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We present an analog model for the Bañados, Teitelboim, Zanelli (BTZ) black hole based on a
hydrodynamical flow. We numerically solve the fully nonlinear hydrodynamic equations of motion and
observe the excitation and decay of the analog BTZ quasinormal modes in the process. We consider both a
small perturbation in the steady state configuration of the fluid and a large perturbation; the latter could be
regarded as an example of formation of the analog (acoustic) BTZ black hole.
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I. INTRODUCTION

In 1981, W. G. Unruh presented a new way of interpret-
ing general relativity (GR) in terms of systems belonging to
other areas of physics [1]. This finding opened the way to
the discovery of a multitude of systems that exhibit effects
with close GR counterparts [2,3]. The study of such
systems is now generically known as analog gravity.
The analog gravity framework dwells on the fact that

disturbances on background states of certain nongravita-
tional systems are governed by equations of motion which
are identical to those of (classical/quantum) fields in curved
spacetimes. This allows several aspects of GR, which are
not amenable to be directly probed, to be experimentally
tested. In fact, many ideas proposed in analog gravity have
been tested in the last decades. For instance, rotational
superradiance [4], cosmological expansion [5], the ring-
down of a black hole [6,7], and Hawking radiation have
been observed [8–13]. It is worth mentioning that the
analog gravity framework does not allow one to probe
dynamical aspects of the theory (those related to the
Einstein equations), since the equations of motion gov-
erning the analog model have a fundamentally distinct
nature. In other words, analog gravity models are only
concerned with kinematical aspects of curved spacetimes.
A particular hydrodynamical analog model for a

class of spherically symmetric metrics (which include
the Schwarzschild and Reissner-Nördstrom spacetimes)
has been recently proposed in Ref. [14]. That model
requires a careful fine-tuning of physical parameters of
the flow, namely its local velocity and its sound speed. The
local fluid velocity can be directly set up, in principle, by

applying a suitable external force to the fluid. On the other
hand, the local speed of sound is much less amenable of
external control since it is determined by the relevant
equation of state, which describes the internal forces in the
flow and depends on the nature of the fluid.
In this paper we apply the ideas of [14] but now we do

not start by fixing the spacetime we want to emulate.
Instead, we start by assuming that the equation of state for
the fluid is as simple as it gets, so that the local speed of
sound is constant throughout the fluid, see Eq. (14).
Interestingly enough, the curved spacetime that results
from this procedure is the celebrated BTZ spacetime
introduced by Bañados, Teitelboim, and Zanelli in [15].
The BTZ spacetime is a black hole solution of (2þ 1)-
dimensional GR with negative cosmological constant,
which is asymptotically anti–de Sitter and has no curvature
singularity at the origin (for a review, see Ref. [16]).
Because of its geometrical simplicity, it has been widely
used as a lower dimensional model to investigate several
effects related to the foundations of classical and quantum
gravity, such as microscopic properties of black holes [17].
An important characterizing property of black holes is

how they respond to perturbations in the metric. Upon
perturbation, a black hole goes, in general, through a
transient stage that depends on the source of the perturba-
tion. After that, the system can be characterized by a
spectrum of complex frequencies called quasinormal
frequencies that depend only on the black hole parameters
[18–20]. The corresponding quasinormal modes (QNMs)
describe the characteristic ringdown that occurs as a
response to the perturbation. The QNMs are usually
defined as the modes satisfying ingoing boundary con-
ditions at the black hole horizon and outgoing boundary
conditions at infinity. This definition works perfectly fine
for asymptotically flat spacetimes (Schwarzschild and Kerr
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black holes, for instance). However, the situation is subtler
in the case of asymptotically curved spacetimes. In part,
this results from the difficulty in distinguishing ingoing and
outgoing waves at infinity. Moreover, for an asymptotically
anti–de Sitter spacetime, the lack of global hyperbolicity
gives rise to another issue: the initial conditions are not
sufficient to uniquely determine the time evolution of a
field, and extra boundary conditions at spatial infinity are
required [21–23]. These boundary conditions influence all
types of wave phenomena [24–26], including, in particular,
the quasinormal modes.
In this work we are interested in analyzing the character-

istic quasinormal decay of the BTZ black hole in terms of
the analog nonlinear phenomenon that takes place in the
fluid as a response to perturbing its flow. Our goal is
therefore to use an ideal fluid to probe the quasinormal
decay of a scalar field in BTZ via the observation of the
decay rate of sound waves.
This paper is organized as follows. In Sec. II we find the

flow background parameters corresponding to the emu-
lation of the BTZ spacetime by an effective metric. In
Sec. III we numerically solve the equations of fluid
dynamics for a small perturbation in the velocity field
propagating on the background found in Sec. II. Using the
known BTZ quasinormal frequencies [27], we show that
the field intermediate-time and the late-time behaviors are
well described by a superposition of QNMs. After that, we
consider an example of formation of an analog BTZ black
hole and use this fully nonlinear process to observe the
excitation and decay of the analog BTZ quasinormal
modes. Finally, Sec. IV is dedicated to a discussion and
a brief summary of our results.

