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The motion of charged particles in spacetimes containing a submanifold of constant positive or negative
curvature is considered, with the electromagnetic tensor proportional to the volume two-form form of the
submanifold. In the positive curvature case, this describes spherically symmetric spacetimes with a
magnetic monopole, while in the negative curvature case, it is a hyperbolic spacetime with magnetic field
uniform along hyperbolic surfaces. Constants of motion are found by considering Poisson brackets defined
on a phase space with gauge-covariant momenta. In the spherically-symmetric case, we find a
correspondence between the trajectories on the Poincaré cone with equatorial geodesics in a conical
defect spacetime. In the hyperbolic case, the analogue of the Poincaré cone is defined as a surface in an
auxiliary Minkowski spacetime. Explicit examples are solved for the Minkowski, AdS4 × S2, and the
hyperbolic AdS-Reissner–Nordström spacetimes.

DOI: 10.1103/PhysRevD.106.064023

I. INTRODUCTION

An important aspect in the study of the motion of
charged particles under Lorentz forces is the existence of
constants of motion. If such quantities can be found, then
the accessible regions of the particle’s configuration space
can be clearly identified, making the analysis of the
problem tractable.
A central example for this paper is the Poincaré cone [1]

of a nonrelativistic charged particle moving in the field of a
magnetic monopole [2–8]. The cone arises from the SOð3Þ
symmetry of the system, leading to conserved quantities
which can then be used to show that the trajectories of the
particles are confined to a cone. A subclass of this problem
is that of charged particles on a unit sphere with a constant
magnetic field [9].
In another class of problems, one consideres the motion

of charged particles confined on a hyperbolic plane, in the
presence of magnetic field that is uniform over the plane.
Such problems admit SOð1; 2Þ symmetry, and the equa-
tions of motion reveal two sets of solutions. For “strong”
magnetic fields, the particles move along circles in the
Poincaré half plane. While for “weak” magnetic field
the circles intersect the boundary of the half plane. That
is, the motion is unbounded and the particle escapes to
infinity [10–12].
In this paper, we wish to consider relativistic versions of

the problems mentioned above. In particular, in the first
class of problems we consider charged particles in space-
times with SOð3Þ isometry. That is, the spacetime metric

contains a sphere S2 as a submanifold. The magnetic field
is given by a Maxwell tensor that is proportional to the
volume form of S2 and describes a field due a magnetic
monopole. Despite the spacetime being curved, we can still
obtain a Poincaré cone if an appropriate radial coordinate r
can be taken together with the angular coordinates on S2 to
describe the spherical coordinate system of an auxiliary
Euclidean space R3. Then the trajectories lie on a Poincaré
cone residing in this auxiliary space.
Particle motion with Poincaré cones have previously

been studied, for instance, around magnetically charged
Reissner–Nordström spacetimes [13–15], and black hole/
solitons with a compact extra dimension stabilized by a
magnetic flux [16]. Recently, shadows and null geodesics
around this latter system has been studied as well [17]. In
this paper, we study the generic situation of any spacetime
with spherical symmetry with a magnetic monopole field.
It will be shown that the full analytical solution in the
spherical section applies to all spacetimes with the requisite
properties. We will also establish a correspondence
between charged particle motion on a Poincaré cone with
geodesics1 on spacetimes with a conical singularity.
In the second class of problems, we consider spacetimes

with SOð2; 1Þ isometry. For this case the spacetime metric
contains a hyperbolic submanifold H2 of constant negative
curvature. The magnetic field is a Maxwell tensor

*yenkheng.lim@gmail.com; yenkheng.lim@xmu.edu.my

1To be precise, by geodesics we refer to trajectories obeying
the spacetime geodesic equation ẍμ þ Γμ

