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We investigate quasinormal modes, greybody factor, and Hawking evaporation of a five-dimensional
Kerr-anti–de Sitter (AdS5) black hole by solving a wave equation for a test massive scalar field in terms of
the local Heun function. We clarify the distribution of the quasinormal modes satisfying the ingoing and
decaying boundary conditions at the event horizon and conformal infinity, respectively, and their splitting
behaviors in the complex frequency plane with respect to a variation of spin parameters. We also point out
the existence of purely imaginary modes. Further, we develop a method to extract in/outgoing waves near
the AdS boundary, which enables us to define the greybody factor for a wide range of parameter space
complementary to previous works. Using the greybody factor, we compute evaporation rates for mass and
spins for the Kerr-AdS5 black hole via the Hawking radiation of the scalar field.
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I. INTRODUCTION

A black hole is a spacetime region surrounded by an
event horizon. Although the event horizon itself is not
observable, several black hole candidates have been
observed starting by x-ray observation [1,2], gravitational
wave detection [3], and imaging the horizon scale region
around supermassive black holes [4,5]. In these observa-
tions, what to be detected were waves emitted and scattered
around a black hole. Theoretically, considering quantum
effects, black holes themselves can also emit a Hawking
radiation [6,7]. These properties of a black hole can be
investigated by the linear perturbation theory around the
black hole spacetime. The separability of the variables of
the master equation has been clarified in the Kerr back-
ground [8–11], in the Kerr-de Sitter background [12,13],
and in the Kerr-anti–de Sitter (AdS) background [13–15].
Besides four dimensional black holes, higher dimensional
black holes are also interesting from the theoretical point of
view since they have more fruitful properties than the four
dimensional ones. Furthermore, the study of higher dimen-
sional Kerr-AdS black holes is important in the context
of gauge/gravity correspondence [16–18]. In general, by
solving a wave equation in a black hole spacetime, it is
possible to understand the properties of the black hole by
quasinormal (QN) modes, wave scattering phenomena,
evaporation rate via Hawking radiation. Such an approach
is known as black hole spectroscopy [16].

The QNmodes of a black hole are damped oscillations of
fields characterized by discrete complex frequencies given
as poles of the Green function satisfying a certain set of
boundary conditions. Investigating the QN modes, one can
discuss the late time behavior of a gravitational wave
signal, stability, and quantum aspects of the black hole
[19–21]. The QN modes have also been studied for asymp-
totically AdS black holes in the context of the gauge/gravity
correspondence to examine a holographic dual system
[22–25]. Therefore, study of the QN modes is important
from both theoretical and observational point of view.
In general, several sequences of the QN modes show up

for a black hole spacetime. A peculiar sequence would
be mode(s) that align on the negative imaginary axis,
corresponding to pure diffusion. The most well-known
example is the so-called algebraically special mode of the
Schwarzschild spacetime [26,27]. The Kerr spacetime also
admits the purely imaginary modes [28,29]. There is some
subtlety on these modes, and in general they are not always
the QN modes [30–32] (see also Appendix A in [20]).
The purely imaginary modes are also studied for the
Schwarzschild spacetime [33–35], the Schwarzschild-
AdS4 spacetime [36,37], Reissner-Nordström-AdS4 space-
time [38], Bañados-Teitelboim-Zanelli spacetime [39], and
for D3/D7 brane system [40,41]. They are also known as
the nonhydrodynamic modes [42–45]. They are often
discussed in the context of gauge/gravity correspondence
as well and are expected to play an important role
[24,36,40]. The QN modes and the superradiant instability
of Kerr-AdS5 spacetime have been extensively investigated
[46–50], and it was clarified that there exist QN modes
whose real parts approach zero in the ultraspinning
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limit [50]. However, to the best of our knowledge, it has not
been clarified yet whether the purely imaginary modes exist
for the Kerr-AdS5 spacetime including lower spin case.
On the other hand, besides the QN modes, Hawking

radiation is also an important feature of black holes.
Originally, it was discussed for asymptotically flat black
holes, but later it was generalized to asymptotically AdS
case [51]. Although black holes emit Hawking radiation,
some of them are scattered back to the black hole horizon
due to the potential barrier formed by the gravitational force
and angular momenta of the emitted radiations. Hence, for
black holes to evaporate via Hawking radiation, emitted
radiations need to pass through the potential barrier. The
transmittance is called greybody factor [52–54], which
corresponds to the efficiency of the evaporation of the black
hole. The definition and computation of the greybody
factor for asymptotically flat or de Sitter black holes is
straightforward since the asymptotic structure of these
spacetimes admits the purely outgoing boundary condition
for the fields. However, for the asymptotically AdS space-
times, the situation is more subtle due to the existence of the
AdS boundary which plays a role of a box to confine those
fields. As a specific problem in defining wave scattering,
one should be careful to identify ingoing and outgoing
waves around the outer potential barrier. Regarding this
difficulty, a direct computation of the greybody factor for
the asymptotically AdS black holes has been addressed in
[55–57], and the absorption cross section via gauge/gravity
correspondence has also been discussed in [58,59]. The
computation of the greybody factor considered in the
previous works is based on the approximated solution of
the equation of motion, and hence applies to a limited
parameter region. On the other hand, the evaluation with
the exact solution in terms of the Heun function may enable
us to obtain the greybody factor for a wider range of
parameters, and to compute the evaporation rates properly.
The Heun’s equation is a second-order linear differential

equation possessing four regular singular points [60–63].
It is known that the Teukolsky equation for the four-
dimensional Kerr-Newman-de Sitter spacetime can be
transformed into the Heun’s equation [64]. The exact
solution is known as local Heun function or general
Heun function. Recently, it has been employed to the
computation of QN modes [65,66], wave scattering prob-
lem and the Green’s function [67], the greybody factor
[68,69], and Hawking radiation [70–72]. Since the Klein-
Gordon equation for a test scalar field for an asymptotically

AdS black holes can also be transformed into the Heun’s
equation if the spacetime dimension is five [48,73,74], it is
interesting to investigate the Kerr-AdS5 with the exact
solution in terms of the local Heun function.
In this paper, we investigate the QN modes, greybody

factor, and Hawking evaporation of a Kerr-AdS5 black hole
for a massive scalar field by using the exact solution of the
Klein-Gordon equation in terms of the local Heun function.
In addition to known sequences of the QN modes, we find
that the purely imaginary modes exist for the Kerr-AdS5
spacetime. For the computation of the greybody factor,
we develop a method to extract in/outgoing waves near the
AdS boundary, which allows us to explore the Hawking
radiation for a parameter region complementary to the
previous work.
The rest of the present paper is organized as follows. In

Sec. II, we introduce a test massive scalar field in the Kerr-
AdS5 spacetime, and demonstrate the transformation of
both the radial and angular equations to the Heun equation.
While the previous work focused on the case where
magnetic quantum numbers are non-negative, we consider
all the possible cases. Then, we derive formulas for
coefficients connecting local Heun functions at each regular
singular point. As an application of those formulas,
we make a comment on the Gubser-Klebanov-Polyakov
(GKP)-Witten relation [17,18], which is a dictionary in the
gauge/gravity correspondence [16]. In Sec. III, we inves-
tigate the QNmodes, and show that nonzero spin parameter
breaks the degeneracy between the QN modes, causing a
Zeeman-like splitting behavior depending on the value of
magnetic quantum numbers. Further, we point out the
existence of the purely imaginary modes with vanishing
total magnetic quantum number. In Sec. IV, we develop a
method to distinguish in/outgoing mode near the AdS
boundary by using the local Heun function, and provide the
greybody factor. We then calculate the evaporation rates of
the mass and angular momenta of the Kerr-AdS5 black hole
in Sec. V, focusing on the contribution from the Hawking
radition of the scalar field. Section VI is devoted to
conclusion. Throughout the present paper, we use the
natural units: c ¼ G ¼ ℏ ¼ kB ¼ 1.

II. KLEIN-GORDON EQUATION
IN Kerr-AdS5 SPACETIME

The metric of the Kerr-AdS5 spacetime is given
as [75–77]

ds2 ¼ −
Δ
ρ2

�
dt −

a1 sin2 θ
Ξ1

dϕ1 −
a2 cos2 θ

Ξ2

�
2

þ ρ2

Δ
dr2 þ ρ2

Δθ
dθ2 þ Δθ sin2 θ

ρ2

�
a1dt −

r2 þ a21
Ξ1

dϕ1

�
2

ð1Þ

þΔθ cos2θ
ρ2

�
a2dt−

r2þa22
Ξ2

dϕ2

�
2

þ1þr2=L2

r2ρ2

�
a1a2dt−

a2ðr2þa21Þsin2θ
Ξ1

dϕ1−
a1ðr2þa22Þcos2θ

Ξ2

dϕ2

�
2

; ð2Þ
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where L is the AdS radius and

Δ ≔
1

r2
ðr2 þ a21Þðr2 þ a22Þ

�
1þ r2

L2

�
− 2M

¼ 1

r2L2
ðr2 − r20Þðr2 − r2þÞðr2 − r2−Þ; ð3Þ

Δθ ≔ 1 −
a21
L2

cos2 θ −
a22
L2

sin2 θ;

ρ2 ≔ r2 þ a21 cos
2 θ þ a22 sin

2 θ; ð4Þ

Ξ1 ≔ 1 −
a21
L2

; Ξ2 ≔ 1 −
a22
L2

: ð5Þ

Here, M is a mass parameter, a1, a2 are spin parameters,
and rkðk ¼ þ;−; 0Þ represent horizon radii. We assume
that they are distinct and r20 < 0 < r2− < r2þ. Namely, r0 is
pure imaginary, and r−; rþ are real and satisfy 0 < r− < rþ.
Then r−; rþ are radii of the inner and outer horizons,
respectively. It holds that

r20 þ r2− þ r2þ þ a21 þ a22 þ L2 ¼ 0; ð6Þ

r20r
2
−þr20r

2þþr2−r2þ−a21a
2
2þð2M−a21−a22ÞL2¼0 ð7Þ

r20r
2
−r2þ þ a21a

2
2L

2 ¼ 0: ð8Þ

Note that for the present five dimensional spacetime the
mass parameter M has a dimension of ðlengthÞ2 and the
Arnowitt-Deser-Misner mass and the angular momenta of
this spacetime are specified as [77]

M ¼ πMð2Ξ1 þ 2Ξ2 − Ξ1Ξ2Þ
4Ξ2

1Ξ2
2

;

