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Simpson and Visser recently proposed a phenomenological way to avoid some kinds of space-time
singularities by replacing a parameter whose zero value corresponds to a singularity (say, r) with the

manifestly nonzero expression rðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
, where u is a new coordinate, and b ¼ const > 0. This

trick, generically leading to a regular minimum of r beyond a black hole horizon (called a “black bounce”),
may hopefully mimic some expected results of quantum gravity, and was previously applied to regularize
the Schwarzschild, Reissner-Nordström, Kerr, and some other metrics. In this paper it is applied to
regularize the Fisher solution with a massless canonical scalar field in general relativity (resulting in a
traversable wormhole) and a family of static, spherically symmetric dilatonic black holes (resulting in
regular black holes and wormholes). These new regular metrics represent exact solutions of general
relativity with a sum of stress-energy tensors of a scalar field with nonzero self-interaction potential and a
magnetic field in the framework of nonlinear electrodynamics with a Lagrangian function LðF Þ,
F ¼ FμνFμν. A novel feature in the present study is that the scalar fields involved have “trapped ghost”
properties, that is, are phantom in a strong-field region and canonical outside it, with a smooth transition
between the regions. It is also shown that any static, spherically symmetric metric can be obtained as an
exact solution to the Einstein equations with the stress-energy tensor of the above field combination.

DOI: 10.1103/PhysRevD.106.064029

I. INTRODUCTION

There seems to be a common belief that quantum gravity
effects inevitably suppress space-time singularities existing
in the solutions of classical gravity, replacing them with
some regular phenomena. Though, different approaches
and models of quantum gravity, when translated to the
classical language, lead to radically different results, see,
e.g., [1–8], and a discussion in [9]. Among them are black
hole–white hole transitions [2–5], scenarios with the
spherical radius tending to a nonzero constant at late times
beyond an event horizon [6], quantum-corrected configu-
rations without horizons [8], etc. This diversity may be
treated as a consequence of a still uncertain nature of
quantum gravity by now.
Therefore, of evident interest is the recent proposal made

by Simpson and Visser (SV) [10] to regularize a singular
space-time metric by simply replacing its certain parameter
(specifically, the spherical radius r in a static, spherically
symmetric metric), whose zero value corresponds to a
singularity, with the simple expression rðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
,

where u ∈ R is a new coordinate introduced instead of r,1

and b > 0 is a regularization parameter. It looks as an easy
way to imagine the possible effects of quantum gravity
within a classical space-time framework, leaving aside any
quantization details. Besides, new geometries emerging in
this way may be of interest by themselves.
In [10] this proposal was applied to the Schwarzschild

black hole solution, resulting in the globally regular metric

ds2 ¼
�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
�
dt2 −

�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
�

−1
du2

− ðu2 þ b2Þðdθ2 þ sin2θdφ2Þ; ð1Þ

where the singularity at r ¼ 0 is replaced by a regular
minimum of rðuÞ at u ¼ 0, a sphere of radius b. Depending
on the relation between b and the Schwarzschild mass m,
the geometry (1) can represent a wormhole with a throat at
u ¼ 0 [if b > 2m, hence gttð0Þ > 0], a black hole with two
horizons at u ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − b2

p
if b < 2m, and an extremal

black hole with a single horizon at u ¼ 0 if b ¼ 2m.
In the black hole case b < 2m, the hypersurface u ¼ 0,

being a minimum of rðuÞ, is not a throat since u is a
temporal coordinate there: instead, u ¼ 0 corresponds to
a bounce in one of the two scale factors, rðuÞ, of a
Kantowski-Sachs cosmology in the inner region of the
black hole, and by SV suggestion such a minimum is called

1The notation r is kept in this paper for the spherical radius,
r ¼ ffiffiffiffiffiffiffiffiffiffi−gθθ

p
, while radial coordinates different from r are denoted

by other letters to avoid confusion.
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a black bounce [10]. (The other scale factor in this
Kantowski-Sachs cosmology is 2m=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
− 1, and it

has a maximum at the same time instant u ¼ 0.) It can be
noted that black bounces are a common feature of another
class of space-times, black universes, that is, black holes
that contain an expanding asymptotically isotropic cosmol-
ogy beyond the horizon [11,12]. Such solutions are
naturally obtained with a phantom scalar field as a source
both in general relativity (GR) and its extensions [13–15].
In the intermediate case of (1), b ¼ 2m, the hypersurface

u ¼ 0 is null, it is simultaneously a throat and a black hole
horizon, and it was suggested [16] to call it a black throat.
A similar SV regularization of the Reissner-Nordström