αβ _x
α _xβ ¼ 0, as opposed to

charged particle motion with Lorentz forces which obeys
ẍμ þ Γμ

αβ _x
α _xβ ¼ eFμ

ν _xν.
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proportional to the volume form ofH2 and describes a field
that is constant along hyperbolic sections of the spacetime.
The SOð2; 1Þ symmetries provide the constants of motion
which then leads to an analogue of the Poincaré cone.
However, H2 cannot be embedded in R3. Rather, it has a
natural embedding in Minkowski spacetime R2;1, therefore
the H2-analogue of the Poincaré cone lives in a spacetime
with Lorentzian signature.
The rest of paper is organized as follows. In Sec. II we

outline a general procedure to find constants of motion.
Magnetic fields in spherical symmetry are considered in
Sec. III, and those with hyperbolic symmetry are consid-
ered in Sec. IV. Conclusions and closing remarks are given
in Sec. V. We work in units where the speed of light is
c ¼ 1 and our convention for Lorentzian signature
is ð−;þ; � � � ;þÞ.

II. SYMMETRIES AND KILLING VECTORS

Let us begin in a general setting of an (nþ 2)-
dimensional spacetime M, described in local coordinates
with the metric ds2 ¼ gμνdxμdxν. The spacetime carries an
electromagnetic field F ¼ dA, where A is the one-form
potential A ¼ Aμdxμ. A charged particle moving in this
spacetime is described by the Lagrangian

L ¼ 1

2
gμν _xμ _xν þ eAμ _xμ; ð2:1Þ

where over-dots denote derivatives with respect to an affine
parameter τ, scaled such that, for timelike particles, we have
gμν _xμ _xν ¼ −1 along its motion. The parameter e denotes
the charge per unit mass of the particle. The canonical
momenta is obtained form the Lagrangian by

pμ ¼
∂L
∂_xμ

¼ gμν _xν þ eAμ: ð2:2Þ

We pass to the Hamiltonian by performing the Legendre
transform H ¼ pμ _xμ − L ¼ 1

2
gμνðpμ − eAμÞðpν − eAνÞ.

However, in the presence of Lorentz interaction, it is often
convenient to work with the gauge-covariant momenta
Pμ ¼ pμ − eAμ [3,9,18]. Then the Hamiltonian simply
reads

H ¼ 1

2
gμνPμPν: ð2:3Þ

The phase space P is then described by the coordinates
ðxμ; PνÞ. The symplectic form on P is [18]

Ω ¼ dxμ ∧ dPμ −
e
2
Fμνdxμ ∧ dxν: ð2:4Þ

Given an observable f∶P → R, we define its associated
Hamiltonian vector field Xf by

iXf
Ω ¼ df; ð2:5Þ

where i denotes the contraction iXΩ ¼ ΩðX; ·Þ. The
Poisson bracket of two observables f and g is defined
by ff; gg ¼ ΩðXf; XgÞ. In coordinates, it is

ff; gg ¼ ∂f
∂xμ

∂g
∂Pμ

−
∂f
∂Pμ

∂g
∂xμ

þ eFμν
∂f
∂Pμ

∂g
∂Pν

: ð2:6Þ

In particular, we have the following commutation relations
for the phase-space coordinates

fxμ; xνg ¼ 0; fxμ; Pνg ¼ δμν ; fPμ; Pνg ¼ eFμν:

In the following we use Poisson brackets to search for
constants of motion for charged particles described by a
Hamiltonian of the form (2.3). Then an observable Q is a
constant of motion if it Poisson-commutes with the
Hamiltonian, fQ;Hg ¼ 0. Using van Holten’s prescription
[9], let us suppose that the constants of motion are linear in
the momenta. That is, Q is written as

Q ¼ Ψþ ξμPμ; ð2:7Þ

where the scalar function Ψ and vector ξμ depend only on
the position variables xμ. Then, finding such a Q amounts
to finding Ψ and ξμ such that fQ;Hg ¼ 0. This leads to

gμνPνð∂μΨþ eFλμξ
λÞ þ PμPν∇ðμξνÞ ¼ 0: ð2:8Þ

If the ξμ are the components of a Killing vector ξ ¼ ξμ∂μ,
the second term of Eq. (2.8) vanishes by Killing’s equation.
What remains is to solve

