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A scalar charged particle moving in a curved background spacetime will emit a field affecting its own
motion; the resolving of this resulting motion is often referred to as the self-force problem. This also serves
as a toy model for the astrophysically interesting compact-body binaries, extreme mass ratio inspirals,
targets for the future space-based gravitational wave detector, LISA. In the modeling of such systems, a
point-particle assumption leads to problematic singularities which need to be safely removed to solve for
the motion of the particle regardless of the scenario; scalar, electromagnetic, or gravitational. Here, we
concentrate on a scalar charged particle and calculate the next order of the Detweiler-Whiting singular field
and its resulting regularization parameter when employing the mode-sum method of regularization. This
enables sufficiently faster self-force calculations giving the same level of accuracy with significantly less £
modes. Due to the similarity of the governing equations, this also lays the groundwork for similar
calculations for an electromagnetic or mass charged particle in Kerr spacetime and has applications in other

regularization schemes like the effective source and matched expansion.
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I. INTRODUCTION

The scalar model of the two-body problem, a legitimate
problem in itself, also serves as a toy model towards solving
the motion of two massive particles. The motion of two
masses in a vacuum has garnered a new generation of
attention due to the rather recent field of gravitational wave
astronomy. Current ground-based detectors, Advanced
LIGO [1], Advanced VIRGO [2], GEO600, and KAGRA
[3], are live, and to date have produced a catalog of 90
detections [4,5]. Indeed the future ESA-led space-based
detector, LISA [6] is due to launch in 2034 opening the
window to a new frequency band of gravitational waves.

A key source for LISA, with exceptional science reward,
are Extreme Mass Ratio Inspirals (EMRIs) [7] - when a
‘small’ stellar-mass compact body falls into the grasp of a
massive black hole (107-10° M ). LISA is expected to see
anywhere from several to thousands of these during its
mission [8,9] through multiple formation channels [10]. To
enable detection and disentangle the cacophony of signals
expected from LISA, one must have knowledge of the
possible waveforms. In modeling EMRIs, current numeri-
cal relativity has not quite got to the mass ratios required
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(~1/100) [11] while post-Newtonian approximations will
break down as the particles approach [12], leaving self-
force as the current state of the art.

In the self-force regime, one perturbs the Einstein field
equations in the mass ratio; at zero order, the particle
follows a geodesic of the background spacetime, usually
taken as Schwarzschild (nonspinning) or Kerr (spinning).
At first order, the particle’s effects on its local curvature
result in the particle moving off this geodesic, hence the
so-called self-force. When modeling the self-force it
has become standard to use a point-particle description;
although point particles do not exist in nature, one con-
siders a small enough distribution of mass or charge so that,
to the desired order, the point particle suffices [13,14].

One issue that immediately arises, from the point-
particle assumption, is the singular structure of the
potential—singularities are obviously not ideal for numerics,
as well as being unnatural. For efficient computation of the
nonsingular or regular potential and resulting equations of
motion, one must safely remove this singularity. The first
successful regular-singular split implementation was pro-
duced by Barack and Ori [15] via a mode-sum decompo-
sition; however, their regular and singular fields were not
independent solutions to the homogeneous and sourced wave
equations respectively. This more physically intuitive con-
cept was later introduced by Detweiler and Whiting [16], and
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has been the practical gold standard since (and what we
use here). The full physical picture was later completed
by Harte [17-19], who illustrated that regularization by
the removal of the Detweiler-Whiting singular field,
although this arose as a band-aid to the point-particle
assumption, quite beautifully is the point-particle limit
to a more complete set of laws of motion that govern
the more physically relevant system of an extended body,
or nonsingular distribution of charge, moving in curved
spacetime.

Although mode-sum was the first, and to date the most
successful, regularization scheme, the effective source
[20,21] and matched expansions [22] have also been
successfully implemented. In developing self-force tech-
niques, it has become standard to initiate the calculations in
the toy model of a scalar charged particle, and increase
complexity in several directions; upgrading to the gravita-
tional case of two masses, moving from Schwarzschild to
Kerr spacetime and tackling more challenging orbits like
eccentric or inclined. To this extent, mode-sum and the
effective source have been implemented for a massive
particle on an eccentric orbit and circular orbit in
Schwarzschild spacetime, respectively [23,24]. In Kerr
spacetime, mode-sum was used for generic orbits of a
massive particle [25] while the effective source is still
restricted to circular orbits in this scenario [26].

In the case of a scalar charged particle in Schwarzschild
spacetime, mode-sum has grown from circular [27] to
eccentric [28], while in Kerr, calculations have evolved
through circular equatorial [29], eccentric equatorial [30],
inclined spherical [31] to fully generic [32]. The effective
source has gone through a similar development for a
scalar field, with Schwarzschild circular [20] leading to
eccentric [33] and Kerr equatorial circular [34] growing to
equatorial eccentric [35]. The matched-expansions method,
although the least successful thus far, as a semianalytic
method, is the most powerful. To date, it has been used to
calculate eccentric orbits for a scalar charged particle in
Schwarzschild spacetime [22].

It should be noted for waveform generation, it is also
necessary to evolve the orbit, while parameter estimation
will require second order self-force contributions. Orbit
evolution for a scalar charge with higher orders was first
successfully implemented borrowing from effective field
theory [36,37]. This is closely related to evolving the Green
function methods (analogous to matched expansions) [38]
that have been successfully implemented for eccentric
orbits in Schwarzschild and which have received a recent
boost in numerical efficiency [39]. Evolving orbits for the
gravitational case of massive particles using osculating
geodesics with first order mode-sum self-force calculations
have been accomplished for equatorial eccentric orbits in
both Schwarzschild [40] and Kerr [41]. More recently the
first waveforms for a massive particle with second order
contributions have been successfully generated for a

circular orbit in Schwarzschild spacetime via a two-time-
scale expansion [42], with work on a spinning secondary
well is under way [43].

One of the nice benefits of the mode-sum scheme was
observed by Detweiler et al. when they noted through
circular orbits of a scalar particle in Schwarzschild [27],
higher accuracy of the singular field leads to faster
convergence when summing over the £ modes via high-
order regularization parameters. Whereas Barack and
Ori, in their pioneering work, provided the first two orders
for generic orbits of scalar, electromagnetism and mass
charged particles in both Schwarzschild and Kerr spacetime
[44-46], the higher terms had been somewhat neglected.
This led to further techniques in calculating high-order
expressions of the Detweiler-Whiting singular field, with
Haas and Poisson initially extending their work to eccentric
orbits for a scalar charge in Schwarzschild [47]. Heffernan
et al. exploited various techniques to produce higher
parameters for eccentric orbits of a scalar, electromagnetic
and mass charged particle in Schwarzschild [48], eccentric
equatorial orbits in Kerr [49] and nongeodesic motion of a
scalar charged particle in Schwarzschild [50]. We build on
this previous work by calculating the first higher-order
expressions for a generic orbits in Kerr for a scalar charged
particle. In the case of mode-sum, we make available
the fourth order regularization parameter, which reduces
computation time of the scalar self-force by an order of
magnitude, via a Mathematica package on Zenodo [51].
This has already proven important particularly when
resonances occur [52,53] with large uncertainties propa-
gating without their inclusion.

With the governing equations of the scalar self-force so
closely relating to those of electromagnetic or mass charged
particles to first order in the mass ratio, we thus are laying
the necessary ground work for the more physically relevant
massive particles. Indeed with the ultimate goal of pro-
ducing a wave bank of computationally expensive gravi-
tational waveforms, increasing computer efficiency is of the
utmost importance. Add in the more recent application of
self-force waveforms to binary sources of less extreme
mass ratios [54], i.e., those used by the ground-based
detectors, and the applications of this work are extensive.

This article is organized by the following: Sec. II gives
the background of the scalar self-force, from deriving the
wave equation and equations of motion to the first
regularization procedure by Quinn [55]. Section III recaps
the emergence of the Detweiler-Whiting singular field and
its superseding of Quinn’s regularization; here we also
outline the technique in producing high-order coordinate
invariant expressions for both the scalar field and the scalar
self-force. Sections III B and IV are the main work of this
article where in IV we illustrate how to calculate higher-
order mode-sum regularization parameters for generic
orbits in Kerr spacetime. The results are illustrated in
Sec. V and discussed in Sec. VI
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FIG. 1. The worldline y of the point-particle source z(z) where
x is the field point and ¥ = z(7) is that point on the worldline that
lives on the same constant time hypersurface as the field point x
with Ax = x — X as their spatial separation. 5x' = x — x’ is the
separation of the field point x and a point x' on the worldline
(often taken to be the advanced z(z,q,) or retarded point z(z,e )—
those points on the worldline connected by a null geodesic to the
field point x).

Throughout this paper, we use units in which
G = c =1 and adopt the sign conventions of [56]. We
denote symmetrization of indices using parenthesis, (ab),
antisymmetrization using square brackets, [ab], and
exclude indices from (anti)symmetrization by surrounding
them by vertical bars, (a|b|c) and [a|b|c]. For spatial
and four-velocity vectors we use the notation,
xaxb,” , uaubn_Euab... or 2abc... Ezazbzc”.’
while biscalars with indices imply covariant differentiation,
e.g., ViVls(x,x')=0. We also make reference to
several points; to clarify we direct the reader to Fig. 1 where
(a) z(7) refers to a point on the worldline y of the

source, parametrized by proper time z, with shorthand
notation x’ = z(7'),

(b) x refers to a field point off the worldline,

(c) z(7) refers to a fixed point on the worldline living on
the same constant time spacelike hypersurface as the
field point x, also shortened to x = z(7).

(d) z(7ye) and z(7,qy) are the retarded and advanced points
respectively—those points on the worldline connected
by a null geodesic to the field point x.

(e) Ax = x — x refers to the distance between the field
point x and X on the worldline.

(f) 6x' = x — X' refers to the distance between the field
point x and x’ on the worldline.

= xabc...

(g) At =17 —7 refers to the difference in proper time
between X and another point on the worldline x’, often
chosen to be the retarded or advanced points.

(h) € ~Ax ~6x' ~ Ar is a dimensionless parameter in-
troduced to keep track of the order of each expansion.