space-time was considered in [17]. A large class of regular
black hole and wormhole space-times was constructed
using the SV approach by Lobo et al. [18]. The rich and
diverse geometries obtained in this way have attracted
much interest, and their extensions with rotation were also
studied [19–21]. Further relevant studies concerned gravi-
tational wave echoes at possible black hole/wormhole
transitions, quasinormal modes of such space-times and
gravitational lensing phenomena [22–32].
The possible presentation of regular static, spherically

symmetric SV-like space-times as solutions to the equa-
tions of GR with field sources was considered in [16,33].
As shown in [16], a large class of SV space-times can be
obtained as exact solutions to the Einstein equations with a
source in the form of a self-interacting minimally coupled
phantom scalar field combined with an electromagnetic
field in the framework of nonlinear electrodynamics
(NED), whereas a scalar field alone or NED alone cannot
provide a necessary material source for an SV space-time.
Another method of obtaining such sources was formulated
in [33], along with some new examples of interest. The
necessity of a phantom field in our construction is evident
due to a minimum of the spherical radius r in SV metrics,
while the presence of a NED source is needed for obtaining
the relevant form of the stress-energy tensor (SET). For
SV regularizations of the Schwarzschild and Reissner-
Nordström solutions of GR, the explicit forms of scalar and
NED sources were obtained in [16], and the global structure
diagrams for the regularized Reissner-Nordström metric
with three and four horizons were constructed. Some
analogs of SV regularization applied to cosmology have
been recently considered in [34].
The present study further extends that of [16]. First, it is

shown that a combination of NED and a minimally coupled
scalar field is able to provide a source for any static,
spherically symmetric metric in the framework of GR. It
turns out, however, that the corresponding scalar field, in
general, cannot be only canonical (that is, having positive
kinetic energy) or only phantom (with negative kinetic
energy), but has to change its nature from one region to
another. Such a situation, where a scalar is phantom only in
a strong-field region and is canonical elsewhere, acquired

the name of a “trapped ghost” and was shown to lead to
globally regular space-times including wormholes and
black holes [35–37]. Even more than that, it turned out
that the transition surfaces between the canonical and
phantom scalar field regions can play a stabilizing role
in black hole and wormhole space-times [15].
Second, we here consider SV-like regularizations for two

families of singular solutions of GR: Fisher’s solution with a
massless canonical scalar field [38] and a special subset of
dilatonic black hole solutions with interacting massless
scalar and electromagnetic fields [39–41]. In both cases,
the SV substitution is applied in the simplest possible way
(x ↦

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
) to the factor x that produces a singularity at

its zero value. The scalar-NED sources for regularized
versions of these space-times are found, and it turns out
that trapped ghost scalars are necessary for their GR
description.
As always when dealing with phantom fields (or partly

phantom, as trapped ghosts) one can recall the well-known
problem of their potential instability at the quantum level.
This problem is widely discussed, and it is often said that a
phantom field can be an effective entity, originating from
some extended theory of gravity, for example, from extra-
dimensional degrees of freedom (see, e.g., [42,43] and a
discussion in [37]) and should not be quantized. Anyway,
as in many other studies, the existence of phantom fields is
here admitted as a working hypothesis, which is quite
necessary as long as there are throats or black bounces.
The paper is organized as follows. In Sec. II it is shown

how to obtain a scalar-NED source for an arbitrary static,
spherically symmetricmetric using amagnetic field solution
of NED. Sections III and IV are devoted to finding and
describing scalar-NED sources for regularized Fisher and
dilatonic space-times. Section V contains some concluding
remarks. The metric signature ðþ−−−Þ is adopted, along
with geometrized units such that 8πG ¼ c ¼ 1.

II. SCALAR-NED SOURCES
FOR SPHERICAL SPACE-TIMES

Consider an arbitrary static, spherically symmetric met-
ric in the form

ds2 ¼ AðxÞdt2 − dx2

AðxÞ − r2ðxÞdΩ2;

dΩ2 ¼ dθ2 þ sin2θdφ2; ð2Þ

written in terms of the so-called quasiglobal radial coor-
dinate x [44]. This choice of the radial coordinate is well
suited for the description of any static, spherically sym-
metric space-times including black holes and wormholes
[where throats appear as regular minima of rðxÞ provided
AðxÞ > 0]. Recall once more that if a minimum of rðxÞ
occurs in a region where AðxÞ > 0, it is called a wormhole
throat, such a minimum in a region where AðxÞ < 0 is
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named a black bounce by suggestion of [10], and if a
minimum of rðxÞ coincides with AðxÞ ¼ 0, we call it a
black throat [16].
Let us show that any (sufficiently smooth) metric (2) is a

