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We construct analytical solutions describing black holes and black strings in the Einstein SUðNÞ-
nonlinear sigma model in (3þ 1) dimensions. This construction is carried out using the maximal
embedding ansatz of SUð2Þ together with the Euler parametrization of the SUðNÞ group, in such a way that
the nonlinear sigma model equations are automatically satisfied for arbitrary values of the flavor number N
while the Einstein equations can be solved analytically. In particular, we construct black holes with
spherical and flat horizons as well as black strings that present the geometry of a three-dimensional charged
Bañados-Teitelboim-Zanelli black hole on the transverse section of the string. These configurations are not
trivial embeddings of SUð2Þ into SUðNÞ, which allow us to explicitly show the role that the flavor number
plays on the geometry and thermodynamics of the black holes and black strings. Finally, we perform a
thermal comparison between these configurations.
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I. INTRODUCTION

The nonlinear sigma model (NLSM) is one of the most
important effective field theories, both from the theoretical
point of view as well as phenomenologically, whose appli-
cations range fromquantum field theory to statisticalmechan-
ics and string theory [1]. One of the main applications of the
NLSM is the description of the low-energy dynamics of pions
[2], which is performed considering as internal symmetry the
SUð2Þ Lie group, that is, the two flavors case.
Now, although the predictions provided by the model are

in good agreement with the experimental results, obtaining
such predictions is not a simple task since the field
equations that emerge from the NLSM are in general very
complicated. In fact, these are a set of ðN2 − 1Þ coupled
nonlinear differential equations—being N the flavor num-
ber encoded in the SUðNÞ group—which explains that
most of the known solutions have been constructed numeri-
cally. Some relevant results in this approach are found in
Refs. [3–6]. Of course, when the theory is coupled to
general relativity1 or the Maxwell theory to describe more
complex physical objects and processes, the field equations
become evenmore intricate. However, inRefs. [8,9], suitable
ansätze have been introduced that go beyond spherical
symmetry (collectively called generalized hedgehog ansatz),

allowing to find a good number of exact solutions not only in
the NLSM, but also in the Skyrme model, the generalized
Skyrme model and the Yang-Mills-Higgs theory. These new
set of solutions describe boson stars [10], black holes
[9,11,12],2 black strings [14], gravitating solitons [15,16],
topological solitons at finite volume [17], and even crystal-
line structures of topological solitons [18,19] (see also
[20–25] and references therein).
Although it is quite remarkable that such equations can

be solved analytically, it is important to note that most of
these solutions have been found in the two flavors case,
where three degrees of freedom are present. Building
solutions with N > 2 is a more complicated task, as can
be seen in Refs. [16,26,27]. The main goal of this work is to
construct analytical solutions of the Einstein-NLSM theory
for arbitrary values of N. In particular, we will construct
solutions that describe black holes and black strings by
combining the generalized hedgehog ansatz with the
Euler angle parametrization through the maximal embed-
ding of SUð2Þ. This maximal embedding, introduced in
Refs. [28–30], allows us to construct in a direct way, genuine
SUðNÞ fields that are not trivial embeddings of SUð2Þ into
SUðNÞ. The power of this formalism can be seen in
Refs. [31–34], where nuclear pasta states in the SUðNÞ-
Skyrme model and black holes in the Einstein SUðNÞ-Yang-
Mills theory have been constructed. We will see that the
pionic black objects constructed here possess a nontrivial
thermodynamics and intriguing geometrical properties.
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interesting analytic solutions can be constructed; see [7].

2See [13] for the analysis of the lensing produced by these
Skyrme black holes.
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In thisway,wewill generalize to theSUðNÞ case the solutions
constructed in Refs. [9,11,14] for the NLSM, explicitly
showing the role that the flavor number plays both in the
thermodynamics and in the geometry of these configurations.
In particular, the black string solution in Ref. [14], and its

generalization to the SUðNÞ group constructed here, is of
great interest. As it is well known, black hole solutions in
general relativity in four dimensions have very well defined
properties including restrictions of the topology of the
horizons. But, in higher dimensions, extended objects as
black string and p-branes arise naturally and exhibit
properties that differ from those of the black holes [35–
41]. Between these novel properties, it was demonstrated
that these configurations present a long wavelength insta-
bility, producing in its final state a naked singularity [42–
45] (see also [46,47]), leading to an explicit violation of
cosmic censorship.
However, the presence of additional fields and/or a

cosmological constant, may allows to construct solutions
with a variety of topologies of the event horizon beyond
spherical symmetry (see, for instance, [48–52]) even in four
dimensions. This is the case of the black string presented
here. Interestingly, the presence of additional fields living
on the extended directions of the string has shown to be
very useful to stabilize this type of solutions [53]. In the
present work we also discuss some relevant issues about
the stability of our solutions focusing on the role played by
the parameter N.
The paper is organized as follows: In Sec. II we give a

brief review of the Einstein-NLSM theory and present our
general ansatz for the SUðNÞ matter field. In Sec. III we
construct analytical solutions describing black holes and
black strings and discuss its main physical properties. In
Sec. IV we compare the solutions through a thermal
analysis. In the last section we draw some conclusions.