II. A SCALAR CHARGED PARTICLE MOVING IN
CURVED SPACETIME

A. Equations of motion for a point charge

The motion of a scalar charge g on a worldline y, with
affine parameter 4, in curved spacetime is described by its
position vector z%(4). The action, S, of such a system allows
a Lagrangian density description of the (assumed point)
particle, its generated scalar potential ¢» and the interaction
between the two, that is

S = / (zpanicle + Zfield + Zinteraction) V _gd4x’ (21)

where
2p:micle = —m0/54(x, Z)dT» (22)
14
Liiq = —%(9"}’(/),14517 + ERP?), (23)
Eucion =4 [ #0300 2)ae. (24

g and R are the determinant and Ricci scalar of the
metric respectively, m, is the bare mass of the particle,

dr = \/—g.,2*z"d) is the differential of proper time, the
overdot refers to differentiation with respect to 4, the scalar
field ¢, =V, ¢ is the usual covariant derivative of the
scalar potential, £ is a dimensionless coupling factor linking
the scalar potential ¢ to the curved spacetime, and &4(x, z)
is an invariant Dirac functional in curved spacetime as
defined in Eq. (13.2) of [57]; this is related to the standard
coordinate Dirac distribution functional §,(x — x) by
by — = X) _Blx =)
V=9 V-9

Varying this action with respect to the potential ¢ and
finding the stationary point leads to the usual associated
Euler-Lagrange equation,

oL oL

- - Va <—.> - 0

o o
Inserting the Lagrangian density of the field and interaction
terms results in the scalar wave equation,

(2.5)

(2.6)
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(O-¢R)p = —47rq/ 84 (x, z(7))dr,

= —4xu(x), (2.7)
where we have defined the source,
) = q [ 6x.2(0))de. 2.8)
v

For varying the action with respect to the position z%(4),
one need only consider the particle and interaction terms,
resulting in a simplified system,

S = / (Lparticle + Linteraction)d/L (29)
4

where

Lparticle = _m()[_gab (Z)iaih]l/zv (2.10)

Linteraction = Q¢(Z)[_gab (Z)iaib}l/z' (211)

The associated Euler-Lagrange equations,

oL _d (oL _,
0z¢ di\aez*) 7

on taking 4 as proper time, lead to the equations of motion,

(2.12)

(gdezde)—lﬂ [m (T> Zbcgbc.a + ZQ¢a (Z)gbcibc}

N =

d . o
= 1 [m(0)9a2" (=geaz*)™1%] = 0,

= ) (25) =) + )

= F4= b [m(7)2°] = q¢*(2),

- (2.13)

where one takes m(7)=my—q¢p(z) to be a time-
dependent mass with

dm

— = —q¢a(2)Z".

- (2.14)

We now have a set of coupled equations; Eq. (2.7)
describes the field produced by the movement of the scalar
charged particle, while Eq. (2.13) depicts the motion of tha
t scalar charged particle, which in turn is influenced by the
field through the presence of ¢,. In this manner, the field
generated by the particle’s motion is seen to produce a force
that affects the motion of that particle, hence the so-called
self-force. Fortunately, these equations bear a very close
resemblance to those generated by the gravitational per-
turbation in the mass ratio to first order for a point mass in

curved spacetime; therefore the techniques developed here
can be extended to the astrophysically interesting gravita-
tional case.

Before one attempts to solve this coupled system, it is
important to note that the scalar wave Eq. (2.7) describes a
field that diverges on the worldline—a consequence of our
point-particle assumption. In reality, in particular when
considering the electromagnetic or gravitational counter-
parts of electric or ‘mass’ charged point particles, one can
imagine that the charged particle does have an extended
body (or distribution of charge), and in turn an extended
body would not result in this singularity on the worldline.
Extended body calculations are hard; fortunately it has been
shown the resulting equations of motion for an extended
charge distribution are identical to that of the (regularized)
point-particle assumption for a sufficiently small charge
distribution [17,19,55]; hence the point-particle assumption
has been validated.

In place of a full extended-body calculation, the self-
force modeling program resolves to treat the field as the
summation of two parts, a regular and singular field. In this
scenario for a scalar potential ¢, we write

¢ =¢® + . (2.15)
By design, as will be described in the next section, the
regular potential, ¢(®), is a solution to the homogeneous
version of the wave Eq. (2.7), and hence smooth on the
worldline; it captures all effects on the particle’s motion.
The singular potential, ¢®) is a solution to the sourced
wave Eq. (2.7), capturing the singularity of the field but
with no impact on the motion of the particle. That is

(O-¢R)p = (O —ER) (W) + ¢9),

=0—4nq / 84(x, z)dr, (2.16)
v

and

F,=F® = 9P (2). (2.17)
Such a decomposition allows a simpler calculation of the
resulting motion as one can safely remove problematic
singularities. It also allows the more physical interpretation
of a smooth or regular field as would be expected from
an extended particle, although this is not quite what is
calculated here.

Harte has illustrated that this regularization, a require-
ment due to the point-particle approximation, is in fact the
point-particle limit of more general laws of motion that
affect a nonsingular, hence more realistic, distribution of
charge (or extended body) [17,19]. Alternatively, if one
ignores the required regularization and rethinks the prob-
lem as separating the field into two; one that affects the
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motion and one that does not. Harte has illustrated this
(Detweiler-Whiting) procedure extends to the scenario of a
distribution of charge and is nonsingular. The point-particle
limit of this separation results in the Detweiler-Whiting
singular-regular field split.

B. Regularization in flat spacetime

To understand the complications that arise for regulari-
zation procedures in curved spacetime, it is beneficial to
recall the regularization procedures adopted for the Klein
Gordon equation in flat spacetime,

O¢p(x) = —4dru(x), (2.18)

where u is prescribed source as described by Eq. (2.8).
Using Green functions we have

#(2) = [ Gulro ) (2.19)
—yq / G (x.2(x))dr. (2.20)

where
OGi(x,x') = —4x6(x — x'), (2.21)

and z(z) describes the worldline y of the source point
parametrized by proper time 7 as illustrated in Fig. 2.

FIG. 2. The worldline y of the point-particle source z(z) in flat
spacetime. The retarded potential at x depends only on expres-
sions evaluated at 7, where its past light cone intersects the
worldline of the source. Similarly, the advanced potential only
has support at 7,4,. The singular and regular potentials depend
on both.

The explicit Green function that formulate the solution of
Eq. (2.19), which can be derived via a Fourier transform,
are the well-known retarded G, and advanced G_ flat
spacetime Green functions,

S(ct—cf F x — )
e — x|

Gi(x,x') = , (2.22)

=20[E(ct = ct')]|8[(ct — ct')? — |x —x')?],
=6.(0). (2.23)

where ® is the usual Heaviside step function; ¢ =
InAx? is the flat spacetime Synge world function,
equivalent to half the distance squared in flat spacetime
(hence zero on the null cone); and Ax is the spacelike
distance (same coordinate time) between our field point and
our source point. We have made use of the scaling and
factorizing properties of the Dirac delta function,

S(ax) = ﬁé(x), (2.24)
S(x*=2%) = ﬁ [6(x—2z)+6(x+2). (2.25)

We also introduced
6x(0(x.x')) = OL(2(x),x)o(a(x, x)), (2.26)

where O, (Z(x),x’) is a generalized step function;
O, (2(x),x') is equal to 1 when x’ is in the past of the
spacelike hypersurface X(x) that connects the field point x
to the worldline of x” as shown in Fig. 2; @_(Z(x),x') =
1 -0, (2(x),x') is equal to 1 when x’ is in the future of
%(x). In this manner, 5. (o) is only nonzero when the two
points are connected by a null geodesic with the support of
6, restricted to where the worldline of x’ coincides with the
past directed null cone of x, known as the retarded time, 7.
Similarly 6_ = 0 everywhere except where the worldline of
x' coincides with the future directed null cone of x, that is
the advanced time 7,4,. Therefore, when one carries out the
integration over y of Eq. (2.19), ¢(x) only depends on
the source at 7, Or 7,4, depending on whether we take the
retarded or advanced solution accordingly (Fig. 2).

However, the solution Eq. (2.19) becomes problematic
when one considers the equations of motion for the source
particle. These will contain the generated field of ¢ via its
gradient, which due to our point-particle assumption, will
contain singularities. As discussed previously, singularities
are often considered nonphysical, and in this scenario, a
direct consequence of the point-particle assumption.
They therefore need to be removed in a careful regulari-
zation procedure that has no impact on the motion of the
particle.
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Fortunately, regularization in flat spacetime is straight-
forward. One designs the singular potential as the averaged
sum of the retarded and advanced potentials,

Pis) = (2.27)

(¢(ret) + ¢(adv) ) .

| =

As the retarded potential, ¢y = ¢, is associated with
outgoing radiation from the source particle, and the
advanced potential ¢(,q4,) = ¢p_ is associated with incoming
radiation, the singular potential can be interpreted as a
standing wave, evident by the reciprocity relation of the
Green functions,

G, (x,x)=G_(X,x). (2.28)
The singular potential therefore leads to no net gain or loss
of energy to the system, and is a solution of the wave
equation, Eq. (2.18). Taking the retarded solution as the
causal satisfying physical solution, we can then define the
regular potential as

bR) = Dier) — P(s) = (2.29)

(¢(ret) - ¢(adv) ) .

NSRR

As the singular potential results in no net loss or gain of
energy, it can be safely removed without affecting the
motion of the particle. The resulting regular potential, ¢ g,
is a solution to the homogeneous wave equation; by design,
it is smooth on the worldline of the charged particle and
captures all effects on the particle’s motion.

C. Problems regularizing in curved spacetime

In curved spacetime the solution of the scalar potential
wave Eq. (2.7), like flat spacetime is constructed via Green
functions, that is

#23) = [ Gulr o)y

:q/Gi(X,Z(T))dT, (2.30)

where

(0 = ER)G = —4nb4(x, X'). (2.31)

However the Green function here account for curved
spacetime, and are given, at least locally, by the
Hadamard construction [58,59],
Gi(x,xX')=U(x,x)5:(0) = V(x,x)O.(-0), (2.32)
where x’ is constrained to the normal convex neighbour-

hood of x, A/(x); U and V are smooth biscalars. The Synge
world function ¢ in curved spacetime is

1 A d 'a d 'b
o(x".x') = 5(/1” _/1/)//1' g“b(z)d—zd—z,{dﬂ’ (2.33)
—1A7?  timelike 8,
=10 lightlike g3, (2.34)

IAs*  spacelike f,

where going from the first line to the second we assumed x”
and x’ are connected by a geodesic f (parametrized by A).
By placing our retarded Green function composition of
Eq. (2.32) into its governing equation, Eq. (2.31), as shown
in [57,60], one retrieves

U(x,x') = A2 (x,x'), (2.35)
(O = ERYV (x, ¥') = 0, (2.36)
26V , 4 (08 = 2)V = —(O' = ERU|,_y.  (237)

where A'/2(x, x’) is the Van Vleck determinant. The second
of these illustrates that our V potential is a solution to the
homogeneous wave equation, while the third leads to a
recursion relationship to obtain an expression for V [61]. It
should be noted here that our V differs slightly from that of
[57] by a minus sign as we used the convention of [61,16].