II. ANALOG BTZ BLACK HOLE

We consider an inviscid barotropic fluid flowing in two
spatial dimensions. Let x, y, and t be the spatial and time
coordinates with respect to an inertial frame of reference in
the laboratory. Following [14], we start with a stationary
one-dimensional velocity profile given by

v⃗ðx; yÞ ¼ vðxÞx̂: ð1Þ

The continuity equation then implies that

ρðxÞ ¼ k
jvðxÞj ; ð2Þ

where k is a constant.
The analog gravity framework is based on the fact that

the wave equation for a massless scalar field,

□ϕ ¼ 0; ð3Þ

is identical to the equation of motion for sound waves in
the background of a flowing fluid, with the perturbation

in the velocity being given by δv ¼ −∇ϕ. The d’Alembert
operator □ is calculated with respect to the effective
metric [2,28]

ds2 ¼ α2k2

c2v2
½−ðc2 − v2Þdt2 − 2vdtdxþ dx2 þ dy2�; ð4Þ

which is determined by the background flow configuration,
with c as the local speed of sound. The constant α was
introduced for convenience in order to make the factor
ðα2k2=c2v2Þ dimensionless.
Let us define a new timelike coordinate

T ¼ tþ
Z

vðx0Þ
c2ðx0Þ − v2ðx0Þ dx

0; ð5Þ

so that the metric becomes diagonal

ds2 ¼ α2k2

c2ðxÞv2ðxÞ
�
−½c2ðxÞ − v2ðxÞ�dT2

þ c2ðxÞ
c2ðxÞ − v2ðxÞ dx

2 þ dy2
�
: ð6Þ

Following [14] we define an angular coordinate Θ ¼
y=Lðmod 2πÞ, where L is a characteristic length of the
analog model, and a radial coordinate1

RðxÞ ¼ � αkL
cðxÞvðxÞ ; ð7Þ

which was chosen as the function that multiplies the
resulting dΘ2 in Eq. (6). In terms of the new coordinates
ðT; R;ΘÞ the metric now reads

ds2 ¼ −
�
−
α2k2

c4ðxÞ þ
R2ðxÞ
L2

�
dT2

þ R2ðxÞ=L2

½1 − α2k2L2

c4ðxÞR2ðxÞ�R02ðxÞ dR
2 þ R2ðxÞdΘ2; ð8Þ

where R0ðxÞ ¼ dR=dx. We now demand that this metric be
in the Schwarzschild gauge, so that g11 ¼ −κ2=g00. This
requires that RðxÞ obey the differential equation

R02ðxÞ ¼ c2ðxÞR4ðxÞ
κ2L4

: ð9Þ

Up to here, the argument is valid for a generic (position-
dependent) speed of sound. However, differently from [14],
where we considered position-dependent speed of sound
configurations (with their ensuing contrived equations of
state), here we will analyze the simpler case of a constant

1Since the velocity vðxÞ can be positive or negative, we choose
the sign in (7) so that RðxÞ is always positive.

DE OLIVEIRA and MOSNA PHYS. REV. D 106, 064030 (2022)

064030-2



speed of sound. In this case Eq. (9) can be immediately
integrated to yield (up to a trivial translation in x)

RðxÞ ¼ −
L2

x
; ð10Þ

where we took, for simplicity, κ ¼ c and we chose the
negative sign at the right-hand side so that RðxÞ is positive
and increasing for x ∈ ð−∞; 0Þ.
As a result, the effective metric takes the form

ds2 ¼ −
�
−
α2k2

c4
þ R2

L2

�
dT2 þ

�
−
α2k2

c4
þ R2

L2

�−1
dR2

þ R2dΘ2: ð11Þ

We recognize (11) as the metric of a static BTZ black hole
with mass M ¼ α2k2=c4 and curvature radius l ¼ L [15].
We note that the horizon (R ¼ Rh ≔ l

ffiffiffiffiffi
M

p
) and conformal

boundary (R ¼ ∞) of the BTZ spacetime are realized at
x ¼ −L=

ffiffiffiffiffi
M

p
and x ¼ 0, respectively, in this model. We

will also denote the boundary x ¼ 0 of the laboratory
by E. Notice that the constant M is dimensionless in this
spacetime.