II. PRELIMINARIES

A. The Einstein SUðNÞ-nonlinear sigma model
and its field equations

The Einstein SUðNÞ-NLSM in (3þ 1) dimensions is
described by the action

I½g; U� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

þ K
4
Tr½LμLμ�

�
; ð1Þ

where R is the Ricci scalar and Lμ are the Maurer-Cartan
form components

Lμ ¼ U−1
∂μU ¼ Li

μti; ð2Þ

for UðxÞ ∈ SUðNÞ, being N the flavor number and ti the
generators of the SUðNÞ Lie group, with i¼ 1;…;ðN2−1Þ.
Here κ is the gravitational constant and K is a positive
coupling fixed by experimental data. In our convention

c ¼ ℏ ¼ 1, Greek indices run over the four dimensional
space-time with mostly plus signature,3 while Latin indices
are reserved for those of the internal space.
The field equations of the model, obtained varying the

action in Eq. (1) with respect to the fundamental fields U
and gμν, are

∇μLμ ¼ 0; ð3Þ

Gμν ¼ κTμν; ð4Þ

whereGμν is the Einstein tensor,∇μ denotes the Levi-Civita
covariant derivative, and Tμν is the energy-momentum
tensor of the NLSM, given by

Tμν ¼ −
K
2
Tr
�
LμLν −

1

2
gμνLαLα

�
: ð5Þ

Note that in Eq. (3) are ðN2 − 1Þ nonlinear coupled second
order differential equations.

B. General ansatz for the matter field

The main goal of this paper is to construct analytical
solutions with internal symmetry group genuinely SUðNÞ,
that is, configurations with UðxÞ in a subgroup of SUðNÞ
that is a nontrivial embedding of SUð2Þ into SUðNÞ. In
order to do that, we will use the so-called maximal
embedding [28–30], which gives rise to an irreducible
representation of SUð2Þ of spin j ¼ ðN − 1Þ=2.
For the matter field U we will use the Euler angle

representation, that is

U ¼ eF1ðxμÞ·T3eF2ðxμÞ·T2eF3ðxμÞ·T3 ; ð6Þ

where fT1; T2; T3g are three matrices of a given repre-
sentation of the Lie algebra suðNÞ, which will be chosen in
order to satisfy the following relations

½Tj; Tk� ¼ ϵjkmTm; TrðTjTkÞ ¼ −
NðN2 − 1Þ

12
δjk:

The above matrices Ti define a three dimensional sub-
algebra of suðNÞ, and they are given explicitly as

T1 ¼ −
i
2

XN
j¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj − 1ÞðN − jþ 1Þ

p
ðEj−1;j þ Ej;j−1Þ; ð7Þ

3In this paper, we follow the standard convention that the
Riemann curvature tensor, the Ricci tensor, and the Ricci scalar
are given by

Rα
βμν ¼ Γα

βν;μ − Γα
βμ;ν þ Γα

ρμΓρ
βν − Γα

ρνΓρ
βμ;

Rμν ¼ Rα
μαν; R ¼ gμνRμν:

HENRÍQUEZ-BÁEZ, LAGOS, and VERA PHYS. REV. D 106, 064027 (2022)

064027-2



T2 ¼
1

2

XN
j¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj − 1ÞðN − jþ 1Þ

p
ðEj−1;j þ Ej;j−1Þ; ð8Þ

T3 ¼ i
XN
j¼1

�
N þ 1

2
− j

�
Ej;j; ð9Þ

with

ðEi;jÞmn ¼ δimδjn;

being δij the Kronecker delta.
4 The complete mathematical

formulation of the above construction can be found in
Refs. [28–30] (see also [31–34] for recent applications in
physics).
It is worth to emphasize that the above generators form

an irreducible representation of the SUð2Þ group. In fact,
one can note that

ðT⃗Þ2 ¼ ρðNÞ1; ρðNÞ ¼ −
N2 − 1

4
; ð10Þ

with 1 the N × N identity matrix. Here the flavor number
appears explicitly and, therefore, the solutions that we will
construct, using the above ansatz, are nontrivial embed-
dings of SUð2Þ into SUðNÞ.5 In other words, here we will
consider ansatz (for all N) constructed from just three
matrices [see Eq. (6)], but which cannot be reduced to
simply elements of SUð2Þ times identity matrices. This
assumption is fundamental, because it leads to a system of
equations simple enough to be solved analytically, but at
the same time sufficiently rich, such that it is possible to
explicitly see the role that N plays in the physics of these
configurations.
On the other hand, in principle the functions Fi in Eq. (6)

can depend on all the coordinates, but they will be chosen
appropriately in order to solve Eqs. (3) and (4) analytically.
In particular, Eq. (3) will be identically satisfied as we will
see below. The ansatz used in this work for the U field only
depends on two spatial coordinates, namely θ and ϕ, whose
ranges are

0 ≤ θ < π; 0 ≤ ϕ < 2π: ð11Þ

A linear dependence on the angular coordinates of the
functions Fi in Eq. (6) is one of the key points that allows
obtaining analytical solutions of the Einstein SUðNÞ-
NLSM system for arbitrary values of N.
Finally, for what follows, it is useful to define the

following positive quantity

aN ¼ NðN2 − 1Þ
6

; ð12Þ

which will appear repeatedly in both, the black hole and
black string solutions.