As in flat spacetime, the Green functions of Eq. (2.32)
have a ‘direct’ part, U, that is only supported on the light
cone. In addition there is now a ‘tail’ potential V, resulting
from the radiation scattering off the curvature and thus
arriving later; in this manner the advanced and retarded
Green functions G depend on the entire future and past
of the source respectively. Explicitly, Eq. (2.30) with
Eq. (2.32) becomes

$(x) = £q [Ti U(x.2(7))+(0) = V(x, 2(7))OL(—0)dr + ‘1/% G (x,2(7))dr,

=+gq U(x, z(72)) - q/Ti

(0au)]:,

</>

U ) . Ti:Fé
= iqM + lll% q/ Gi(x,z(7))dx,

(oau)l.,

Foo

V(x,z(7))dr + q/

Foo

G, 2(7))dr,
Foo

(2.38)
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FIG. 3. The worldline y of the source point particle z(z) in
curved spacetime. The point X = z(7) lives on the same hyper-
surface as the field point x with Ax = x — X representing their
separation. The retarded potential at x depends on expressions
evaluated at 7., where its past light cone intersects the worldline
of the source as well as the worldline history previous to 7.
Similarly, the advanced potential only has support at 7,4, and its
future afterwards. The singular average of both depends on the
entire future and history of the charged particle.

where ¢, =V, 0, u® is the four-velocity of the charged
particle, 7 and 7. mark the intersection of the worldline of
the charged particle with the boundary of the normal
neighborhood of x, N(x) as illustrated in Fig. 3; ‘4’
and ‘-’ refer to retarded and advanced respectively. We
used

dr = <Z1T> do = ﬁ = _do

4 6 ouU

(2.39)

where Eq. (2.39) holds because of the direction of the dr
integral in Eq. (2.38); in the retarded and advanced case 7 is
moving in the direction from where ¢ is timelike to null-
like to spacelike, i.e., o is increasing with 7 even though 7 is
increasing in the retarded case and decreasing in the
advanced case. In the second integral, € is introduced as
a small parameter to move off the light cone of x, that is

/ “Vieze)dr=tim [T Go(x 2(r))dr.  (2.40)

</> €0 T</>

If one now forms a symmetric singular potential as in flat
spacetime, by averaging the advanced and retarded Green
functions, one gets a singular, and resulting regular field,
that depend on the entire past and future of the source
particle; clearly this is not a realistic solution.

The resulting diverging forces are then given by

U(x.2(7))0q(0pu”)

aa¢i(x) =1q b)g

9aU(x,2(7))
ub

(Ubu

T+ T+

Ux.2(2)) _ U(x.2(2)0c(opu”)
by

+
o

0,(t2) T q / = 0,V (x, 2(x))de

</>

- V(ws(6)|

T+

iq/bb%GﬂndﬂMn
:F

o]

(2.41)

where one has

0 = 84lo(x, x(z4))] = 04 (x, x(71)) + 6(x, x(71))0(7s),
O-a(x’x(T:l:))

= 0,(74) ==£
() =+ i),

(2.42)

D. The Quinn-Wald regularization procedure

The first correct expression for a regularized self-force in
the case of a scalar charge was produced by Quinn [55],
which used the same regularization procedure developed by
Quinn and Wald [13], often referred to as the axiomatic
approach. Here one considers two worldlines, that of the
particle and that of a field point; these can exist in two
different spacetimes. Initially the field point is considered
to be the worldline of another charged particle, producing
its own field. If these two particles have the same singular
structure, Quinn asks and answers; can you subtract the
forces generated by one from that of the other so the
divergences cancel exactly, leaving a finite result?

Following [13], they suggest the finite subtraction be
carried out via

fi =78 = limg(Vg, = Vigy).  (243)

where ~ indicates a different spacetime, r = (6,u”), and
the angular brackets are introduced to average out any
directional dependence. Although technically a time delay,
r is an affine parameter on the null geodesic connecting the
field point x to the retarded point z(z,,) on the worldline y
(Fig. 3) and equates to a distance when ¢ = 1; thus it is
often referred to as the retarded distance between x and y
[57]. When considering forces of the type in Eq. (2.41),
apart from the integral extending to infinity, we can
examine the nature of the more local terms by means of
an expansion in . We can safely assume r ~ € ~ Ax as it is
represents the separation of x and x’. Such an expansion as
carried out in [59] (or [57] for a more recent version) gives
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U(x,x(71)) =1+ O(e)?,

V(xx(z)) = - 15 R(x(r2)) + Ofe),

0a(x, x(72)) = Ole).

From Eq. (2.38), we see the leading, and divergent term, is
I 0
¢+(x) =7+ O(e)",
which leads to the resulting force

Vi (x) = - Oe)".

?a€—2 + -
5 Pe2 + ¢’i[_1]r‘1€_1 + ¢i[0]’"0 + O(e)",
(2.44)

where " indicates the usual outward pointing normal vector.
A suitable parallel transport g, to allow the subtraction in
Eq. (2.43) would be by means of Riemann normal
coordinates; the two leading divergent terms are only
dependent on the scalar charge ¢, the four-velocity u?,
and in the case of nongeodesic motion the four-acceleration
a® [50,55]. By choosing a particle with equal scalar, four-
velocity and four-acceleration, then in Riemann normal
coordinates,

1 .
9ab = Gap T+ 3 PRycpatde* + O(e)?,

acts on Eq. (2.44), ensuring the finite subtraction of
Eq. (2.43). That is we get

~ q N _ _ —
95V Ps(x) = = 570672 + Paaq) () e + auo) (x)r°

S

+ gRacbd?de + 0(6)’

. (2.45)

where the Riemann tensor term will go to zero due to
symmetries in (b, d). We can therefore safely carry out the
subtraction in Eq. (2.43) with our divergent terms exactly
canceling and no new terms introduced due to the parallel
transport (terms O(r) — 0 in the limit).

To complete the design of our secondary field, in
addition to having the same singular structure, we need
it to have a resultant force of zero, that is f§ =0 in
Eq. (2.43). For this, we simply borrow from flat spacetime;
the averaged sum of the retarded and advanced fields in flat
spacetime results in no force due to its standing wave
nature. That is, recalling our flat spacetime Green function,
Eq. (2.22), we have

, (2.46)

where again we must be careful of the direction of our
integration, flipping the limits for z_ ensures 7 is decreasing
as it crosses the advanced time. Similarly, one can use the
curved spacetime counterpart,

U(x, x(7))|*+

CA .

holx) =1 (247)

with the two options of ¢,(x) differing by O(r) from our
local expansion of U above. When substituted into
Eq. (2.43), we get a finite and nondiverging f§ = O(r°)
where any directional dependence on how one takes the
limit is averaged over the 2-sphere. That is, taking our
retarded field as the causal sensible field, ¢, = ¢, the self-
force is the gradient of

[58)

averaged over the 2-sphere and in the limit x — x'.

III. THE DETWEILER-WHITING
SINGULAR FIELD

A. The direct and tail fields

Although the Quinn-Wald regularization was inspired by
its flat spacetime counterpart, it does not quite capture the
same essence; in flat spacetime the singular and regular
fields are solutions to the wave equation. Inspired by this,
Detweiler and Whiting observed that the O(¢)° term that
arises from

—qV(X, Z(T+))aa (T+) - %

R(x)?, + Oe).

in Eq. (2.41), with the local expansion Eq. (2.44), integrates
to zero over the 2-sphere. This term arises from the gradient
hitting the limit [™_ on the integral over V. However,
consider the integral,

limva% b V(x,z(r))dr ==z V(x, x)V, (t_ — ),

/
X=X
Tt

1
2
=V

(x,x)V,r+ O(e),

1 .
= —ER(x)ru + O(e),

where (7_—17.) =r+ O(r?) and we note this cancels
exactly the previous term. This led Detweiler and Whiting
to amend the singular field, Eq. (2.47), to
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Ux, x(z))|*

) -4
P = )

) +§/ Vix 2(0)dr.  (3.1)

T_ T4

Indeed a separate derivation found in [57], notes that by
adding an unknown biscalar H(x, x’) to the averaged sum
of the singular and regular, one can make sensible demands
that result in the same Detweiler-Whiting singular field,

1
GO (x,x) = 3 (G (x, x') + G (x, x') — H(x, x')],
G® (x,x) = G"(x,x") = G (x,x'),

1
=3 (G (x, x') = G (x, x') + H(x,x')].
One can determine a suitable H(x, x") by demanding when
X' is in the past of x, G (x,x") does not depend on the
history of the worldline z(z). Similarly when x’ is in the

future of x, G)(x,x’) does not depend on the future of
z(z). From Eq. (2.32), we have

GO (x, x') = % U(x,x')5(c) - %H(x, ¥)
43V ()[04 (-0) + (<o),

where we used 6 = 6, + 5_. When x’ is in the past of x,

G (x,x) :%[U(x,x’)é(a) +V(x,x')0, (o) —H(x,x")].

Similarly, when x’ is in the future of x,
1
G (x,x) ZE[U(x,x’)é(a) +V(x,x")0_(—0)—H(x,x)].

Both of these can be solved by H(x,x") = V(x,x’) (this
also preserves reciprocity of the Green functions and is a
solution to the homogeneous wave equation). The singular
field then becomes

G (x,x) = = U(x,x)5(0) —|—%V(x, X)(O, (-0)—-1)

N = N =

Ux, ¥)5(0) —l—%V(x, ¥0),  (3.2)
which is the Green function that would generate the
Detweiler-Whiting singular field above [Eq. (3.1)].

We can now see the linear combination of G (x,x),
G@®)(x,x'), and V(x,x) that makes up G (x,x’) is a
solution to the full scalar wave equation while the combi-
nation forming G(® (x, x') is a solution to the homogeneous
wave equation as desired. This also removes the need for
averaging over the 2-sphere, indeed as is shown later, one
must simply ensure the limit x — x’ is taken in the same

direction for both the retarded and singular field to ensure a
safe subtraction.

B. Explicit calculation of the Detweiler-Whiting
singular field

Our starting description of the singular field Eq. (3.1) is

+ %/ MV (x.2(2))d,
%

ret)

o) (x) = 4 [

U(x, x')]¥ =%
2

~
o u’

/_
X=X (ret)

(3.3)

where we remind the reader that the term r = (o-cruc/)x/:x“m
is the same retarded distance of Sec. IID, with ry, =

—(6ou), , often defined as the advanced distance

/:x(adv
between the field point x and the worldline y [57]. To obtain
explicit expressions, we use

(3.4)

Ax® = x* — x4,

Sx? = x* — x, (3.5)
where X = x% is where the worldline intersects the hyper-
surface of x as shown in Fig. 3 and we assume both Ax“ and
5x? are of similar magnitude ~e. As previously described
in [48,49], one can expand all biscalars of (x,x’) in 5x¢
and use governing equations to determine unknown
coefficients.
The direct potential U(x, x"), which is equivalent to the
Van Vleck (Eq. (2.35)), was previously determined to be
U(x,x') = A2 (x,x') = 1+ O(e)*, (3.6)
in Eq. (BS) of [48]. Similarly the tail potential V(x,x’)
described by Eq. (2.37) was illustrated to be
V(x,x') = Vy(x,x') + O(e)* = O(e)?, (3.7)
in Eq. (B9) of [48]. With the Synge world function o (x, x”)
having leading order O(e)?, we can immediately see from
Eq. (3.3) that the singular field will be of leading order
O(e)™! through the direct potential. As we are targeting the
leading four orders (the next two unknown orders), and

the tail potential V(x,x") will pick up an order through
integration, we now need only calculate

1 X =X(aay
OO (x) = g { ] ¥ O(e)?. (3.8)
ooU

/_
X =X(ret)

Interestingly this means for the desired order, one does not
require/observe the effects of the tail potential, illustrating
an even closer link to the flat spacetime singular field of
Egs. (2.27) and (2.46).

