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In this paper we discuss the gravitational field of ultrarelativistic extended spinning objects. For this
purpose, we use a solution of the linearized gravitational equations obtained in the framewhere such an object
is translationally at rest, and boost this solution close to the speed of light. In order to obtain a regular limiting
metric for nonspinning matter, it is sufficient to keep the energy of the boosted body fixed. This process is
known as the Penrose limit.We demonstrate that in the presence of rotation, an additional rescaling is required
for the angular momentum density components in the directions orthogonal to the boost. As a result of the
Lorentz contraction, the thickness of the body in the directionof the boost shrinks. Thebody takes the formof a
pancake, and its gravitational field is localized in the null plane.We discuss light and particle scattering in this
gravitational field, and calculate the scattering parameters associatedwith the gravitationalmemory effect.We
also show that by taking the inverse of the Penrose transform, one can use the obtained scatteringmap to study
the gravitational lensing effect in the rest frame of a massive spinning object.
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I. INTRODUCTION

In this paper we discuss properties of the gravitational
field of ultrarelativistic spinning objects. For this purpose,
we first describe the field of a massive spinning object in
the frame where it is at rest. We do not assume that its
rotation is rigid, and allow the matter within the object to
have differential rotation as well. We use the weak field
approximation so that the corresponding gravitational field
can be found as a solution to the set of linear partial
differential equations in the flat background metric. This
material is well known, and can be found in many text-
books on General Relativity (see e.g., [1–4]).
In order to find the gravitational field of an ultra-

relativistic spinning compact object, one can proceed as
follows: First, one performs a boost transformation; that is,
one makes a Lorentz transformation to a moving inertial
reference frame. In the limit where the velocity parameter
tends to the speed of light, the obtained boosted metric
becomes singular. However, for a nonspinning body, this
limiting metric can be made regular if, in the process of
boosting, one does not keep fixed the mass of the object,
but its energy. This special procedure is known as a Penrose
limit. In a more general setup, this procedure was consid-
ered in detail by Penrose [5].
In the simplest case, when a boosted body is spherically

symmetric and its gravitational field is decribed by the
Schwarzschild metric, the obtained limitingmetric coincides
with theAichelburg-Sexlmetric [6]. This solution canbe also

obtained as a gravitational shock wave due to a massless
particle moving at the speed of light [7] (see also [8,9]).
There exists many publications which are devoted to the

generalization of these results for boosted Kerr and Kerr-
Newman black holes. In the first of these papers [10–12],
the simplest case was studied where the boost direction
coincides with the angular momentum of the black hole. In
addition, the rotation parameter was taken fixed in the
Penrose limit. As a result, the angular momentum of the
black hole J ¼ Ma vanished in this limit, and the resulting
metric described the gravitational field of massless particles
located at a “ring singularity” of radius a. Different
approaches and discussions of the boosted Kerr black
holes can be found in [13–17].
It should be emphasized that some controversy in the

results of different approaches to the above problem is partly
connected with the following general problem. There always
exists an ambiguity connected with possible rescaling of the
parameters of the original metric. Namely, when one con-
siders the limit of a family of solutions to Einstein equations
as some free parameter of these solutions approaches a
certain value, one can always make a parameter-dependent
coordinate transformation before taking this limit. As a
result, one can arrive at different limiting metrics. This
problem is discussed in detail in a nice paper [18].
In addition to the limiting boosted black hole metric,

solutions for extended one dimensional ultrarelativistic
objects have been constructed and studied. A solution
for an ultrarelativistic object which has finite length in the
direction of motion, i.e. a light beam or “pencil”, was
obtained by Bonnor [19]. To obtain this metric, instead of
solving the Einstein equations, one can boost the metric of a
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line object. However, in this process one should rescale its
length parameter as well in order to compensate for the
Lorentz contraction of the pencil. Let us note that a pencil is
the simplest version of an extended body, which is extended
in one direction and has vanishing size in the transverse
directions. This idealization greatly simplifies calculations.
The gravitational field of a spinning pencil of light was

obtained by Bonnor in 1970 [20], see also [21,22]. Higher-
dimensional solutions describing the gravitational field of
spinning ultrarelativistic objects and light beams were found
in [23,24]. In these papers such spinning ultrarelativistic
objects received the name “gyratons”, which is now often
used in the literature. Let us emphasize that in these type of
solutions, one imposes an additional assumption. Namely, it
is assumed that the angular momentum of the object is
directed along its velocity. Such a component of the angular
momentum is not transformed under the adopted boost, and
so no additional rescaling of themetric parameters is required
in the Penrose limit (see e.g., [4,25]).
In the present paper we generalize these results in two

ways. We study the Penrose limit of the metrics for
extended objects with differential rotation of its matter,
and we do not assume that this rotation occurs only in two-
planes orthogonal to the direction of motion. In this case,
the components of the angular-momentum density orthogo-
nal to the direction of motion do not vanish. We demon-
strate that during the process of taking the Penrose limit,
one needs to make an additional rescaling of the parameters
connected with these transverse components of the angular
momentum.
As a result of the Lorentz contraction, the boosted body

takes the form of a pancake, and the original information
about its matter density and its rotation becomes encoded in
the 2D surface characteristics of the squeezed pancake. The
gravitational field of such an object is also squeezed and
located within the 3D null plane, which we denote by Γ. To
find this field we solve the corresponding gravity equations,
and after taking the proper Penrose limit, we obtain the
gravitational field of such an ultrarelativistic object. This is
one of the results presented in this paper.
The second subject which is considered in this paper, is

scattering of null rays and particles in the obtained metric.
Null ray and particle worldlines are straight lines before and
after they meet the null plane Γ. We demonstrate that while
passing through this plane, two effects occur; the rays and
particles change their direction of motion, and there exists
an additional shift of the position of the outgoing worldline
just at themomentwhen it passes throughΓ. These effects are
manifestations of the well-known gravitational memory
effect. When we compare the distances between freely-
moving objects as well as their relative velocities before the
passage of a gravitationalwave burst versus after,we find that
there is a difference [26]. This effect, called the gravitational
memory effect, has beenwidely discussed both in application
to gravitational wave astronomy [27–30], and in the general

framework of gravitational field theory [31,32]. Thememory
effect exists not only for pure gravitational waves but also for
the gravitational field of ultrarelativistic objects and gyratons
[33]. In this paper, we demonstrate that for an ultrarelativistic
extended and spinning source, the change in position and
velocitiy of passing particles and null rays does not only
depend on the onmass and angular momentum of the source.
It also depends on thematter density and angular-momentum
distribution within the source. We also discuss the memory
effect for the case where the impact parameter of the
incoming ray is much larger than the transverse size of
the boosted body, which greatly simplifies our description.
Finally, we demonstrate that the obtained results for the