solution to the Einstein equations with a SET Tν
μ of a

noninteracting combination of a minimally coupled scalar
field ϕ with a certain potential VðϕÞ and a nonlinear
electromagnetic field with the Lagrangian density LðF Þ,
where F ¼ FμνFμν, and Fμν ¼ ∂μAν − ∂νAμ is the electro-
magnetic field tensor.
To begin with, the most general form of the SET compat-

ible with the metric (2) according to the Einstein equations

Gν
μ ≡ Rν

μ −
1

2
δνμR ¼ −Tν

μ; ð3Þ

has a form that formally coincides with the SET of an
anisotropic fluid,

Tν
μ½fluid� ¼ diagðρ;−pr;−p⊥;−p⊥Þ; ð4Þ

where ρ; pr; p⊥ are the density, radial pressure and tangential
pressure, respectively.
On the other hand, consider the action of matter Sm as a

combination of a scalar field ϕðxÞ and a nonlinear electro-
magnetic field minimally coupled to gravity,

Sm¼
Z ffiffiffiffiffiffi

−g
p

d4x½2hðϕÞgμν∂μϕ∂νϕ−2VðϕÞ−LðF Þ�; ð5Þ

where the function hðϕÞ realizes the scalar field para-
metrization freedom: substituting ϕ ¼ ϕðϕ̃Þ, we obtain
another function h̃ðϕ̃Þ having, however, the same sign as
hðϕÞ. In particular, if hðϕÞ > 0, we are dealing with a
canonical scalar field with positive kinetic energy, while
hðϕÞ < 0 corresponds to a phantom scalar field having
negative kinetic energy. A reparametrization then makes it
possible to get hðϕÞ≡ 1 for a canonical field and hðϕÞ≡−1
for a phantom one. If hðϕÞ somewhere changes its sign, it
means that the ϕ field changes its nature from one range of
its values to another, as happens, for example, in wormhole
models with a trapped ghost, where the scalar is canonical in
a weak field region and phantom in a strong field one [36].
Variation of the action (5) with respect to the metric

tensor gμν leads to the SET

Tν
μ ¼ Tν

μ½ϕ� þ Tν
μ½F�; ð6Þ

with

Tν
μ½ϕ� ¼ 2hðϕÞ∂μϕ∂νϕ−δνμ½hðϕÞgρσ∂ρϕ∂σϕ−VðϕÞ�; ð7Þ

Tν
μ½F� ¼ −2LFFμσFνσ þ 1

2
δνμLðF Þ; ð8Þ

where LF ¼ dL=dF . Variation of Sm in ϕ and the
electromagnetic potential Aμ gives the field equations

2hðϕÞ∇μ∇μϕþ dh
dϕ

ϕ;μϕ;μ þ
dVðϕÞ
dϕ

¼ 0; ð9Þ

∇μðLFFμνÞ ¼ 0: ð10Þ
The space-time symmetry encoded in (2) imposes

evident requirements on the scalar and electromagnetic
fields as possible sources of the metric. Specifically, we put
ϕ ¼ ϕðxÞ and single out the possible nonzero components
of Fμν compatible with spherical symmetry, that is, Ftx ¼
−Fxt (a radial electric field) and Fθφ ¼ −Fφθ (a radial
magnetic field). Let us assume that there is only a magnetic
field, with Fθφ ¼ −Fφθ ¼ q sin θ, where q is a monopole
magnetic charge. Such a form of Fμν is common for any
choice of LðF Þ. In this case, Eq. (10) is trivially satisfied,
and the electromagnetic invariant F takes the form
F ¼ 2q2=r4. As a result, the SETs (7) and (8) read

Tν
μ½ϕ� ¼ hðϕÞAðxÞϕ02diagð1;−1; 1; 1Þ þ δνμVðϕÞ; ð11Þ

Tν
μ½F� ¼

1

2
diag

�
L;L;L −

4q2

r4
LF ;L −

4q2

r4
LF

�
: ð12Þ

It is clear that a scalar or electromagnetic field taken
separately cannot account for an arbitrary metric (2)
because the quantities ρ; pr; p⊥, obtained by substituting
(2) to the Einstein equations, are in general all different,
whereas the SET Tν

μ½ϕ� has the property Tt
t ¼ Tθ

θ, and T
ν
μ½F�

has the property Tt
t ¼ Tx

x. More than that, the same relation
Tt
t ¼ Tθ

θ holds for more general scalar fields minimally
coupled to gravity, e.g., with any Lagrangian of the form
Lðϕ; XÞ, X ≔ ∂μϕ∂

μϕ (called generalized k-essence fields),
so such fields are not more suitable for our purpose than ϕ
in Eq. (5). However, taken together, scalar and electro-
magnetic fields can provide a source for any metric (2).
Indeed, if we know the functions AðxÞ and rðxÞ, we also

know ρ; pr; p⊥ as functions of x and can try to identify
them with the corresponding components of the SET (6).
Then we immediately obtain that