064031-9



ANNA HEFFERNAN

PHYS. REV. D 106, 064031 (2022)

To produce expressions for the Synge world function, we
have

1 ! / ! / J
o(x,x") = > Yab (x)6x7 6xY" + Ay (x)5x 5xP 5x¢

+ Bpea(x)0x4 5x" 5x¢' 6x
+ Coapede (X)5x4 8 5x¢ 5x4 5x¢ + O(e)°. (3.9)

Taylor expanding the functions of x as (¥ + Ax) and using

/ . .
26 = 6,0, one arrives at the coefficients,

1

Ape = —=Tiwpe
abe D) (ab,c)»

1 1
Bupea = 6 F(a/n d) 24 F F\ led)>

1 1 1
— f
Cabcde - = 24 1—‘(abc,de) 24 F( che),f + 24 F(abr\f\cd,e)

1 1 o
+ 5 lasLeare) = 27 Tl @l o

One can then obtain ¢, from a simple partial derivative
of Eq. (3.9).

For the advanced and retarded points on the worldline,
we Taylor expand in At =7/ -7,

x4 (7)) =x% (T4 A1)

_ _ 1. 1 ..
=xI4+ U AT+ — AT+ — i AT+

2! 3!
R DU R
u“AT—Eu“AT —— AT+,

= ox? = Ax?— 3

(3.10)

1
73 = —g{lz’[% —

+4[r FebdFeaEu“bed + 30,0, 5 -4 AxP + (7ju® — Ax)T, 5

— 0 [47 5 0 a  7ye + Tape

+Ffi‘t_1(2réﬁ[_'l_7] +2F[ﬁé}"rﬁal§ +Ff
+11[Ff (2.5 b7, }—i—l"f 3Fj-cahF;,
—l—Fh 5(4T

ac he]+rhdce+2r' deh] —

2047 T522) + 20300 5 + 21 z;[azz]e]umA

where u® is the contravariant four-velocity along the
worldline of the particle evaluated at X and an overdot
denotes differentiation with respect to z. Practically imple-
menting Eq. (3.10), we find the resulting expressions
greatly reduce in complexity if we rewrite the higher
derivatives of the four-velocity in terms of Christoffels,

i =~ e (3.11)
T = (25T g = T )ul™, (3.12)

" = =M ge =1 5o (M0 7 + 417370 = 207751 5¢)
— T3 (207 o — 4T (T35 ) ubee, 3.13)

An expression for Az can be found from combining our
expression for 8x’ of Eq. (3.10) with the Synge world
function of Eq. (3.9). As we define x’ to be those points on
the worldline connected by a null geodesic to x, we use
o(x,x") =0 to solve for

At = et + €1y + €315 + €ty + O(€)°, (3.14)

to obtain

7 = —uzAx? £ p, (3.15)

1 _
7y = — (Ax° —u‘r)I

A ah’
2p *

(3.16)

abt

[472u® — (47,u® — Ax®)AxPIT, 0% 5 Axc?

caBx?? + 200, autP AxY A}, (3.17)

faB(Ffz-fﬁElé - ZFEZJL?,E] - F}ail,é)]Axadee + 167,17 (Faa[il,iz] + Féa[llrww]iz)”aZAxCd

— T 5Ty ail 20 + 2 a2 + Traas) — 20 5a(2a 7.0 + Dreas)|ut Axbede

+ 7120z 2,50 + 17 a5(2raay.z] +T7222) + 21 (20355 —ZF}_'azF(fh)L

) Au? Axede 4 4y (T, 5,0% 5 — ,
= a7 a5) + 217 (2525 +F‘z'_’1“1r- —7epe 20550 7)

— 1203, .u®AxPe},

abcU

(3.18)
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where

,02 = (gap + ”al'a)Axah- (3.19)

One can think of p simply as the square root for the
quadratic solution of

specifically its leading order when converted to a coor-
dinate expansion. This type of Riemann normal expansion
has benefits over r(x,x’) as it allows one to avoid tetrad
decompositions—in previous work this has enabled much
higher expansions [48,49].

Combining the above for the unknown expressions in

Eq. (3.3), we arrive at the singular field,

1
azig,”;(Ax —ul7))e? + O(e)® =0, (3.20) !
o) (x) ==, (3.21)
asin Eq. (3.19). For the retarded solution, we have Az = P
T(rer) — 7 With 7; corresponding to the negative p. Similarly, ) 1 .
the advanced solution At(,qy) = T(4qy) — 7 €quates to 7; q’[o] (x) = T3 (Cape + T pus3) Axee, (3.22)
taking the positive root. A more physical picture of p is ’
its equivalence to the retarded distance r(x,x’), more
|
ab cd cdef
S u*’ Ax 3Ax B a a
o) (x) = 5 (Ceams + T2ealjepap) + 5,5 Laerlie 2 Ax® 4 20 AxP (u - Ax) + u®®(u - Ax)?]
Axcd , ~ -
20 {Ax(Toealap — 4Tapca) +4uAx (u - Ax)(Ty 2l 35 = Tazap)
- uéf[3Ax“bFNaF-al; -+ 8(14 Ax) (F"[f d] + F [ F| \d]f)]} (323)
) abede . _ - - }—l
q)[z] (x) = {Ax; ( 3””)[Ffa Brféél,é + Ffaérfzaja + Ffa 3<r]é wbe — 20725 )]

24p
+ Axi(gF T+ 3uth) I 5 (2054 B]—Fhabrﬁﬁ)ﬂLﬂf—zeay }+2T--[,;u;] S S O

~1

+ 21/ aarj'ahrizél‘o] + Ax‘l* [
—3(u- Ax)uz[rfga(4rﬁéz3rfaﬁ

de

Ax _- = . ¢
“‘W{AX?(Q(” + ”m)[Achij 5e(g bi +2Mb])(2r afe tTraas) = AxT ;5220

— AxP¢Ax;(g ai _ uﬁ)rf‘,;z.r"’;,ér— o7 = u'_’Ax”Ax;(ga; .
+ub?Ax; (Qal + “m)(” Ax)z( acphdle ZFfEBFaEI[E - ZF]aEFfaEFBEB -ae !
—uPTAX; (g = u® ) (- AP T 7000 + T 002z + Tracs — Tra”
+2u" P A AXT 4 4T3 25 = T éfi) + 285 (¢° T+ 30z 22 (T35 + Dragpy)

+ 2P (- A Tgaeme =T aal 72" Thpe + 20 2l acgz) + UV aa QU725 + 20a 57 — Trapa)l}

Axdesh ! ] )
6 Taae{Ax;(g") + ut)[Ax" (AT 5 = T lipp) + 4uP Axt(u - Ax)(Tpe 55— Dpil525)
+ SMEE(M . Ax)z(l“?;[;ll“mz.];, + F_;_‘Z-[E,l_y])] + uE’BAx"J'Axk(QgE’_‘ + 3146]_()1—‘,;A;;1Fz.;}
SAxdefhij b ~ , b ;
e, la 2205 70z 15[Ax¢ + 3u® Ax (u - Ax) 4 3u® Ax“(u - Ax)* 4 u® be(y . Ax)3). (3.24)
Y
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C. The scalar self-force

Once we have the singular scalar field, a simple partial
derivative gives the required singular self-force of
Eq. (2.13) in the form,

where one might note the different upper limit on the p-sum
differs from that of the accelerated scalar self-force [50].
Explicitly, this looks like

S —Axb
Fa[_l] = 3 (gab + uab) (326)
s w L) P
Fa ()C) = Z Z ba‘l Cln-2p) (X) (S) Abe 5
n==1 p=-n-2 Fa[o] = 2 a3 [(Tapeta + 20551z )u d+ra52+2réaz]
X AXC1.. AxCu-2 p2P=len=1, (3.25)
3Axhcde _
2—'05 (9ap +uzp)(Tege +T Ec_iuéf)’ (3.27)
FO = L ypeavaore 1 T, o
all] *gu 420 a0 aire + Casjag + Tabae)
Ax bt ef b ce(Tf
+6—p3[2u Ax(ga7 +3ug7) T gl ice + Tabpez) + uatt” Ax(TV 5 :Lra: = Theaz)
+ AP (T s ea = 2heaa = Vapea — Ureaa) + 26 (- Ax)2(20% T gaa + Tapea + Tasea)
—|—I/tbe (u Ax)(zF ,—,;11“_76&+I“_,;a1“;z;1—2l“,—,w;,—l“;, ) 3ubchefr F . ]
Ax?e! be h b 7
5 {(9aa+uaa) [Ax" (45 5 —T"5elz7) +4u AxC(u- Ax)(Tpzz 7 =152 7)
+ 8uP? (1 Ax)* (T gD jef7 + Tei7 )] + 3uP Ax [ Axi (g7 + 3ugz) + 2ua Ax"|T530 77
+ 6ui’Axc(u CAX) 2Tl a7 + The (2 eaa + Taza)l + lzubc(” Ax)’Ty; Iee7 +6Ax"Ty 207 (2 pea +Tape)}
15Axbefhi d cj cj ¢d
_T(gal} + ua5) [AxTAx; (g + 2u e g2 Ty s + Ut (u - Ax)* Tz 7). (3.28)
where we have omitted the larger term of F ) due to its F, (%) = i et (%) Ff(S)()—C) (4.1)
size, however it is provided in a usable format as regu- ¢ - ¢ ¢ ' '
larization parameters online [51,62]. From Eqgs. (3.26),
(3.27), and (3.28), one can simply read off the b coefficients where
of Eq. (3.25), e.g., Feo ) :ZFgm(S)(;’ )Y 0 (0,),
1 - 26+ 1 -
b[?}—ﬁ()_c) ) [(Capeta + 2F&al§”5)”d +Tape + 2052z, - A FiO(S)(t’ )
0 .3 ; . 20+1 s
bé]éaag(x) :E(Qaiy +uzp)Tege + 17 zauzy). (3.29) :Alir_%? Fi >(0,Ar,a,ﬂ)Pf(cosa)dQ.
(4.2)

IV. MODE-SUM REGULARIZATION

Once we have the singular self-force, regularization is
obtained by simply subtracting the singular from the
(numerically calculated) retarded self-force. However, sub-
tracting an infinity from an infinity can prove problematic;
this lead Barack and Ori [15] to propose a spherical
harmonic decomposition of both, allowing subtraction mode
by mode,

Here, as has become standard in mode-sum calculations [44],
we are operating in a rotated coordinate system (6, ¢) —
(a, ) where the particle is on the pole (=0 =pj),
immediately reducing the sum of m modes to m =0 in
the second equality. The format of Eq. (3.25) and the
assumption that both x and X are on the same hypersurface
allows us to write

Fl(ls>(x) = F((IS>(At = 0, Ar, Aa = (X’Aﬂ :/}>
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In the third equality, it is necessary to take the limitx — X, to
avoid the discontinuity at the particle. As is typical, this limit
is taken in the radial direction; this must be mirrored in the
calculation of the retarded self-force to insure the singular-
ities cancel exactly, in particular from which direction along
the radial axis.

A. Coordinate system

In order to carry out the integration in Eq. (4.2), it is
important to choose suitable coordinates. As already
mentioned, placing the particle on the pole is the first
step; for Schwarzschild, this previously entailed a counter-
clockwise rotation of z/2 around the x-axis [44]. When
considering generic orbits in Kerr, we require two rotations
usually obtained by the first two Euler angles as illustrated
in Fig. 4. Indeed we choose the rotated coordinate system
described by the Euler angles (¢ + 7, 6, —p,) or explicitly

sinacos (8 — fy) = sinBsin (¢ — @),
sinasin (f — ) = cos @sin @ — sin @ cos O cos (¢ — P),
cosa = cos @ cos @ + sin@sin & cos (¢ — ),
(4.3)

where we reserve f, for later simplification; for comparison
Barack and Ori [46] used (¢ + 5,0, =, — %) as described
in Barack’s later review [63].