scattering of null rays by the gravitational field of an ultra-
relativistic spinning object can be used to study the scattering
of light by a massive spinning object in its own reference
frame. For this purpose, one can use the obtained results for
null rays propagating in the gravitational field of the ultra-
relativistic extended spinning object, and perform an inverse
Penrose transformation. This transformation consists of the
inverse boost transformation, which is accompanied by a
proper rescaling of the matter and angular momentum
densities. This observation can be used for studying the
gravitational lensing effect [34–40]. In particular, we dem-
onstrate that in the far-distance approximation, the positional
shift and angular deflection from the scattering coincide with
the results obtained for the scattering of light in Kerr
spacetime.
This paper is organized as follows. The gravitational

field of a massive spinning object in the linearized gravity
approximation is discussed in Secs. II and III. Boosting the
extended objects and the Penrose limit are considered in
Secs. IV–VI. Particle and light scattering, and the gravi-
tational memory effect are discussed in Sec. VII. In
Sec. VIII, we discuss how the obtained results for light
scattered by ultrarelativistic objects can be used to study
the gravitational lensing effect in the weak field of a
compact massive spinning object. In Sec. IX, we discuss
a large distance approximation for the scattered light.
Section X is devoted to discussion of the obtained results.
In Appendix A, we construct asymptotic expansions of
scattering angles and shift parameters for null rays with
large impact factor in the Kerr metric. This is done for both
equatorial and azimuthal rays. Appendix B collects useful
formulas and contains a derivation for the ray equation of
motion in the geometry studied in this paper.
In this paper we use sign conventions adopted in [1]. We

also use units in which G ¼ c ¼ 1. We restore Newton’s
coupling constant G in some final expressions.

II. GRAVITATIONAL FIELD OF MASSIVE
SPINNING OBJECTS IN LINEARIZED GRAVITY

Let us consider a flat spacetime, and write its metric in
the form
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ds20 ¼ ημνdXμdXν ¼ −dT2 þ dX2 þ dY2 þ dZ2: ð2:1Þ

We suppose that there is a stationary compact massive
object, and denote by Tμν the stress-energy tensor of its
matter distribution. We denote by ξ ¼ ∂T a timelike Killing
vector. Then for a stationary matter distribution, one has

LξT ¼ 0; ð2:2Þ

where Lξ is the Lie derivative along vector ξ.
In the presence of matter, the spacetime metric takes the

form

gμν ¼ ημν þ hμν; ð2:3Þ

where hμν is a perturbation of the metric induced by the
matter distribution. It is convenient to introduce new
variables h̄μν for the metric perturbations

h̄μν ¼ hμν −
1

2
ημνhλλ; ð2:4Þ

and impose the de Donder gauge fixing condition

h̄μν;ν ¼ 0: ð2:5Þ

Then the linearized Einstein equations take the form

□h̄μν ¼ −16πTμν: ð2:6Þ

These equations can also be rewritten as follows

□hμν ¼ −16πT̄μν; T̄μν ¼ Tμν −
1

2
ημνTλ

λ: ð2:7Þ

For the stationary distribution of matter, that is when
condition (2.2) is satisfied, the metric perturbation does not
depend on time and Eq. (2.6) reduces to the following
relation

△hμν ¼ −16πT̄μν: ð2:8Þ

Since the background metric η is flat, it therefore is
Poincare invariant, and has ten Killing vectors that allow
one to introduce the following conserved quantities

Pμ ¼
Z

T0μd3X;

Jμν ¼
Z

ðXμTν0 − XνTμ0Þd3X: ð2:9Þ

We choose our reference frame so that the system as a
whole is at rest, and so one has

Pi ¼
Z

T0id3X ¼ 0; i ¼ 1; 2; 3: ð2:10Þ

Then the total mass M of the system is

M ¼
Z

T00d3X: ð2:11Þ

We also choose the origin of the spatial coordinate to be at
the center-of-mass of the system, so that the following
condition is satisfied

Z
XkT00d3X ¼ 0: ð2:12Þ

Here and later we use small Latin letters i, j, k for spatial
indices which take values 1, 2, 3.
For this choice of the coordinates, one has

Jkl ¼ −Jlk ¼ 2

Z
XkTl0d3X: ð2:13Þ

This antisymmetric 3D tensor is related to the angular
momentum vector J⃗ of the system as follows:

Jk ¼
1

2
eklmJlm; ð2:14Þ

where eklm is a totally antisymmetric 3D Levi-Civita tensor.
Figure 1 shows an extended massive spinning object in

the rest frame. Let us denote by L the size of the compact
object. Then it is easy to show that at the distance r ≫ L,
the metric perturbation is of the form

h00 ≈
2M
r

; hik ≈
2M
r

δik; h0k ≈
2JklXl

r3
: ð2:15Þ

By a rigid spatial rotation, the antisymmetric matrix Jkl can
be transformed into the following canonical form

JJ

X 2z

3z

FIG. 1. Extended massive spinning object.
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Jkl ¼

0
B@

0 J 0

−J 0 0

0 0 0

1
CA: ð2:16Þ

Using spherical coordinates one can write the asymptotic
form of the metric as follows:

ds2 ≈ −
�
1 −

2M
r

�
dT2 −

4Jsin2θ
r

dTdϕ

þ
�
1þ 2M

r

�
ðdr2 þ r2dω2Þ; ð2:17Þ

where dω2 is the standard metric for the unit 2-sphere.

III. STRESS-ENERGY TENSOR OF A COMPACT
MASSIVE BODY WITH DIFFERENTIAL

ROTATION

We use the following ansatz for the stress-energy tensor

Tμν ¼ ξðμKνÞ; ð3:1Þ

where

Kν ¼ ρξν þ Zν; ξνZν ¼ 0: ð3:2Þ

Since the vector Z is orthogonal to the Killing vector ξ it
has the form, Zν ¼ ð0; Z⃗Þ. We choose the 3D vector Z⃗ as
follows:

Zi ¼ jik;k: ð3:3Þ

Both the scalar function ρ and the antisymmetric tensor jik
are time-independent. It is easy to check that the stress-
energy tensor (3.1) satisfies the conservation law

Tμν
;ν ¼ 0: ð3:4Þ

The nonvanishing components of the stress-energy
tensor are

T00 ¼ ρ; T0i ¼
1

2
Zi: ð3:5Þ

Equation (2.11) shows that ρ signifies the mass density,
while jik is associated with the angular momentum dis-
tribution. To demonstrate this, one can use the relations

Jkl ¼
Z

XkZld3X ¼
I
S
Xkjlmdσm −

Z
jlkd3X: ð3:6Þ

Taking the boundary surface S to be outside the body, one
can set the surface integral equal to zero, and therefore

Jkl ¼
Z

jkld3X: ð3:7Þ

One also has

Z
T0id3X ¼ 1

2

Z
Zid3X ¼ 1

2

I
S
jimdσm ¼ 0: ð3:8Þ

This relation implies that (2.10) is valid.