Tt
t − Tθ

θ ¼
2q2

r4
LF ¼ ρþ p⊥; ð13Þ

i.e., we know LF as a function of x, and since F ðxÞ ¼
2q2=r4ðxÞ is also known, the functions LðxÞ and finally
LðF Þ can be calculated, at least in ranges where rðxÞ is
monotonic. Furthermore,

Tt
t − Tx

x ¼ 2hðϕÞAðxÞϕ02 ¼ ρþ pr; ð14Þ

which gives us hðϕÞϕ02 as a function of x. One can notice
that if ρþ pr ≥ 0, in accord with the null energy condition
(NEC), we must take hðϕÞ ≥ 0 and can put hðϕÞ≡ 1
without loss of generality, and the scalar field is canonical.
If ρþ pr ≤ 0, violating the NEC, we can safely put
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hðϕÞ≡ −1, corresponding to a phantom scalar field. If ρþ
pr changes its sign, then, simultaneously, the sign of hðϕÞ
must also change, and there remains a freedom to choose
the scalar field parametrization. Thus we find out ϕðxÞ
and hðxÞ. To calculate the only quantity still remaining
unknown, the potential VðϕÞ, we can use any of the
components of Eqs. (3), for example, Gt

t ¼ −Tt
t. Since

the scalar field equation (9) is a consequence of the Einstein
equations, the whole set of equations is thus fulfilled.
This algorithm was described in a more special setting in

[16] and applied to Simpson-Visser space-times that
regularize the Schwarzschild and Reissner-Nordström
metrics. Further on in this paper we will consider some
other well-known space-times containing black holes or
naked singularities, formulate their regularization by anal-
ogy with the Simpson-Visser suggestion and try to deter-
mine their possible scalar-NED sources.
In fact, this algorithm does not depend on a particular

choice of the radial coordinate, but in the examples to be
considered we will use the form (2) of the metric, for which
the nontrivial components of the Einstein equations read

Gt
t ¼

1

r2
½−1þ Að2rr00 þ r02Þ þ A0rr0� ¼ −Tt

t; ð15Þ

Gx
x ¼

1

r2
½−1þ A0rr0 þ Ar02� ¼ −Tx

x; ð16Þ

Gθ
θ ¼ Gφ

φ −
1

2r
½2Ar00 þ rA00 þ 2A0r0� ¼ −Tθ

θ ð17Þ

(the prime stands for d=dx), and in particular,

Gt
t −Gx

x ¼ 2AðxÞ r
00

r
¼ −ðTt

t − Tx
xÞ: ð18Þ

III. REGULARIZED FISHER SPACE-TIME

As our first example, let us consider the static, spherically
symmetric solution to the Einstein equations with a canoni-
cal massless scalar field Φ, first obtained by I. Z. Fisher in
1948 [38] and a few times rediscovered later on (e.g., by
Janis, Newman and Winicour in 1968 [45], so that it is
sometimes called the JNW solution). This solution corre-
sponds to the source (5) with hðϕÞ≡ 1, V ≡ 0, without an
electromagnetic field, and can be written as (see, e.g., [44])2

ds2 ¼
�
1 −

2k
x

�
a
dt2 −

�
1 −

2k
x

�
−a
dx2

− x2
�
1 −

2k
x

�
1−a

dΩ2;

Φ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p

2
ln

�
1 −

2k
x

�
; ð19Þ

where k > 0 and a ∈ ð−1; 1Þ are integration constants, such
thatm ¼ akhas themeaningof the Schwarzschildmass, and
C ¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
is a scalar charge.

In the solution (19), x ranges from 2k to infinity, and
x ¼ 2k is a naked singularity. Therefore, to regularize the
metric in the spirit of Simpson and Visser’s proposal, one
can replace the difference x − 2k ¼ y with the expressionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
, where u is a new radial coordinate, ranging in

u ∈ R, and b > 0 is a new constant with the dimension of
length. It results in the metric

ds2 ¼
�

y
yþ 2k

�
a
dt2 −

�
y

yþ 2k

�
−a
du2

− y1−aðyþ 2kÞ1þadΩ2; y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
; ð20Þ

which is regular at all u ∈ R and asymptotically flat at
u → �∞. It is easy to see that (20) describes a static
traversable wormhole3 with a Schwarzschild mass equal to
ak at both flat asymptotics u → �∞ and a throat at u ¼ 0
with the radius