III. ANALYTIC BLACK HOLES AND BLACK
STRINGS

In this section we will present black hole and black string
configurations that are analytical solutions of the Einstein
SUðNÞ-NLSM for arbitrary values of N. As starting point
we will use the ansatz in Eq. (6) for the matter field.

A. Spherical black hole

Let us consider a spherically symmetric space-time
characterized by the metric

ds2¼−fðrÞdt2þ 1

fðrÞdr
2þ r2dθ2þ r2 sin2 θdϕ2; ð13Þ

together with a matter field U in Eq. (6) with the following
particular form for the Fi functions

F1ðxμÞ¼−pϕ; F2ðxμÞ¼ 2qθ; F3ðxμÞ¼pϕ; ð14Þ

where p and q are real constants.
One can check that, replacing the ansatz in Eqs. (6), (13),

and (14), the NLSM field equations in Eq. (3) are satisfied,
while the Einstein equations can be solved analytically,
obtaining

fðrÞ ¼ 1 − KκaN −
2m
r

−
Λ
3
r2: ð15Þ

Here m is an integration constant (related to the mass) and
aN has been defined in Eq. (12). In this case (namely, for
the solution with spherical symmetry in our family of
solutions), the Einstein equations also lead to the constraint
p ¼ q ¼ 1 in Eq. (14), therefore, this configuration does
not have further parameters on top of the mass that can be
considered as hair. This is different from the case of the flat
black hole and the black string, as we will see in the next
subsections. Clearly, the above configuration represents a
spherically symmetric black hole supported by pionic
matter, and it is the generalization to the SUðNÞ case of
the black hole found in Refs. [9] (without the Skyrme
term) and [54]. Also, the above solution is asymptotically
the anti–de Sitter version of the Barriola–Vilenkin

4Note that the Ti matrices are anti-Hermitian. But, one can
easily recover an Hermitian set by multiplying the matrices by i.
Of course, in order to obtain the same solutions presented below
we need to multiply the Fi function also by i.

5This is not the case for any embedding in SUðNÞ. For
instance, in the SUð3Þ case, one may take one half of the first
three Gell-Mann matrices as generators of SUð2Þ, which form a
spin 1=2 representation of SUð2Þ, but this is not irreducible
because its three 3 × 3matrices have zeros everywhere except for
their 2 × 2 first blocks.
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space-time [55], and it generalizes the Schwarzschild Anti-
de Sitter space-time, which is recovered by setting K ¼ 0.
As with the black hole in Refs. [9,54], the generali-

zation to SUðNÞ also has an angular defect, and it
depends directly on the value of N, which can be seen
in Eq. (15). As it is well known, the presence of an

angular defect affects the calculation of the mass and the
thermodynamic quantities of the system, therefore, the
extended thermodynamic formalism must be applied
(see next section).
In these coordinates,6 the event horizon of the black hole

is localized at

r̃þ ¼ −Λþ KκaNΛ − ð3mΛ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ3ððKκaN − 1Þ3 þ 9m2ΛÞ

p
Þ2=3

Λð3mΛ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ3ððKκaN − 1Þ3 þ 9m2ΛÞ

p
Þ1=3 ; ð16Þ

where we can see that, to have a real square root in the
previous expression, the integration constant m must
satisfies the following relation,

m ≥
ðKκaN − 1Þ3=2

3
ffiffiffiffiffiffiffi
−Λ

p :

The above relation determines a minimum radius of the
event horizon, namely

r̃min ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KκaN − 1

p ffiffiffiffiffiffiffi
−Λ

p : ð17Þ

B. Flat black hole

A flat black hole can be constructed considering a
static space-time with a flat base manifold given by the
metric

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dθ2 þ c20r

2dϕ2; ð18Þ

with c0 a constant to be fixed. For the matter field in Eq. (6)
we consider the following ansatz for the Fi functions

F1ðxμÞ ¼ 0; F2ðxμÞ ¼ qθ; F3ðxμÞ ¼ pϕ: ð19Þ
Putting the ansatz in Eqs. (6), (18), and (19), into Eqs. (3)
and (4), the complete set of field equations of the Einstein
SUðNÞ-NLSM are solved by

fðrÞ ¼ −
q2KκaN

4
−
m
r
−
Λ
3
r2; ð20Þ

with the constraint c20 ¼ p2

q2, and being m in Eq. (20) an

integration constant. This solution represents a hairy black
hole (with hair parameters p and q) with flat horizon, which
is a generalization to the SUðNÞ case of the black hole found
in Ref. [11]. The hair parameter is a discrete parameter [due
to the SUðNÞ structure of the matter field in Eq. (6)], which
has neither topological nor Noether charge associated with
it, and therefore represents a genuine hair.
The event horizon of the above solution is given by