These rotated coordinates are not well behaved at
the particle (as it is on the pole); to enable coordinate
expansions off the particle’s worldline, a further coordinate
transformation to “locally Cartesian coordinates”, or (x, y)

X"

FIG. 4. Taking the particle to have spherical coordinates
(7.0.¢), we rotate through the Euler angles (¢ +%.0,—f).
that is ¢ + % and 6 around the original z-axis and rotated x"-axis
respectively (resulting in the green and orange axes). Our new
coordinates have the particle on the pole. We rotate through a
third Euler angle, —f, that is a clockwise rotation /3, around the
7-axis resulting in the red axis.

in [44], is required. More recent literature [48—50] have
these labeled (w;,w,); we therefore settle on (w,,w,),

w, = w(a) cos(ff — fy) = 2sin (g) cos(f— fo), (4.4)

w, = w(a)sin(f - fy) = 2sin (g) sin(f—fo). (4.5

where w(a) is selected due to its regularity, that
w(a) = a+ O(a)’ ~sina, and that it monotonically
increases for a € [0, 7). These coordinates align with those
of our second rotation (x”,y”) as illustrated in Fig. 5.

The singular scalar self-force from Eq. (3.25) of a field
point ‘close’ to that particle at (7,0,¢) on the same
hypersurface can now be written

FP(x) = FS (At = 0, Ar, Aw, = wy, Awy = w,),

where again we see the sign of Ar will depend from which
direction the limit is taken; above or below the plane. To
obtain such an expression, the initial mode-sum papers

[27,44,47] calculated F E,S) (x) in Cartesian coordinates, and
reexpanded into the w coordinates to then carry out the
integration of Eq. (4.2). Here we follow Heffernan et al.
[48,49] who illustrated this reexpansion was a limiting
feature in pushing to higher orders. It is more efficient to
calculate F E,S)(x) in the w coordinates and carry out a
coordinate transformation back to spherical coordinates
for integration. The coordinate transformation does not
affect (7, r) components, however, for the angular compo-
nents, one has

FIG. 5. Locally Cartesian coordinates (w,,w,) align with our
second rotation axes (x”,y”) and allow coordinate expansions off
the particle and its worldline. The z-axis of these coordinates is
parallel to the rotated z”’-axis. With the particle on (0,0,0) in these
coordinates, we note a neighbouring particle will have coordi-
nates (wy, w,, Ar).
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Fo==F, €72 = (F,,jo — Wy COLOF,, [_y)e”"

- 1 - 1 -
- {Fwym — w, cotOF,, (o + wawy(l — 4csc?O)F,, Ly + 3 [wi(5 = 4ese?0) — wilF, -y }6‘0
- 1 _ 1 _
- {Fwy [2] — Wy COt erx[l] + 1 Wny(l - 4CSC2(9)FWX[O] + g [w§(5 - 4CSC29) - W_%]va [0]
1 - _ 1 - _
+ Zwiwy cotO(3 — desc*)F,,, () + gwxcsczé? cot O[ws(3 4 2 cos 20) — 8wi]F,, ) }6 +0(e?), (4.6

F, =sin@F, e~ +sin0[F,, o + cotO(w.F,, _j) = w,F,, 1))

—

+ sin é{lem + COté(WXFWy[O] — Wywa[O]) + = [2WnyFWy[_1] - (szc + 3W§)wa[_l]]}€0

— 00

+ sin 9{wam + cot O(wFy 1] = wyFy ) + S 2w,wyFy, o = (W3 + 3w)F,, q]] }e + O(?). (4.7)

In previous Kerr calculations, the constraint of an equatorial plane [49] or a lower order [46] meant one could discard F' al1] @s it

only appeared in the €” term (which always integrates to zero as outlined in the next section). It is therefore worth noting that
F 1) will be required due to its presence in the €' term.

In Eq. (3.25), all b coefficients, which concern the metric, four-velocity, Christoffel symbols and their derivatives, are
evaluated at the particle (see Eq. (3.29) for example). It is still necessary to calculate the Christoffel symbols at x to allow
differentiation before evaluating at x. We use Boyer-Lindquist as our base coordinates,

BL 2mr 2amrsin®6
gﬁb ) = {_1 +?70’07_T 5

(BL) z
- 0’_,0,0 )
rp { A }
g = 1{0.0.%.0},

2 in20 2, 2
gfpiL) = {‘%,0, 0, {A +omr” —;a }sinzﬁ}, (4.8)

where m is total mass, a = J/m, J is the angular momentum and
T =r?+d’cos0, A=r*-2mr+a (4.9)

Those components of the metric that differ in the w coordinates are

(BL) 2 0202 A i D
- (8 =06w; +wiws +w))sinf
95::) — g’f’sz w},(w§+w§—4)c059+( v+ Wy 4 wy) ,
4sin“0 /4—W,2(—w§
(BL) ) ) -
w w _ wy(wi+w;—6)sin0
ggwj :_)5-97,4; (w§+w§—4)cos9+ (s »—6) ,
4sin“0 /4—w§—w§
(BL) : (BL) :
2 , w, sin @ _ (8 —6w2 +w2w? +w?)sind
SX)X:% 2cos + 2 g¢f’54 wy(w§+w§—4)cose+( v+ + w5 ,
4sin“6 4—wf—w§ 16sin*@ 4—w§—w§
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W wxgégL> wy[Bw2 — 12+ 2w?

+ (5w2 + 6w? — 20) cos 20]

N 2(w? + 3w? —4)sin20

ww, — .
o 8sin?0 w2 +w?—4

w g(/f/f)
*J 2 2 4
+ T6sin’0 {wy {wx (8 = 3wy +

-6)(8 - 6w2+w
wx+wy—4

N wy (Wi + w2

2
(BL) 2 2 7 2 (BL
W - +2w; —4)sind w
g&v)_zv). =9 % |w,cos+ (e 2w = 4) g

sin“¢ | 2,/4—w)25—w)2,
where from Egs. (4.3) to (4.5),
) Lo o i 2
sin 6:1—1[(wx+wy—2)cose—wy 4—wy—wysing)] .

(4.11)

The four-velocity, u® which also arises in the b coefficients
are evaluated at the particle in our w coordinates,

u® = {u', ", sin Ou?, —u?}, (4.12)

where the prerotated Boyer-Lindquist four-velocities are
given by

g (a>+7%)?  a*sin’0] 2almr
u' = - - ,
AX z AY

() = o5 {[EGP +a?) L] -

AP+ (L—aE)* + Q]},

) 1 ~ _
(u)? = 5 [Q — L%cot?0 — a*(1 — E?)cos?0)],
- Lesc’0  a(2Emr—al)
P , 4.13
YT T A (*.13)

and {E, Q, L} are the energy, Carter constant and azimuthal
angular momentum, respectively.

B. Integration

The first thing to note about the integration of Eq. (4.2) is

that the leading order of the singular self-force, F ([) 1 is

treated differently than the higher terms. The regularity of
the higher terms enables the interchanging of the limit
Ar — 0 and the integral (see Appendix B of [44]).

1. Format of p*

Regardless of the term, one can use the rotated coor-
dinates to target problematic expressions. In particular, we
adapt the method first introduced for Schwarzschild by

16sin*6

/ 2 _ 2
4—wi—wy

) —2(14 — 8w3 +wy) — wi} cos 6°

4
ytw })—;—1/4 w2 —wi4 — 6w? +w2w,+w‘y‘]sin29},

—4)cos9+wy<wj% + w2 —6)sinf ,

2 2
(wy +wy T
—wi—w

|
Detweiler et al. [27], later refined by Haas and Poisson [47]
with eccentric orbits and extended to higher-order terms,
equatorial Kerr and nongeodesic motion by Heffernan er al.
[48-50]. For higher terms, the key to the method is the
rewriting of

p(x)

in the format,

=p(At=0,Ar =0,Aw, = w,, Awy = wy),

p(o’ 0,w,, Wy>2 = (9&13 + Uy E)Axab’
— i (5) ). (414
where
x(x, ) = 1 — k(x)sin’p (4.15)

This translates to having no Aw,Aw, cross terms. In the
case of Schwarzschild and equatorial orbits in Kerr, this is
automatic as ggg = 0 = u?; for generic orbits in Kerr, this
is not the case.

Similar to [49,50,60], we rewrite p as

p(0,0,w,,wy) = w2+ 2uw,wy + Ewl, (4.16)
where
4’2 = Gwow, + Uy o,
2, = =3
120+ 2a mr + 2mr> + AZ7
>
52 = gw),»v). + u»v).w). =X+ 22(149)2’
K= Gy, + Uy, = —LEcsC Ou®. (4.17)

Recalling the definition of our w coordinates from
Egs. (4.4) and (4.5), we have
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p(0.0.wy, wy)? = 4sin® (g) [C2cos?(B — Bo) + usin2(B — By) + &sin (B — fo)].

= 4sin® (g) {% [E% + & — (&2 = &%) cos 2y — 2u sin 23] + sin?B[(E2 — £) cos 2y + 2u sin 23]

— cos fsin B[(E2 — £?) sin 28, — 2u cos 23] }

The cosfsinf term can now be eradicated using the
freedom of f, that is we choose f so that

2pu

tan Zﬂo = ﬁ . (419)
Alternatively,
2 2 _ £
sin2f— -2 cos2p= S (420)
n n
where
=47+ (8- (4.21)

Substituting our choice of 3, back into p? via Eq. (4.18),
we get

oo |(n=1)/2] n=2p

s . _ La\ (-1)/2 . n—2p
th )(07 O? a, ﬁ) = Z Z Z b[‘l(]n—Zp,q) ()C) (281[12 E) 2< /2

n=-1 p=—n-2 ¢=0

x cos?(ff = fio)sin" 2P~ (= fi) <@> e

[n]

where we have relabeled the ba(n—zp,q) coefficient,
(] _ 1l
ba(n—zp,q) = bazl...z-(n,w (4.26)

where n —2p is the total number of w,’s and w,’s in the
sequence Ci...C(,_3p) and g the number of w,’s.

2. «a integral

For the a integral, we follow the techniques of
Appendix D in [27]; we rewrite the integral in Eq. (4.2)
for the subleading (n > 0) orders as

2041 (=
i / F® (0,0, a, B)P,(cos a) sin ada
4 0 aln]

20+1 [1
— fan @ 2= [ = pep )y

1
- fa[n] (ﬂ)en_l %Aﬁ,]v (427)

(4.18)

[
p(wywy)? = 28inzg[§2 + 4+ n=2nsinpl,  (4.22)

= 2sinzg(c§2 + & +n)[1 — k(%) sin? g],

. a(n
=4 2711
) (k)”

(4.23)

where

2n

k(X)) =——"7—. 4.24
) E+8+n (4.24)
This, combined with our w-coordinate definitions of

Egs. (4.4) and (4.5), allows us to rewrite F(as) of
Eq. (3.25) as

q

. (4.25)

where we have expanded (1 — y)*~1)/2 in Legendre poly-
nomials

(L= =3 AL Po(y), (4.28)
=0
and used their orthogonality,
1 25///
Py(y)Pp(y)dy = . 4.2
/_l (P )y =55 (4.29)

For odd n, the left-hand side of Eq. (4.28) gives a finite
polynomial and we observe the sum over ¢ will truncate at
£=(n-1)/2. For n=1, we get Aﬁ] =6, and by
considering y = 1 for odd n > 3, we have

(n—1)/2
.A[n] =0.