IV. BOOSTING THE SOURCE

To obtain the metric of an ultrarelativistic spinning object,
we shall perform a boost transformation. Namely, we shall
use two inertial reference frames which we denote by S0
and S. The reference frame S0 is chosen so that the center-of-
mass of the object is at rest at its origin O. We call S0 a rest
frame. The other frame, S, moves with respect to the rest
frame with a constant velocity. We choose coordinates
ðX; Y; ZÞ in S0 so that the velocity vector V⃗ of S points
along the negative X-axis, V⃗ ¼ ð−V; 0; 0Þ. We denote the
Killing vector in the boost direction by ζ ¼ ð0; 1; 0; 0Þ.
It is convenient to present 4D Minkowski spacetime as a

direct sum of two 2D spaces. The first 2D space Π1 is
spanned by Killing vectors ξ and ζ, while the other 2D
space Π2 is orthogonal to it. The boost transformation acts
in Π1, while Π2 is not affected by the boost. In accordance
with this, we project 4D vectors and tensors onto the 2D
planes Π1 and Π2. We shall use the capital letters A;B;…
for the indices 0,1 associated with Π1, while the lowercase
letters a; b;… denote indices 2,3 associated with Π2.
We denote

ZX ¼ ζμZμ; ð4:1Þ

then one has

Zμ ¼ ZXζμ þ Zaδ
a
μ: ð4:2Þ

The antisymmetric tensor j, which enters the expression
(3.1), allows a similar decomposition. If one of its indices
takes the value 1, then the other index should be either 2
or 3. If both indices of j belong to the Π2 plane, then it is
proportional to the 2D Levi-Civita symbol eab. Following
this observation, we write

ja ¼ jμaζμ; jab ¼ eabj: ð4:3Þ

Then one has

ZX ¼ ja;a; Za ¼ −∂Xja þ eabj;b: ð4:4Þ

Using the above notations, the stress-energy tensor (3.1)
can be written as follows:
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Tμν ¼ ρξðμξνÞ þ ZXξðμζνÞ þ ZaξðμδaνÞ: ð4:5Þ

Our next goal is to obtain the expression for the
components of Tμν in the boosted frame. We denote by
ðt; xÞ the coordinates in the Π1 plane of the boosted frame
S. Then one has

X¼ γðx−βtÞ; T¼ γðt−βxÞ; Y¼ y; Z¼ z: ð4:6Þ

Here, β ¼ V=c and γ ¼ ð1 − β2Þ−1=2. We shall also use the
notation za, a ¼ 2, 3, for the coordinates transverse to the
boost direction.
Let us denote

U ¼ 1ffiffiffi
2

p ðT − XÞ; V ¼ 1ffiffiffi
2

p ðT þ XÞ;

u ¼ 1ffiffiffi
2

p ðt − xÞ; v ¼ 1ffiffiffi
2

p ðtþ xÞ: ð4:7Þ

Then the Lorentz transformation (4.6) implies

U ¼ αu; V ¼ α−1v; α ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
;

T ¼ 1ffiffiffi
2

p ðαuþ α−1vÞ; X ¼ 1ffiffiffi
2

p ð−αuþ α−1vÞ: ð4:8Þ

For ultrarelativistic motion in the frame S, that is when
β → 1, one has

α ¼ 2γ

�
1 −

1

8
γ−2 þOðγ−4Þ

�
: ð4:9Þ

The trace of the stress-energy tensor is

Tμ
μ ¼ −ρ: ð4:10Þ

Hence, the tensor T̄μν defined by (2.7) takes the form

T̄μν ¼
1

2
ρQμν þ

1

2
ZXPμν þ Sμν þ Nμν: ð4:11Þ

Here

Qμν ¼ ξμξν þ ζμζν; Pμν ¼ ξμζν þ ζμξν;

Sμν ¼ ZaξðμδaνÞ; Nμν ¼
1

2
ρδaμδ

b
νδab: ð4:12Þ

Using the expressions for ξA and ζA

ξA ¼ ð−1; 0Þ; ζA ¼ ð0; 1Þ; ð4:13Þ

one gets

QAB ¼
�
1 0

0 1

�
; PAB ¼

�
0 −1
−1 0

�
: ð4:14Þ

We use the notation xμ
0 ¼ ðu; v; zaÞ for the new boosted

null coordinates. Since the boost does not affect the
transverse directions, one has za ¼ Xa. The components
of Q and P in these new coordinates are

QA0B0 ¼
�
α2 0

0 α−2

�
; PA0B0 ¼

�
α2 0

0 −α−2

�
: ð4:15Þ

We can transform the components of S from the stationary
frame to the boosted frame in a similar fashion as above,
and the components of N stay the same between the two
frames. Thus

T̄uu ¼
1

2
ðρþ ZXÞα2; T̄vv ¼

1

2
ðρ − ZXÞα−2;

T̄ua ¼ −
1

2
ffiffiffi
2

p αZa; T̄va ¼ −
1

2
ffiffiffi
2

p α−1Za;

T̄ab ¼
1

2
ρδab: ð4:16Þ

The other components of T̄μ0ν0 vanish.