rþ ¼ −
−q2KκaNΛþ ð12mΛ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ3ððq2KκaNÞ3 þ 144m2ΛÞ

p
Þ2=3

2Λð12mΛ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ3ððq2KκaNÞ3 þ 144m2ΛÞ

p
Þ1=3 ; ð21Þ

where m must satisfy the following condition,

m ≥
q3ðKκaNÞ3=2
12

ffiffiffiffiffiffiffi
−Λ

p ; ð22Þ

in order to have a real value of the square root, and therefore
a well defined event horizon. The above constraint reveals a
minimum value of the event horizon, which is given by

rmin ¼
q

ffiffiffiffiffiffiffiffiffiffiffiffi
KκaN

p ffiffiffiffiffiffiffi
−Λ

p : ð23Þ

C. Black string

In order to construct an extended object as solutions of
the (3þ 1) dimensional Einstein SUðNÞ-NLSM, we will
consider the following metric

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dθ2 þ L2dϕ2; ð24Þ

with L, for now, and arbitrary constant. On the other hand,
for the matter field is sufficient to take the same U field as
in the case of the flat black hole, that is

F1ðxμÞ ¼ 0; F2ðxμÞ ¼ qθ; F3ðxμÞ ¼ pϕ: ð25Þ
6Later, to compute the thermodynamics, we will introduce a

new coordinate system to remove the angular defect from
Eq. (15).
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Once again, with the ansatz in Eqs. (6), (24), and (25), the
complete set of Einstein SUðNÞ-NLSM equations can be
solved for the f function, obtaining

fðrÞ ¼ −m −
q2KκaN

4
log r −

Λ
2
r2; ð26Þ

with m an integration constant. Additionally, in this case, a
constraint emerges from the Einstein equations that fixes
the integration constant L

L2 ¼ p2Kκ

4ð−ΛÞ aN:

The above configuration corresponds to a black string with
a compactified direction of length L, which is fixed in terms
of the couplings of the theory. It is interesting to note that
the black hole in the transverse section of the string is, in
fact, analogous to the charged Bañados-Teitelboim-Zanelli
black hole [56], where the NLSM coupling constant K
plays the role of the electric charge, and modulated for a
factor that depends on the flavor number, namely aN.
We can see that, as more flavors are considered in the
theory, the compactification radius of the string becomes
larger. Note also that, in order to have a well defined
compactification radius, the cosmological constant Λ must
be negative.
The event horizon of this solution is localized at

Rþ ¼�q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KκaN
Λ

W
�

4

q2KκaNΛ
Exp

�
−8m

q2KκaNΛ

��s
; ð27Þ

where W denotes the Lambert-W function (also known as
the ProductLog function). Although there exist a good
number of solutions describing extended objects in theories
of gravity (see [57–61] for some recent results in this area),
building solutions of this kind in four dimensions in not an
easy task, and usually requires the introduction of exotic
matter fields [62–64]. Therefore, it is important to highlight
that the black string constructed here comes from the
coupling between two very relevant physical theories, both
from a theoretical and phenomenological point of view.

IV. THERMODYNAMICS AND STABILITY

In this section we will develop the thermodynamic
analysis of the spherical black hole, the flat black hole
and the black string solution constructed in the previous
section. Also we briefly discuss the stability of these
configurations and the role that the flavor number plays.

A. Mass, temperature and entropy

As can be seen from Eq. (15), the spherical black hole
possesses an angular defect. Therefore, the thermodynam-
ical quantities associated to this configuration must be

calculated using the extended thermodynamic formalism
[65,66]. Here we will follow the computations performed in
Ref. [67], where the authors have studied the thermody-
namics of the black hole in Ref. [9], which corresponds to
the SUð2Þ case of the spherical black hole constructed here,
but including the Skyrme term7 (see also [68]).
The first step in this formalism is to remove the

angular defect from the function f in Eq. (15), what can
be accomplished performing the following coordinate
transformations

r ¼ r̄ð1 − KκaNÞ12; t ¼ t̄ð1 − KκaNÞ−1
2: ð28Þ

By doing this change, the metric in Eqs. (13) and (15) takes
the form

ds2¼−Fdt̄2þ 1

F
dr̄2þð1−KκaNÞr̄2ðdθ2þ sin2 θdϕ2Þ;

ð29Þ

where

Fðr̄Þ ¼ 1 −
2m̄
r̄

−
Λ
3
r̄2;

and m̄ ¼ m=ð1 − KκaNÞ32. In the new coordinates, the event
horizon is localized at

r̄þ ¼ −
Λþ ð3m̄Λ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ3ð9m̄2Λ − 1Þ

p
Þ23

Λð3m̄Λ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ3ð9m̄2Λ − 1Þ

p
Þ13 : ð30Þ

Then, following Ref. [67], it is a straightforward calculation
-interpreting the cosmological constant as a bulk pressure
and using the standard counterterm method to obtain a
finite Euclidean action- to obtain the mass, the entropy and
the temperature of the spherical black hole solution in terms
of the radius of its event horizon in Eq. (30). We get