rth ¼ bð1−aÞ=2ðbþ 2kÞð1þaÞ=2: ð21Þ

However, this metric is no more a solution of GR with a
massless scalar field, and its possible source can be found
as outlined in the previous section.
Accordingly, with matter described by the action (5), the

difference between (15) and (16) yields

r00

r
¼ −hðϕÞϕ02; rðuÞ ¼ yð1−aÞ=2ðyþ 2kÞð1þaÞ=2; ð22Þ

where the prime means d=du. Explicitly,

r00

r
¼ y2½b2−k2ð1−a2Þ�þb2½k2ð1−aÞð3þaÞþð3−aÞky�

y4ð2kþyÞ2
ð23Þ

(recall that y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
). Equation (22) allows for find-

ing ϕðuÞ if hðϕÞ is known. However, in general, hðϕÞ

2At a ¼ 1 this metric restores the Schwarzschild solution with
mass m ¼ k. At a > 1, the same metric belongs to one of the
subfamilies of the so-called anti-Fisher solution to the Einstein
equations with a massless phantom scalar, Eq. (5) with hðϕÞ≡ −1
and also without an electromagnetic field [44,46,47]. The space-
time (19) then has a throat at some x > 2k, and r → ∞ as x → 2k,
but this subfamily does not contain wormholes since AðxÞ → 0 as
x → 2k, which is in general a singularity, except for some special
cases comprising “cold black holes” [48] with infinite horizon
area and zero Hawking temperature.

3Another “deformation” of the metric (19) was recently
considered in [49], in the present notations it corresponds to
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
. In such a case, to get rid of the singularity at

x ¼ 2k, one has to require b > 2k.
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should change its sign together with r00=r, therefore, it
makes sense to use the parametrization freedom of the
scalar field and simply choose for it some monotonic
function in the range u ∈ R, for example,

ϕðuÞ¼ arctanðu=bÞ⇔u¼b tanϕ; ϕ∈ ð−π=2;π=2Þ: ð24Þ

Then we determine hðϕÞ from (22), with the result

hðϕÞ ¼ −
y2½b2 − k2ð1 − a2Þ� þ b2½k2ð1 − aÞð3þ aÞ þ ð3 − aÞky�

b2ð2kþ yÞ2 ; ð25Þ

where, according to (24), we should substitute y ¼ b=
cosϕ. At u → 0 and u → �∞, hðϕÞ has the following
limits:

hðϕÞju→0 → −
2k2ð1 − aÞ þ b2 þ bkð3 − aÞ

ðbþ 2kÞ2 ;

hðϕÞju→�∞ →
k2ð1 − aÞ − b2

b2
: ð26Þ

As was expected, at u ¼ 0 (the throat), we have h < 0,
corresponding to a phantom scalar field. However, at large
u the sign of h depends on the parameters of the model
(see Fig. 1): at large b we have also h < 0, so that the
scalar remains phantom in the whole range of u (and ϕ),
but at small b, such that b2 < k2ð1 − aÞ, the scalar field at
infinity is canonical, so that we deal with the so-called
trapped ghost scalar that has phantom properties only in a
strong field region [36].

Our next task is to determine the suitable NED
Lagrangian LðF Þ from the difference of Eqs. (15) and
(17). A calculation gives

F
dL
dF

¼ Gθ
θ −Gt

t ¼
b2kð2a − 1Þ

y4−að2kþ yÞ1þa : ð27Þ

Since F ¼ 2q2=r4 and r2 ¼ y1−að2kþ yÞ1þk, it is easy to
find dF=F in terms of y (and it is now not important that
we have put y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
):

dF
F

¼ −
4½yþ 2kð1 − aÞ�

yð2kþ yÞ ; ð28Þ

and therefore we can calculate L as a function of y by
integrating the expression

dL
dy

¼ 4b2kð1 − 2aÞ½yþ 2kð1 − aÞ�
y5−að2kþ yÞ2þa ; ð29Þ

with the result

LðF Þ ¼ ð1− 2aÞb2
ð4− aÞð3− aÞð2− aÞð1− aÞað1þ aÞk4

�
ð12a− 3Þ þ 1

y5

�
1þ 2k

y

�
−1−a

× ½ð24a− 44a2 þ 40a4 − 24a5 þ 4a6Þk5 þ ð−4aþ 18a2 − 4a3 − 18a4 þ 8a5Þk4yþ ð4a− 16a2 − 4a3 þ 16a4Þk3y2

þ ð−6aþ 18a2 þ 24a3Þk2y3 þ ð−6þ 18aþ 24a2Þky4 þ ð−3þ 12aÞy5�
�
; ð30Þ

FIG. 1. The function hðϕðuÞÞ, Eq. (25). Left: k ¼ 1, a ¼ 0.7, b ¼ 0.5, 0.6, 0.7 (upside down). Right: k ¼ 1, a ¼ 0.3, the gray “floor”
indicates areas where hðϕÞ < 0. At other values of a the picture is qualitatively similar: h < 0 near the throat (u ¼ 0) and remains
negative in all space at sufficiently large b but changes its sign and thus exhibits a trapped ghost behavior at smaller b.
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where, to get an explicit function of F , one should
substitute y ¼ yðF Þ as a solution to the transcendental
equation y2−2aðyþ 2kÞ2þ2a ¼ 2q2=F .