∂μΨþ eFλμξ
λ ¼ 0: ð2:9Þ

In the language of differential forms, the above equation
can be written as dΨþ eiξF ¼ 0.
In this paper we wish to consider spacetimes with

magnetic fields that are uniform over geometries with
constant curvature. Spherically symmetric magnetic fields
(magnetic monopoles) are uniform on constant-radius
spherical surfaces, and its Maxwell two-form F is propor-
tional to a volume form on S2. Similarly, magnetic fields
that are uniform over a flat plane or hyperbolic plane has F
proportional to the volume form of zero or negative
curvature, respectively.
To this end express our spacetimes in the form of warped

products of Mn ×N 2. Taking xα ¼ ðx1;…; xnÞ to be
coordinates on Mn and ya ¼ ðy1; y2Þ to be coordinates
on N 2, the metric is

ds2 ¼ hαβdxαdxβ þ CðxÞḡabdyadyb; ð2:10Þ
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where CðxÞ is a function of xα ¼ ðx1;…; xnÞ only. The
electromagnetic fields are then written as F ¼ Bω, where ω
is the volume two-form on N 2 and B is a constant
parameter. In coordinates,

Fμν ¼
�
B

ffiffiffiffiffijḡjp
ϵab; if μν ¼ ab;

0; otherwise;
ð2:11Þ

where ḡ≡ detðḡabÞ is the determinant of the metric on N 2.
This form solves the Maxwell equation on the spacetime.
If N 2 is a constant-curvature space, it is maximally

symmetric and therefore has three independent Killing
vector fields. Let us denote them by ξðiÞ ¼ ξaðiÞ∂a for

i ¼ 1; 2; 3. In this situation, Eq. (2.8) reads

∂aΨðiÞ þ eB
ffiffiffiffiffi
jḡj

p
ϵbaξ

b
ðiÞ ¼ 0; i ¼ 1; 2; 3; ð2:12Þ

or, expressed as differential forms,

dΨðiÞ þ eBiξðiÞω ¼ 0: ð2:13Þ

The existence of a solution Ψ to this equation is equivalent
to the statement of whether the one-form iξðiÞω is exact.
Now, if N 2 has a finite fundamental group, any one-form
on it is exact.2 In fact, we are considering constant-
curvature spaces for N 2, which are simply connected.
Therefore a solutionΨðiÞ exists, and therefore we have three
constants of motion

QðiÞ ¼ ΨðiÞ þ ξaðiÞPa; ð2:14Þ

for i ¼ 1; 2; 3.
Suppose that the gauge potential is the form A ¼ Aadya

such that F ¼ dA ¼ Bω, where the components Aa depend
only on coordinates ya only (and not on any xα). Then, in
terms of the canonical momenta, the Hamilton–Jacobi
equation under the metric (2.10) reads

1

2

�
hαβ

∂S
∂xα

∂S
∂xβ

þ1

C
ḡab

�
∂S
∂ya

−eAa

��
∂S
∂yb

−eAb

��
þ∂S
∂τ

¼0:

ð2:15Þ

This can be partially separated by the ansatz S ¼ 1
2
τþ

Φðx1;…; xnÞ þWðy1; y2Þ. This leads to a separation con-
stant K such that

hαβ
∂Φ
∂xα

∂Φ
∂xβ

¼ −
K
C
− 1; ð2:16Þ

ḡab
�
∂W
∂ya

− eAa

��
∂W
∂yb

− eAb

�
¼ K: ð2:17Þ

Thus the Hamilton-Jacobi equation decomposes into two
separate problems. The first (2.16) is the equation for a
Hamilton’s characteristic function Φ for particle motion on
Mn, with an effective potentialK=C þ 1, and second (2.17)
is equivalent to Hamilton’s characteristic function W of a
nonrelativistic motion of a charged particle of energy 1

2
K

onN 2. WhenN 2 has constant curvature, Eq. (2.17) can be
solved exactly, independent of (2.16).