III. TIME EVOLUTION AND ANALOG
QUASINORMAL DECAY

The equations of motion for an inviscid fluid subjected to
an externally imposed body force f⃗ are given by [2,28]

∂ρ

∂t
þ∇ · ðρv⃗Þ ¼ 0; ðcontinuity equationÞ ð12Þ

ρ

�
∂v⃗
∂t

þðv⃗ ·∇Þv⃗
�
¼−∇pþ f⃗; ðEuler equationÞ ð13Þ

where p is the pressure, which here satisfies the equation
of state

p ¼ c2ρ; ð14Þ
with constant c, as discussed above.
We are concerned with two-dimensional flows with

physical quantities varying along x only. More explicitly,
density and pressure will depend only on x [i.e., ρ ¼ ρðxÞ,
p ¼ pðxÞ], the velocity v⃗ will be given by (1) and the
external force density will be given in terms of a driving
potential ΦðxÞ,

f⃗ðxÞ ¼ −ρ∇Φ ¼ −ρ∂xΦx̂: ð15Þ
The external potential is taken to be fixed, which means that
it is insensitive to backreaction, as in [2,28]. Therefore, the
discussion of [29] does not apply to the present work (nor
to [14]). With the assumptions made above, the equations
of motion simplify to

∂tρþ ∂xðρvÞ ¼ 0; ð16Þ

ρð∂t þ v∂xÞv ¼ −∂xp − ρ∂xΦ: ð17Þ

The fluid configuration that implements the results of the
previous section can be obtained from Eqs. (2), (7), and
(10), which determines the background velocity

v0ðxÞ ¼
�
αk
cL

�
x; ð18Þ

and the background density

ρ0ðxÞ ¼ −
�
cL
α

�
1

x
: ð19Þ

From the Euler equation (17), we find the external potential

ΦðxÞ ¼ c2 log

�
x
L

�
−
�
α2k2

c2L2

�
x2

2
: ð20Þ

We now consider perturbations of the above steady-
state configuration of the fluid and follow the evolution of
the relevant physical quantities in time. In order to do that,
we numerically solve the nonlinear fluid equations and
compare the result with what would have been the
corresponding evolution on the BTZ black hole. As we
show in the following, the propagation of the fluid in this
regime allows one to recover the mechanism of excitation
of quasinormal modes at the black hole level. We do this
for both a small perturbation and a large perturbation; the
latter could be regarded as an example of the process of
formation of an acoustic BTZ black hole. In all the cases
the acoustic black hole has its quasinormal modes excited
at the well-known quasinormal frequencies of the BTZ
black hole.

A. The Cauchy problem

From the analog model perspective, we want to emulate
a massless scalar field propagating on a BTZ background.
The corresponding Cauchy problem in this spacetime is
given by the differential equation

□ϕ ¼ 0; ð21Þ

along with the initial data

ϕjt0 ¼ ϕ0; ∂tϕjt0 ¼ _ϕ0; ð22Þ

where ϕ0, _ϕ0 are smooth functions defined on the sur-
face t ¼ t0.
This problem has some particular features that are worth

mentioning. First, since the BTZ black hole is a non-
globally hyperbolic spacetime, in general the time evolu-
tion determined by the differential equation (21) together
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with initial data (22) is not well defined.2 Physically, the
lack of global hyperbolicity is related to the fact that
information traveling in spacetime can reach (or come
from) spatial infinity in a finite time. Therefore, some extra
boundary condition at spatial infinity is required to ensure a
unique physically sensible time evolution for the field ϕ.
It follows from the field theory on BTZ black holes

[24,26,31] that the radial part of the field

ϕðT; R;ΘÞ ¼ ψðRÞffiffiffiffi
R

p e−iωTeimΘ ð23Þ

can be expressed as a linear combination

ψ ¼ CDψ
ðDÞ þ CNψ

ðNÞ; ð24Þ

of two linearly independent solutions ψ ðDÞ, ψ ðNÞ. The
function ψ ðDÞ is chosen to be the principal solution at
R → ∞, that is, the unique solution (up to scalar multiples)
such that

lim
R→∞

ψ ðDÞðRÞ
gðRÞ ¼ 0; ð25Þ

for every solution gðRÞ not proportional to ψ ðDÞ. The
function ψ ðDÞ is also called the generalized Dirichlet
solution. The other solution, ψ ðNÞ, is a nonprincipal
solution and it is not unique, since any linear combination
of this function with the principal solution is another
nonprincipal solution. ψ ðNÞ is also called a generalized
Neumann solution. For the massless scalar field, only the
solution ψ ðDÞ is square integrable at R → ∞ [26]. Hence,
the field has to satisfy a Dirichlet boundary condition at
spatial infinity