A feature of interest is that LðF Þ ¼ 0 in the case
a ¼ 1=2, which means that the regular metric (20) is
obtained with only a scalar source, without NED. In fact,
it becomes possible because in this case we have Gt

t ¼ Gθ
θ

for the metric (20).
In the general case, the asymptotic behavior of LðF Þ at

large juj is

LðF Þ ≈ 4ð2a − 1Þb2k
5juj5 as u → �∞; ð31Þ

A more general picture is illustrated in Fig. 2.
The last quantity to be determined is the potential VðϕÞ,

which can be found, for example, from the radial compo-
nent (16) of the Einstein equations,

VðϕÞ ¼ −Gu
u − AðuÞhðϕÞϕ02 −

1

2
LðF Þ; ð32Þ

where we must substitute Gu
u for the metric (20), AðuÞ from

the same metric, h, ϕ and LðF Þ as determined above. The
calculation gives

VðϕÞ ¼ b2½−2ða2 þ a − 2Þk2 − ða − 5Þkyþ 3y2� þ 2ða2 − 1Þk2y2 − b4

y4−að2kþ yÞ2þa −
1

2
LðF Þ; ð33Þ

where LðF Þ is given by (30). In the exceptional case a ¼ 1=2 where the regularized metric (20) is sourced by the scalar
field ϕ alone, its potential has the form

VðϕÞja¼1=2 ¼
−3k2yþ b2ð5k2 þ 9kyþ 6y2Þ − 2b4

2y7=2ð2kþ yÞ5=2 ; ð34Þ

where the substitution y ¼ b= cosϕ leads to an explicit expression in terms of ϕ. A more general qualitative behavior of
VðϕÞ is shown in Fig. 3. At large juj we have VðϕÞ ∼ 1=u4.

FIG. 2. The function LðF ðuÞÞ at k ¼ 1, b ¼ 0.1. Its behavior is
similar at other values of b: it is regular and smooth, it is positive
at a > 1=2, zero at a ¼ 1=2 and negative at a < 1=2.

FIG. 3. The potential VðϕðuÞÞ for the scalar field (24), (25), with k ¼ 1, a ¼ 0.5 (exceptional case, left), and k ¼ 1, a ¼ 0.2 (generic
case, right). The gray bottom shows areas where V < 0, which exist at comparatively small values of b. It can be observed that behavior
of VðϕÞ is qualitatively the same in the exceptional and generic cases.
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IV. REGULARIZED DILATONIC BLACK HOLE

Dilatonic black holes are space-times obtained as special
solutions to the Einstein equations with a material source
representing a massless scalar field interacting with an
electromagnetic field as described by the action

Sdil ¼
1

2

Z ffiffiffiffiffiffi
−g

p
d4x½2gμνΦ;μΦ;ν − e2λΦFμνFμν�; ð35Þ

where λ is a coupling constant. The special solution to
be considered can be written with the metric (2) such
that [39–41]

AðxÞ ¼
�
1 −

2k
x

��
1þ p

x

�
−2=ð1þλ2Þ

;

r2ðxÞ ¼ x2
�
1þ p

x

�
2=ð1þλ2Þ

; ð36Þ

with the scalar (Φ) and electric (E⃗) fields given by

Φ ¼ −
λ

1þ λ2
ln

�
1þ p

x

�
;

2E⃗2 ¼ −FμνFμν ¼ Q2

r4ðxÞ e
−4λΦ; ð37Þ

where k > 0 and Q (the electric charge) are integration
constants, and p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þQ2ð1þ λ2Þ

p
− k > 0.