J 1 ¼
πMa1
2Ξ2

1Ξ2

; J 2 ¼
πMa2
2Ξ1Ξ2

2

: ð9Þ

Here, the two angular momenta J 1 and J 2 are in general
different from each other. The Hawking temperature
and angular velocities at each horizon rkðk ¼ þ;−; 0Þ
are given as

Tk ≔
rk

2πL2

ðr2k − r2i Þðr2k − r2jÞ
ðr2k þ a21Þðr2k þ a22Þ

;

Ωk;1 ≔
a1Ξ1

r2k þ a21
; Ωk;2 ≔

a2Ξ2

r2k þ a22
; i; j ≠ k: ð10Þ

A. Klein-Gordon equation

We consider the Klein-Gordon equation for a test
massive scalar field in the Kerr-AdS5 spacetime

ð□ − μ2ÞΦ ¼ 0; ð11Þ

where μ is the mass of the scalar field. By separating the
wave function as

Φ ¼ RðrÞSðθÞe−iωtþim1ϕ1þim2ϕ2 ; ð12Þ

we can separate the Klein-Gordon equation into angular
and radial equations:

�
1

sin θ cos θ
d
dθ

sin θ cos θΔθ
d
dθ

− ω2L2 −
m2

1Ξ1

sin2θ
−
m2

2Ξ2

cos2θ

þ Ξ1Ξ2

Δθ

�
ωLþm1

a1
L

þm2

a2
L

�
2

− μ2ða21cos2θ þ a22sin
2θÞ þ λ

�
SðθÞ ¼ 0; ð13Þ

�
1

r
d
dr

rΔ
d
dr

þðr2þa21Þ2ðr2þa22Þ2
r4Δ

�
ω−

m1a1Ξ1

r2þa21
−
m2a2Ξ2

r2þa22

�
2

−λ−μ2r2−
1

r2
fa1a2ω−a2m1Ξ1−a1m2Ξ2g2

�
RðrÞ¼0;

ð14Þ

where λ is a separation constant, or also called the
eigenvalue.
In the next subsection, we begin with the discussion of

the angular function and the evaluation of the eigenvalue λ.
As we shall see below, the structures of the singularities of
the angular equation (13) are different for ja1j ¼ ja2j and
ja1j ≠ ja2j cases. Hence, we need a separate treatment for
each case.

B. Angular equation

Introducing a new coordinate and redefining the func-
tion, the angular equation can be transformed into a
differential equation for a special function: hypergeometric
function or Heun function [48,73,74]. The eigenvalue λ of
the differential equation is determined by the regularity
condition of those special functions. We shall formulate
equal-/opposite-rotation case a1 ¼ �a2 in Sec. II B 1, and
different-rotation case ja1j ≠ ja2j in Sec. II B 2.

1. Equal-/opposite-rotation case

If a1 ¼ �a2 ≕ a, the angular equation (13) can be solved
in terms of hypergeometric function. Applying the trans-
formation

x ¼ sin2 θ;

SðθÞ ¼ xm1=2ðx − 1Þm2=2vðxÞ; ð15Þ

we obtain the hypergeometric equation

d2v
dx2

þ
�
ca
x
þ da
x − 1

�
dv
dx

þ aaba
xðx − 1Þ v ¼ 0; ð16Þ
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where

aa ¼
1

2

"
m1 þm2 þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
ωLþ a

L
ðm1 �m2Þ

�
2

þ λ − ω2L2 − μ2a2

Ξ

s #
;

ba ¼
1

2

"
m1 þm2 þ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
ωLþ a

L
ðm1 �m2Þ

�
2

þ λ − ω2L2 − μ2a2

Ξ

s #
;

ca ¼ m1 þ 1; da ¼ m2 þ 1; ð17Þ

and Ξ ¼ 1 − a2=L2. Note that ca þ da ¼ aa þ ba þ 1
holds. The plus/minus sign corresponds to the each case
of a1 ¼ �a2 ¼ a. Note that, for the nonrotating case with
a ¼ 0, the equation does not depend on ω and μ.
The hypergeometric equation (16) possesses three regu-

lar singular points located at x ¼ 0; 1;∞. Using the
Frobenius method, we can construct linearly independent
two power series solutions at the vicinity of each regular
singular point. Let vIiðxÞ denote such local solutions, where
the subscript I represents the regular singular point
I ¼ 0; 1;∞ around which the local solution is defined,
and i ¼ 1, 2 is a label for the two independent local
solutions at the regular singular point. The corresponding
angular function SIiðθÞ is defined via (15). Among the four
singular points, we are interested in x ¼ 0 and x ¼ 1 since
they correspond to θ ¼ 0; π and π=2, respectively. Hence,
for the following, we focus on the solution vIi with
I ¼ 0, 1.
Around x ¼ 0 and x ¼ 1, we can construct two inde-

pendent solutions, i.e., v01ðxÞ, v02ðxÞ at x ¼ 0, and v11ðxÞ,
v12ðxÞ at x ¼ 1, which are given in terms of the hyper-
geometric function. Specifically, two local solutions at
x ¼ 0 are given by

v01ðxÞ ¼ 2F1ðaa; ba; ca; xÞ; ð18Þ

v02ðxÞ ¼ x1−ca2F1ðaa þ 1 − ca; ba þ 1 − ca; 2 − ca; xÞ;
ð19Þ

and two local solutions at x ¼ 1 are given by

v11ðxÞ ¼ 2F1ðaa; ba; da; 1 − xÞ; ð20Þ

v12ðxÞ ¼ ð1 − xÞ1−da2F1ðca − aa; ca − ba; 2 − da; 1 − xÞ;
ð21Þ

where 2F1 is the Gauss hypergeometric function. The
connection formula is given by

v01ðxÞ ¼
ΓðcaÞΓðca − aa − baÞ
Γðca − aaÞΓðca − baÞ

v11ðxÞ

þ ΓðcaÞΓðaa þ ba − caÞ
ΓðaaÞΓðbaÞ

v12ðxÞ; ð22Þ

v02ðxÞ ¼
Γð2 − caÞΓðca − aa − baÞ

Γð1 − aaÞΓð1 − baÞ
v11ðxÞ

þ Γð2 − caÞΓðaa þ ba − caÞ
Γðaa − ca þ 1ÞΓðba − ca þ 1Þ v12ðxÞ: ð23Þ

At the vicinity of the regular singular points, the angular
functions SIi ¼ xm1=2ðx − 1Þm2=2vIiðxÞ behave as

S01ðxÞ∝ xm1=2; S02ðxÞ∝ x−m1=2; ðx→ 0Þ;
S11ðxÞ∝ ð1− xÞm2=2; S12ðxÞ∝ ð1− xÞ−m2=2; ðx→ 1Þ:

ð24Þ

General solution for the angular function is given
by a linear combination of the independent solutions.
Depending on the signs of m1, m2, we need to choose
an appropriate pair of SIi to maintain the regularity at
x ¼ 0, 1. As an example, let us consider the case with
m1 ≥ 0 and m2 ≥ 0. In this case, S01ðxÞ and S11ðxÞ are
regular at x ¼ 0 and x ¼ 1, respectively. The two regularity
conditions at both x ¼ 0 and x ¼ 1 are satisfied if v01ðxÞ
and v11ðxÞ are linearly dependent. From the connection
formula (22), we see that they are linearly dependent if the
coefficient of v12ðxÞ vanishes, i.e.,

aa ¼ −j; or ba ¼ −j; ð25Þ

where j is a non-negative integer. This condition singles out
special discrete values of λ. By solving the above relation,
we can write down the eigenvalue λ as

λ ¼ Ξ
�
ð2jþm1 þm2Þð2jþm1 þm2 þ 2Þ

− 2ωaðm1 �m2Þ −
a2

L2
ðm1 �m2Þ2

�
þ a2ðω2 þ μ2Þ:

ð26Þ

SOUSUKE NODA and HAYATO MOTOHASHI PHYS. REV. D 106, 064025 (2022)

064025-4



Recall that the plus/minus sign corresponds to the each case
of a1 ¼ �a2 ¼ a. This expression recovers the formula
obtained in [73] for the case a1 ¼ a2 ¼ a and m1 ≥ 0
and m2 ≥ 0.
Similarly, for the other three cases, m1 ≥ 0 and m2 < 0,

m1 < 0 and m2 ≥ 0, and m1 < 0 and m2 < 0, we can
identify the regularity condition from the pole of the
gamma functions in the coefficient of singular solution
for each case. As a result, with a1 ¼ �a2 ¼ a and arbitrary
m1, m2, the angular function is regular at both singular
points, i.e., SðxÞ ∝ xjm1j=2 at x ¼ 0 and SðxÞ ∝ ð1 − xÞjm2j=2
at x ¼ 1, if the eigenvalue takes the value

λ ¼ Ξ
�
lðlþ 2Þ − 2ωaðm1 �m2Þ −

a2

L2
ðm1 �m2Þ2

�
þ a2ðω2 þ μ2Þ;

l≡ 2jþ jm1j þ jm2j; ð27Þ

where j is a non-negative integer. Note that the definition of
l is generalized from the one used in [73]. Here, l and m1,
m2 play a role of the orbital quantum number, and magnetic
quantum numbers, respectively. For the nonrotating case
with a ¼ 0, the eigenvalue reduces to λ ¼ lðlþ 2Þ. Note
that l ≥ jm1j þ jm2j holds, and hence l takes even/odd
values if the sum jm1j þ jm2j is even/odd. Specifically,
possible combinations for lower l are

l ¼ 0∶ ðm1; m2Þ ¼ ð0; 0Þ;
l ¼ 1∶ ðm1; m2Þ ¼ ð0;�1Þ; ð�1; 0Þ;
l ¼ 2∶ ðm1; m2Þ ¼ ð0; 0Þ; ð�1;�1Þ; ð0;�2Þ; ð�2; 0Þ;
l ¼ 3∶ ðm1; m2Þ ¼ ð0;�1Þ; ð�1; 0Þ; ð�1;�2Þ;

ð�2;�1Þ; ð0;�3Þ; ð�3; 0Þ; ð28Þ

where any double signs are allowed, which should not be
conflated with the sign corresponding to a1 ¼ �a2. For the
above counting classified by the value of l, one should be
careful to exhaust all possible cases for j. For instance, for
l ¼ 2, ðm1; m2Þ ¼ ð0; 0Þ originates from j ¼ 1, whereas
ðm1; m2Þ ¼ ð�1;�1Þ; ð0;�2Þ; ð�2; 0Þ come from j ¼ 0.
Note also that combinations such as ðl; m1; m2Þ ¼
ð2;�1; 0Þ; ð3;�2; 0Þ; ð3;�1;�1Þ are not allowed.