ϕjR¼∞ ¼ 0: ð26Þ

In particular, a quasinormal mode will be characterized
by ingoing boundary condition at the black hole horizon
and Dirichlet boundary condition at infinity. These modes
are given by [27]

ψðRðzÞÞ ¼ ð1 − zÞ−1=4z−iω
2

× F

�
−
im
2

−
iω
2
;
im
2

−
iω
2
; 1 − iω; z

�
; ð27Þ

where z ¼ 1 − R2
h=R

2, Fðα; β; γ; zÞ stands for the standard
hypergeometric function and the quasinormal frequencies
are given by

ωnm ¼ �m − 2iðnþ 1Þ; n; m ¼ 0; 1; 2; 3;…; ð28Þ

where m is the angular quantum number and n labels the
imaginary part of the frequency, which is related to the
characteristic time of decay of the corresponding mode.
Notice that these modes satisfy

ϕjR¼∞ ¼ 0;
∂ϕ

∂R

				
R¼∞

¼ 0: ð29Þ

On the analog model end, these boundary conditions
correspond to vanishing perturbation in the velocity and
density profiles at x ¼ 0.
A nice feature of our model is that it maps the black hole

spatial infinity to the physical (finite) boundary E of the
system at the laboratory, at x ¼ 0. Hence, the boundary
conditions at x ¼ 0 that are required by the sound propa-
gation in the fluid can be naturally chosen to emulate the
massless scalar field in the BTZ spacetime. For the fluid
motion, these boundary conditions ensure that the energy
flux across the boundary E is zero. At the spacetime level,
these boundary conditions mean that information can
neither escape to nor come from the spatial infinity.

B. Small perturbation and QNM excitation

Let us consider as initial conditions a configuration for
which v is slightly perturbed from the steady state con-
figuration v0 at a given point x0:

vðt ¼ 0; xÞ ¼ v0ðxÞ þ δvðxÞ; ð30Þ

ρðt ¼ 0; xÞ ¼ ρ0ðxÞ þ δρðxÞ; ð31Þ

with

δvðxÞ ¼ Ae−
ðx−x0Þ6
2σ2 ; ð32Þ

δρðxÞ ¼ 0: ð33Þ

We choose units such that α ¼ k ¼ c ¼ 1; the black hole
mass then becomes M ¼ 1. For simplicity, we also choose
the width L as L ¼ 1. The exterior region of the black hole
is then mapped into the interval −1 < x < 0, with x ¼ −1
corresponding to the horizon, and x ¼ 0 corresponding to
spatial infinity.
To simulate Dirichlet boundary conditions at infinity, we

should impose that the disturbance vanishes at x ¼ 0,

δvðx ¼ 0Þ ¼ 0; ð34Þ

δρðx ¼ 0Þ ¼ 0: ð35Þ

In order to avoid numerical difficulties, we impose boun-
dary conditions at x ¼ −ϵ, with ϵ > 0 being a sufficiently

2See Refs. [21–23] for the general theory of field dynamics in
nonglobally hyperbolic spacetimes. For the case of the BTZ black
hole, see Ref. [30].
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small parameter, instead of at x ¼ 0. More explicitly, we
require

vðt; x ¼ −ϵÞ ¼ v0ð−ϵÞ; ð36Þ

ρðt; x ¼ −ϵÞ ¼ ρ0ð−ϵÞ: ð37Þ

We solved the system given by Eqs. (16) and (17) for
vðt; xÞ and ρðt; xÞ with the software Mathematica [32].3

Figure 1 shows the obtained time evolution of a perturba-
tion initially centered at x0 ¼ −0.5. We see that the initial
disturbance splits into two portions: one goes towards the
horizon and falls into the supersonic region ðx < −1Þ. The
other goes towards x ¼ 0 and, around t ∼ 0.6, is reflected at

the boundary and redirected towards the horizon. Although
the expression of the analog metric is degenerate at the
horizon (as it occurs for a Schwarzchild black hole, for
instance), the fluid physical quantities and their corre-
sponding perturbations are both well defined there. We see
that these physical quantities are also well defined in the
supersonic region (x < −1).