III. MAGNETIC FIELDS WITH SPHERICAL
SYMMETRY

If N 2 is a two-sphere S2, its metric can be written in
usual spherical coordinates as dΩ2

ð2Þ ¼ dθ2 þ sin2 θdϕ2.

Therefore the metric (2.10) takes the form

ds2 ¼ hαβdxαdxβ þ CðxÞðdθ2 þ sin2 θdϕÞ: ð3:1Þ

The Maxwell two-form is

F ¼ B sin θdθ ∧ dϕ; ð3:2Þ

which comes from the exterior derivative of potential
A ¼ −B cos θdϕ. The isometries on this space are gener-
ated by the Killing vectors

ξð1Þ ¼ − sinϕ∂θ − cot θ cosϕ∂ϕ; ð3:3aÞ

ξð2Þ ¼ cosϕ∂θ − cot θ sinϕ∂ϕ; ð3:3bÞ

ξð3Þ ¼ ∂ϕ: ð3:3cÞ

For F and ξðiÞ given by (3.2) and (3.3), respectively,
Eq. (2.12) is solved for ΨðiÞ, we obtain the constants of
motion QðiÞ ¼ ΨðiÞ þ ξaðiÞPa. Explicitly, they are [9]

Qð1Þ ¼ −eB sin θ cosϕ − Pθ sinϕ − Pϕ cot θ cosϕ; ð3:4aÞ

Qð2Þ ¼ −eB sin θ sinϕþ Pθ cosϕ − Pϕ cot θ sinϕ; ð3:4bÞ

Qð3Þ ¼ −eB cos θ þ Pϕ: ð3:4cÞ

A. Analysis of charged-particle motion on N 2 = S2

In this subsection consider the intrinsic problem of a
(nonrelativistic) particle moving on a unit sphere S2. This
problem was considered studied by van Holten in [9]. Here,
we will provide a detailed discussion of the problem, along
with its exact solution. We will also review how the
Poincaré cone is defined.
The metric of a sphere of radius a is given by

ds2 ¼ a2ðdθ2 þ sin2 θdϕ2Þ; ð3:5Þ2The author thanks Mounir Nisse for pointing this out.
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and the magnetic potential is A ¼ −B cos θdϕ. The mag-
netic field strength F ¼ B sin θdθ ∧ dϕ is constant on the
sphere.
The Lagrangian for the nonrelativistic problem is

L ¼ a2

2
ð_θ2 þ sin2 θ _ϕ2Þ − eB cos θ _ϕ: ð3:6Þ

The canonical momenta are

pθ ¼ a2 _θ; pϕ ¼ a2 sin2 θ _ϕ − eB cos θ; ð3:7Þ

whereas the gauge-covariant momenta are

Pθ ¼ pθ ¼ a2 _θ; Pϕ ¼ pϕ þ eB cos θ ¼ a2 sin2 θ _ϕ:

ð3:8Þ

Its correspondingHamiltonian isH¼ 1
2a2

�
p2
θþðpϕþeBcosθÞ2

sin2θ

�
,

for which the Hamilton-Jacobi equation is

1

2a2

��
∂S
∂θ

�
2

þ 1

sin2θ

�
∂S
∂ϕ

þ eB cos θ

�
2
�
þ ∂S

∂τ
¼ 0: ð3:9Þ

Taking the separation ansatz to be S ¼ −Eτ þ Lϕþ SθðθÞ,
wherewe recognize E > 0 as the (nonrelativistic) total energy
and W ¼ Lϕþ SθðθÞ as the Hamilton’s characteristic func-
tion, and L is the angular momentum associated with
ϕ-rotations. With pθ ¼ a2 _θ ¼ dSθ

dθ , the equations of motion
are

a2 _θ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −

ðLþ eB cos θÞ2
sin2 θ

s
; ð3:10aÞ

a2 _ϕ ¼ Lþ eB cos θ
sin2 θ

; ð3:10bÞ

where we have denoted K ¼ a2E. This equation can be
slightly simplified by letting x ¼ cos θ, which leads to

