in the exponent in Eq. (5),
then the shape of curves is approximately the same. What matters
here is the different scale on the vertical axes. Scale of errors can
be compared with scales of Figs. 3 and 4. See also Fig. 4(b)
in [57].
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thickest part ðΔb2Þmax of the tertiary ring, numerically and
analytically. In the Fig. 7 we show the relative error of
calculating the maximum thickness of the given ring, as the
function of observer’s inclination ϑO. As one can see, the
error decreases as the observer’s inclination decreases.
For estimation of the accuracy of area calculation

(Sec. III C), we consider the same disk (rinS ¼ 6m and
routS ¼ 30m), viewed face-on (ϑO ¼ 0). In this simplest
case, the area ΔS2 of its tertiary image can be calculated as
πðb2out − b2inÞ numerically and analytically. We find that the
accuracy is about 2.0%.

IV. CONCLUSIONS

(i) Studies of higher-order photon rings, especially
tertiary (number of half-orbits n ¼ 2) and quaternary
(n ¼ 3), are of great interest in the perspective of
future observations. In this regard, it would be very
useful to have an analytical description of the shape
of these rings, even for simple case.

(ii) In this paper, we derive the equation describing the
shape of higher-order ring as the polar curve: the
impact parameter as the function of the angle on the
observer’s sky. Our formula describes the apparent
shape of lensed image of circular ring with given
radius around the Schwarzschild black hole, for an
arbitrary observer’s inclination (Fig. 2). The ana-
lytical expression for any higher-order ring n ≥ 2 is
given by Eq. (18). The summary of all variables used
is given after Eq. (18).

(iii) Our formula is a simple and efficient alternative to
the numerical calculation of ray trajectories. First, it
allows one to easily plot the higher-order ring
curves. As an example of the use of our formula,
we have presented graphs illustrating the shape of
the tertiary ring (Figs. 3 and 4). Second, the
analytical expression allows one to derive a number

of universal properties without the need for numeri-
cal simulations. As an example, we derived analyti-
cally some properties of rings, see Sec. III.
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APPENDIX: DERIVATION FROM RESULTS OF
ALDI AND BOZZA

In this appendix we show how to obtain our formula
from the results of Aldi and Bozza [58]. In their work, the
authors have found an analytical relationship between the
higher-order image parameters in the observer’s sky and
the position of the emitting source in the equatorial plane.
For every image order n, the two halves of the accretion
disk are considered separately, with the corresponding
choice of the parameter m (should not be confused with
our mass parameter) and the additional parameter σ (see
below). We have succeeded to show that for our problem
these two “branches” of solution can be combined into one
formula containing only the image order n. For simplicity,
we compare only n ¼ 2 and n ¼ 3 rings. The full agree-
ment is found.
According to [58], the variables (ϵ, ξ) specifying the

position of the image element on the observer’s sky are
associated with variables (re;ϕe) specifying the position of
the source element as

ξ ¼ −σ
tanϕeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2O þ tan2 ϕe

p ; ðA1Þ

and

ϵ ¼ ϵ̄ðreÞϵ̂ðϕeÞ; ðA2Þ
where the function ϵ̄ðreÞ agrees with our function fðrSÞ (we
will show it later), and the function ϵ̂ðϕeÞ is given by

ϵ̂ðϕeÞ ¼ exp

�
−mπ − σ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2O cos2 ϕe þ sin2 ϕe

q �
:

ðA3Þ
Here m is the number of polar inversions of the photon,
which depends on the image order n and the considered
half of the disk, see the explanations after Eq. (3.28) in [58].
In turn, the parameter σ is

σ ¼ �ð−1Þm: ðA4Þ

The choice of sign in σ is explained after Eq. (3.21) in [58].
One needs to choose a positive sign for photons emitted

FIG. 7. Relative error of calculation of maximum thickness of
the n ¼ 2 image of the accretion disk with inner and outer radii,
rinS ¼ 6m and routS ¼ 30m, as the function of the inclination angle
ϑO. The following values are used ϑO ¼ 17°, 40°, 60°, 75°, 85°
(compare with Fig. 3).
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upwards from the disk and negative for photons emitted
downwards [58]. Variable μO defines the observer inclina-
tion: μO ≡ cosϑO. Also, the position angle in the observer
sky φ (note that the authors in [58] use another letter here)
is given by

φ ¼ −σ arccosð−ξÞ: ðA5Þ

We start from n ¼ 2 photon ring. First, we rewrite our
Eq. (11) as

ϵ¼ fðrSÞexp
�
−3πþ arccos

�
sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2φþ cot2ϑO
p ��

: ðA6Þ

For the n ¼ 2 ring, with our geometry, we need to choose
“plus” sign in σ for this image.
Authors [58] put the observer to the position ϕO ¼ π

and consider two halves of the accretion disk separately.
First, consider the half of the disk closer to the observer,
π=2 < ϕe < 3π=2. According to discussion after Eq. (3.28)
in [58], for image of n ¼ 2 order, one needs to take m ¼ 2.
Therefore, we find σ ¼ þ1.
With these values ofm and σ, Eqs. (A5) and (A1) lead to

φ ¼ − arccos
tanϕeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2O þ tan2 ϕe

p : ðA7Þ

Using the relation sinðarccos xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
, one can get

sinφ ¼ −
μOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2O þ tan2 ϕe

p < 0: ðA8Þ

Now we transform arcsin to arccos in the formula (A3),
using the relation arcsin x ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
:

arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2Ocos

2ϕe þ sin2ϕe

q
¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − μ2OÞcos2ϕe

q
:

ðA9Þ

We need to express cos2 ϕe via φ. Squaring Eq. (A8), we
get

sin2 φ ¼ μ2O
μ2O þ tan2 ϕe

: ðA10Þ

Rearranging the terms, we find

tan2 ϕe ¼ μ2O cot2 φ: ðA11Þ

Expressing cos2 ϕe via tan2 ϕe, with help of (A11),
we find

cos2 ϕe ¼
1

1þ μ2O cot2 φ
: ðA12Þ

Substituting expression (A12) into Eq. (A9), after some
transformations, we find

arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2Ocos

2ϕe þ sin2ϕe

q
¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2φ

sin2φþ cot2ϑO

s
:

ðA13Þ

According to Eq. (A8), for π=2 < ϕe < 3π=2, we have
sinφ < 0. Therefore,

ffiffiffiffiffiffiffiffiffiffiffiffi
sin2 φ

q
¼ − sinφ; ðA14Þ

and finally we find

arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2Ocos

2ϕe þ sin2ϕe

q
¼ arccos

− sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2φþ cot2ϑO

p :

ðA15Þ

Using (A15) in (A3), together with m ¼ 2 and σ ¼ þ1,
we find

ϵ̂ðϕeÞ ¼ exp

�
−2π − arccos

− sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2φþ cot2ϑO

p �
: ðA16Þ

Using the relation arccosð−xÞ ¼ π − arccos x, we find the
final expression for the function ϵ̂ðϕeÞ:

ϵ̂ðϕeÞ ¼ exp

�
−3π þ arccos

sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2φþ cot2ϑO

p �
; ðA17Þ

which agrees with our Eq. (A6).
Now we will consider the photons emitted from the far

side of the disk, where −π=2 < ϕe < π=2. According to
explanations after Eq. (3.28) in [58], for an image of n ¼ 2
order, one needs to takem ¼ 3. Therefore, we find σ ¼ −1.
With these values of m and σ, Eqs. (A5) and (A1) lead to

φ ¼ þ arccos
− tanϕeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2O þ tan2 ϕe

p : ðA18Þ

From this, one can get

sinφ ¼ þ μOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2O þ tan2 ϕe

p > 0: ðA19Þ

Part of transformation of arcsin with the square root in
Eq. (A3) will be exactly the same, as for previous range of
ϕe, and we reach the formula (A13). But now, according to
(A19), we have sinφ > 0. Keeping in mind that the values
of m and σ have also changed, we finally come to the
same Eq. (A17).
Thus, we have shown that with the help of our trans-

formations, formulas for two ranges of angle ϕe can be
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combined into one expression (A17), which is in agreement
with our Eq. (A6).
Now we consider n ¼ 3 photon ring. With our geometry,

we need to choose “minus” sign in (A4) for this image.
First, consider the half of the disk closer to the observer,

π=2 < ϕe < 3π=2. According to discussion after Eq. (3.28)
in [58], for image of n ¼ 3 order, one needs to take m ¼ 4.
Therefore, we find σ ¼ −1. We obtain

φ ¼ þ arccos
− tanϕeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2O þ tan2ϕe

p ; sinφ > 0: ðA20Þ

Analogous to the transformations done for the n ¼ 2 ring,
we find

ϵ̂ðϕeÞ ¼ exp
�
−4π þ arccos

sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2φþ cot2ϑO

p �
: ðA21Þ

For the photons emitted from the far side of the disk,
where −π=2 < ϕe < π=2, we have m ¼ 3 and σ ¼ þ1.
Correspondingly, we obtain

φ ¼ − arccos
tanϕeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2O þ tan2ϕe

p ; sinφ < 0: ðA22Þ

Analogous to the transformations done for the n ¼ 2 ring,
we find the same Eq. (A21) for these range of ϕe too.
Equation (A21) agrees with our Eq. (15).

Now we will show that our function fðrSÞ is equivalent
to ϵ̄ðreÞ used in Eq. (A2) and defined in Eq. (3.23) of [58].
We rewrite Eq. (4) as

fðrSÞ ¼
65ðrS − 3mÞ

ð3þ ffiffiffi
3

p Þ2ð3 ffiffiffiffiffi
rS

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rS þ 18m

p Þ2

¼ 216 · 4ðrS − 3mÞ
ð1þ ffiffiffi

3
p Þ2ð ffiffiffiffiffiffiffi

3rS
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rS þ 6m
p Þ2 : ðA23Þ

Using the following relations,

ð1þ
ffiffiffi
3

p
Þ2 ¼ 2ð2þ

ffiffiffi
3

p
Þ; ðA24Þ

1

2þ ffiffiffi
3

p ¼ 2 −
ffiffiffi
3

p
; ðA25Þ

ð
ffiffiffiffiffiffiffi
3rS

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS þ 6m

p
Þð

ffiffiffiffiffiffiffi
3rS

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS þ 6m

p
Þ

¼ 2ðrS − 3mÞ; ðA26Þ

we find

fðrSÞ ¼
216ð2 − ffiffiffi

3
p Þð ffiffiffiffiffiffiffi

3rS
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS þ 6m

p Þffiffiffiffiffiffiffi
3rS

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS þ 6m

p : ðA27Þ

This expression agrees with Eq. (3.23) of [58] if one change
rS → re. Note that authors [58] use the units of the
Schwarzschild radius, 2MG=c2 ¼ 1.
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