2. Different-rotation case

If ja1j ≠ ja2j, the equation for the angular function is
transformed into the Heun equation. For the angular
equation (13), we apply the transformation

x ¼ sin2 θ;

SðθÞ ¼ xm1=2ðx − 1Þm2=2ðx − x0Þτ=2wðxÞ; ð29Þ

with

x0 ¼
Ξ1

Ξ1 − Ξ2

; τ ¼ ωLþm1

a1
L

þm2

a2
L
; ð30Þ

to transform it into the Heun equation

d2w
dx2

þ
�
γa
x
þ δa
x−1

þ ϵa
x−x0

�
dw
dx

þ αaβax−qa
xðx−1Þðx−x0Þ

w¼0;

ð31Þ

where parameters are defined as

qa ¼
1

2

�
ðτ þm1Þðm1 þ 1Þ þ x0ðm1 þm2 þm1m2Þ −

x0
2Ξ1

½λ − μ2a21 − ω2L2 þ Ξ2ðτ2 −m2
1 −m2

2Þ�
�
;

αa ¼
1

2

	
m1 þm2 þ τ þ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2L2 þ 4

q 

; βa ¼

1

2

	
m1 þm2 þ τ þ 2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2L2 þ 4

q 

;

γa ¼ m1 þ 1; δa ¼ m2 þ 1; ϵa ¼ τ þ 1; ð32Þ

and they satisfy

γa þ δa þ ϵa ¼ αa þ βa þ 1; x0 ≠ 0; 1;∞: ð33Þ

Note that x0 becomes singular if a1 ¼ �a2. In this case we
need a separate treatment presented in Sec. II B 1.
The Heun equation (31) possesses four regular singular

points located at x ¼ 0; 1; x0;∞. Along the same lines as
the equal-/opposite-rotation case, we can construct power
series solution at the vicinity of each regular singular point,

which are denoted by wIiðxÞ, and can be written down in
terms of local Heun function. Namely, two local solutions
at x ¼ 0 are given by

w01ðxÞ ¼ Hlðx0; qa; αa; βa; γa; δa; xÞ; ð34Þ

w02ðxÞ ¼ x1−γaHlðx0; ðx0δa þ ϵaÞð1 − γaÞ þ qa; αa

þ 1 − γa; βa þ 1 − γa; 2 − γa; δa; xÞ; ð35Þ
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and two local solutions at x ¼ 1 are given by

w11ðxÞ ¼ Hlð1 − x0; αaβa − qa; αa; βa; δa; γa; 1 − xÞ; ð36Þ

w12ðxÞ ¼ ð1 − xÞ1−δaHlð1 − x0; ðð1 − x0Þγa þ ϵaÞð1 − δaÞ
þ αaβa − qa;αa þ 1 − δa; βa

þ 1 − δa; 2 − δa; γa; 1 − xÞ; ð37Þ

where Hl denotes the local Heun function [60–63].
The asymptotic behaviors of these solutions are as

follows:

w01ðxÞ¼1þOðxÞ; w02ðxÞ¼x1−γa ½1þOðxÞ�; ðx→0Þ;
w11ðxÞ¼1þOð1−xÞ;
w12ðxÞ¼ð1−xÞ1−δa ½1þOð1−xÞ�; ðx→1Þ; ð38Þ

Therefore, the behavior of the angular function SIi ¼
xm1=2ðx − 1Þm2=2wIiðxÞ at the vicinity of the singular point
is the same as (48). For the angular function to satisfy the
regularity at the singularity point, we choose S01 and S11 for
positive magnetic quantum numbers and S02 and S12
for negative ones. To satisfy both regularity conditions at
x ¼ 0 and x ¼ 1, the linear dependence of the solutions is
required, which is represented by the following condition:

Wx½w0i; w1j� ¼ 0; i ¼
�
1; ðm1 ≥ 0Þ;
2; ðm1 < 0Þ;

j ¼
�
1; ðm2 ≥ 0Þ;
2; ðm2 < 0Þ; ð39Þ

where Wx½f; g� ¼ f dg
dx −

df
dx g is a Wronskian. The above

condition determines the eigenvalue λ in (13) and (14) for
the different-rotation case a1 ≠ �a2.
For practical computation, we shall obtain the eigenvalue

λ by applying a root-finding algorithm to (39), and hence
we need to input an initial value of λ for the algorithm.
As the initial value, we can adopt the eigenvalue for the
equal-/opposite-rotation case given in (27). Note that, while
the expression (27) provides the eigenvalue λ for the equal-
rotation case, we can use it as a sufficiently good initial
value for the root-finding algorithm for the different-
rotation case so long as the difference between the spin
parameters is not so large. If the difference between the spin
parameters is large, we can begin with obtaining λ for the
equal-/opposite-rotation case and iterate the root-finding
process by gradually increasing or decreasing the spin
parameter until it reaches the value of interest.

C. Radial equation

The radial equation (14) has four regular singular points
both for equal-/opposite-rotation and different-rotation
cases. Regarding r2 as an independent variable, the four

regular singular points are located at r2 ¼ r20; r
2þ; r2−;∞. By

applying the transformation

z ¼ r2 − r2þ
r2 − r20

;

R ¼ zθþ=2ðz − 1Þσ=2ðz − z0Þθ−=2yðzÞ; ð40Þ

where

z0 ¼
r2− − r2þ
r2− − r20

; σ ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ μ2L2

q
;

θk ¼
iðω −m1Ωk;1 −m2Ωk;2Þ

2πTk
; ð41Þ

we transform the radial equation into the Heun equation

d2y
dz2

þ
�
γr
z
þ δr
z − 1

þ ϵr
z − z0

�
dy
dz

þ αrβrz − qr
zðz − 1Þðz − z0Þ

y ¼ 0;

ð42Þ

where

qr ¼
1

4

�
ω2L2 − λ− r2þμ2

r2− − r20
L2 þ 2z0ðσθþ þ σ − θþÞ

þ ðθþ þ θ−Þðθþ þ θ− þ 2Þ− θ20

�
;

αr ¼
1

2
ðσþ θþ þ θ− þ θ0Þ; βr ¼

1

2
ðσþ θþ þ θ− − θ0Þ;

γr ¼ 1þ θþ; δr ¼ −1þ σ; ϵr ¼ 1þ θ−: ð43Þ

Note that γrþδrþϵr¼αrþβrþ1 holds. After the trans-
formation, the four regular singular points r2¼ r20;r

2þ;r2−;∞
are mapped to z ¼ ∞; 0; z0; 1, respectively. For the AdS
case we are interested in the scattering problem at the
region rþ < r < ∞, which is now 0 < z < 1 for the new
variable.
The sets of the linearly independent local solutions are

given as

y01ðzÞ ¼ Hlðz0; qr; αr; βr; γr; δr; zÞ; ð44Þ

y02ðzÞ ¼ z1−γrHlðz0; ðz0δr þ ϵrÞð1 − γrÞ þ qr; αr

þ 1 − γr; βr þ 1 − γr; 2 − γr; δr; zÞ; ð45Þ

around z ¼ 0 and

y11ðzÞ ¼ Hlð1 − z0; αβ − qr; αr; βr; δr; γr; 1 − zÞ; ð46Þ
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y12ðzÞ ¼ ð1 − zÞ1−δrHlð1 − z0; ðð1 − z0Þγr þ ϵrÞð1 − δrÞ
þ αrβr − qr; αr þ 1 − δr;

βr þ 1 − δr; 2 − δr; γr; 1 − zÞ: ð47Þ

around z ¼ 1, respectively.
A caveat is that the above formulation does not work for

exactly massless case. For the massless case, since δr ¼ 3,
the characteristic exponents around z ¼ 1, which are 0 and
1 − δr, are separated by an integer. In this case, the local
Heun function used in (47) does not exist. We should thus
modify the definition of y12ðzÞ to another independent
solution by using a logarithmic function. While our
formulation would also work for massless case after this
modification, for the following, we do not discuss this case
for simplicity, and focus on the massive case μ ≠ 0. As
another caveat, the method with the Heun function cannot
be used in the exact extremal case since the number of the
regular singular points will be changed, but we can
compute near extremal case unless Δ ¼ 0 has a double
root at the outer horizon.

D. Connection coefficients and asymptotic behavior

In this subsection, we discuss the asymptotic behavior
of the solutions of the radial equation (14) in terms of the
local Heun functions around z ¼ 0 and z ¼ 1 given in
(44)–(47). First, the asymptotic behaviors of these solutions
are as follows:

y01ðzÞ¼1þOðzÞ; y02ðzÞ¼ z1−γr ½1þOðzÞ�;
y11ðzÞ¼1þOð1−zÞ; y12ðzÞ¼ð1−zÞ1−δr ½1þOð1−zÞ�;

ð48Þ

which shall be used when we identify the in/outgoing
waves below.
The local Heun functions at z ¼ 0 are related to the local

Heun functions at z ¼ 1 via linear combinations

y01ðzÞ ¼ C11y11ðzÞ þ C12y12ðzÞ; ð49Þ

y02ðzÞ ¼ C21y11ðzÞ þ C22y12ðzÞ: ð50Þ

The connection coefficients can be obtained as a ratio of the
Wronskians as

C11 ¼
Wz½y01; y12�
Wz½y11; y12�

; C12 ¼
Wz½y01; y11�
Wz½y12; y11�

;

C21 ¼
Wz½y02; y12�
Wz½y11; y12�

; C22 ¼
Wz½y02; y11�
Wz½y12; y11�

; ð51Þ

where Wz½u; v� ¼ u dv
dz −

du
dz v. Note that from (14) it holds

that, for linearly independent solutions ya, yb,

zγrðz − 1Þδrðz − zrÞϵrWz½ya; yb� ¼ const: ð52Þ

Therefore, while the Wronskian itself is not constant, the
ratio between two Wronskians is constant.
Conversely, the local Heun functions at z ¼ 1 can be

expressed as

y11ðzÞ ¼ D11y01ðzÞ þD12y02ðzÞ; ð53Þ

y12ðzÞ ¼ D21y01ðzÞ þD22y02ðzÞ; ð54Þ

where

�
D11 D12

D21 D22

�
¼

�
C11 C12

C21 C22

�−1

¼ Wz½y11; y12�
Wz½y01; y02�

�
C22 −C12

−C21 C11

�
ð55Þ

namely,

D11 ¼
Wz½y11; y02�
Wz½y01; y02�

; D12 ¼
Wz½y11; y01�
Wz½y02; y01�

;