Let us focus on the case λ ¼ 1, related to string theory
[40,41]. The metric takes the simple form

ds2 ¼ 1 − 2k=x
1þ p=x

dt2 −
1þ p=x
1 − 2k=x

dx2 − xðxþ pÞdΩ2: ð38Þ

This space-time has the Schwarzschild mass m ¼
kþ p=2 ¼ Q2=p, a horizon at x ¼ 2k, and a singularity
at x ¼ 0. The global causal structure is the same as that of
the Schwarzschild space-time.
As before, let us regularize this space-time by replacing

dx ↦ du and x ↦
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
, b > 0:

ds2 ¼ 1 − 2k=x
1þ p=x

dt2 −
1þ p=x
1 − 2k=x

du2 − xðxþ pÞdΩ2;

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
: ð39Þ

Evidently, the range of u is u ∈ R, the metric (39) is
asymptotically flat at u → �∞ and describes

(i) if b < 2k, a regular black hole with two horizons at
u ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 − b2

p
and a black bounce at u ¼ 0;

(ii) if b ¼ 2k, a regular extremal black hole with a single
extremal horizon (a black throat [16]) at u ¼ 0;

(iii) if b > 2k, a symmetric traversable wormhole with a
throat at u ¼ 0; the throat radius is rth ¼ min rðuÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðpþ bÞp

.
The metric (39) is not a solution of GR with matter

specified by (35) but should be a solution corresponding to
(5). Let us determine its particular form. As in the previous
section, we can begin with the scalar ϕ, and quite similarly
to Eqs. (22)–(25), we now have

rðuÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþpÞ

p
;

hðϕÞϕ02 ¼−
r00

r
¼−

ð4b2−p2Þx2þ6b2pxþ3b2p2

4x4ðxþpÞ2 ; ð40Þ

(recall that x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
, and the prime means d=du).

Furthermore, using the parametrization freedom of ϕ, we
put again

ϕðuÞ ¼ arctanðu=bÞ; u ¼ b tanϕ; ð41Þ

⇒ hðϕÞ ¼ −
ð4b2 − p2Þx2 þ 6b2pxþ 3b2p2

4b2ðxþ pÞ2 ; ð42Þ

FIG. 4. The function hðϕðuÞÞ, Eq. (42), with p ¼ 1, b ¼ 0.3,
0.4, 0.5, 0.6 (upside down). At sufficiently small values of b at
given p, the scalar ϕ has a trapped-ghost nature.

FIG. 5. The NED Lagrangian function LðF ðuÞÞ, Eq. (45), at
b ¼ 0.3, 0.5, 0.7 (upside down). At other values of the parameters
the behavior of LðF ðuÞÞ is qualitatively the same.
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where, according to (41), we should substitute x¼b=cosϕ.
As u → 0 and u → �∞, hðϕÞ behaves as follows:

hðϕÞju→0 → −
2bþ p
2ðbþ pÞ ;

hðϕÞju→∞ →
p2 − 4b2

4b2
: ð43Þ

At u ¼ 0 we have h < 0, corresponding to a phantom ϕ
field. At large u, it turns out that the ϕ field is canonical
(h > 0) at b < 2p and phantom at larger values of b. Thus
at sufficiently small values of the regularizing parameter b,
we again meet a trapped ghost scalar as a source of the
geometry, see Fig. 4.
Next, the difference of Eqs. (15) and (17) allows for

finding LðF Þ:

dL
dx

¼ 1

F
dF
dx

ðGt
t −Gθ

θÞ ¼
2ðpþ 2xÞ
x5ðpþ xÞ4 ðb

2½kðp2 þ 2pxþ 3x2Þ þ px2� þ pð2kþ pÞx3Þ; ð44Þ

LðF Þ ¼ 2

p5
½b2ðkþ 2pÞ − 2p2ð2kþ pÞ� ln x

pþ x

þ 1

6p5x4ðpþ xÞ3 f−4p
3x3ð2kþ pÞð3pþ 2xÞðp2 þ 3pxþ 3x2Þ

þ b2p½−3kp6 − 9kp5x − 3p4ð5kþ 2pÞx2 þ ðkþ 2pÞð3p3x3 þ 22p2x4 þ 30px5 þ 12x6Þ�g; ð45Þ
where, to really obtain L as a function of F , one should substitute x as a solution to the quartic equation
x2ðxþ pÞ2 ¼ 2q2=F . Thus the expression of LðF Þ is quite complicated. Still it is clear that it is a regular function,
and we illustrate its behavior in terms of x for some examples of the parameter values in Fig. 5. Note that at large xwe have

LðF Þ ≈ −
pð2kþ pÞ

x4
≈ −

2Q2

r4
¼ −

Q2

q2
F : ð46Þ

it exhibits an anti-Maxwell asymptotic behavior. Recall thatQ is the electric charge in the dilatonic black hole (38), (37) with
λ ¼ 1, which has nothing to do with the magnetic charge q used in the NED model that supports the regularized solution.
The scalar field potential VðϕÞ is again obtained according to (32) and reads