SsBH ¼ πð1 − KκaNÞr̄2þ; ð31Þ

TsBH ¼ 1

4πr̄þ
−
Λr̄þ
4π

; ð32Þ

MsBH ¼ð1−KκaNÞm̄¼ 1

6
ð1−KκaNÞð3−Λr̄2þÞr̄þ: ð33Þ

On the other hand, as has been showed in Refs. [11,14], the
thermodynamic quantities of the flat black hole and the
black string can be calculated directly using the standard
formulas

7In fact, one can compute the mass, temperature and entropy of
our spherical black hole simply rescaling, K → aNK, and doing,
λ → 0, in Ref. [67].
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T ¼ f0ðrþÞ
4π

; S ¼ A
4
; ð34Þ

(where A denotes the area of the event horizon) together
with the ADM mass,8 according to Ref. [37]. It follows
that, for the flat black hole solution we obtain

SfBH ¼ π2p r2þ
2q

; ð35Þ

TfBH ¼ −
KκaNq2

16πrþ
−
Λrþ
4π

; ð36Þ

MfBH ¼ pπ
4q

m ¼ −
pπrþ
48q

ð3KκaNq2 þ 4Λr2þÞ: ð37Þ

While for the black string solution we found

SBS ¼
π2p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
KκaN
Λ

r
Rþ; ð38Þ

TBS ¼ −
KκaNq2

16πRþ
−
ΛRþ
4π

; ð39Þ

MBS ¼
pπ
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
KκaN
Λ

r
m ¼ πR

8
m

¼ −
pπ
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
KκaN
Λ

r
ð2ΛR2þ þ KκaNq2 logRþÞ: ð40Þ

As expected, for the three analytic solutions, the first law of
black hole thermodynamics is satisfied. The flat black hole
and the black string solutions fulfill

δM ¼ TδS;

while for the spherical black hole we have

δM ¼ TδSþ VδP;

where the volume V and the pressure P are given
respectively by

V ¼ 4

3
πr̄3þð1 − KκaNÞ; P ¼ −

Λ
κ
:

B. Thermal comparison and the role of N

In order to show the behavior of the thermodynamical
quantities and perform a comparison between our solutions,
we will set the parameters and the coupling constants as
follows: Since the black string has a negative cosmological
constant, we set Λ ¼ −1. Also, to have well-defined
coordinate transformations in Eq. (28) we set K ¼ 1 and
κ ¼ 1=40 which allows us to consider a sufficient set
of N values, that is N ¼ 2;…; 6. Finally, for simplicity, we
set p ¼ q ¼ 1.
The black holes and black string constructed in Sec. III

have different physical properties in which the value of N
plays a very important role. For instance, the mass of our
solutions, according to the Eqs. (33), (37), and (40) depend
explicitly on N. These dependence is shown in Fig. 1,
where we have plotted the mass of the solutions as function
of their proper event horizon for several values of N.
We can see that the three configurations present different
features. First, for the spherical black hole we see that its
mass is a monotonically increasing and always positive
function of its event horizon. On the other hand, the flat
black hole has a lower bound for its event horizon, setting
the minimum radius with a non-negative mass that depends
on N, and it can be obtained explicitly from Eq. (37), being

rþ ≥
q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3KκaN
−Λ

r
¼ rþMin: ð41Þ
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FIG. 1. MassM for each solution as a function of their respective event horizon for different values of the flavor number. Left: For the
spherical black hole we always have a positive mass. For a fixed horizon radius the mass decreases with N. Center: For the flat black
hole, the dashed lines highlights the sectors where the mass has negative values, for rþ below the bound defined in Eq. (41). This
minimum radius rþMin allowing positive mass grows withN. The mass decreases asN increases. Right: For the black string,M is always

positive, diverges at the origin and grows quadratically at large Rþ. It has a minimum value at Rþ ¼ q
2

ffiffiffiffiffiffiffiffi
KκaN
−Λ

q
. For a fixed value of Rþ,

the mass of the black string increases as we increase N.

8The same results can be derived using the phase space
formalism or the counterterms methods; see [11,69,70].
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Here the mass also grows monotonically with the radius.
For the black string, the mass is positive for any horizon
radius, but, in contrast with the spherical black hole case,
the black string mass is no monotonic; as Rþ decreases the
mass increases, and we have a minimum value of the mass

located at Rþ ¼ q
2

ffiffiffiffiffiffiffiffi
KκaN
−Λ

q
. Past this critical value the mass

starts to grow as Rþ grows.
Regarding the N dependence, we can see two different

behaviors. For a fixed value of the event horizon, both
black hole masses decrease as we increase the value
of N. In contrast with what happens for the black hole
solutions, for a fixed value of horizon the mass of the black
string increases as we increase the flavor number of the
configuration.
In Fig. 2 we see the entropy of each configuration as a