V. PENROSE LIMIT OF
THE STRESS-ENERGY TENSOR

We consider compact massive objects. This means that
their matter is localized within a compact region. We denote
by L the characteristic size of this region, so that the stress-
energy tensor in the S0 frame vanishes outside a sphere of
radius L. The size of this region is frame-dependent, as seen
by comparing Figs. 2 and 3. As a result of the Lorentz
contraction, the size of the body shrinks in X direction, so
that it looks like a pancake when observed from the S frame
(see Fig. 4). Let us discuss this effect in more detail.
Let us consider a function fðX; zÞ,1 which vanishes

outside the interval X ∈ ð−L=2; L=2Þ, and let us denote by
IðzÞ the following integral taken along v ¼ 0 line

IðzÞ ¼
Z

duαfðX; zÞBðuÞ: ð5:1Þ

Here BðuÞ is a slowly changing function of the retarded
time u, which near u ¼ 0 allows the following expansion

BðuÞ ¼ Bð0Þ þ dB
du

����
u¼0

uþ…: ð5:2Þ

Using (4.8) for large α, one gets2

1Here and later we use z as shorthand for z ¼ ðz2; z3Þ.
2Here and later we denote by ≃ an equality valid in the leading

order of an α−1 expansion.
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IðzÞ ≃ −
ffiffiffi
2

p
F ðzÞBð0Þ;

F ðzÞ ¼
Z

dXfðX; zÞ: ð5:3Þ

In other words, in the calculation of the integral (5.1) along
null rays performed in the leading order of the parameter
α−1, one can use the following substitution

αfðX; zÞ → −
ffiffiffi
2

p
δðuÞF ðzÞ: ð5:4Þ

In order to obtain a finite expression for the metric in the
ultrarelativistic limit γ → ∞, one should perform a special
rescaling of the source parameters. We denote

ρ̂ ¼ αρ; ĵa ¼ αja; ð5:5Þ

and keep the functions ρ̂ and ĵa fixed. In the leading order
in α, one has

M̂ ¼
Z

ρ̂ d3X ¼ αM: ð5:6Þ

For ultrarelativistic motion, α ≈ 2γ, which means that
M̂ ≈ 2E, where E is the energy of the boosted body.
Hence keeping ρ̂ fixed implies that the energy of the
boosted body E is constant. This is nothing but the
assumption adopted in the definition of the Penrose limit.
Let us denote

μ̂ ¼
Z

ðρ̂þ ẐXÞdX; λa ¼ eab

Z
j;bdX: ð5:7Þ

Then the leading nonvanishing terms of the stress-energy
tensor T̄ are

T̄uu ≃ −
1ffiffiffi
2

p δðuÞμ̂ðzÞ; T̄ub ≃
1

2
δðuÞλbðzÞ: ð5:8Þ

VI. METRIC IN THE PENROSE LIMIT

The background metric in ðu; v; zaÞ coordinates is

ds20 ¼ −2dudvþ dzadza: ð6:1Þ

(i) Since the stress-energy tensor (5.8) does not depend
on the coordinate v, the perturbation hμ0ν0 must have
the same property, and Eq. (2.7) reduce to

ð2Þ
△hμν ¼ −16πT̄μν: ð6:2Þ

Here ð2Þ
△ is a 2D transverse Laplacian

ð2Þ
△ ¼ ∂

2

∂ðz2Þ2 þ
∂
2

∂ðz3Þ2 : ð6:3Þ

FIG. 2. TX-diagram. Extended object has size L in the
X-direction in its rest frame.

FIG. 3. tx-diagram. The same extended object in the moving
frame is squeezed in the direction of motion.

JJ

X

2z

3z

FIG. 4. Boosted massive spinning object. As a result of Lorentz
contraction, it takes the form of a 2D spinning pancake.
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(ii) Since the only nonvanishing components of the
stress-energy tensor (5.8) in the leading order are
T̄uu and T̄ua, the perturbed metric has the form

ds2 ¼ −2du dvþ dzadza

þΦðu; zÞdu2 þ 2Aaðu; zÞdu dza: ð6:4Þ

The metric of this form and its higher-dimensional
generalizations were studied in the papers [23,24].

(iii) Since the components of stress-energy tensor (5.8)
are products of δðuÞ and functions depending on za,
one has

Φðu; zÞ ¼ δðuÞFðzÞ;
Aaðu; zÞ ¼ δðuÞAaðzÞ: ð6:5Þ

The metric coefficients FðzÞ and AaðzÞ obey equations

ð2Þ
△F ¼ 8

ffiffiffi
2

p
πμ̂;

ð2Þ
△Aa ¼ −8πλa: ð6:6Þ

Solutions of these equations can be found by using the
Green function Gðz; z0Þ of the 2D Laplace operator

ð2Þ
△Gðz; z0Þ ¼ δ2ðz − z0Þ; ð6:7Þ

This Green function is

Gðz; z0Þ ¼ 1

4π
lnðjz − z0j2=C2Þ; ð6:8Þ

where jz − z0j2 ¼ jz2 − z02j2 þ jz3 − z03j2 and C is an arbi-
trary constant. Hence, one has

FðzÞ ¼ 2
ffiffiffi
2

p Z
lnðjz − z0j2=C2Þμ̂ðz0Þd2z0;

AaðzÞ ¼ −2
Z

lnðjz − z0j2=C2Þλaðz0Þd2z0: ð6:9Þ

VII. PARTICLE AND NULL RAY SCATTERING

A. Scattering problem

The gravitational field of the ultrarelativistic spinning
object is localized within the null plane u ¼ 0. We denote
this 3D null surface by Γ. This surface Γ separates two
spacetime domains M�, which we call past and future.
Both of them are parts of Minkowski spacetime. In M�,
free massive and massless particles move along straight-
line geodesics. We denote by γ− a part of such a geodesic
before the particle “meets” Γ, and by γþ its part after it
passes through Γ (see Fig. 5).
A null ray in flat spacetime can be characterized by five

parameters. To specify a ray, it is sufficient at a given

moment of time to give a spatial point through which it
passes (three parameters), and a direction of the ray at this
point (two parameters). For a massive particle, we need six
parameters. In addition to direction of particle motion, one
should specify the value of its speed.
We write a worldline of a particle in the form

xμ ¼ ðuðτÞ; vðτÞ; zaðτÞÞ, where τ is an affine parameter
along the particle’s trajectory. Since the metric (6.4) does
not depend on v, and ∂v is its Killing vector, the quantity
U ¼ du=dτ is an integral of motion. For a massive particle,
the parameter τ coincides with the proper time, and U is an
additional nontrivial constant which characterizes the par-
ticle’s motion. For a null ray, there exists a rescaling
ambiguity for the affine parameter τ, and so one can always
put u ¼ τ. In what follows, we shall use this parametrization.
Geodesic equations in the metric (6.4) are discussed in

Appendix B. To apply these results to our case, it is
sufficient to put

pðuÞ ¼ qðuÞ ¼ δðuÞ: ð7:1Þ
Then Eqs. (B8) and (B9) of Appendix B imply

̈za þ δðuÞFeab _zb þ _δðuÞAa −
1

2
δðuÞF;a ¼ 0;

2_v ¼ _za _za þ δðuÞðF þ 2Aa _zaÞ þ
ε

U2
;