VðϕÞ ¼ 1

p5
½2p2ð2kþ pÞ − b2ðkþ 2pÞ� ln

�
x

pþ x

�

þ 1

12p5x4ðpþ xÞ3 f−21b
2kp7 þ 3xb2p6ð6p − 13kÞ − 3x2½b2p5ð3k − 16pÞ − 4kp7�

þ 3x3½b2p4ð6p − kÞ þ 4p6ð3kþ pÞ� þ x4½44p5ð2kþ pÞ − 22b2p3ðkþ 2pÞ�
þ x5½60p4ð2kþ pÞ − 30b2p2ðkþ 2pÞ� þ x6½24p3ð2kþ pÞ − 12b2pðkþ 2pÞ�g; ð47Þ

FIG. 6. The potential VðϕðuÞÞ, Eq. (47), for the scalar field (41), (42) with k ¼ 1, p ¼ 1, b ¼ 0.3, 0.4, 0.5, 0.6 (left, upside down on
tops of the curves), and k ¼ 1, b ¼ 0.5, p ¼ 0.5, 1, 2, 3 (upside down, right). A deep well is observed near u ¼ 0 at small values of b,
whereas the p dependence is smooth and only affects the magnitude of V.
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where, as before, x ¼ b= cosϕ. At large x we have
x ≈ juj ≈ rðuÞ, and VðϕÞ behaves as

VðϕÞ ≈ 4b2 þ 4kpþ p2

u4
: ð48Þ

The behavior of V in the whole space is illustrated
in Fig. 6.

V. CONCLUDING REMARKS

In the previous studies of spherically symmetric black-
bounce space-times, the SV regularization trick was applied
to the spherical radius r in the form r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
, even

though some general reasoning used an arbitrary function
rðuÞ [18,50] [or ΣðrÞ in their notation]. Consequently, the
expression r00=r ¼ b2=r4, determining the sign of hðϕÞ [see
(14) and (18)], is everywhere positive, making hðϕÞ < 0 in
the whole space, and a scalar field ϕ, able to support the
corresponding regular metric, is inevitably phantom. Unlike
that, in our examples (19) and (38) it is more reasonable to
make the corresponding replacement not in r but in a
parameter whose zero value leads to a singularity. As a
result, r00=r is, in general, not everywhere nonnegative, and
the field ϕ supporting the model is then necessarily of
trapped-ghost nature, which is a new feature of this kind
of model.
It is not surprising that a general static, spherically

symmetric metric (2), containing two arbitrary functions
AðxÞ and rðxÞ can be supported by a matter source with also
two arbitrary functions, VðϕÞ and LðF Þ, but the regulari-
zation is here slightly complicated by the necessity of
trapped-ghost fields.
As to the NED source of the same models, it cannot

affect the NEC violation related to r00=r > 0 due to the
equality Tt

t ¼ Tx
x, see (8) and (12). If this equality holds for

a full SET, a regular minimum of rðxÞ is impossible,
therefore static, spherically symmetric wormholes with a
purely NED source cannot exist: there can be either
magnetic black holes or solitons with a regular center or
dynamic wormholes existing in a finite period of time, see,
e.g., [51] and references therein.
By construction, the regularized configurations consid-

ered here are Z2 symmetric with respect to the minimum-r

sphere u ¼ 0.4 Therefore, black holes with a single horizon,
like the Schwarzschild one or the dilatonic one given by (36),
turn into regular black holes with two horizons (at least for
small values of the regularization parameter b); black holes
with two horizons like theReissner-Nordströmones turn into
those with four horizons, etc. Thus the regularization sub-
stantially complicates the global causal structure of space-
times, as demonstrated, in particular, by Carter-Penrose
diagrams for three- and four-horizon black holes presented
in [16] and occupying thewhole plane plus a countable set of
overlappings. It is also clear that thus regularized, black hole
metrics cannot have any kind of scalar field as their only
source since it would violate the global structure theorem
[52] from which it follows that an asymptotically flat static,
spherically symmetric configuration in GR with a scalar
source cannot contain more than one horizon. Unlike that,
regularization of a metric with a naked singularity leads to a
wormhole whose source can be a scalar field alone, and such
an example has been really obtained herewith themetric (19)
in the special case a ¼ 1=2.
A problem of interest is the stability of regularized space-

times, and it is important to mention that the stability
properties of a given geometry can be different, depending
on the dynamics of the sources of this geometry. For
example, the simplest Ellis wormhole [47,53] can be stable
or unstable depending on the nature of its source—a
phantom scalar, a kind of perfect fluid or a k-essence field
[54–56]. We can also recall that Fisher’s solution (19) was
found to be unstable due to its behavior near its naked
singularity [57], and it can be a subject of a further study to
find out how this result may change if the singularity is
replaced by a wormhole throat and there is a trapped-ghost
scalar field as a source.
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