D21 ¼
Wz½y12; y02�
Wz½y01; y02�

; D22 ¼
Wz½y12; y01�
Wz½y02; y01�

: ð56Þ

Considering a boundary condition suitable for problems
to solve such as wave scattering, Hawking radiation, or QN
modes, one can compute the reflection amplitude, grey-
body factor, or QN frequencies with the above connection
coefficients between local Heun functions. Recalling (40),
let us define

RIi ¼ zθþ=2ðz − 1Þσ=2ðz − z0Þθ−=2yIiðzÞ; ð57Þ

with I ¼ 0, 1 and i ¼ 1, 2. To identify whether each mode
RIi corresponds to the in/outgoing wave at an asymptotic
region, we examine the asymptotic behavior of the tortoise
coordinate, which is defined by

dr�
dr

¼ ðr2 þ a21Þðr2 þ a22Þ
r2Δ

; ð58Þ

and we obtain

r� ¼
1

4πT0

ln

���� r−r0
rþr0

����þ 1

4πTþ
ln

����r−rþ
rþrþ

����þ 1

4πT−
ln

���� r−r−
rþr−

����:
ð59Þ

Note that the region rþ < r < ∞ of our interest amounts to
−∞ < r� < 0. At the vicinity of each regular singular
point, the tortoise coordinate behaves as
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r� →
1

4πTk
ln

���� r − rk
2rk

����þ ckðr → rkÞ;

ck ≔
X
j≠k

1

4πTj
ln

���� rk − rj
rk þ rj

����: ð60Þ

Conversely, we obtain

r − rk ≃ 2rke−4πckTke4πTkr� ðr → rkÞ: ð61Þ

Using (48) and (61), the asymptotic behavior of the
radial function at r → rþ (z → 0) are given by

R01 ≃ A01eiω̃r� ;

A01 ≔
�
4r2þe−4πcþTþ

r2þ − r20

�
θþ=2ð−z0Þθ−=2ð−1Þσ=2; ð62Þ

R02 ≃ A02e−iω̃r� ;

A02 ≔
�
4r2þe−4πcþTþ

r2þ − r20

�−θþ=2
ð−z0Þθ−=2ð−1Þσ=2; ð63Þ

where ω̃ ≔ ω −m1Ωþ;1 −m2Ωþ;2. Therefore, R01 and R02

correspond to the outgoing and ingoing modes, respec-
tively. On the other hand, the asymptotic behavior of the
radial function at r → ∞ (z ≃ 1) are given by

R11 ≃ A11r−σ; A11 ≔ ð1 − z0Þθ−=2ðr20 − r2þÞσ=2; ð64Þ

R12 ≃A12rσ−4; A12 ≔ ð1− z0Þθ−=2ð−1Þσ=2ðr2þ − r20Þ2−σ=2:
ð65Þ

Since σ ≥ 4, R11 and R12 are the decaying and growing
modes, respectively.
Using the asymptotic behaviors of the radial functionswith

proper boundary conditions, it is possible to compute the
quantities such as the QN frequency and the greybody factor.
Note that in our formalism, we do not consider any approxi-
mation, hence it can beutilized for parameters in awide range.
Before discussing the QN modes and the greybody

factor, let us explicitly write down coefficients for the
asymptotic form of the radial function, i.e.,

RðrÞ → B1r−σ þ B2rσ−4; ðr → ∞Þ: ð66Þ

The coefficients B1 and B2 connect the local solution around
the event horizon, which we assume satisfies a certain
boundary condition, and the local solution at the infinity.
The asymptotic form and the coefficients play an important
role in the context of the gauge/gravity correspondence [78].
For instance, let us impose the purely ingoing boundary
condition at the black hole horizon, RðrÞ → e−iω̃r� for
r → rþ. The solution satisfying the boundary condition
can be written as RðrÞ ¼ R02ðrÞ=A02. Taking into account of
the definitions of yðzÞ (40) and the connection coefficients
(50), and using the asymptotic forms (64) and (65), the
coefficients B1 and B2 can be written as

B1 ¼
C21A11

A02

¼ ð−1Þ−σ=2Wz½y02; y12�
Wz½y11; y12�

�
z0 − 1

z0

�
θ−=2

�
4r2þe−4πcþTþ

r2þ − r20

�
θþ=2ðr20 − r2þÞσ=2;

B2 ¼
C22A12

A02

¼ Wz½y02; y11�
Wz½y12; y11�

�
z0 − 1

z0

�
θ−=2

�
4r2þe−4πcþTþ

r2þ − r20

�
θþ=2

ðr2þ − r20Þ2−σ=2: ð67Þ

It is also straightforward to obtain analytic expressions of
coefficients corresponding to the purely outgoing boundary
condition at the black hole horizon. In the context of the
gauge/gravity correspondence, these coefficients are basi-
cally computed numerically in the literature (see, e.g., [79]).
A holographic interpretation is given based on the GKP-
Witten relation [17,18], which represents the duality between
the partition function of the quantum field theory on the AdS
boundary and the on-shell action of the bulk classical
gravity. Although a specific application is beyond the scope
of the present paper, the above analytic expressions in terms
of the exact solution of the Klein-Gordon equation may be
useful for investigation of dual phenomena.

III. QUASINORMAL MODES

The QN modes are damped oscillations with a series of
discrete frequencies that satisfy a certain set of boundary

conditions. Here, we require the purely ingoing boundary
condition at the black hole horizon and the Dirichlet or
decaying boundary condition at the conformal infinity. In
our formalism, this boundary condition corresponds to
setting the coefficients of the growing mode to be zero in
the following IN mode:

RinðrÞ ¼
�
R02ðrÞ; ðr → rþÞ;
C21R11;sðrÞ þ C22R12ðrÞ; ðr ≫ rþÞ:

ð68Þ

→

�
A02e−iω̃r� ; ðr → rþÞ;
C21A11r−σ þ C22A12rσ−4; ðr ≫ rþÞ:

ð69Þ

As A12 ≠ 0 generally, we search frequencies satisfying
C22 ¼ 0 to obtain the QN mode frequencies. This strategy
is also adopted recently in [50] to study the QN modes of
the Kerr-AdS5 with m1, m2 ≥ 0. However, as discussed in
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Sec. II B, negative m1 and m2 are also allowed. Below,
we consider the QN modes with all possible magnetic
quantum numbers.
In Figs. 1 and 2, we show QN modes for relatively small

spin parameters. We consider all possible magnetic quan-
tum numbers for l ¼ 2 listed in (28), including negativem1

and m2. The degeneracy between QN modes for non-
rotating black hole is broken by nonvanishing spin param-
eter. This Zeeman-like splitting is well-known in the QN
modes for the four-dimensional Kerr black hole [20,80],
and now confirmed for the ones for the Kerr-AdS5. As
shown in Fig. 1, for the equal-rotation case a1 ¼ a2 ¼ a,
there are three series of QN modes depending on the value
of the total magnetic quantum number m1 þm2. The same
set of curves is obtained for the opposite-rotation case since

the QN modes basically depend on the combinations m1a1
and m2a2.
In Fig. 2, we consider the case with different angular

momenta a1 ≠ �a2. We fix the ratio as a1 ¼ 1.3a2, and
float a2 as 0.1,0.2, and 0.25. In this case, each of the three
curves in Fig. 1 for the equal-/opposite-rotation case splits
into three curves even for the same value of m1 þm2. For
example, the case m1 þm2 ¼ 0 includes three cases
ðm1; m2Þ ¼ ð0; 0Þ; ð1;−1Þ; ð−1; 1Þ, which are degenerate
for the equal-/opposite-rotation case but distinct for the
different angular momenta case. As a result, there exist
nine series of QN modes in total. Thus, the degeneracy of
the QN modes is two-fold structure: The first degeneracy
is nonrotation vs rotation, which also exists in the four-
dimensional Kerr case, and the second degeneracy is
equal-/opposite-rotation vs different-rotation, which is
peculiar to the higher-dimensional black holes.
There exists another series of QN modes called type II in

[50], of which real parts are localized near the threshold
frequency for superradiance: Re½ωQNM�∼m1Ωþ;1þm2Ωþ;2.
For this sequence, the absolute values of the imaginary part
of the QN frequencies become smaller as the spin parameter
gets closer in the extremal limit. The real parts of the
QN frequencies approach zero in the extremal limit as
m1Ωþ;1 þm2Ωþ;2 → 0 in this limit. For lower spin values,
these modes move away from the imaginary axis.
Furthermore, we find that there exists another sequence

of purely imaginary modes corresponding tom1 þm2 ¼ 0.
In Fig. 3, we present fundamental modes and overtones for
these sequences for the case of near extremal equal spin
a1 ¼ a2 ¼ 0.9999. The two sequences on the both sides of
the imaginary axis match the modes studied in [50]. We
find the purely imaginary modes which are almost at the
middle points of the above modes. Their real parts are
almost vanishing within the numerical error. As we shall

FIG. 1. QN mode frequencies of l ¼ 2 modes for equal-
rotation case a1 ¼ a2 ¼ a with M ¼ 5; L ¼ 1; μ ¼ 0.01. The
large black dot is QN mode frequency for nonrotating case with
a ¼ 0. For a ≠ 0, the spectrum splits into three series depending
on the value of m1 þm2. Solid, dashed, dot-dashed curves
correspond to the QNMs with m1 þm2 ¼ 0, −2, 2, respectively.

FIG. 2. QN mode frequencies of l ¼ 2 modes for different-
rotation case (a1 ¼ 1.3a2) with M ¼ 5; L ¼ 1; μ ¼ 0.01. The
large black dot is QN mode frequency for a1 ¼ a2 ¼ 0.
Compared to the equal-rotation case in Fig. 1, there are extra
splitting due to the multivalued angular momenta.