function of their respective event horizon and their particular
N dependence (the entropy comparison between these
configurations will be given below). Remarkably, all three
configurations presents very different features regarding
the value of the flavor number. In fact, the entropy of the
spherical black hole behaves as r̄2þ, according to Eq. (31).
We see that for a fixed radius, the entropy decreases as we
increaseN. For the flat black hole, according to Eq. (35), we
get the same quadratic behavior for its entropy in terms of
rþ, but now S does not depend on N. For the black string

entropy, given in Eq. (38), the behavior in terms of Rþ is
linear and its dependence of N is opposite to that of the
spherical black hole, that is, for a given event horizon,
the entropy of the black string grows as we increase N.
The above suggests that, for the spherical black hole, the
thermally favored configurations are those with the lowest
number of flavors, while for the black string they are those
with the highest number of flavors. It is worth mentioning
that in Ref. [11] was shown that, in the SUð2Þ case, the flat
black hole is always thermodynamically favored with
respect to the corresponding black hole with vanishing
pionic field, now, as we can see, this fact remains unchanged
for arbitrary N.
The temperature of the solutions as a function of their

event horizon for different values of N are given in Fig. 3.
The spherical black hole temperature, according to Eq. (32),
is independent of the flavor number and has the same
behavior for all the Lie groups here considered. It is always
positive and has a minimum where Tðr̄min ¼ 1Þ ¼ 1=ð2πÞ.
The temperature for the flat black hole, according to

Eq. (36), is a monotonically increasing function of rþ. The
dashed lines represent the temperature for radius below the
bound defined in Eq. (41). We see that T goes to −∞ as
rþ → 0, but these values are not allowed due to the
restrictions given by the positivity of the mass. For r >
rþMin we have positive temperatures. For a fixed rþ we
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FIG. 2. Entropy S for each configuration as a function of their respective event horizon for different values of the flavor number. Left:
The spherical black hole entropy behaves as r̄2þ. For a fixed horizon radius S decreases as N grows. Center: The flat black hole entropy
behaves as r2þ and it is independent of the group dimension defined by N. Right: The entropy of the black string. Here, S ∼ Rþ, and for a
fixed radius S grows with the flavor number.
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FIG. 3. Temperature T as a function of their respective event horizon for different values of N. Left: the spherical black hole
temperature is independent of N, always positive and has a minimum where Tðr̄min ¼ 1Þ ¼ 1=ð2πÞ. Center: temperature for the flat
black hole. The dashed lines represent the temperature for radius below the bound defined in Eq. (41). We see that T goes to −∞ as
rþ → 0, but these values are not allowed due to the restrictions given by the positivity of the mass. For r > rþMin we have positive
temperatures. For a fixed rþ, T decreases as we increase N. Right: black string temperature. Here T goes to −∞ as Rþ → 0. At a certain
horizon radius value that depends on N, the temperature becomes positive. For a fixed Rþ, T decreases with the increase of N.
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have that T decreases as we increase N. Finally, for the
temperature of the black string, according to Eq. (39), we
have the same functional expression that in the flat black
hole case, but here there is no restriction for a minimum
radius, then, we have allowed black string solutions with
small enough horizon radius having negative temperature.
In fact, T goes to −∞ as Rþ → 0, then at a certain horizon
radius, depending on N, T becomes positive. Also, for a
fixed Rþ the temperature of the black string decreases with
the increase of N.
On the other hand, as it is well known, black strings in

general relativity suffer from the Gregory-Laflamme insta-
bility [42,43]. Although this instability has a perturbative
nature, it is also manifested in the comparison of the
entropies between the black hole and the black string.
When the entropies are compared as a function of their
masses, there is a critical mass below which the black hole
has higher entropy, and it is therefore thermally favored.
Above such critical mass the behavior is the inverse. Here,
to study the possible existence of a Gregory-Laflamme
transition we will take the latter path because the study of
the perturbative stability involves linearizing and decou-
pling a set of very complicated equations.9 In fact, using the
equations of the previous subsection, we can compare the
entropies as functions of the radius at fixed equal mass.
Explicitly, we will write the entropies of the spherical

and flat black holes, in Eqs. (31) and (35), in terms of the
event horizon of the black string, Rþ, by demanding equal
masses defined in Eqs. (33), (37), and (40), that is

MsBH ¼ MfBH ¼ MBS: ð42Þ

From the above condition we can solve r̄þ and rþ in terms
of the black string radius and then, from Eqs. (31) and (35),
have all the entropies as functions of Rþ. The analytical
expressions for the SðRþÞ obtained in this way are very
cumbersome, however the comparison of the entropies in
Fig. 4 will clear things out.
In Fig. 4 it is shown that the flat black hole solution has a

higher entropy than the black string and spherical black
hole solutions at any value of Rþ. Also, we can see the
existence of two transitions occurring between the spherical
black hole and the black string. For small values of Rþ we
get that the entropy of the black hole is greater than the
entropy of the black string, as we see in the inset. Between
these two critical points we have the opposite behavior and
the black string entropy is larger than the black hole
entropy. For large enough Rþ we have again another
transition between these two solutions, obtaining the same
behavior as for small radii. Finally, as N increases, the
interval defined by these two critical points becomes
smaller, as we see explicitly in the comparison with the