1. QNM decay

It follows from the general theory of wave propagation
on black hole spacetimes that the response to a perturbation
on the background geometry has, in general, three distinct
stages [33,34]: (i) the early time response, which depends
highly on the initial conditions; (ii) the intermediate-time
regime, which is dominated by a QNM ringing; and (iii) the
late-time regime, which is governed by a power law tail.
Mathematically, the quasinormal modes arise from the
poles of the Green’s function associated with the wave
equation, and the power law tail comes from a branch cut
on the Green’s function domain.
However, differently from the Schwarzschild and Kerr

black holes, where a branch cut on the Green’s function
frequency domain gives rise to a late-time power law
tail [33,35,36], the Green’s function associated with wave
propagation on the BTZ black hole has no branch cut on the
ω-complex plane. This results in a late-time (exponential)
decay governed by the quasinormal ringing [37].
In the following, we fit the intermediate and late-time

behavior of our numerical solution, at a fixed position of
observation xobs, to a linear superposition of the first N
quasinormal modes [38]. We take

uðC; tÞ ¼ v0ðxobsÞ þ
XN
n¼0

Cne−iωn0ðt−t1Þ; ð38Þ

where ωn0 are the frequencies given by (28) and C ¼
ðC0; C1; C2;…; CNÞ are fitting parameters. We note that
only frequencies with m ¼ 0 are excited since nothing
depends on the analog angular coordinate y ¼ ΘL.4 We
find the quasinormal approximation by minimizing the
integral

EðCÞ ¼
Z

t2

t1

½vðt; xobsÞ − uðC; tÞ�2dt: ð39Þ

The time interval ðt1; t2Þ should be chosen within the time
domain where the numerical solution vðt; xÞ is dominated
by the QNM decay.

FIG. 1. Time evolution of a initial perturbation in the back-
ground velocity (top) and density (bottom) given by Eqs. (32) and
(33). The parameters were chosen as ϵ ¼ 10−7, A ¼ 0.1,
σ ¼ 0.00005, and x0 ¼ −0.5. The perturbation splits into two
portions. One goes towards x ¼ 0 and is reflected at time t ∼ 0.6.
The other goes towards the horizon and falls into the supersonic
region ðx < −1Þ.

3We used its NDSOLVE routine with a MAXSTEPSIZE set to
0.001. Our calculations showed good numerical convergence,
with the results being the same for values of ϵ ranging from 10−3

to 10−7.

4We note that modes with nontrivial angular dependence
(m ≠ 0) cannot be considered in this model unless we impose
periodic boundary conditions identifying the lines y ¼ 0 and
y ¼ L.
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Figure 2 shows the numerical velocity profile (solid
curve) at fixed position x ¼ xobs ¼ −0.3 as a function of
time. We see the initial perturbation passing through the
observation point around t ∼ 0.3. The reflected pulse
comes around t ∼ 0.85. After t ∼ 1 the quasinormal modes
govern the signal decay. We also see in Fig. 2 the
quasinormal fitting obtained from Eq. (38) for N ¼ 0
(red dashed curve), N ¼ 1 (green dotted curve), and N ¼
3 (blue dot-dashed curve). The corresponding parameters
Cn are listed in Table I.

C. Large perturbation: Acoustic black hole formation

As another example of excitation of quasinormal
modes, we now consider a possible scenario for the
formation of the acoustic BTZ black hole. We set, as
initial state for the system, a particular configuration
where the fluid starts with zero velocity everywhere
and let it evolve while subjected to the same external
potential given by Eq. (20). Here it is worth recalling that
the analog gravity framework can only probe kinematical
aspects of GR, as opposed to dynamical aspects emerging
from the Einstein field equations. As such, the model
presented in this section does not emulate the actual

dynamical evolution of the BTZ spacetime metric.
The purpose of this example is to illustrate one possible
formation process for the analog BTZ black hole and to
analyze the corresponding excitation of its quasinor-
mal modes.
To simulate this scenario numerically, we have taken the

initial conditions

vðt ¼ 0; xÞ ¼ 0; ð40Þ

ρðt ¼ 0; xÞ ¼ ρ0ðxÞ; ð41Þ

and solved the fluid equations (16) and (17) with the
software Mathematica [32].5 Figure 3 shows the velocity
profile at the observation point x ¼ −0.3. We again found
the contribution of the quasinormal modes to the waveform
by using the fitting function (38). The values found for Cn
are listed in Table II.
We observe from Fig. 3 that the initial phase of the

transition takes place roughly between t ∼ 0.8 and t ∼ 1.6.
After that, the quasinormal modes govern the signal. We
also see the late-time behavior of the velocity field (black
solid curve) together with quasinormal profiles for the
least-damped mode, N ¼ 0 (red dashed curve), a super-
position of the first two modes,N ¼ 1 (green dotted curve),
and of the first four modes, N ¼ 3 (blue dot-dashed curve).