FIG. 3. Overtones of the QN mode frequencies of l ¼ 2modes
for a1 ¼ a2 ¼ 0.9999 with M ¼ 5; L ¼ 1; μ ¼ 0.01. The color-
ing is given as m1 þm2 ¼ −2 (red), m1 þm2 ¼ 0 (black),
m1 þm2 þ 2 (blue).
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see below, the real parts of these modes are still almost
vanishing even for lower spin values.
Note that the purely imaginary modes satisfy the proper-

ties of the type II QN modes, and therefore may belong to
the type II QN modes. Indeed, the real part of the type II
QN modes, m1Ωþ;1 þm2Ωþ;2, should be vanishing for the
equal-rotation case with m1 þm2 ¼ 0, which is consistent
with the purely imaginary modes found here. The purely
imaginary modes have almost equal spacing, and the
interval almost coincides with 2πTþ. As an example, the
value of the imaginary part of fifth and fourth overtones in
Fig. 3 are −9.55255 and −8.00414, respectively, and hence
the interval is 1.5481, which is indeed close to 2πTþ ¼
1.5487. For higher overtones the interval gets closer to
2πTþ. The equidistant property for the imaginary parts is
known for four-dimensional near extremal Kerr spacetime
as derived with analytic computation by Hod [29], and also
is observed for the type II QN modes in the Kerr-AdS5
spacetime [50].
As mentioned in Sec. I, the purely imaginary modes

also show up for the Schwarzschild, Kerr, and other
spacetimes and play an important role. It is known that
such modes have peculiar properties [30–32] (see also

Appendix A in [20]). For instance, the nature of the
boundary conditions at the Schwarzschild algebraically
special frequency is known to be extremely subtle, and such
modes actually consist of the QN modes and so-called total
transmission modes. At this moment, the physical meaning
of the purely imaginary modes for the scalar field in the
Kerr-AdS5 spacetime is not clear. They may or (partially)
may not be the QN modes. Hence, we call them just purely
imaginary modes, though we may call them QN modes
sometimes for simplicity when we treat them together with
other series of QN modes.
Let us focus on the longest-lived modes for each of the

three sequences characterized by the value of m1 þm2 in
Fig. 3. In Figs. 4 and 5, we show the splitting of these
modes with large spin parameter for the equal-rotation case
and different-rotation case, respectively. The equal-rotation
case is depicted in Fig. 4. Although the formulation with
the local Heun function does not work to compute the QN
modes for the exactly extremal case, it seems that all the
sequences converge to a common value. On the other hand,
Fig. 5 shows the case of different rotations but the ratio
between the two spin parameters is fixed as 1 − a2 ¼
1.4ð1 − a1Þ. There are nine sequences by reflecting the

FIG. 4. The split of QN modes of l ¼ 2 for equal-rotation case (a1 ¼ a2) with M ¼ 5; L ¼ 1; μ ¼ 0.01. The range of the spin
parameter is from 0.9 to 0.9999 with the equal intervals: 0.01998. The coloring is given as m1 þm2 ¼ −2 (red), m1 þm2 ¼ 0 (black),
m1 þm2 þ 2 (blue). The right panel is an enlarged view of the left panel for the region around a1 ¼ a2 ¼ 0.9999.

FIG. 5. QN frequencies ofl ¼ 2modes for different-rotation casewith fixed ratio (1 − a2 ¼ 1.4ð1 − a1Þ) withM ¼ 5; L ¼ 1; μ ¼ 0.01.
We take a1 as a variable and a2 is given by the above relation. The range of a1 is from 0.9999 to 0.9 with the equal intervals: 0.01998.
The coloring is the same as Fig. 4: m1 þm2 ¼ −2 (red), m1 þm2 ¼ 0 (black), m1 þm2 þ 2 (blue). The line type corresponds to the
magnitude relation between m1 and m2: m1 ¼ m2 (solid), m1 > m2 (dot-dashed), m1 < m2 (dotted).
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difference of the spin parameters. This splitting is the same
behavior as the case of another sequence for the low spin
case shown in Figs. 1 and 2. While the absolute values of
the imaginary parts of the QN modes in Figs. 1 and 2
increase as the spin parameter increases, the imaginary
parts for the QN modes in Figs. 4 and 5 show the opposite
dependency on the spin parameter.
In Fig. 6, we keep track of the longest-lived modes for

each of the three sequences for the equal-rotation case
shown in Fig. 3 with relatively wide range of the spin
parameter: a ¼ 0.13, 0.14,…, 0.98, 0.99, 0.9999. They are
close to each other for the near extremal case, and move
away as the spin parameter decreases. While their imagi-
nary parts are almost the same for the near extremal case,
as the spin parameter decreases, the purely imaginary mode
has slightly larger amplitude as shown in the right panel
of Fig. 6.
It is interesting to note that a special behavior of the pure

imaginary modes have been reported in different context.
In [43], the critical behavior of nonhydrodynamic QN
modes is explored in the context of so-called 1-R charge
black hole (1RCBH) model. In Fig. 8 in [43], it is shown
that the purely imaginary mode goes to−i∞ as μ=T reaches
the threshold value μ=T ¼ π=

ffiffiffi
2

p
, where μ and T are the

Uð1Þ R-charge chemical potential and temperature of
the black brane background, respectively. The threshold
μ=T ¼ π=

ffiffiffi
2

p
corresponds to a critical point of the phase

diagram of the 1RCBH model. A similar behavior is also
studied in [40,41] for the purely imaginary modes of the D7
brane black hole embedding solution.
It is nontrivial for the Kerr-AdS5 case whether the purely

imaginary modes may go to −i∞ at some threshold spin
parameter while the modes on the both sides of the
imaginary axis remain finite. If it is the case, the threshold
spin would have some physical meaning. However, we
confirm that, at least down to a ¼ 0.13, the longest-lived
purely imaginary mode exists with the finite imaginary part
being almost the same as the modes on the both sides of the
imaginary axis. Nevertheless, the purely imaginary modes

may or may not have the above characteristic behavior, if
we consider more general case such as a Kerr-Newman-
AdS5 black hole. We hope to address this issue in
future work.

IV. GREYBODY FACTOR AND SUPERRADIANCE

In this section, we consider a wave scattering problem in
the Kerr-AdS5 spacetime to define the greybody factor,
which is a transmittance of the Hawking radiation from the
black hole. Naively, similar to the case of asymptotically
flat or de Sitter spacetime, one may think that it would be
defined as the ratio of the coefficients in the UP mode,
which would be given by:

RupðrÞ ¼
�
DðupÞeiω̃r� þDðrefÞe−iω̃r� ; ðr → rþÞ;
DðdecayÞr−σ; ðr ≫ rþÞ:

ð70Þ

However, the asymptotic behavior of the Kerr-AdS5 space-
time prevents us doing it in the sense that this boundary
condition requires the decaying solution rather than the
outgoing solution at the conformal infinity. Therefore, we
take the other way to compute the greybody factor based on
the idea adopted in [55–57]. To this end, we consider IN
mode instead of the UP mode in the present spacetime by
defining an ingoing and outgoing waves and evaluate the
reflection coefficient. Then, subtracting the reflection
coefficient from the unity, the greybody factor can be
evaluated [55–57]. Strictly speaking, this flipping method
between IN and UP mode exactly holds only for the
asymptotically flat or de Sitter spacetime because the
effective potential defined by the radial equation has similar
behavior at the black hole horizon and at the conformal
infinity or cosmological horizon, respectively. However,
the method works for the evaluation of the greybody factor
in the case that it is possible to identify the ingoing and
outgoing waves in a far region from the black hole horizon.

FIG. 6. QN frequencies of l ¼ 2 modes for equal-rotation case a1 ¼ a2 ¼ a. The range of the spin parameter is from a ¼ 0.13 to
a ¼ 0.9999 with the interval 0.01. The coloring is given as m1 þm2 ¼ −2 (red), m1 þm2 ¼ 0 (black), m1 þm2 þ 2 (blue). The right
panel shows the spin parameter dependence of the imaginary part of the purely imaginary modes (black) and that of the modes on the
both sides of the imaginary axis (blue), respectively.
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A. Radial equation in the tortoise coordinate
and the effective potential

First, to clarify the wave behavior in the asymptotically
AdS spacetime, let us rewrite the radial equation (14) in the
tortoise coordinate (58) and introduce an effective potential
for the scalar wave. Rescaling the radial function RðrÞ
in (14) as

R ¼ HY; H ≔
�

r
ðr2 þ a21Þðr2 þ a22Þ

�
1=2

; ð71Þ

and using the tortoise coordinate (58), Eq. (14) yields

d2Y
dr2�

− VeffY ¼ 0; ð72Þ

Veff ¼ −r2H4Δ2

�ðrΔÞ0
rΔ

H0

H
þ
�
H0

H

�0
þ
�
H0

H

�
2
�

−
�
ω−

a1m1Ξ1

r2 þ a21
−
a2m2Ξ2

r2 þ a22

�
2

þ r2Δ
ðr2 þ a21Þ2ðr2 þ a22Þ2

× ½r2ðλþ μ2r2Þ þ ða1a2ω− a2m1Ξ1 − a1m2Ξ2Þ2�:
ð73Þ

In Fig. 7, we show the effective potential Veff as a function
of r�, r, and a dimensionless inverse radial coordinate
u ¼ ωL2=r, which we shall make use of in the next
subsection.
As shown in Fig. 7, there exists a potential barrier as

r → ∞which corresponds to the AdS boundary. Therefore,
the wave scattering problem is quite different from that for
asymptotically flat spacetimes. Specifically, while the
ingoing wave near the black hole horizon can be identified
clearly since the potential is almost constant, it should be
noted that the identification of the ingoing and outgoing
waves around the local bottom near the AdS boundary is
not always possible. As we will see in the following
sections, it is legitimate for limited parameter regions.

B. Greybody factor with far region approximation

As a first step, let us explain how to define the greybody
factor based on the far region approximation with r=L ≫ 1
[57]. With the far region approximation, we can transform
the radial equation (14) into the Bessel’s differential
equation. Introducing the dimensionless inverse radial
coordinate u ¼ ωL2=r, the radial equation (14) can be
rewritten under the approximation u ≪ ωL as

u2
d2R
du2

− 3u
dR
du

þ
��

1 −
λ

ω2L2

�
u2 − μ2L2

�
R ¼ 0 ð74Þ

The linearly independent solutions of this differential
equation are given in terms of the Bessel and Neumann
functions, of which asymptotic behaviors are1

RJ ¼ u2Jσ−2
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ=ðω2L2Þ
q

u


≃ AJ

1

rσ
; ð77Þ

RN ¼ u2Nσ−2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ=ðω2L2Þ

q
u


≃ AN

1

rσ
þ BNrσ−4;

ð78Þ

where

AJ ¼
4ð1 − λ

ω2L2Þσ−22
Γðσ − 1Þ

�
ωL2

2

�
σ

; ð79Þ

FIG. 7. The effective potential Veff as a function of three different radial coordinates r�, r, and u ¼ ωL2=r for the parameter set
L=M ¼ 10, a1 ¼ 0.5, a2 ¼ 0.25, l ¼ 2, m1 ¼ 1, m2 ¼ 1.