U ¼ du=dτ ¼ const: ð7:2Þ

The first of these relations is a set of two second-order
ordinary differential equations for zaðuÞ, while the second
relation is a first-order equation for v ¼ vðuÞ. The set of
Eqs. (7.2) uniquely specifies a solution after giving five
quantities as initial conditions. For a null ray, this is a
complete set of required parameters. For the case of a
massive particle, one additionally needs to specify the
constant U.
Using retarded time u as a parameter along the worldline,

we write solutions of these equations in M� subspaces as
follows:

za� ¼ ca� þ _ca�u; v� ¼ b� þ _b�u: ð7:3Þ

FIG. 5. Null ray scattering.
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Here ca�, _ca�, b� and _b� are constant parameters. The
normalization equation, that is the second equation in (7.2),
implies that

_b� ¼ 1

2

�
ca�c�a þ

ε

U2

�
: ð7:4Þ

To satisfy the Eqs. (7.2), one can search for zaðuÞ and
vðuÞ in the following forms

zaþðuÞ ¼ za−ðuÞ þ ΔcaθðuÞ þ Δ_cauθðuÞ;
vþðuÞ ¼ v−ðuÞ þ ΔbθðuÞ: ð7:5Þ

Here θðuÞ is a Heaviside step function. Then one has

_zaþðuÞ ¼ _za−ðuÞ þ ΔcaδðuÞ þ Δ_caθðuÞ;
̈zaþðuÞ ¼ ̈za−ðuÞ þ Δca _δðuÞ þ Δ_caδðuÞ;

_vþ ¼ _v−ðuÞ þ ΔbδðuÞ: ð7:6Þ

In the absence of the matter distribution on Γ, the quantities
Δca, Δ_ca, and Δb vanish. In the weak field approximation
adopted in this paper, the quantities F and Aa are assumed
to be small. Similarly, the jump parameters Δca, Δ_ca and
Δb are small as well. This means that in the leading order,
the products of these quantities with F and Aa can be
neglected. Substituting (7.5) into (7.2) and keeping the
leading-order terms, one obtains

Δ_ca ¼ 1

2
F;a − Feabcb−; Δca ¼ −Aa;

Δb ¼ 1

2
F þAa _ca−: ð7:7Þ

The obtained results mean that in the general case, after
passing through the Γ plane, the parameters of the particle
and light trajectories are changed:

(i) Their spatial position on Γ is shifted by the
value Δca;

(ii) Their direction of motion is changed. The parameter
which controls this change is Δ_ca.

(iii) There also exists a shift Δb of the coordinate v,
which is related to the time-delay effect.

B. Gravitational memory effect

Past M− and future Mþ domains separated by a null
plane Γ are just two copies of a part of Minkowski
spacetime. Particles and light rays freely propagating in
M− are also free moving in Mþ. However, their relative
positions and velocities are different. One can say that there
exist a map between in and out states of the particles and
rays, and this map depends on the properties of the
ultrarelativistic object. This is a very special case of a
general effect known as the gravitational memory effect.

Similar situations happenwhen, instead of an ultrarelativistic
particle, a burst of pure gravitational waves propagates in flat
(or curved) spacetime [26]. This effect was widely discussed
in the literature since it might have possible applications in
the search for gravitational waves [27–30]. This and similar
effects are also interesting from the point of view of general
field theory, because they are connected to encoding infor-
mation in the soft modes of the fields [31,32].
In the case discussed in the present paper, initial and final

states of massive and massless particles are described by
the independent constants which enter relations (7.3)

ψ� ¼ fca�; _ca�; b�; ðUÞg: ð7:8Þ

Formulas (7.7) establish a relation between in and out states
of the particles and light

Ψ∶ ψ− → ψþ: ð7:9Þ

This map depends not only on “global” parameters such as
the energy and angular momentum of the ultrarelativistic
object, but also on the details of its internal structure, such
as the energy density and spin distribution inside the body.
It is quite an interesting question: Suppose one knows the
corresponding map Ψ for all possible configurations of
particles and null rays. How can detailed information about
the structure and properties of the ultrarelativistic object be
obtained?

VIII. GRAVITATIONAL LENSING
AND THE INVERSE PENROSE TRANSFORM

To obtain the gravitational field of an ultrarelativistic
object, we performed the Penrose transform. Namely, we
used Eqs. (4.8) to obtain the relation between the rest-frame
coordinates ðT; XÞ and boosted null coordinates ðu; vÞ. At
the same time, we rescaled the parameters of the mass
density ρ, transverse ja, and longitudinal j spin density
parameters

P∶ ðT;XÞ→ ðu;vÞ; ρ̂¼ αρ; ĵa ¼ αja; ĵ¼ j:

ð8:1Þ

When α → ∞, the map P describes the Penrose limit,
provided the quantities ρ̂, ĵa and ĵ are fixed.
In Sec. VII, we obtained relations between in and out

trajectories of light rays for their scattering in the gravita-
tional field of an ultrarelativistic object. Let us demonstrate
now how this map Ψ, (7.9), can be used for the solution of
another problem: the gravitational lensing of light by a
compact massive spinning object. We show that for this
purpose, it is sufficient to perform the inverse transformation
of P, which we call the inverse Penrose transform.
To illustrate this, let us consider a beam of light rays

which move parallel to the X axis before they meet the null
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plane Γ. For such rays, za− ¼ ca− ¼ const. We call l ¼ffiffiffiffiffiffiffiffiffiffiffiffi
ca−ca−

p
the impact parameter. Using the results of Sec. VII,

one finds that after the incoming null ray passes through the
plane Γ, so that it is in the domain u > 0, its equation is

zaþðuÞ ¼ ca− þ Δca þ Δ_cau: ð8:2Þ
Since X ≈ − αffiffi

2
p u, the scattering angles in the rest frame S0

are

Δθ̂a ¼ − lim
u→∞

zaþðuÞ
X

¼
ffiffiffi
2

p

α
Δ_ca: ð8:3Þ

For α → ∞ these scattering angles tend to zero. However, if
one applies the inverse Penrose transform, one should
restore the original rest frame quantities ρ and ja, and this
“enhances” the angle Δθ̂a by multiplying it by α. After this,
the limit for the scattering angles Δθa in the rest frame
becomes finite. Performing the calculations, one obtains for
the scattering angles in the rest frame S0 the following
expression

Δθa ¼ 2
∂

∂za
HðzÞ

����
za¼za

0

;

H ¼
Z

dX0d2z0 lnðjz − z0j2Þ

× ½ρðX0; z0Þ þ ∂a0ja
0 ðX0; z0Þ�: ð8:4Þ

We omit the constant factorC2 inside the logarithm since its
contribution to Δθa vanishes.
Let us summarize. One can use the derived expressions

for the scattering of light by an ultrarelativistic object in
order to obtain the scattering angles for light rays propa-
gating near a massive spinning object in its rest frame. This
result gives an alternative option for studying the gravita-
tional lensing effect in the weak field approximation
[34–40].