_x ¼ ∓ ffiffiffiffiffiffiffiffiffiffi
XðxÞ

p
; ð3:11aÞ

_ϕ ¼ Lþ eBx
1 − x2

; ð3:11bÞ

XðxÞ ¼ −ðK þ e2B2Þx2 − 2eBLxþ K − L2: ð3:11cÞ

From Eq. (3.11a), the domain of allowed motion are the
points x where XðxÞ ≥ 0. Since XðxÞ is a quadratic function
with a negative quadratic coefficient, the condition XðxÞ ≥ 0
corresponds to a finite domain x− ≤ x ≤ xþ, where

x∓ ¼ −eBL ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK − L2 þ e2B2Þ

p
K þ e2B2

: ð3:12Þ

The notion of the Poincaré cone can be obtained as follows.
We embed S2 as a sphere of radius r in R3 described by
coordinates

X1 ¼ r sinθ cosϕ; X2 ¼ r sinθ sinϕ; X3 ¼ r cosθ:

ð3:13Þ

The position vector of the particle is given by

r⃗ ¼ X1ê1 þ X2ê2 þ X3ê3; ð3:14Þ

where ê1, ê2, and ê3 are the standard Cartesian basis of R3.
Let the constants of motionQðiÞ given in Eq. (3.4) be the

components of a vector

J⃗ ¼ Qð1Þê2 þQð2Þê1 þQð3Þê3; ð3:15Þ

whose norm is J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

ð1Þ þQ2
ð2Þ þQ2

ð3Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2B2 þ K

p
.

Now, since each QðiÞ are constants of motion, the vector Q⃗
is a fixed vector. Its standard dot product in R3 with the
position vector leads to

J⃗
J
·
r⃗
r
¼ −

eBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2B2 þ K

p : ð3:16Þ

In other words, the particle’s position vector r⃗ is always at
fixed angle ξ ¼ arccosð− eBffiffiffiffiffiffiffiffiffiffiffiffi

e2B2þK
p Þ with J⃗. Now, the set of

points whose position vector is at constant angle with a
fixed vector J⃗ defines the Poincaré cone. However, in the
present situation, the particle is moving on the sphere of
constant r ¼ a, the particle trajectory is the intersection of a
cone and a sphere, which is a circle. The vector J⃗ is along a
line perpendicular to the plane of the circle and passes from
the circle’s center to the origin of R3, as shown in Fig. 1.

FIG. 1. A sketch of the Poincaré cone, where J⃗ is given by
Eq. (3.15). The apex of the cone is the origin of R3, and the
particle’s trajectory on S2 is a circle, shown here as the circle at
the base of the cone.
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We can make use of the spherical symmetry to align the
axis of the coordinate system with J⃗. First, observe that the
SOð3Þ symmetry preserves the inner product (3.16). This
symmetry can be use to rotate the X3-axis to align with J⃗.
This amounts to having

Qð1Þ ¼ 0 ¼ − cosϕðeB sin θ þ Pϕ cot θÞ − Pθ sinϕ;

Qð2Þ ¼ 0 ¼ − sinϕðeB sin θ þ Pϕ cot θÞ þ Pθ cosϕ:

By Eq. (3.11a), for K ¼ L2 − e2B2, the coordinate
cos θ ¼ x is constant at x ¼ − eB