=0

(4.30)
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Therefore, as long as we are summing ¢ > (n — 1)/2, odd
n > 3 orders will not have a contribution. Indeed, for even
n > 0, we similarly have

D Ay =

=0

(4.31)

However, as summing over all £ is not practical, we require
the parameters to the designated truncation ¢.

For n = 0, taking the Legendre generating function for
lf] < 1,

(' =2y +1)

1/2 th+1/2p

and making the substitution ¢ = =% — 1 + O(5) where
0 < d € R. In the limit 6 — 0, one gets

(4.32)

172 = Z V2P (y) +O£8), (4.33)
giving Af) = V2 + O(£9) in Eq. (4.28).
For even n > 2, we make use of the formula,
A — 77[,,](2;,”4— 1)
W2 —n+1)(26—n+3)--- 20 +n—-1)2¢6 +n+1)
(4.34)
where
Py = (=120 072 (n — 1) 112, (4.35)

derived by induction in Appendix D of [27]. We now have
as a refinement of Eq. (4.2),

20 + 1
lim + €2 (
Ar—0 41 a[

1 2n
X P;(cos @)dQ + — 4€” / Fa (B)dp
0

Fi¥x) = (0, A7, )

2w

2r
Il Y

evenn

(4.36)

3. p integral
From Egs. (4.25) and (4.27), we read off

[(n=1)/2] n=2

_Z Z b[irl(]iz -2p, q

p=—n=2 g

2
("
q

S

n—l)/2

=0
)Cosq B = Bo)sin"2P=4) (5 — )

y <%>( )/2’

k
where we have used Eq. (4.24) to introduce k. For the
remaining odd n = 1 case, the powers of sinf and cos
will always sum to an odd number. For odd powers of sin 3
this will integrate to zero as y is an even function of . Odd

powers of cosf will also integrate to zero; this can be
shown with the standard trick of splitting the integral,

/277 /371'/2 / /377/2 / /'371'/2
37/2 —n/2 —/2

where the second equality shifts the second integral by 2z
without affecting the trigonometric functions. A shift of
p — f— /2 now gives

/3ﬂ/2cos“/)’sinb/3d /2ﬂsm p(—cos p)b
2 2B o xleos*(B))

which is now odd in f for odd a and will integrate to zero.
We are now left with only our leading and even n terms
in Eq. (4.37).

When expanding out the (8 —f,) functions in the
remaining even n terms, it should be noted that any odd
partitions of cosf and sin will also integrate to zero as
again y is an even function of . We are therefore always
dealing with even powers of cos f and sin /. Recalling our
definition of y, Eq. (4.15), we have

(4.37)

dp, (4.38)

cos*(f) = (k—1+y).

| ] —

sin?(3)

—~
—
I
N
~—

(4.39)

Substituting this back into Eq. (4.37) gives

(I’l - 2[7)' (k —1 _|_)()(s+t)/ZCOS(n—2p—q—f+s)ﬁO

= p 2\ (D2 4 n—2p—q
)= Y 200 | 1 > > s!t(q -

S t

X (_1)t(1 _)()(n—Zp—s—t)/2 (’7)()(21)—1)/2 sin("+"5)ﬂ0,

s)(n=2p—q—1)!
(4.40)
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where the zero contribution of odd powers in cosf and
sin # requires (s + t) be even. With n also even, we can
multiply out the two brackets containing y to give a
polynomial in y.

To integrate Eq. (4.40), we follow the methods of
Appendix C in [27], and use

1 d 1
i | o= ) =2 (5 51,

where (n+1)/2 € NU {0} and ,F; are hypergeometric
functions. We use the recurrence relation in Eq. (15.2.10)
of [64],

p—1 1-2p+(p-3)k
P My

Fpi1(k) = Fp (k).

(4.41)

to reduce the number of hypergeometric functions to two,

,Fi(£3.5:1;k). These in turn translate to elliptic integrals

_1 11 2
) 2F1(§5,1,k> ~K, (4.42)
| 11 2
<)(2> =,F <—§,§,1,k> —;5, (4-43)
where
/2
K = / (1 = ksin? )12, (4.44)
0
/2
EE/ (1 — ksin® B)'/2dp, (4.45)
0

are complete elliptic integrals of the first and second kinds,
respectively.

V. RESULTS
A. The leading term

We have successfully carried out the integration of
Eq. (4.2) up to order € or F,p (D, in the older notation
of [27,47]); all except the leading term as shown in
Eq. (4.36),

x P(cos a)dQ, (5.1)

where we have used Eq. (3.26). In our rotated coordinates
without Ar = 0, we have

P2 = (gap + ”aé)Axab7

= Ar(v,Ar + 2u,w, + 2uw,) + 4 sian <%>;( (5.2)

All the techniques we exploited in integrating the
higher orders were developed to tackle the cross term in
p? [27,47-50] for Schwarzschild and equatorial Kerr,
w,Ar. As u’ =0 in these scenarios, w,Ar is the only
cross term that arises, and it promptly disappears in the
higher orders. As the use of hypergeometric functions
scales well to higher-order expansions (little hand holding
required), we adapted these techniques and targeted the
w,w, terms in the higher orders. Unfortunately, for generic
Kerr orbits, two rotations were used to bring the particle to
the pole, leaving only one rotation f;, to tackle the cross
terms. We therefore do not have any more coordinate
freedom to exploit in removing the cross terms w,Ar and
wyAr of Eq. (5.2).

All is not lost however, as we do not need to reinvent the
wheel. Indeed, Barack and Ori tackled the leading term in
their original paper [46] (with notation A,) with more in-
depth details appearing in Barack’s review [63]. As
previously mentioned, they used a slightly different coor-
dinate system (¢ +%,0,—fy—%) and used f, to set
u,, — 0. They proceeded by expanding P,(sina) and
scaling the coordinates by Ar. Due to a typo in [63], we
give the correct leading-order parameters here (in agree-
ment with [46]). Here and in all our parameters, the P,
term of Eq. (4.35) is included; this means we have a factor
of 1/2 differing from [46] and Eq. (4.34) gives the ¢
dependency of Af_]] =1+427,

7

Fioy==2Fr Fop=0. Fyq =0,
A in 0 Au?
Fuy=—220 P02 v 4 54
2V QMA Z

where

u: L2
V=1+24+ =
> 95

B. Higher terms
Carrying out the integration of Eq. (4.40) as outlined in
Sec. IV B for the next-to-leading order, where we have
included P = v2 and Eq. (4.34) gives Afy = 1,
VERFS,E + (k= 1)Fl K]
1272 (k — 1)? ’

Fa[o] — (53)

where
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FIG. 6. Regularization of the (¢, r, 6, ¢») component of the self-force for a scalar particle with initial orbit eccentricity of 0.2 and spin

a = 0.9 with data from [32]. In this log-log plot, one can observe by subtracting the new parameter F, al2) the progressing sum becomes

more accurate with less £’s. We also see the expected reduction with #=2 for F Z 0] and #~* with the new F Z o) Figure (a) gives
t component F, Fig. (b) gives r component F,, Fig. (c) gives € component Fy, and Fig. (d) gives ¢ component F.

FEo = (2= k) (K + 4k — 4) sin (480) (b, 1) — bty 5)) + (2= k) (K> + 4k — 4) cos (460) (b, o) = blsy) + b 0)

alo] — a(4,0) 42 a(4.4

+ sin (20)[67(k — 2) (k - 1>b[£2]> +2k<k2 k+ 1By + biss)
[

+cos (2B)[6n(k = 2) (k = 1) (b1, ) = b 1)) + 4k(K = k+ 1)(BY, o) = b, )]

0 0
+ kk(2 = K) (36, o) + B, )+3b£_,°(]4,4>) 6n(k = 1)(bL ) +b[(]22))]

Flac[o] (k*> 4+ 16k — 16) sin (4ﬂ0)( _ bgo] ) + (K + 16k — 16) cos (4,50)( o)~ b[0]42) + ba( |

an) ~ Daas o
0 0 0 . 0 0] 0
+k2(3b£_l(}4’0)+b£_l(]4’2)+3b[a<]4’4))—s1n(2ﬂ0)[24;1(k )bl + 2k(k = 2) (B, ) + B, )]
+ cos (20) [24n(k = 1) (b, 5) = by o)) + 4k(k = 2)(bity o) = by )]s (5.4)
[
0]

where we provide the b~ coefficients in Appendix below.  The fourth order, and the main result of this paper, where

The third order is always zero due to the odd functions  we have included P = —2v/2 and Eq. (4.34) gives
arising during the integrations outlined in Sec. IV B, that is

1

Ay = 2¢-1)(2¢+3)

Fn = 0. (5.5) (5.6)
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so we have

2FLpE+ (k= 1)Fp K

6720mn° 2 \/k(k — 1)*

Fup=-— (5.7)

where Ff[z] ar[;i Flac[z]

however the b;" coefficients are not provided here. Even
at next-to-leading order, F al0]> ONE can see the exceptional
increase in the size of the parameters compared to the
Schwarzschild case [48] or even the equatorial Kerr
scenario [49]. As the higher terms are quite unwieldy
we make them available online in the form of an open
source Mathematica [65] package on Zenodo [51], and
shortly on black hole perturbation Toolkit [62]. To ensure
confidence in the resulting expressions, we set the spin a =
0 and constrict orbital motion to the equatorial plane,
0 = n/2, and safely recovered the Schwarzschild counter-
parts in [48]—this is explicitly illustrated in the readme
notebook provided with the Mathematica package on
Zenodo [51]. In addition, Nasipak and Evans generously
shared their numerical data [32,52,53] for generic orbits of
a scalar particle in Kerr spacetime, which we use in Fig. 6 to
successfully illustrate the increased £-mode convergence
with the additional regularization parameters. The gener-
ation of these figures is also provided in the readme
notebook on Zenodo [51]. From these one can clearly
see by subtracting the new F' i o] the accuracy of the £ sum
increases drastically. We also see the expected convergence
with #72 for F; and #=* with the new F 5[2]'

can be found in the Appendix,

[0

VI. DISCUSSION

The regularization parameters produced successfully
increased convergence in ¢ of the scalar self-force calcu-
lations. However this high-order expansion can also be
employed in the effective source m-mode scheme [66] as
previously illustrated in the case of equatorial orbits in Kerr
[49]. The expansion in Riemann normal coordinates can
also be exploited for high-order tail expressions V(x,x’)
which are required in the matched expansions method [22].

The work here also serves as the groundwork for the
more physically interesting cases of an electric charge or
mass on a generic orbit in Kerr spacetime. The decom-
position and integration techniques are all viable, one just
requires expansions for slightly more complex expressions.
Another interesting avenue forward would be to consider
the decomposition into tensor harmonics [67]. One can also
consider nongeodesic motion in Kerr spacetime building on
work previously done in Schwarzschild [50].