IX. LIGHT SCATTERING IN THE LARGE
DISTANCE APPROXIMATION

A. Scattering angle

In our previous considerations, we adopted the weak
field approximations and considered M=l as a small
parameter, where l is the impact parameter. However,
we did not assume that the size of the body, L, is also small.
When L=l ≪ 1, the expression for the scattering angles
greatly simplifies. Let us discuss this approximation.
Let us note that

jz − z0j2 ¼ jzj2 − 2z · z0 þ jz0j2

¼ jzj2
�
1 − 2

z · z0

jzj2 þ jz0j2
jzj2

�
: ð9:1Þ

We assume that jzj ∼ l and jz0j < L. Then in the approxi-
mation L ≪ l, one has

ln jz − z0j2 ¼ ln jzj2 − 2
z · z0

jzj2 þOððL=lÞ2Þ: ð9:2Þ

Calculations give

∂

∂za
ln jz − z0j2 ¼ 2

za
jzj2 −

2

jzj4 qabz
0b;

qab ¼ jzj2δab − 2zazb: ð9:3Þ

Let us denote d3V ¼ dX0d2z0. Then the following
relations are valid

Z
d3Vρ ¼ M;

Z
d3V∂a0ja

0 ¼ 0;Z
d3Vz0b∂a0j

a0 ¼ −
Z

d3Vjb0 ¼ −JXb: ð9:4Þ

Using these results one finds the following expression for
the scattering angle (8.4)

Δθa ¼ 4
Mza
jzj2 þ 4qab

JXb
jzj4 : ð9:5Þ

One can always choose coordinates za so that the 2D
vector JXb takes the form JXb ¼ Jδ2b. In this case, the vector
of the angular momentum La is directed along the z3

axis, La ¼ Jδa3 .
For scattering in the “equatorial plane” when z3 ¼ 0 one

obtains

Δϕ≡ π þ Δθ2 ¼ π þ 4GM
l

−
4GJ
l2

: ð9:6Þ

Here we denote by l the impact factor for the ray, so that
jzj2 ¼ l2. We also restored the Newton’s coupling constant
G. This result is in complete agreement with the expression
(A20) for null ray scattering in the equatorial plane in Kerr
spacetime.3

3Let us note that in the linearized approximation which is used
in the paper, the additional term ∼ðGM=lÞ2 in (A20) propor-
tional to G2 is not present in (9.6). For the Kerr black hole this
term is of the same order as GJ=l2. However, the effect of the
rotation can be distinguished from others by measuring the
difference of the scattering angles for two values of the angular
momentum J, or for two opposite values of the impact factor l
and −l with the same value for J. For extended objects with size
L ≫ GM, the term proportional to J can be larger than the
∼ðGM=lÞ2 contribution.
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B. Shift effect

Let us now discuss an effect regarding the shift
of the null rays associated with the components Aa of
the metric. We again use the large-distance approximation.
Substituting the expansion (9.2) into (6.9), one obtains

Aa ¼ −2Geab
Z

d3V

�
ln jzj2 − 2

z · z0

jzj2
�
j;b

0
: ð9:7Þ

Since Z
d3V∂b0j ¼ 0; ð9:8Þ

only the second term in parentheses in expression (9.7)
gives a nonvanishing contribution. After integrating
this term by parts and restoring the Newton’s constant G
one gets

Δza ¼
4GJeabzb

jzj2 : ð9:9Þ

This shift vector Δza is orthogonal to za, and its norm is

jΔzaj ¼
4GJ
b

: ð9:10Þ

Here b is the impact parameter, jzj2 ¼ b2. This result
correctly reproduces the expression (A42) for the shift of
azimuthal null rays in the Kerr metric.

X. DISCUSSION

In this paper, we studied the gravitational field of an
ultrarelativistic massive spinning object. The correspond-
ing metric of such an object was obtained by taking the
Penrose limit of the object’s field in the weak field
approximation. We demonstrated that for spinning matter,
it is not sufficient to keep the energy density fixed. One also
needs to perform a proper rescaling of the angular
momentum density components in the directions orthogo-
nal to the direction of motion. We studied the scattering of
free particles and light rays by the gravitational fields of the
ultrarelativistic spinning objects, and constructed the map
Ψ relating the parameters of inward and outward trajecto-
ries in terms of the matter and spin distributions. We briefly
discussed how the obtained results are related to the
gravitational memory effect. We also showed that the
constructed map Ψ can be used to calculate scattering
angles for light propagating in the vicinity of a massive
spinning object in its own rest frame. The latter result
allows one to recover the standard results for gravitational
lensing, and obtain their generalization in the case where
the matter producing this effect can have nonvanishing
local differential rotation.
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APPENDIX A: NULL RAY SCATTERING IN THE
KERR GEOMETRY: WEAK FIELD

APPROXIMATION

1. Scattering in the equatorial plane

The geodesic equations in the Kerr metric have four
integrals of motion. As a result, these equations are
completely integrable and their solutions can be written
in quadratures (see e.g., [1]). For null ray propagation in the
equatorial plane, the solutions to the equations of motion
can be written explicitly in the form of the elliptic integral
[41]. When the impact parameter l for the null ray is much
larger than the gravitational radius GM of the Kerr black
hole, one can decompose the expression for the ray’s
scattering angle in powers of the small parameter
GM=l. Here we reproduce this result by a different
method, which we also use in the next subsection for
azimuthal null rays.
The Kerr metric in the equatorial plane θ ¼ π=2 takes

the form

ds2 ¼ gttdt2þ2gtϕdtdϕþgϕϕdϕ2þgrrdr2;

gtt ¼−
�
1−

2M
r

�
; gtϕ¼−

2Ma
r

;

gϕϕ ¼ r2þa2þ2a2M
r

; grr ¼
�
1−

2M
r

þa2

r2

�
−1
: ðA1Þ

Here M is the mass of the Kerr black hole, and a is the
rotation parameter related to the angular momentum of the
black hole J by a ¼ J=M. In what follows, we shall use
the dimensionless form of this parameter. Namely we
denote by s the following ratio

s ¼ J
M2

: ðA2Þ

We call s the rapidity. For a black hole, s takes values
between 0 and 1.
Let xμ ¼ xμðτÞ be a null geodesic in the equatorial plane,

and let τ be its affine parameter. We denote by a dot the
derivative with respect to τ. This 3D metric has 2 Killing
vectors, ∂t and ∂ϕ, and their corresponding integrals of
motion are