L , leading to Pθ ¼ 0. For
these parameters, the equation of motion for ϕ is simply
_ϕ ¼ L. This subsequently leads to eB sin θ þ Pϕ cot θ ¼ 0,

giving Qð1Þ ¼ Qð2Þ ¼ 0 as desired. This aligns J⃗ to be
along the X3-axis, and the cone subtends the half-angle
ξ ¼ arccosð− eB

jLjÞ.
Next we give the full solutions to the equations of motion

for arbitrary directions of J⃗. (Where it is not necessarily
oriented along X3.) The following results has been solved

in earlier works, such as [13,16], but in their respective
contexts. Here, we shall give a detailed discussion to
complete our study of generic charged particle motion in
S2 symmetry.
Equations (3.11a) and (3.11b) leads to

dϕ
dx

¼ ∓ Lþ eBx

ð1 − x2Þ ffiffiffiffiffiffiffiffiffiffi
XðxÞp : ð3:17Þ

Suppose the particle starts at initial conditions ϕ ¼ 0,
_ϕ > 0, and x ¼ x−. Upon performing a partial fraction
decomposition, for x ≤ x ≤ xþ,

ϕðxÞ ¼ −
L − eB

2

Z
x

xþ

dx0

ð1þ x0Þ ffiffiffiffiffiffiffiffiffiffiffi
Xðx0Þp

−
Lþ eB

2

Z
x

xþ

dx0

ð1 − xÞ ffiffiffiffiffiffiffiffiffiffiffi
Xðx0Þp :

The integrals can be evaluated exactly, giving

ϕðxÞ ¼ 1

2
sgnðL − eBÞ

�
ζðxÞ þ π

2

�
−
1

2
sgnðLþ eBÞ

�
ηðxÞ − π

2

�
; x− ≤ x < xþ; ð3:18aÞ

ζðxÞ ¼ arcsin

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KðK − L2 þ e2B2Þ
p �ðL − eBÞ2

1þ x
− ðK þ e2B2 − eBLÞ

��
; ð3:18bÞ

ηðxÞ ¼ arcsin

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KðK − L2 þ e2B2Þ
p �ðLþ eBÞ2

1 − x
− ðK þ e2B2 þ eBLÞ

��
: ð3:18cÞ

In particular, note that ζðx�Þ ¼∓ π
2
and ηðx�Þ ¼ � π

2
. The

sign function “sgn” is defined as sgnðxÞ ¼ þ1 if x > 0,
sgnðxÞ ¼ −1 if x < 0, and sgnð0Þ ¼ 0. The appearance of
the sign functions here are due to the topology of the closed
orbits in relation to the X3-axis. To see this, consider the
accumulated angle Δϕ as the particle completes one period
of θ-evolution. This is computed as

Δϕ ¼ 2ϕðx−Þ ¼ ½sgnðL − eBÞ þ sgnðLþ eBÞ�π: ð3:19Þ

So, Δϕ is either 0, π, or 2π, depending on the relative signs
of L − eB and Lþ eB. In particular, if sgnðL − eBÞ ¼
sgnðLþ eBÞ, we have jΔϕj ¼ 2π. This means the trajec-
tory encloses X3 axis as shown in Fig. 2(a). In this case
motion would be called a rotation (with respect to the X3-
axis). On the other hand, if ðL − eBÞ and ðLþ eBÞ have
opposite signs, Δϕ ¼ 0. In this case the motion is a
libration and the trajectory does not enclose the X3-axis,
as shown in Fig. 2(c). The intermediate case is either
ðL − eBÞ ¼ 0 or ðLþ eBÞ ¼ 0, for which jΔϕj ¼ π. This

is where the trajectory intersects the X3 axis, as shown in
Fig. 2(b).