Lastly, it should be noted that this work comes with a
caveat, in extending this work to electromagnetism or
gravity, these methods are mainly adaptable to the
Lorenz gauge. The current state of art in gravitational
self-force for generic orbits in Kerr spacetime is calculated
in the radiation gauge [25] where only the first two
parameters, previously calculated by Barack and Ori
[46], are viable. Saying that, Thompson et al. were able
to transform the higher-order regularization parameters in
Schwarzschild from the Lorenz gauge to the Regge-
Wheeler and Detweiler’s easy gauge [68]. This remains
to be seen for the radiation gauge.

ACKNOWLEDGMENTS

The large expressions produced in this paper were
enabled by the openly developed xAct package in
Mathematica, in particular xTensor and xCoba [69,70];
the author is grateful to all those who participate in the
development of this useful package. The author would also
like to thank Adrian Ottewill, Barry Wardell, Bernard
Whiting, Leor Barack, Sascha Husa, and Marta Colleoni
for insightful discussions, as well as Leo Stein in sharing
his mastery of xTensor and Zachary Nasipak for sharing his
data and beta testing the regularization package on Zenodo
[51]. The author gratefully acknowledges funding from the
European Union’s Horizon 2020 research and innovation
programme under Grant Agreement No. 661705-
GravityWaveWindow and the Natural Sciences and
Engineering Research Council of Canada. Research at
Perimeter Institute is supported in part by the
Government of Canada through the Department of
Innovation, Science and Economic Development Canada
and in part by the Province of Ontario through the Ministry
of Colleges and Universities. This work was supported by
European Union FEDER funds, the Spanish Ministerio de
Ciencia e Innovacion, and the Spanish Agencia Estatal de
Investigacion Grant No. PID2019-106416 GB-100/AEl/
MCIN/10.13039/501100011033, as well as Comunitat
Autonoma de les Illes Balears through the Conselleria
de Fons Europeus, Universitat i Cultura and the Direcci6
General de Politica Universitaria i Recerca with funds from
the Tourist Stay Tax Law ITS 2017-006 (PRD2018/24,
PDR2020/11).

APPENDIX: REGULARIZATION PARAMETER
COEFFICIENTS FOR THE SELF-FORCE

We provide the coefficients that appear in Eq. (5.4) with ¢
components,
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1 au®

b%,o) =- EEF'MF = [aE(4mF + X) sin 20 — 8LmF cot 0],
bg()]qu) = L;—rf [2F(E2 = 1)(a® + 7 — £) cos 0 — 2FL* cot O csc 0 + 27u?*E(a® + 72) cos 0 + w u?Z(E — 272) sin ],
%‘2) =552 (u"[2m7*(a*E + 2aL + PE) + E(m — r)£? — m(a®E + 2aL + 37 E)%]
— au’{4LmF(a® 4 7) cot 0 + aE[Z2 4 2mFE 4 2mF(a® + 72)] cos Osin 0} ),
3 _ _ _ _ =
b)) = 7 EZla (Zu” 4 1) 5in 20 + 27 %),
3acos® 7 7
b = - ”22 (2mr(a® + P = £)[(22E% + 2)u®® + 1] 4+ aELE2(Z - 2mF)u® + 1]}
— 37 u?(ELZ csc? 0 + amF) sin 0,
3 . _ o
bg()lm) =7 <azEu6'3 2mFa® + 32 4 2m7(7* + 2)] sin 20 + 2Eu’ u®?[(7 — m)2% 4+ m(a® + 372 = 2mi*(a® + 72)]
2a2u° > . . =2 in20
5 {mr|Ea*(4mF — X) + La(4XE* — 4m7 + X) + E(4mr — Z)(7* — X)] sin 20
5 ~ - - 2L7u” 5= ~
+ EX[L*(X — 8mF) cotf + X* cos @sin 0]} + (ELX csc” 0 + 2amr) |,
3 ] o
b%s) = E{ZuruaZ[Zm?z(az +72) + (m = 7)Z? — m(a® + 37)Z)(ELZ csc? 0 + am¥) sin 0
— 2a3u®*[mra® 4+ aELE 4+ m# (7 — X)|[2mFa® + 32 + 2m7(F* + )] cos O
+ a(4a*mrL?(2m¥ — E*X) cos 0 + 2m¥(a* + 7 — L) [2mF(a® + 7 — X) — £?| cos O
+ aEL{4mFL*T csc? O — 23 — 2m7E? + 2mrE[a® + F(4m + 7)] — 8m*7*(a®> + 7*)} cos )},
3L . - _
bYy gy = o5 {a?u’2mra® + X2 4 2mF (7 + X))(ELE cotd + am7 sin 26)

+ W [Z2(F = m) + mE(a® + 37) = 2m7*(a® + F))(ELZ esc* @ + 2amF) }, (A1)

r components,

1 - - - _ _
b = 55 B@W U’ cosOsind + F(u?E — A~ 2uPAT),
1 - _ _
b[;(i]z,m =13 (u? csc O{amE[a* (27> — X) + P2 (27 + X)] sin? @ — 2m7*L(a®> + 7?)
+ LE[@®(m +7) — (m = 7) (P + 2)]} — au’[aL(Z — 2mF) + 2m7E(a*> + 7> — X)] cos 6),
1 oz - -
[;2]2’2) LTS {PW u0L[Z? + 2mFE + 2m7(a® + )] cos O sin @ — 2mr?(a* + ) (2aEL — A)
+ 2L [m(27* = £)(a® + 72) + (m — 7)Z* csc? 0 — 2mE[F*(a* + 7P)u’? + aEL(¥* — a?)]
+ X(ma® +3mi* — mE + X) (" - A)},
3y’ 922 _ _ o
b0 = - ”‘4”‘A [(Zu® + 1) sin 20 + 2Fu s,
o _3uE CE (4 o . 3 1 2L dPS esc D
Ay (a{4mFEu’=(a* + 7 — Z) + aL[2u’* (X — 2mF) + 1]} cos 0 + 2FLu"u"Z csc ),
3, : ! ; _
Yap = g3 (@ {2mA(a> = 4ELa+ ) = T — (2mFu®® 4+ 12 = 2m7E[(a? + 7)u’® + 1]} sin 20

+ 2a2L2uP (8mF — X) cot @ 4 2u"S{u?*2m72(a* + ) + 22(m — F) — mE(a® + 372)] — FL? csc? 6}),

064031-21



ANNA HEFFERNAN PHYS. REV. D 106, 064031 (2022)

3L : i : ]
L(E]“) = 2Au2 (a*{2u”2? + 22 (4m7u’* + 1) + 2mFE[2(a® + P)u’? + 1] — 2m7(a® — 2ELa + 7*)} cos @
—2{uuPT2mP (a® 4 72) = Z2(F — m) — mE(a® + 37%)] + 2a2L>m7 cot 0} csc 0),
3L%u" csc 7
b[io(]‘w = ZMT;SC (W 2mP(a® + ) + 22(m — 7) — mE(a® + 37%)] csc O — a*ul[£2 + 2mFE 4 2mF(a® + )] cos 6},

(A2)

6 components,

0] _31 2 s 2 D
bp.0) —Z[a sin20(Zu’ + 1) +27Zu"u’),
Lescd - damFEu® cosd

ity 1) == (ucotD{4mF (> +72) = Zla® + F(4m + ) + 22} = ' T) == (@ + P -,
bg)(]m) =2 (a?sin20{2a2m7Eu®* + 4amrEL + Zu?*2m7(r2 +2) + 22|}

—2cotd2mr(a® +7*) —2mrE +2?|(a® +2L%csc*0 + 7+ X)

+ 25U ul [mE(a? +37%) = 2m72 (a® + F2) + 22 (F—m))).
(0] 32 02 02 7,0
bpag) =" 1 —(Zu? +1)[a®sin20(Zu®” + 1) +27Zu"u?),

_ _ _ 3 _ - 2
bg)(]4 ) =3au’ cosB(Zu’ +1)2a>mr E+ aL (2~ 2mF) +2mrE(i* X)) +§72Lu’csc9(22u92 +1),

3 Y , _ _ ]
bg)(] 2 ="1% 2a2L2 cotO[22u®* — 4m(2FZu?? +7)] + a?sin20(2a*mr(Z2u* — 1) + 4amFEL(2Zu* 4 1)

(1) 2P (S 1) 4 34 2+ 2 (5 1))
+22u’u”{(2u92+1)[m2(a +372) = 2m7 (a® + ) + (7 — m)] + L*7Eesc?0}],
b[O] {4“ mrELu’ cos0+2a*u® (Zcos0{u* [2mF(a® + P+ Z) + Z?| + 2mF + X} — 2mFL2 cotfescd)
—u"cscO(22u?? + 1) [22(m—F) = mZ(a® +372) +2mi2 (a* + )]},
0] 3L2uf csch

é<44):T{u70s09[22( m—7) —mZ(a? +37) +2mP2 (a* + )] — a*ul cosO2mr(a® + P+ )+ 22|}, (A3)

1 - _ - _ -
po = > {2amrEu’ sin20(a* + 7> — £) + Lu? cotO]—4mr(a® + ) + Z(a® + 4mF + 7?) — 32| + L¥=u’ },
1 _ _
po = 57 (L? cotbescOfdmF(a? +72) — 4mFE + 5] + Xu'u OsinO[m (27 — =) (a® + P — X) — 732

— 4amFEL cos 0(a® + 7 — £) + cos 0{2mF(a* + 7)(a® 4 7* — £) — Zu*2m7(a® + ) 4+ AZ?]}),

bot s = 222 (3u'[mE(a? + 37) = 2mP(a® + ) + Z2(F — m)] + u® cot Oj6mF(a® + P2)? + 3432 — 53]},
0 3 Brn e nBre D o 5 D
b([?524,0) = —ZZLue[az sin 20(Zu’* + 1) 4 27z’ u),
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_ . 1 _
bg)’g“) :% <cos9{a2L2[2u(’2(Z—2m?) +1]+ <§+ u92> (a*+7=X)[a*(2mF+X) +2m7 + ?Z(?—Zm)]}

+4amPELu® cos(a? + 2 — X) + ru’ u? sin02mr(a 4+ 72) + A2+22L2csc2é]> ,
3
([7?34.2) =352 [4amFEu’{a>L*S5in20 +sinfcosB(a? + 7 — T)[a* (2mF + ) +2m7 + 72 (F—2m)]}
+ L(a*u?{sinBcosO](a*+ ) 2mrE2u* + 22 — 8m272) —4 AmFE 4+ 23 (2miu®® + 1) + Z*u??]
+ L2ZcotB(E —8m7) } + Zu' {m(a? + 7 — T)[F (2 - 22u??) + 2 u??]
+rE(a® + P+ 32" + L2csc?0) )],

3
bg“) 223(4amrELcose{a2L22+(a + 72 —X)[a®(2mF +Z) +2m7 + FZ(F —2m)]} —4a*mrEL* cotOcsc O