1To derive this form, we used the relation between the Bessel
and Neumann functions:

NνðuÞ ¼
JνðuÞ cos νπ − J−νðuÞ

sin νπ
; ð75Þ

and their asymptotic form near u ¼ 0:

JνðauÞ ¼
2−νaν

Γð1þ νÞ u
ν;

NνðauÞ ¼ −
2−νaν cos ðπνÞ

π
Γð−νÞuν − 2νa−ν

π
ΓðνÞu−ν:

ð76Þ
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AN¼−
cosðπσÞΓð2−σÞ22−σ

π

�
1−

λ

ω2L2

�σ−2
2 ðωL2Þσ; ð80Þ

BN ¼ −
Γðσ − 2Þ2σ−2

π

�
1 −

λ

ω2L2

�2−σ
2 ðωL2Þ4−σ: ð81Þ

To extract the in/outgoing properties of the solutions in
the far region, it is more convenient to use another set of

solutions based on the Hankel functions Hð1Þ
σ−2 ¼ Jσ−2 þ

iNσ−2 and Hð2Þ
σ−2 ¼ Jσ−2 − iNσ−2, since their asymptotic

forms are nothing but the ingoing and outgoing waves,
respectively. Note that in order to define an appropriate
wave scattering problem for introducing the notion of
greybody factor with potential barrier around the AdS
boundary, at least the following condition is necessary: The
approximation is valid from the far region to the local
bottom of Veff , and the connection between the Hankel
functions and the ingoing solution at the black hole horizon
is possible. To satisfy the condition, the following addi-
tional restriction to the parameters is introduced in [57]:

μ ¼ 0; ω ≪ Tþ: ð82Þ

To check the “in/outgoingness” explicitly, let us intro-
duce a trial functional

Im½lnϕ�; ð83Þ

for a wave function ϕ, which is the imaginary part of the
phase of ϕ. To clarify the property of this trial functional, in
Fig. 8, we show simple examples such as a superposition of
plane waves (left panel) in addition to the case of the Hankel
functions (right panel). By definition, if (83) grows (decays)
linearly as a function of r, the input wave function ϕ is
purely outgoing (ingoing). As shown in the left panel of
Fig. 8, the deviation from the linear behavior indicates the
breaking of its in/outgoingness. The right panel of Fig. 8
depicts the independent solution of the wave equation in
terms of the Hankel functions as a function of u. At u → 0,
they approach constant since they are superposition of
growing and decaying modes and hence the imaginary part
of the phase remains constant. On the other hand, the Hankel
functions Hð1Þ and Hð2Þ indeed correspond to the ingoing
and outgoingmodes, respectively, around the local bottom of
the effective potential shown in Fig. 7. Note also that the
behavior of the in/outgoing waves is opposite when we use
the inverse radial coordinate u. Namely, if (83) grows
(decays) linearly as a function of u, the input wave function
ϕ is purely ingoing (outgoing).
Using the above basis of the solutions, the IN mode can

be written as

RinðrÞ ¼
(
e−iω̃r� ; ðr → rþÞ;
C1u2H

ð1Þ
σ−2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ=ðω2L2Þ

p
u


þ C2u2H

ð2Þ
σ−2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ=ðω2L2Þ

p
u


; ðr ≫ rþÞ;

ð84Þ

and the greybody factor Γlm1m2
ðωÞ is defined by

Γlm1m2
ðωÞ ¼ 1 −

����C2

C1

����2: ð85Þ

To reiterate, the approach with the far region approxi-
mation works if the following condition is satisfied:

(a) The scalar field is massless, and the far region
approximation with the Hankel functions works.
Namely, the condition (82) is satisfied.

C. Greybody factor with Heun function

In this subsection, we construct a method to extract the
ingoing and outgoing waves with the exact solution R11 and

FIG. 8. The test function for plane waves for r and the Hankel functions for u ∝ 1=r with M−1=2L ¼ 10, M−1=2a1 ¼
0.5;M−1=2a2 ¼ 0.25;l ¼ 2; m1 ¼ 1; m2 ¼ 1. Growing lines (curves) for r represents outgoing wave, whereas decaying lines (curves)
for u ingoing waves. The yellow curves in the left panel shows that the outgoingness of eiωr is partially broken by the term 0.5e−iωr.
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R12 in terms of the local Heun functions, and obtain
the coefficients for the IN mode in more general regime.
Since we have exact solutions of the radial equation (14)
around the regular singular points at z ¼ 0ðr → rþÞ and
z ¼ 1ðr → ∞Þ, it is possible to write down the coefficients
exactly, which we will denote as Cin and Cout here. They
can be represented as linear combinations of the connection
coefficients (51), as we shall see below.
We would like to construct the IN mode corresponding

to (84) with the exact solution in terms of the local Heun
functions. From the asymptotic behavior (62), (63), it is
clear that R02 satisfies the purely ingoing condition at the
black hole horizon. From the connection formula (50), R02

is related to the local solutions around z ¼ 1 with the
connection coefficients C11 and C12 given in (51).
Therefore, the IN mode is exactly written as

RinðrÞ ¼
�
R02ðrÞ; ðr → rþÞ;
C21R11ðrÞ þ C22R12ðrÞ; ðr ≫ rþÞ:

ð86Þ

Asmentioned above, from the asymptotic behavior (64), (65),
we see that R11 and R12 are decaying and growing modes,
respectively. The situation here is similar to the one with the
far region approximation, where we change the basis of
the solutions from the Bessel and Neumann functions to the
Hankel functions, which describe in/outgoing modes.
Applying the same strategy, we can write down

RinðrÞ ¼
�
R02ðrÞ; ðr → rþÞ;
CoutRþðrÞ þ CinR−ðrÞ; ðr ≫ rþÞ;

ð87Þ

with

R−ðrÞ ¼
AJ þ iAN

A11

R11ðrÞ þ i
BN

A12

R12ðrÞ; ð88Þ

RþðrÞ ¼
AJ − iAN

A11

R11ðrÞ − i
BN

A12

R12ðrÞ: ð89Þ

Note that R− and Rþ correspond to the Hankel functions
Hð1Þ andHð2Þ, respectively. For defining these functions, we
compared the asymptotic forms of the Bessel and Neumann
functions [(77) and (78)] and those of R11 and R12 [(64)
and (65)]. Comparing (86) and (87), we obtain

Cin ¼
A11A12

2iAJBN

�
i
BN

A12

C21 þ
AJ − iAN

A11

C22

�
; ð90Þ

Cout ¼
A11A12

2iAJBN

�
i
BN

A12

C21 −
AJ þ iAN

A11

C22

�
: ð91Þ

As the radial equation (14) is the Strum-Liouville type
equation, the following quantity with the Wronskian is
conserved:

rΔWr½R1; R2� ¼ const; ð92Þ

where Wr½R1; R2� ¼ R1
dR2

dr − R2
dR1

dr . Using this, we obtain
the greybody factor corresponding to (85) in terms of the
connection coefficients for the local Heun functions as

Γlm1m2
ðωÞ ¼ 1 −

����Cout

Cin

����2 ¼ 1 −
ji BN

A12
C21 −

AJþiAN
A11

C22j2
ji BN

A12
C21 þ AJ−iAN

A11
C22j2

:

ð93Þ

As we have seen, A11, A12, AJ, AN, BN are written down
explicitly, whereas C21, C22 are written as the ratio of the
Wronskians between local Heun functions.
For our method to work well, it is necessary that R− and

Rþ behave as ingoing and outgoing waves, respectively.
Combined with the condition on the mass of the scalar field
explained at the end of Sec. II C, the condition under which
our method works can be stated as follows:
(b) The scalar field is massive μ ≠ 0, and out/ingoingness

of the exact solution R� holds at some finite range
around the local bottom of the effective potential near
the AdS boundary.

Ultimately, out/ingoingness of R� should be checked by,
e.g., the imaginary part of the phase (83). However, it
would be also useful to have analytical criteria. Rough
criteria for our method to work can be written as

ε≔
2π

ωμL2
≪ 1; η≔

2π

ω

����V 00
effðubÞ

VeffðubÞ
����
1
2

≪ 1; VeffðubÞ< 0;

ð94Þ

where ub is the position of the local bottom of Veff and 00
represents the second derivative with respect to r. Physical
meaning of each inequality is as follows. The first inequal-
ity ensures that the wavelength and the Compton length of
the scalar field are sufficiently smaller than the AdS scale,
whereas the second inequality stems from the condition that
the curvature of the local bottom of the effective potential
is much smaller than the wavelength. In other words, the
effective potential is sufficiently flat around the local
bottom. The third condition, the negativity of VeffðubÞ
ensures the existence of propagating wave modes around
the local bottom. In Fig. 9 we show the parameter region
where the criteria (94) are satisfied. We note that, at least
for the parameter region of our interest, the condition
VeffðubÞ < 0 is always satisfied if η ≪ 1 is satisfied. Our
method works well for relatively large ωL and small μL but
not for the exactly massless case μL ¼ 0, for which the
method with the far region approximation works.
Once more, note that the evaluation of the allowed

parameter region is just rough criteria. To conclude whether
our method works or not for a given parameter set and to
define a proper wave scattering problem, it is necessary to
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check whether the linear behavior of the trial functional
(83) of R� holds at some finite range around the local
bottom of the effective potential.
Now, let us compare the two approaches: the one with the

far region approximation described in Sec. IV B, and the one
with the Heun function. The far region approximation works
for the low-frequency massless scalar wave, and the upper
bound (82) on the frequency is determined by the Hawking
temperature. On the other hand, it is worthwhile to note that
our method does not have an upper bound for the range of
validity in the frequency domain, as shown in Fig. 9.
Actually, for larger ω, our method works better. Therefore,
once one confirms that the condition (b) is satisfied for small
ω, one can apply our method for larger ω too.