B. Correspondence between the Poincaré cone
and geodesics on conical defect spacetimes

The primary goal of this subsection is to establish a
correspondence between trajectories of the following two
problems. The first of which is charged particle motion
under the metric and Maxwell tensor

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞðdθ2 þ sin2 θdϕ2Þ;
ð3:20aÞ

F ¼ B sin θdθ ∧ dϕ; ð3:20bÞ

where A, B, and C are functions of r. This is the four-
dimensional case of Eq. (3.1) obtained by taking
hαβdxαdxβ ¼ −Adt2 þ Bdr2. This form contains the
Schwarzschild, Reissner-Nordström, or generally charged
dilaton black hole solutions for appropriate choices of A,
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B, and C. It is well known that trajectories for such a
problem lie on the Poincaré cone.
The second problem is geodesicmotion in the absence of

Lorentz interaction, in a spacetime with a conical defect
described by

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞðdθ2 þ η2 sin2 θdϕ2Þ:
ð3:21Þ

We take the domain of ϕ as ϕ ∈ ½0; 2πÞ. Then the spacetime
carries a conical singularity for η ≠ 1. This spacetime can
be interpreted as taking a regular spacetime, removing a
wedge of angle δ ¼ 2πð1 − ηÞ and subsequently gluing
together the resulting edges. Physically, this signals the
presence of a cosmic string of mass per unit length μ at the
location of the conical singularity, where δ ¼ 8πGNμ, with
GN being the gravitational constant. The geometry is then
that of a cone. In this sense, this correspondence is perhaps

intuitively unsurprising, as both problems involve some
concept of cones. In any case, we make this relation precise
by showing that the equations of motion of the two
problems are the same.
To start, we consider the first problem. For charged

particles moving in a gravitational and electromagnetic
field described by (3.20), the canonical momenta are

−pt ¼ A_t; ð3:22aÞ

pr ¼ B_r; ð3:22bÞ

pθ ¼ C _θ; ð3:22cÞ

pϕ ¼ C sin2 θ _ϕ − eB cos θ: ð3:22dÞ

To relate the constants of motion QðiÞ to the equations of
motion, we turn to the Hamilton-Jacobi equation

1

2

�
−
1

A

�
∂S
∂t

�
2

þ 1

B

�
∂S
∂r

�
2

þ 1

C

�
∂S
∂θ

�
2

þ 1

Csin2θ

�
∂S
∂ϕ

− eB cos θ

�
2
�
þ ∂S

∂τ
¼ 0: ð3:23Þ

We separate this equation with the ansatz S ¼ 1
2
τ −

Etþ Lϕþ SrðrÞ þ SθðθÞ. This implies the existence of a
separation constant K which ultimately leads to the
following set of first-order equations

_t ¼ E
A
; ð3:24aÞ

B_r2 ¼ E2

A
−
K
C
− 1; ð3:24bÞ

_ϕ ¼ Lþ eB cos θ
C sin2 θ

; ð3:24cÞ

C2 _θ2 ¼ K −
ðLþ eB cos θÞ2

sin2 θ
: ð3:24dÞ

The relation of these quantities to the gauge-covariant
momenta are

Pt¼−A_t; Pr¼B_r; Pθ¼C _θ; Pϕ¼Csin2θ _ϕ: ð3:25Þ

FIG. 2. Trajectory of charged particles on S2. The periodicity Δϕ depends on whether the cone encloses the X3-axis. The case 2(a)
occurs when sgnðL − eBÞ ¼ sgnðLþ eBÞ, where the ϕ-evolution is a rotation. The case 2(c) is sgnðL − eBÞ ¼ −sgnðLþ eBÞ, where
the ϕ-evolution is a libration. The case 2(b) is the critical case, where the circle intersects the axis. The outline of the Poincaré cone is
shown as the dotted lines.
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With these formulas, one can check that if Eq. (3.24) is
obeyed, then each QðiÞ are indeed constant along the
trajectory. This can be verified by explicitly computing
d
dτQðiÞ and checking that it equals zero.
To visualize the trajectories, we let ðr; θ;ϕÞ define points

on (an auxiliary) three-dimensional Euclidean space R3 by

X1 ¼ r sinθ cosϕ; X2 ¼ r sinθ sinϕ; X3 ¼ r cosθ;