SUð3Þ case. Also, it is worthwhile to notice that for N > 2
we have the same behavior reported in Ref. [14] for the
entropies of the flat black hole and black string solutions.
Finally, we compute the free energy, F ¼ M − TS. For

the spherical black hole, the flat black hole and the black
string, the free energy given in terms of their event
horizons, is respectively given by

FsBH ¼ −
1

12
ðKκaN − 1Þðr̄2þΛþ 3Þr̄þ; ð43Þ

FfBH ¼ −
1

32

πprþ
q

�
KκaNq2 −

4

3
Λr2þ

�
; ð44Þ

FBS ¼ −
1

64
πp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
KκaN
Λ

r
ðKκaNq2ðlogRþ − 1Þ − 2ΛR2þÞ:

ð45Þ

In order to obtain the free energy in terms of the temper-
ature is sufficient to invert Eqs. (32), (36), and (39), take
the only positive root and substitute respectively into
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Spherical black hole
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FIG. 4. Comparison of the entropies of the spherical black hole,
the flat black hole and the black string, in terms of the black string
event horizon at equal mass. Up: The SUð2Þ case. The entropy of
the flat black hole is always larger. There are transitions between
the spherical black hole and the black string. Inset: for small
values of Rþ the entropy of the black hole is greater than the
entropy of the black string. During a finite Rþ interval the black
string has greater entropy than the spherical black hole. For large
enough Rþ a new transition occurs, getting the same behavior as
for small radii. Down: The SUð3Þ case. As we increase N the
interval where the transitions between the spherical black hole
and black string occurs becomes smaller.

9We hope to return to the study of the perturbative stability in a
future publication.
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Eqs. (43)–(45). The resulting analytical expressions of the
free energy as a function of the temperature are very
complicated, but they are not needed for our purposes.
Instead, in Fig. 5 we graph FðTÞ for different values of N.
First, in the spherical black hole case, for low but fixed
values of T, we see that the free energy decreases for
higher values of N. As we increase the temperature
transitions start to happen, and for high enough values
of T we get that the lower free energy is for the
configuration with N ¼ 2. In the flat black hole case,
the favored configuration is always the one with the higher
flavor number. The dashed lines in the plot represent the
sectors with nonpositive mass. Finally, in the black string
case, for low values of T, the configuration with N ¼ 2
has the lowest free energy. As we increase the temperature
transitions start to happen, and for high enough values of
the temperature we get that the free energy is lower for the
configuration with the highest N.

C. A comment on classical stability

As we have mentioned before, the study of the classical
stability of the solutions constructed above is a very
difficult problem. For gravitating solutions coupled to
matter fields (and, in particular, with non-Abelian fields)
one must deal with a big set of coupled differential
equations. In our case, an extra complexity is that each
solution has different symmetries and, therefore, the
perturbation to be considered must be (in principle)

different for each case. For example, in the case of the
black string, the “most dangerous” perturbation (that is, the
perturbation that respects the symmetries of the system and
can generate unstable modes) must include tensor, vector
and scalar modes, in addition to the corresponding pertur-
bations to the three degrees of freedom of the NLSMmatter
field, which makes the system very difficult to decouple.10

Even more, the generalization to the SUðNÞ case add
different factors to deal with in the linearized equations for
each group. Something similar happens with the black hole
solutions.
However, although a general study of the classical

stability requires a lot of work,11 we can mention for
now that there are two relatively simple paths that provide
signals about the behavior of these solutions under small
perturbations.
The first path is computing the heat capacity. It is known

that, for extended objets, the computation of the heat
capacity

C ¼ T
�
∂S
∂T

�
;
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FIG. 5. Free energy F as a function of T for different values of N. Up-Left: the spherical black hole case. For small and fixed values of
T, F is lower as we increase N. By increasing the temperature transitions starts to happen, and for high enough values of T the lower free
energy is for the case with N ¼ 2. Up-Right: the flat black hole case. The favored configuration is always the one with the higher flavor
number. The dashed lines represent the sectors with nonpositive mass. Down: the black string case. For small and fixed values of T the
configuration with N ¼ 2 has less free energy. As we increase the temperature transitions starts to happen, and for high enough values of
T we get that the free energy is lower as we increase N.

10In fact, the study of the stability of extended objects without
matter fields is itself a complex problem, as can be seen in the
pioneer work of Gregory and Laflamme [42].