It is clear that the two conditions (a) and (b) are
exclusive. As shown in Fig. 9, the parameter regions of
the validity of each of the two methods do not overlap. In
Fig. 8, we demonstrated the case where the far region
approximation works, but for the massless case the solution
(47) with the local Heun function does not exist as we
explained at the end of Sec. II C. Therefore, in this case, it is
not possible to compare the two methods quantitatively.
In the rest of this subsection, we compare the two

methods for the remaining two cases:
Case 1 The method with the Heun function works, but
the method with the Hankel fuctions does not [(b) is
satisfied, but not (a)].

Case 2 Neither method works [(a) and (b) are not
satisfied].

For each case, we pick up a representative parameter set,
which is given below, and is shown in Fig. 9. We shall plot
the effective potential as a function of the inverse radial
coordinate u to clarify the position of the local bottom.
Then, around the local bottom, we investigate the trial
functional (83) to check if the solutions can be identified as
in/outgoing waves. We also plot R� composed of the local
Heun functions and compare them to the Hankel functions.
Hereafter, we set M ¼ 1 and all other parameters with

dimension are normalized by M.

1. Case 1

For the Case 1, we choose a representative set of the
parameters as L ¼ 100, a1 ¼ 0.5, a2 ¼ 0.25, l ¼ 2,
m1 ¼ 1, m2 ¼ 1, ω ¼ 0.1, μ ¼ 0.01. In Fig. 10, we show
the effective potential as a function of u. We see that there is
a wide plateau with negative potential value, and expect
that the in/outgoing waves are solutions in this region.
For these parameters, ε ¼ 0.63, η ¼ 0.45. Hence, the
criteria (94) are satisfied, which is also a good signal.
Indeed, we see that the linear behavior of the imaginary part
of the phase of R� holds around the local bottom from the
first panel of Fig. 11. Although the tilt of the imaginary part
of the phase is not constant, reflecting the slow variation of
the effective potential around the local bottom, we can
observe that R� exhibit periodic oscillations. Hence, the

FIG. 9. Contours of ε, η, and VeffðubÞ forM¼1,M−1=2a1¼0.5,
M−1=2a2 ¼ 0.25, l ¼ 2, m1 ¼ 1, m2 ¼ 1. Our method can be
utilized for parameter sets in the green shaded region. The magenta
thick line on ωL axis depicts the parameter region (82) where
the method based on the far region approximation works. Its cutoff
is given by TþL ¼ 10.2. Parameter sets corresponding to Case 1
and Case 2 are marked with black dots.

FIG. 10. The effective potential as a function of u for the parameter set L ¼ 100, a1 ¼ 0.5, a2 ¼ 0.25, l ¼ 2, m1 ¼ 1, m2 ¼ 1,
ω ¼ 0.1, μ ¼ 0.01. The right panel is the close-up plot around the local bottom. Note that small u corresponds to large r, and the AdS
boundary is located at u ¼ 0.

SPECTROSCOPY OF Kerr-AdS5 SPACETIME WITH THE … PHYS. REV. D 106, 064025 (2022)

064025-15



condition (b) is satisfied. However, (a) is not satisfied since
the deviation of the Hankel functions from the exact
solutions cannot be ignored and are no longer valid as
approximated solutions. As shown in the first panel in
Fig. 11, the phases of the Hankel function are deviated from
the ones for the exact solutions. The functions themselves
are also deviated from the exact solutions, as shown in the
second and third panels in Fig. 11.
As mentioned above, since we confirm that the method

works well for ω ¼ 0.1, we can also apply the method for
high frequency regime. In Fig. 12, we show the greybody
factor for ðl; m1; m2Þ ¼ ð2; 1; 1Þ and ð2; 1;−1Þ modes for
0.1 ≤ ω ≤ 2. As expected, it transitions from 0 to 1 as the
frequency increases. We can also see superradiance in the
low frequency region as the negative value of the greybody
factor. For the present spin parameters, the critical frequen-
cies for superradiance given by m1Ωþ;1 þm2Ωþ;2 are 0.4
for ðl; m1; m2Þ ¼ ð2; 1; 1Þ and 0.116 for ðl; m1; m2Þ ¼
ð2; 1;−1Þ, respectively, which are consistent with
Fig. 12. Note that we have checked out/ingoingness for
ðl; m1; m2Þ ¼ ð2; 1;−1Þ case as well before computing the
greybody factor although we show ðl; m1; m2Þ ¼ ð2; 1; 1Þ
in Fig. 11.

On the other hand, the method with the far region
approximation only works at the low frequency regime.
For the present case, the allowed region is ω<Tþ¼0.102.
This is not sufficient to cover the frequency region where
the greybody factor transitions from 0 to 1.

2. Case 2

For the Case 2, we choose a representative set of
the parameters as L ¼ 100, a1 ¼ 0.5, a2 ¼ 0.25, l ¼ 2,
m1 ¼ 1, m2 ¼ 1, ω ¼ 0.067, μ ¼ 0.01. For these para-
meters, ε ¼ 0.93, η ¼ 1.34, and the flat region around the
local bottom of the effective potential in Fig. 13 is narrower
than that of Fig. 10, so we expect that R� do not behave as
out/ingoing waves. Indeed, in this case, (b) is not satisfied
since the linear behavior of R� breaks down around the
local bottom as shown in the first panel of Fig. 14. Also, the
second and third panels of Fig. 14 indicate that the errors of
the Hankel functions are quite large for larger u.

V. HAWKING EVAPORATION OF Kerr-AdS5

In this section, we discuss the evaporation of a Kerr-
AdS5 black hole via Hawking radiation with massive scalar

FIG. 11. The trial functional (left) and the Hankel functions and exact solutions R� (middle and right) for l ¼ 2, m1 ¼ 1, m2 ¼ 1
mode. The left panel shows the linear behavior of R� holds around the local bottom. In the middle and right panels, one can see the
difference between the Hankel functions and the exact solutions cannot be ignored for large u around the local bottom.

FIG. 12. Greybody factors with superradiance; For the present spin parameters a1 ¼ 0.5 and a2 ¼ 0.25, the critical frequencies for
superradiance given by m1Ωþ;1 þm2Ωþ;2 are 0.4 for ðl; m1; m2Þ ¼ ð2; 1; 1Þ and 0.116 for ðl; m1; m2Þ ¼ ð2; 1;−1Þ, respectively. For
frequencies near the transition of the greybody factor from 0 to 1, the peak of the effective potential becomes almost zero.
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field for different-rotation case. In general, Hawking
radiation includes several spin fields other than scalar field:
graviton, photon, and neutrino(s) [52–54]. Therefore, to
obtain the evaporation rate, it is necessary to take into
account the Hawking radiation of these fields. Here, as a
first step toward the rigorous evaluation of the evaporation
rate, we focus on the contribution of the scalar field to the
evaporation. If the master equation of the other fields also
take the form of the Heun’s equation, it is straightforward to
extend the following argument to include those fields.
Another caveat is that the scalar field we consider is not
massless due to the choice of the set of local Heun function
as mentioned in Sec. II C. The mass introduces a lower
cutoff on the energy that an emitted particle may have,
which eliminates the lower-energy part of the spectrum that
a massless particle would have [54]. Therefore, nonzero
rest masses of the emitted particles can have a large impact
upon the evaporation rates unless μ=Tþ ≪ 1. As we shall
see below, in the present case, the lower cutoff is suffi-
ciently small, and we can evaluate the contribution from the
scalar field.
For asymptotically AdS black holes, the number of

emitted particles as the Hawking radiation is given by
plugging the Hawking temperature into 1=ðeω̃=Tþ − 1Þ
[81,82], which is the same as the asymptotically flat case
[52–54]. Using this particle number spectrum and the
greybody factor, we define the spectrum of mass

evaporation and angular momentum evaporation via
Hawking radiation as

d2M
dtdω

¼ −1
2π

X
lm1m2

ωΓlm1m2
ðωÞ

eω̃=Tþ − 1
;

d2J 1

dtdω
¼ −1

2π

X
lm1m2

m1Γlm1m2
ðωÞ

eω̃=Tþ − 1
;

d2J 2

dtdω
¼ −1

2π

X
lm1m2

m2Γlm1m2
ðωÞ

eω̃=Tþ − 1
; ð95Þ

Basically, our method becomes more invalid for lower
frequency. Therefore, we first check the lower bound of the
allowed parameter region using the scheme introduced in
the previous subsection for small ω. Also a systematic way
to check if our method works for all possible angular and
magnetic quantum numbers ðl; m1; m2Þ is necessary.
Figure 15 depicts l-dependence of η for a fixed ω. As
m1, m2-dependence is very weak, we plot m1 þm2 ¼ l
case here. From Fig. 15, we see that η becomes larger for
higher l modes. If we need to consider l up to lmax,

2 at
first, η for lmax with small ω should be checked to search
the lower bound frequency ωmin for which η remains to be
so small that R� are out/ingoing waves. Once we find the

FIG. 14. The trial functional and explicit plots of the Hankel functions and exact solutions R�. The first panel shows the linear
behavior of R� breaks down around the local bottom. Moreover, the difference between the Hankel functions and the exact solutions is
quite large. Therefore, neither method works.

FIG. 13. The effective potential as a function of u. The right panel is the close-up plot around the local bottom. The flat region around
the local bottom is slightly narrower than Veff in the Case 1 (Fig. 10).