— S u sin0[Z2 (m — ) — mE(a® 4 372) + 2mi2 (a2 + )| 2mF(a® + 7*) + AT+ 2L Zcsc0)]
+ a2 L2 cosO{8m2 P2 (2 —72) = 2a>mF[AmF + 2(3 = 22u??)] + 2mrE [ (22u®? — 3) + £+ 222u??]
+23(22u +1)} 4 cosB(a? + 2 — ) [a* (2mF + Z) + 2mF + FZ(F—2m)]
x {2mFZ[u®*(a® +7) + 1] =2m7(a® + 7) + 22 2mFu®” + 1) + T3 u®?}),
F :%{M[Zz(m —7) —mZ(a® 4 37) +2m7?(a® + )| 2mF(a® + 7)) + AZ + L>Zcsc?0)
—au?2a>mF 4 2m7(r2 + ) + 22| [m7(a® + 7) sin20 4+ AZsinfcos 0 + L2Ecotd) }. (A4)

The fourth-order coefficients of Eq. (5.7) are

= 3 cos 10, (8k® + 36k7 + 169k° + 1254k> — 37555k* + 136064k> — 198272k> + 131072k — 32768)

2]
X (b‘(IOO)

£
Fop)

+2 =P

Ll
-b a(10,4) a(10,6)

2 2
Toa) + 5508 = baoso)) — €08 8f[14m(k — 1)(8KS + 41K° + 279k

— 6784K° + 18752k — 18432k + 6144) (b2 — b2+ bl o — bl o+ BEL )
+ 24k(k — 2)(K? + 4k — 4)(2K* — K + 33K% — 64k + 32)(5b7 100 3b§(]102> b["’(]104> +b

=35 108 + Sbio o)) + €08 68o[(24K0 — 20K° — 21k* — 46K° + 343k> — 384k + 128)

2]
a(10.,6)

L]

2]
a(10.6) T 13b;

2
= 3b; a(10.8)

2 2
X (45b5) 0 o = 13b: o

a(10.0) a(10.2)

+56n(k — 2)(k — 1)(8K* -+ 29K° + 99K> — 256k + 128) (2b 35 o = birs o) + by s) — 2birs o) )k

2 2 2
‘bg<}6~2)+b[a<]6.> b[<] 6))]

2
+3b — 45b31, 10K

+ 5602 (k — 1)(k* + 7k> — 135k2 + 256k — 128)(19[;(]6,0)
— 8cos4fo[12(k = 2)(k+1)(2k = 1) (K> — k + 1)

(15]’[2(]100 b[*z(]lo,z) - bg(]IOA) - bg(]lo,s) b[Z]IO 8) 1517[210 10) )k3
+ Tk = 1)(8k* = Tk = 9K> + 32k — 16)(Thlrg o = bl o) = bl 4 = by o + Thig o )R
+ 14002 (k = 2) (k = 1)>(k? + 4k — 4)(3b 3 ) - bﬁfgﬁ 2 = bits.sy + 3bie 6 )k
+ 4200 (k — 1) (K = 16k + 16) (%1, ) = b, 5 + bty )] + €08 260 [6(8k* — 28K + 33k% — 10k + 5)

2] 2] 2] 2] 2] 2]
(105b 1oo)+7ba(1o,2) b (10,4) b’(10,6)_7ba(10,8) 10567 a(10,10)

L

+ 56m(k — 2) (k — 1)(8K> = 3k + 3)(14b2 o + b o = bl o = 14655 )1
2 ) 2

+ 56077 (k = 12(k> = k+ 1)(15b2 | + bl o = b2 |~ 1500 )2
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+ 134400 (k = 2) (k = 1)* (b2, ) = b, 4V + 268800 (k — 1)} (b, 5 = b2y )

4,
— 2K2[A(k — 2)(6K> = 11k + 11)(63b.1 o) + b,

2]
a(10.2)

Ll

+3b5104)

[] 2
+3b 0 + Thot

so) + 3500 5 K

2

108 T 630, (1010))k3

2 2 2 2 2

+ Tk = 1)(8K = 23k 4 23)(35b 5 o) + Sy 5) + 3bgs) + She
]

> 252 2l 2] 2]
+560r2(k = 2)(k = 1)2(Sbat o) + batsa) + Patosy T Sbetes))

+ 1680 (k = 1) (365, ) + b2y 5, + 362, )]

: : 2] 2] 2l 2l 2]
+ 5in 2 [6(8k* — 28K + 33K2 — 10k + 5) (215 1) + ThE, o5 + Sbitios) + T 07y + 216504 )k
+ 28k = 2)(k = 1) (8K> = 3k + 3)(Tblyg  + 3b1s 3 + 3bg 5) + Ths ) K
+ 56072 (k — 1)2(k? = k+ 1)(Sbli | +3bl 5+ 5big )k
+ 67200 (k = 2)(k = 1)} (bL, ) + bE,f(L 3 )k —268807* (k= 1)*b, | |
. 2 2 2
— 4sindBo[24(k — 2)(k + 1)(2k — 1)(K> = k+ 1)(6bL3 1 1) + bitio3) = biior) = 66100 K
2 2
+ Tn(k = 1)(8Kk* — Tk> — 9k? + 32k — 16)(7b[ 5.1y T bl — bl s = bl K
+ 5600 (k — 2) (k — 1)2(I2 + 4k — 4) (b (]6 1) — bl s )k
+ 84073 (k — 1) (k? = 16k + 16) (b, ;) = b1, )]
+ sin 68, [(24k° — 20k5 — 21k* — 46K> + 343k2 — 384k + 128)
B 2] 2] ) (]
(27b (10,1) 3b (10,3) Sb (10.5) 3b (10,7) + 27b, a(1o, 9))k2
2 2 2 2
+ 287 (k — 2)(k — 1)(8K* + 29k + 99K* — 256k + 128)(3bL3 ) — barg 5 — by 5+ 3bLrs 7))k
+ 5600 (k — 1)>(k* + Tk® — 135k% + 256k — 128) (b || = brg 5 + bl )]
. 2 2 2 2
— sin 88, [48k(k — 2)(K? + 4k — 4)(2k* — k3 + 33k — 64k + 32)(2192(]10‘1) bt (]103) . 3]07) 2b! 3109))
+ 14n(k = 1)(8KS + 41K° + 279K* — 6784K° + 1875247 — 18432k + 6144) (b | — bl o + b o — b2 )]
+ 3sin (108,) (8K® + 36k + 169K + 1254k5 — 37555k* + 136064k> — 198272k2 + 131072k — 32768)
2] 2l 2] 2] 2]
X (ba(lo,l) ba103) 1 Paios) ~ Pagion T ba(10,9))’
Fliy = 3 cos 10fy(k = 2)(8k® + 59> + 325k* + 32000k° — 97920k + 98304k — 32768)
2 2] 2] 2 2] 2]
X (=bz100) T Pa(102) — Paii0a) T Paiios) — Laios) T+ Paii0.10)
2 2 2 2 2
+ cos 8y 1127(k — 2) (k — 1)(k* + 8K + T60K* — 1536k + 768) (b o — bl ) + bl o — bl o + b5 o)

+ 6k(8KS + 19k° + 45k* + 1920k> — 6080k> + 6144k — 2048)

2 2 2 2 2 2
(Sb (10,0) 3b (10,2) b (10,4) + b (10,6) 3ba(10,8) + 5ba(10,10)>]
— cos 68 [(k — 2)(24k* + 49k + T9k> — 256k + 128)
2 2 2 2] 2 2
X (45b5(100) = 13b5102) = 3b;(10.4) T 3b5006) T 1305(108) = 4505 (10.10)) K

+ 224 (k — 1)(2k* + 5K* + 123k> — 256k + 128)(2b1; | — bl ) + blk o = 2b00 )k
+ 56072 (k = 2)(k = 1)>(k* + 128k = 128) (b o — bl + bl =
+8cos 4f[3(8k* — 13K° = 3K + 32k — 16)(15bL3 o) — bty = bggm_4> bmm 6 = Poog) + 1500 10.10)E
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+56n(k — 1)(K> — 6k +4) (765 o) = bl o) = bk 4y = bl o + Thirs o K
+ 14072 (k — 1)2(* + 16k — 16) (3b03 o) = bl 5 — by + 3bg36.6)>k
+ 67207 (k = 2) (k= 1) (b, o) — bty sy + Doty 1)l
— c08 2f[6(k — 2) (8k* = Sk + 5)(105b3 o) + Thito2) + Pirios) = batios) — 7o) — 105b 0 10,k
+ 224 (k — 1)(2k> = 3k + 3) (14b2  + bl — b o = 14b0% K
+ 56072 (k = 2)(k = 1)2(15b5 ) + bl ) = it 4 = 15b03s 6K
+ 537607 (k = 1)} (b1, ) = ity 4k + 268800 (k = 2) (k = 1) (b, ) = b2, )]

L] 2] 2]

[ 2 2 2 [
+ 2K[(24K2 = T1k + 71)(63bg 100 + Thatin) + 3batios + 3atiog + Thatios) + 63baiio.10)k*
)

+56n(k = 2) (k = 1)(35b 35 o + Sbitg o + 3bitg 4 + Sbirg o) + 35D )
+ 56072 (k = 1)(Sbig o) + b o) + bl 4y + Sbire o )k + 134400 (k = 1) (b2, o + b2, )]
~ sin 26o[6(k — 2) (8K” ~ 5k + 5)(21by10,) + Thg0) + Sbytros) + aro) + 2105100k
+ 1120 (k = 1)(2K% = 3k + 3)(Thg ) + 3blg 5 + 360 o) + 700 1 )
+ 56072 (k = 2)(k = 1)2(SbLg 1) + 3bii 3 + Sbins 5) K + 268800 (k = 13 (bL, ) + iy, 5 )k
+ 268807 (k = 2)(k — 1)°b 7, , ]
+ 8sin4p,[3(8k* — 13k3 — 3k + 32k — 16)(6 [;(]101 1 bﬁ_f(]m) b[;(]m) 6b§<]10_9))k3
+28n(k — 1) (K = 6k +4)(Thlg ) + bl 5 — bl s) — Tl 1 )R
+ 28072 (k — 1)2(K? + 16k — 16) (bl | = b o Yk + 67200 (k = 2)(k = 1)* (b, |, = b1, )]
— sin 68o[S60r (k — 2) (k — 1)2(k? + 128k — 128) (bl ) — bl 5 + bl )
+ 1127 (k = 1)(2k* + 5K* + 123k% = 256k + 128) (3b1g | = bl 5 — by s + 3blrs )k
+ (k= 2)(24K* + 49K° + T9K? — 256k + 128)(27h .3 1) = 3103 = Sbatios) 3b[ dion) 27D 106))K)
+ sin 84o[1124(k — 2)(k = 1)(k* + 8k% + T60k> — 1536k + 768) (b ;) = bixs 3 + blass) = bis 7))

+ 12K(8KS + 19K° + 45K* + 1920k% — 6080K” + 6144k — 2048)(2b1, | = blx 05 + batig ) = 2beh00)]
—3sin 108y (k — 2)(8k® + 59k° + 325k* + 32000k> — 97920k> + 98304k — 32768)
2 2 2 2
X (bE'J(]IO,l) - bE‘z(]IO 3) + b[ (]10 5) b[ (]10 7) + bE‘z(]IO,9))’ (AS)

where, due to their large format, we have made the higher-order 52/ coefficients available online via a Mathematica package
on Zenodo [51] and shortly on the black hole perturbation toolkit [62].
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