E ¼ −gtt_t − gtϕ _ϕ; L ¼ gtϕ_tþ gϕϕ _ϕ: ðA3Þ

VALERI P. FROLOV and ALEX KOEK PHYS. REV. D 106, 064026 (2022)

064026-10



The third integral of motion is

gμν _xμ _xν ¼ 0: ðA4Þ

These three integrals of motion are sufficient for the
complete integrability of the equations of motion in the
equatorial plane. One can obtain the following equation for
the null ray trajectory (for details see e.g., [4])

dϕ
dr

¼ −Q; Q ¼ ððr − 2MÞLþ 2aMEÞ ffiffiffi
r

pffiffiffiffi
P

p
Δ

;

P ¼ E2ðr3 þ a2rþ 2a2MÞ − 4aMEL − ðr − 2MÞL2;

Δ ¼ r2 − 2Mrþ a2: ðA5Þ

The ray trajectory has a radial turning point where
PðrÞ ¼ 0. We denote a solution of this equation by r0.
Before the turning point, the sign in the expression for
dϕ=dr is negative. For the incoming ray at large r, one has

dϕ
dr

≈ −
l
r2
; l ¼ L=E: ðA6Þ

Integrating this equation, one gets

ϕ ≈ ϕ0 þ l=r: ðA7Þ
We choose the coordinate ϕ so that for incoming rays
ϕ0 ¼ 0. Equation (A7) shows that l is the impact param-
eter. We assume that this parameter can be both positive and
negative.
Let us denote by P0 the value of function PðrÞ at r ¼ r0

P0 ¼ E2ðr30 þ a2r0 þ 2a2MÞ − 4aMEL − ðr0 − 2MÞL2:

ðA8Þ

By definition of the turning point, P0 ¼ 0. Hence,

P≡ P − P0 ¼ ðr − r0Þ½ðr2 þ a2 þ rr0 þ r20ÞE2 − L2�:
ðA9Þ

It is convenient to use the following dimensionless
variables ðy;m; s; λÞ to rewrite Q as a dimensionless
quantity χ ¼ Qr0

r¼ r0y; M ¼mr0; a¼ sM; l¼ λr0: ðA10Þ

In these variables, we now have

χ ¼
ffiffiffi
y

p ½2ðsm − λÞmþ λy�ffiffiffiffiffiffiffiffiffiffiffi
y − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ yþ y2 þ s2m2 − λ2

p
ðy2 þ s2m2 − 2myÞ

;

ðA11Þ

The equation for the turning point P0 ¼ 0 can be solved for
in terms of λ, and one gets

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mþ s2m2

p
− 2sm2

1 − 2m
: ðA12Þ

The dimensionless parameter m is the mass of the black
hole as measured in units r0. However, r0 is defined impli-
citly as a solution of the algebraic equation PðrÞ ¼ 0. It is
convenient to rewrite this parameter in terms of a new
dimensionless parameter μ ¼ M=l, which is defined in
terms of the scattering parameter (impact factor) l. For this
purpose, we use the following relation

m ¼ μλ: ðA13Þ
As a result, the relation (A12) takes the form of an equation
relating two parameters, λ and μ

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μλþ s2μ2λ2

p
− 2sμ2λ2

1 − 2μλ
: ðA14Þ

For small μ, this equation can be solved perturbatively using
the expansion

λ ¼
X∞
k¼0

μk

k!
λk: ðA15Þ

For μ ¼ 0 one has λ ¼ 1, so λ0 ¼ 1.
Substituting (A15) into (A14) allows one to find the

coefficients λk. We present here the first several terms of the
series (A15)

λ ¼ 1þ μþ 1

2
ðs2 − 4sþ 5Þμ2

þ ð3s2 − 10sþ 8Þμ3 þOðμ4Þ: ðA16Þ

Substituting (A16) and (A13) into the function χ, (A11),
and expanding the obtained expression into powers
of μ, one finds the coefficients χkðy; sÞ of the following
expansion

χ ¼
X∞
k¼0

μk

k!
χkðy; sÞ: ðA17Þ

The scattering angle can be found as follows:

ϕs ¼ 2

Z
∞

y¼1

χ dy: ðA18Þ

Then one gets

ϕs ¼ π þ 4μþ
�
15

4
π − 4s

�
μ2

þ
�
128

3
− 10πsþ 4s2

�
μ3 þOðμ4Þ: ðA19Þ
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Using the definition of μ (A13), and restoring the
Newton’s coupling constant G, one can write the first
few terms of (A19) in the form

ϕs ¼ π þ 4
GM
l

− 4
GJ
l2

þ 15π

4

�
GM
l

�
2

þ…: ðA20Þ

As we noted before,M is the mass of the Kerr black hole,
and s is its rapidity parameter, which can take values
between 0 and 1 and is given by (A2).
The first terms of this expression coincide with the result

presented in [41]4 See also [42,43].

2. Scattering of azimuthal rays

Let us now discuss the case where an incoming null ray
moves parallel to the axis of symmetry of a Kerr black hole.
We denote by b its distance from this axis at a very large
radius. We choose the angle ϕ so that for this incoming ray,
ϕ ¼ 0. We call b the impact parameter.
To find the shift in the angle ϕ after the scattering, we

proceed in the same way as in the previous subsection. The
equations of motion written in the first order form imply
that

dθ
dr

¼ �
ffiffiffiffi
Θ

pffiffiffiffi
R

p ;

Θ ¼ qþ cos2θða2 − l2=sin2θÞ;
R ¼ ðr2 þ a2 − alÞ2 − ðqþ ða − lÞ2ÞΔ;
Δ ¼ r2 − 2Mrþ a2: ðA21Þ

Here

q ¼ Q
E2

; l ¼ L
E
: ðA22Þ

Here L is the angular momentum and Q is the Carter’s
constant. For the incoming asymptotically azimuthal null
ray at r → ∞, θ → π. This is possible only when the
angular momentum l for such a ray vanishes. Thus,
one has

Θ ¼ qþ a2cos2θ; R ¼ ðr2 þ a2Þ2 − ðqþ a2ÞΔ:
ðA23Þ

For the incoming ray at large r, one has θ ≈ π − Δθ, and
the relations (A21) give

dΔθ
dr

≈ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ a2

p
r2

: ðA24Þ

By integrating this equation, one finds

Δθ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ a2

q
=r: ðA25Þ

Since b ¼ limr→∞ðrΔθÞ, one has

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ a2

q
: ðA26Þ

This relation allows one to express dimensionless Carter’s
constant q in terms of the impact parameter b

q ¼ b2 − a2: ðA27Þ

The conservation of the parameter q guarantees that in the
outgoing regime, that is when θ → 0 and r → ∞, the
outgoing impact parameter coincides with the incoming
one, b. Using (A27), one gets