11A more detailed study of the classical stability of our
solutions will appear in a future publication.
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is directly related to the classical stability. In fact, the
correlated stability conjecture claims that gravitational
systems with translational symmetry and infinite
extent exhibit a Gregory-Laflamme instability if and only
if they have a local thermodynamic instability [71,72].
Then, we need to study the sign of the heat capacity of the
solutions.
For the spherical black hole, the flat black hole and the

black string we found

CsBH ¼ πð1−KκaNÞ
2r̄3þΛ2

ð1−Λr̄2þÞ
�
1− r̄2þΛ

þ r̄þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ r̄2þΛÞ2=r̄2þ

q �
2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ r̄2þΛÞ2=r̄2þ

q
; ð46Þ

CfBH ¼ π2pr2þ
q

ð4Λr2þ þ q2KκaNÞ
ð4Λr2þ − q2KκaNÞ

; ð47Þ

CBS ¼
π2pRþ

ffiffiffiffiffiffiffiffiffiffiffiffi
KκaN

p

4
ffiffiffiffiffiffiffi
−Λ

p
�
4ΛR2þ þ q2KκaN
4ΛR2þ − q2KκaN

�
: ð48Þ

We can see that, in order to have a positive value of C, the
following constraints must be satisfied

r̄þ< 0; rþ >
q
2

ffiffiffiffiffiffiffiffiffiffiffiffi
KκaN

p ffiffiffiffiffiffiffi
−Λ

p ; Rþ>
q

ffiffiffiffiffiffiffiffiffiffiffiffi
KκaN

p

2
ffiffiffiffiffiffiffi
−Λ

p : ð49Þ

Combining the above constraints with the minimum radii
of the event horizon of the configurations in Eqs. (17), (23),
and (27), we can see the following: First, for the black
string solution the heat capacity takes positive and
negative values, which suggests a perturbative instability
where the horizon radius is small. This is in accordance
with the Gubser-Mitra conjecture, which postulates that a
thermal instability necessarily leads to a perturbative
instability, and also with the thermal analysis showed in
the previous subsection. Second, the spherical black hole
has always a negative heat capacity, as in the case on the
black hole without the coupling with pions. Finally, for
the flat black hole the heat capacity is always positive due
to the minimum radius of the horizon always satisfies the
requirement in Eq. (49). Note that this analysis is inde-
pendent on the value of N for the black hole solutions,
while for the black string the instability region increases
with the flavor number.
A second approach is to consider a particular type of

perturbations, namely radial perturbations, on the four
degrees of freedom of the solutions [3,73,74]; the function
f in the metric and the three pionic degrees of freedom of
the matter field Fi. In fact, one can check that considering
perturbations of the form

fðrÞ→ fðrÞþ ϵeiωtP0ðrÞ;
FiðrÞ→FiðrÞþ ϵeiωtPiðrÞ; i¼ 1;…;3; ϵ≪ 1;

the linearized field equations can be reduced to a single
Schrödinger equation for one of the components of the
perturbation (redefining appropriately such component), at
least in the case of the spherical black hole and the black
string solution. This opens the possibility of studying the
existence of unstable modes in these configurations, which
is part of a work in progress. For the flat black hole this
construction cannot be carried out in the same way, which
suggests the need to consider more general perturbations to
study its stability.
Summarizing, taking into account both the thermal

arguments and the partial perturbative results we can
conjecture the following: The black string and the spherical
black hole solutions possess unstable modes, and therefore
transitions between these configurations can occur. The
black string is expected to suffer from a Gregory-Laflamme
instability which can be seen when considering perturba-
tions with tensor, vector and scalar modes.12 On the other
hand, the previous arguments also suggest stability of the
flat black hole, although a more elaborate treatment is
necessary to guarantee this.

V. CONCLUSIONS

In this work we have constructed black holes and a
black string as analytical solutions of the Einstein SUðNÞ-
NLSM theory, generalizing the results in Refs. [9,11,14]
to the SUðNÞ symmetry group case. First, the spherical
black hole is characterized by an angular defect that
depends on the flavor number N, and it is asymptotically
the anti–de Sitter version of the Barriola-Vilenkin space-
time. The second solution, the black hole with flat
horizon, possess discrete hair parameters, and it is
asymptotically locally Anti-de Sitter. On the other hand,
the black string constructed here possess the geometry of
a charged Bañados-Teitelboim-Zanelli black hole in the
transverse section with the pions coupling fulfilling the
role of the electric charge. This solution exist in a space-
time with negative cosmological constant and its com-
pactification radius is fixed by the flavor number and the
couplings of the theory. We have shown that, for fixed
radius of the event horizon, the mass of the black holes
decrease with N, while for the black string the behavior
is the opposite. We have also seen that N plays a very
important role in the thermodynamics of these configu-
rations. Looking at the entropy, for the spherical black
hole, the thermally favored configurations are those with
the lowest number of flavors, while for the black string
they are those with the highest N. The flat black hole
entropy is independent of the flavor number. Also,
comparing the entropies at equal mass, one can see that
the flat black hole is the thermally favored configuration

12The study of the possible Gregory-Laflamme instability of
the black string solution under general perturbations is a work in
progress.
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between the three solutions, and that transitions between
the spherical black hole and the black string can occur.
From the computation of the free energy we have that for
the spherical black hole and black string, as we increase
the temperature, transitions starts to happen between
configurations with different values of N. It is important
to mention that the black hole solutions constructed here
can be generalized to solutions of the SUðNÞ Skyrme
model, which is a work in progress.
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