FIG. 2. Numerical waveform vðt; x ¼ −0.3Þ (black solid curve)
and quasinormal modes for a perturbation on the analog BTZ
background. The parameter ϵ was chosen as 10−7. Top right:
quasinormal approximation to late-time behavior. The red dashed
curve represents the least-damped mode (N ¼ 0), the green
dotted curve represents the sum of the first two modes
(N ¼ 1), and the blue dot-dashed curve represents the sum of
the first four modes (N ¼ 3). The integral (39) was calculated
with t1 ¼ 1.5 and t2 ¼ 5.

TABLE I. Parameters Cn for the quasinormal approximation on
the scenario of a small perturbation on a steady background flow.

N ¼ 0 N ¼ 1 N ¼ 3

C0 −0.000983912 −0.000757182 −0.00078922
C1 −0.000340095 −0.000230737
C2 −0.0000441535
C3 −0.0000469776

FIG. 3. Numerical waveform vðt; x ¼ −0.3Þ (black solid curve)
and quasinormal modes for an example of formation of the
acoustic BTZ black hole. The parameter ϵ was again chosen as
10−7. The first phase of the transition occurs roughly between
t ∼ 0.8 and t ∼ 1.6. After that, the quasinormal modes govern the
signal. Top right: quasinormal approximation to late-time behav-
ior. The red dashed curve represents the least-damped mode
(N ¼ 0), the green dotted curve represents the sum of the first two
modes (N ¼ 1), and the blue dot-dashed curve represents the sum
of the first four modes (N ¼ 3). The integral (39) was calculated
with t1 ¼ 1 and t2 ¼ 5.

5The boundary conditions were again given by Eqs. (36)
and (37), with the results being the same for values of ϵ ranging
from 10−3 to 10−7. This time we used the routine NDSOLVE with a
MAXSTEPSIZE set to 0.005.

DE OLIVEIRA and MOSNA PHYS. REV. D 106, 064030 (2022)

064030-6



After the quasinormal regime, t≳ 4, the flow approxi-
mately reaches equilibrium at the steady state configuration
of the acoustic BTZ black hole.

IV. CONCLUSION

We proposed an analog model for the BTZ black hole
based on a unidirectional flow of a nonhomogeneous fluid.
We have considered a barotropic fluid obeying a simple
equation of state, which corresponds to a constant local
speed of sound. The physical quantities describing the flow
vary along just one direction. In particular, the flow velocity
field points to a fixed direction in the laboratory reference
frame. The coordinate describing the direction of the
flowing fluid is mapped into the radial coordinate of the
analog spacetime. Following the steps presented in [14] we
were naturally led to find the effective acoustic metric as
that of the well-known BTZ black hole.
A nice feature of our model is that the exterior region of

the BTZ black hole is mapped into a finite region in the
laboratory. In particular, the BTZ conformal boundary is
mapped into the boundary E at the laboratory which is at
a finite distance from the acoustic horizon. Since the BTZ
black hole is a nonglobally hyperbolic spacetime, its

conformal boundary plays a fundamental role in the
dynamics of fields propagating on it. On the analog model
end, the extra boundary condition (at the conformal
boundary) required to uniquely determine the time evolu-
tion of the field can be naturally interpreted as a boundary
condition for the sound propagation in the laboratory at E.
Finally, we considered configurations with both small

and large deviations from the steady state. In the latter case
we numerically followed an example of formation of the
acoustic black hole. In both cases we examined how the
associated QNMs are excited.
Although the experimental realization of the analog

model presented here (for which the sound waves propa-
gate in the bulk) is beyond the scope of the present work,
we would like to point out that the method of obtaining
analog models used in this paper (and introduced in [14])
can also be applied to gravity waves propagating on the
surface of a liquid within a shallow basin with curved
bottom. In this context, the dynamical degrees of freedom,
instead of ρ and p, are the variable fluid depth hðxÞ and a
specific nonflat bottom for the basin. This could provide an
alternative framework, closer to experimental realization,
wherein our method can still be applied.
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