2The cutoff lmax is determined by confirming the contribution
of lmax modes to an evaporation rate is small enough to be
ignored compared to that of lower l modes.
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lower bound ωmin for lmax, η is sufficiently small for all
other ðl; m1; m2Þ up to lmax. Then, we can compute
greybody factors up to l ¼ lmax correctly.
Here, we choose the parameters in the Case 1 in the

previous section and considerω in the range 0.1 ≤ ω ≤ 4.0.
For ω that is allowed in our method, we can compute the
spectra of mass and spin evaporations, and obtain plots as
functions of ω. If those spectra converge to zero at the
endpoints of the allowed region in the frequency domain,
we can numerically integrate the spectrum to obtain
evaporation rates dM=dt, dJ 1=dt, and dJ 2=dt. As we
mentioned above, the nonzero mass introduces a lower
cutoff to the integral in the frequency domain. However, the

mass parameter here is μ ¼ 0.01 and it is smaller than the
Hawking temperature as μ=Tþ ≈ 0.1, so the effect of the
rest mass is expected to be not so significant. Moreover,
μ ¼ 0.01 is smaller than the lower bound of the range of the
allowed frequency in our method. Therefore, we integrate
spectra in the range 0.1 ≤ ω ≤ 4.0.
As shown in Figs. 16 and 17, in the spectra of Hawking

evaporation (95), the contributions of the lower l modes
are relatively large and those of l ¼ 5 modes are very
small. After integration in the frequency domain, the
contributions of l ¼ 5 modes are about 0.5% of the
summation up to l ¼ 5. Therefore, for the present case
with a1 ¼ 0.5, a2 ¼ 0.25, adding up to l ¼ 5 modes is
enough to compute the evaporation rates. Even around
the most contributed frequency to the spectrum of mass
evaporation, ε and η are sufficiently small for our method to
work, that is, the out/ingoingness of R� holds. Specifically,
ðε; ηÞ ¼ ð0.015; 0.117Þ for l ¼ 0, ω ¼ 0.4, ðε; ηÞ ¼
ð0.007; 0.028Þ for l ¼ 1, ω ¼ 0.8, and ðε; ηÞ ¼
ð0.005; 0.011Þ for l ¼ 2, ω ¼ 1.25. This tendency holds
for the spectra of angular momenta evaporation. Then,
integrating over ω, the values of evaporation rates are
obtained as

dM
dt

¼ −5.2 × 10−4;
dJ 1

dt
¼ −3.1 × 10−4;

dJ 2

dt
¼ −1.1 × 10−4: ð96Þ

FIG. 16. Spectra of mass evaporation for l ¼ 0, 1, 2, 3, 4, 5 with L ¼ 100, a1 ¼ 0.5, a2 ¼ 0.25, μ ¼ 0.01. The right panel depicts
log10j d2Mdtdω j around the peak.

FIG. 17. Spectra of angular momentum evaporation for l ¼ 1, 2, 3, 4, 5 with L ¼ 100, a1 ¼ 0.5, a2 ¼ 0.25, μ ¼ 0.01.

FIG. 15. l-dependence of η for a1 ¼ 0.5, a2 ¼ 0.25, ω ¼ 0.1,
μ ¼ 0.01, m1 þm2 ¼ l case. η becomes gradually large for l.
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This result indicates that the larger angular momentum
evaporates faster.
Again, although the lower bound of those integrals

should be given by the mass, ω ¼ μ ¼ 0.01, we take the
lower bounds as ω ¼ 0.1 since the allowed frequency
for the present parameter set is 0.1 ≤ ω ≤ 4.0. Around
ω ¼ 0.1, the spectra of the angular momenta is sufficiently
close to zero, but the mass spectrum is not due to the
contribution from the l ¼ 0 mode as shown in Fig. 16.
Therefore, the low-frequency contribution to the mass
evaporation is not taken into account precisely, while the
contribution from the low-frequency tail is expected to be
not so large.
Before closing this section, let us make comments on the

mass of the scalar field and black hole. Here, as a
demonstration, we choose μ ¼ 0.01 with L ¼ 100, but it
is possible to take much smaller mass parameter as long as
μL is small enough, which admits out/ingoingness of R�.
Moreover, although we set M ¼ 1 and consider a small
black hole here, our method can also be applied to large
black hole case as long as the existence of in/outgoing
waves at a far region is guaranteed. In that case, a
modulation due to the resonance reflecting the AdS scale
would be expected.

VI. CONCLUSION

In this paper, we investigated the QN frequencies, grey-
body factor, and evaporation rates for the test massive scalar
field in the Kerr-AdS5 spacetime by employing the exact
solution of the Klein-Gordon equation in terms of the local
Heun function. The local solutions at the event horizon
asymptotically approach to the in/outgoing modes, whereas
the local solutions at the infinity asymptotically approach to
the growing/decaying modes. The exact solution allows us to
search the QN modes and clarify their rich structures. We
also developed a method to extract in/outgoing waves near
the AdS boundary, which we summarize below, and calcu-
lated the greybody factor. We then investigated the Hawking
radiation of Kerr-AdS5 black hole.
We calculated QN modes by requiring the ingoing

boundary condition at the event horizon and the decaying
boundary condition at the conformal infinity. We checked
the flow of QN modes with respect to the spin parameters.
Depending on the value of total magnetic quantum number,
the degeneracy of the QN modes is broken and multiple
branches show up for nonvanishing spin parameters, in
parallel to the Zeeman splitting. Furthermore, in addition to
the known sequences of QN modes, we found the existence
of the purely imaginary modes. A caveat is that the purely
imaginary modes found in the present paper may or
(partially) may not be the QN modes since there is some
subtlety on the purely imaginary modes [30–32], which
requires an independent study.
The purely imaginary modes are aligned on the negative

imaginary axis at almost equal intervals. In the near

extremal case, the interval is approximately given by
2πTþ, where Tþ is the Hawking temperature at the event
horizon. The purely imaginary modes have also been found
in different context, where the critical behavior has been
observed, i.e., the purely imaginary mode goes to −i∞ at
some threshold parameter. In our calculation, such a critical
behavior was not observed for the equally rotating
Kerr-AdS5 with the common spin parameter down to
a ¼ 0.13. Nevertheless, we stress that it does not neces-
sarily imply that the critical behavior does not exist for
more general setup such as a Kerr-Newman-AdS5 black
hole. A deeper understanding of the behavior and physical
meaning of the purely imaginary modes for the asymp-
totically AdS spacetime requires a further investigation. It
would be also intriguing to clarify their role in the context
of gauge/gravity and/or fluid/gravity correspondence.
We explored the Hawking radiation of the Kerr-AdS5

black hole by calculating the greybody factor for the test
massive scalar field. Here, as a first step toward the rigorous
evaluation of the evaporation rate by taking into account
other fields such as photon, graviton, and neutrinos, we
focused on the contribution from the Hawking radiation of
the scalar field, and demonstrate the computation of the
evaporation rates for the mass and spins of the black hole.
Our result indicates that the larger angular momentum
evaporates faster. It seems that the values of the two angular
momenta may converge to the equal rotation case at least in
the regime which we focused on. Of course, to grasp the
comprehensive property of the contribution of the
scalar field to the evaporation of Kerr-AdS5 black hole
such as how the initial state of the black hole determines
spin-up/down by Hawking evaporation, it is necessary to
analyze those evaporation speeds in a wide range over
a1-a2 parameter space. We leave this analysis for
future work.
Let us summarize our method for the computation of the

greybody factor and the evaporation rates established in the
present paper. First, one needs to check the “in/outgoing-
ness,” i.e., if the exact solutions in terms of the Heun
function describe the in/outgoing waves around the local
minimum of the effective potential by the following
prescription:
(1) Find ub, which is the minimum positive root

of V 0
effðuÞ ¼ 0, where u ¼ ωL2=r. The radius rb ¼

ωL2=ub is the location of the local minimum of the
effective potential at the vicinity of the AdS
boundary.

(2) Check if VeffðubÞ < 0 and if the exact solution
in terms of the local Heun function describes in/
outgoing waves at the vicinity of u ¼ ub. As rough
criteria, one can check if ϵ ≪ 1 and η ≪ 1 are
satisfied as given in (94).

(3) More precise criterion is to check if the imaginary
parts of the phase (83) of the exact solutions R� are
linear in u.

SPECTROSCOPY OF Kerr-AdS5 SPACETIME WITH THE … PHYS. REV. D 106, 064025 (2022)

064025-19



Our method with the Heun function applies to a wide
parameter region, complementary to the previous work for
the massless scalar field. Ultimately, it is safe to check if the
local Heun function describes in/outgoing waves for all
ðl; m1; m2Þ and ω of interest. However, understanding a
typical tendency of the parameters for the criteria (94), one
could skip to check most of the parameter region and only
check the most dangerous parameter set. We note that the
parameter η is prone to increase as l increases orω decreases
(see Figs. 9 and 15). Also, it seems that η depends onm1,m2

weakly, so it would be sufficient to check the in/outgoing-
ness for some arbitrary m1, m2. One can then proceed to the
calculation of the Hawking evaporation:
(1) Set some fiducial truncation of l, say lmax. Find the

smallest frequency ωmin for l ¼ lmax for which the
exact solutions describe in/outgoing waves.

(2) Calculate the power spectrum of the evaporation
rates with the greybody factor, and check if the
power spectrum is sufficiently small at lmax
and ωmin.

(3) If the contribution at lmax and ωmin is non-negli-
gible, go back to the first step, take larger lmax, and
iterate the steps until the exact solutions remain to
describe in/outgoing waves at sufficiently large lmax
and small ωmin, where the contribution of the power
spectrum to the evaporation rate is negligible.

(4) After the above iteration converges, one can inte-
grate the power spectrum over ω and obtain the
evaporation rates.

Although the in/outgoingness is not quantitatively defined,
one can quantify it by using ϵ, η or the imaginary part of the
phase of the exact solutions. Of course, if one defines some
threshold for in/outgoingness, lmax and ωmin would change
depending on the threshold. Nevertheless, such a change is
not crucial so long as the contribution at lmax and ωmin to the
evaporation rates is sufficiently small. The in/outgoingness is
more manifest for smaller l, from which the dominant
contribution to the evaporation rates comes. Therefore, the
above strategy is robust. While we focused on the

contribution from the scalar field, if the master equation
of other fields such as photon, graviton, and neutrinos also
take the form of the Heun equation, it is straightforward to
apply our method to those fields.
In addition to the ones mentioned above, there are

several other directions to extend the present work.
While we calculated the QN modes of the massive scalar
field in Kerr-AdS5 spacetime by imposing the ingoing and
the Dirichlet boundary condition at the event horizon and
the conformal infinity, respectively, one can also impose
other boundary condition known as Robin boundary
condition at the conformal infinity in more general cases
[38,39,83,84]. It would be interesting to apply our formal-
ism to the QN modes with other boundary condition. Our
method presented in this paper may be useful for relatively
detailed computation of gauge/gravity correspondence
since we employ the exact solution of the perturbation
equation and one can obtain QN modes, greybody factor
with high precision for a wide range of parameters.
Moreover, it is also interesting to generalize our formalism
to Kerr-Newman-AdS5 spacetime, and to explore QN
modes and Hawking evaporation. Additionally, the analytic
expression of the coefficients for the asymptotic form
of the scalar field may be useful for an application in
the context of gauge/gravity correspondence such as the
GKP-Witten relation. We leave these investigations for
future work.
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