R ¼ ðr2 þ a2Þ2 − b2Δ: ðA28Þ

Let us consider now the equation for the angle ϕ

dϕ
dr

¼ −
2Mar

Δ
ffiffiffiffi
R

p : ðA29Þ

At the turning point, where r reaches its minimum value
r ¼ r0, one has

R0 ≡ Rðr ¼ r0Þ ¼ 0: ðA30Þ

One also has

R≡ R − R0 ¼ r4 − r40 þ ð2a2 − b2Þðr2 − r20Þ
þ 2Mb2ðr − r0Þ: ðA31Þ

Let us introduce the following dimensionless parameters

y ¼ r
r0
; sm ¼ a

r0
; m ¼ M

r0
; λ ¼ b

r0
: ðA32Þ

Then Eq. (A29) takes the form

dϕ
dy

¼ F;

F ¼ −
2sm2yffiffiffiffiffiffiffiffiffiffiffi

y − 1
p ðy2 − 2myþ s2m2Þ

1ffiffiffiffi
N

p ;

N ¼ y3 þ y2 þ yþ 1

þ ð2s2m2 − λ2Þðyþ 1Þ þ 2mλ2: ðA33Þ

As we did earlier, we denote

μ ¼ M
b
; ðA34Þ4Let us note that the sign of the rotation parameter in the paper

[41] is chosen to be opposite to the sign adopted in [1,4].
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so that m ¼ μλ. Then the Eq. (A30) for the turning point
can be solved to obtain the equation for λ

λ ¼ 1þ s2μ2λ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μλþ s2μ2λ2

p : ðA35Þ

We assume that b is sufficiently large, so the parameter μ
allows one to keep track of the order of smallness of
different terms. Namely, a term which contains μn is
proportional to b−n. We use the following expansion for λ

λ ¼
X∞
k¼0

μk

k!
λk; λ0 ¼ 1: ðA36Þ

Then by solving Eq. (A35), one can find coefficients λk
which enter the expansion (A36). For the first four
coefficients, one gets

λ1 ¼ 1; λ2 ¼ 5þ s2; λ3 ¼ 48þ 6s2;

λ4 ¼ 693þ 42s2 þ 9s4: ðA37Þ

We then substitute (A34) and (A36) into the function F
(A33), and expand the obtained expression into powers of
μ. With this, one finds the coefficients Fkðy; sÞ of the
following expansion,

F ¼
X∞
k¼0

μk

k!
Fkðy; sÞ: ðA38Þ

The total angular shift, that is the value of ϕ at r ¼ ∞ and
θ ¼ 0, is

Δϕ ¼ 2

Z
∞

y¼1

Fdy: ðA39Þ

Using an expansion of F in powers of μ, and calculating the
obtained integrals, one gets

Δϕ ¼ μ2sð4þ 5πμþ 64μ2Þ þOðμ5Þ: ðA40Þ

Hence, the leading term of Δϕ is

Δϕ ¼ 4GJ
b2

: ðA41Þ

Thus, as a result of scattering by a Kerr black hole with
angular momentum J, the incoming azimuthal null ray with
impact parameter b acquires an angular shift in ϕ (A41),
while the amplitude of the impact parameter for the
outgoing ray remains the same as the incoming one.
This angular shift is the result of frame-dragging of the
ray induced by the rotation of the black hole. This result can
be formulated in a slightly different way. Let b⃗ be a 2D
impact parameter vector in the 2D plane orthogonal to the

incoming ray. Then the impact vector for the outgoing ray
is shifted in the direction of black hole rotation by the
vector β⃗, which is orthogonal to b⃗. Its value is

jβ⃗j ¼ Δϕb ¼ 4GJ
b

: ðA42Þ

APPENDIX B: CHRISTOFFEL SYMBOLS AND
NULL GEODESICS

Let us consider a metric of the following form

ds2 ¼ −2dudvþ dzadza þΦdu2 þ 2Aadudza: ðB1Þ

We also remember that indices a; b;… take values 2 and 3.
The metric in the 2D space spanned by these coordinates is
δab, so that za ¼ za and Aa ¼ Aa.
We assume that metric coefficients Φ and Aa have the

following form:

Φ ¼ pðuÞFðzÞ; Aa ¼ qðuÞAaðzÞ: ðB2Þ

Then the exact nonvanishing Christoffel symbols calcu-
lated for this metric (B1) are

Γuu
v ¼ −

1

2
_pF þ q _qAaAa −

1

2
qpAaF;a;

Γuu
a ¼ _qAa −

1

2
pF;a;

Γua
v ¼ −

1

2
pF;a −

1

2
q2FAbeab;

Γua
b ¼ −

1

2
qFeab;

Γab
v ¼ −

1

2
qðAa;b þAb;aÞ: ðB3Þ

Here eab is a 2D Levi-Civita symbol with e23 ¼ 1, and

F ¼ eabAa;b: ðB4Þ

We also denote by a dot the derivative with respect to u.
Let us consider a geodesic line xμðτÞ in the metric (B1).

One has

gμν
dxμ

dτ
dxν

dτ
¼ −ε: ðB5Þ

Here ε ¼ 1 for a massive particle and ε ¼ 0 for a null ray.
This normalization condition means that for a massive
particle, the parameter τ coincides with proper time τ. For a
null ray, τ is an affine parameter.
The geodesic equations are

d2xμ

dτ2
þ Γνλ

μ dx
ν

dτ
dxλ

dτ
¼ 0: ðB6Þ
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Since ∂v is a Killing vector of the metric (B1), one has

U ≡ du
dτ

¼ const: ðB7Þ

For a null ray, using the ambiguity in choice of the affine
parameter, one can put this constant U to be equal to 1, so
that τ ¼ u. For a massive particle, U is an additional
independent parameter.
It is convenient in both cases, for massive and massless

particles, to use the parameter u instead of τ. In this
parametrization, one writes xμ ¼ xμðuÞ, and the normali-
zation condition (B5) takes the form

2_v ¼ _za _za þ pF þ 2qAa _za þ
ε

U2
: ðB8Þ

Using expressions for the Christoffel symbols (B3), one
can write two Eqs. (B6) for μ ¼ a as follows:

̈za þ qFeab _zb þ _qAa −
1

2
pF;a ¼ 0: ðB9Þ

Let us note that this equation does not contain v or _v.
Hence, this is a consistent set of two second-order ordinary
differential equations. After solving these equations, one
can find vðuÞ by solving Eq. (B8).
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