ð3:26Þ

Similar to what we did in Sec. III A, we let the QðiÞ’s in
(3.4) be the components of a vector

J⃗ ¼ Qð1Þê1 þQð2Þê2 þQð3Þê3: ð3:27Þ

As discussed in Sec. III A, we choose the coordinate
system such that the X3-axis aligns with the cone vector J⃗,
so that θ is constant throughout the motion and

K ¼ L2 − e2B2; cos θ ¼ −
eB
jLj : ð3:28Þ

For these values, the equations of motion are now

_t ¼ E
A
; ð3:29aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − e2B2

p

L
_ϕ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − e2B2

p

C
; ð3:29bÞ

_r2 ¼ E2

AB
−
�
L2 − e2B2

C
þ 1

�
1

B
; ð3:29cÞ

θ ¼ ξ ¼ arccos

�
−
eB
jLj

�
: ð3:29dÞ

Next, we now show a correspondence between trajecto-
ries along the Poincaré cone with equatorial geodesics of
a conical-defect spacetime, where the metric is Eq. (3.21).
The present task is to consider geodesics in this spacetime,
which is either the trajectory of neutral particles or simply
charged particles in the absence of an electromagnetic field.
The corresponding Lagrangian is

L ¼ 1

2
ð−A_t2 þ B_r2 þ C _θ2 þ Cη2 sin2 θ _ϕ2Þ;

from which we obtain the canonical momenta

−pt ¼ A_t; ð3:30aÞ

pr ¼ B_r; ð3:30bÞ

pθ ¼ C _θ; ð3:30cÞ

pϕ ¼ Cη2 sin2 θ _ϕ: ð3:30dÞ

The Hamilton–Jacobi equation reads

1

2

�
−
1

A

�
∂S
∂t

�
2

þ 1

B

�
∂S
∂r

�
2

þ 1

C

�
∂S
∂θ

�
2

þ 1

Cη2sin2θ

�
∂S
∂ϕ

�
2
�
þ ∂S

∂τ
¼ 0: ð3:31Þ

This equation can be separated by the ansatz S ¼ 1
2
τ −

EtþΦϕþ SrðrÞ þ SθðθÞ, where E and Φ are constants.
Substitution of this ansatz into the Hamilton–Jacobi equa-
tion leads to a separation constant K which then results in
the following equations of motion

_t ¼ E
A
; ð3:32aÞ

_ϕ ¼ Φ
Cη2 sin2 θ

; ð3:32bÞ

B_r2 ¼ E2

A
− 1 −

K
C
; ð3:32cÞ

C2 _θ2 ¼ K −
Φ2

η2 sin2 θ
: ð3:32dÞ

We consider the case K ¼ Φ2

η2
. From Eq. (3.32d), we find

that the motion lies on the plane θ ¼ π
2
¼ constant. In this

case, the equations of motion reduces to

_t ¼ E
A
; ð3:33aÞ

η _ϕ ¼ Φ
Cη

; ð3:33bÞ

_r2 ¼ E2

AB
−
�
Φ2

η2C
þ 1

�
1

B
; ð3:33cÞ

θ ¼ π

2
: ð3:33dÞ

By comparing Eq. (3.33) with (3.29), we find that, aside
from θ being at different constants, the equations for t, r,
and ϕ are the same upon the identification

L2 ¼ Φ2

η4
; e2B2 ¼ Φ2ð1 − η2Þ

η4
; E ¼ E: ð3:34Þ

Hence, by appropriately aligning the coordinate system
with the Poincaré cone, the trajectories on the cone can be
mapped to equatorial geodesics around a spacetime
threaded by a cosmic string.
As an example, let us consider the Schwarzschild space-

time with a test magnetic monopole F ¼ B sin θdθ ∧ dϕ,
whose strength is sufficiently weak such that the field does
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not backreact to the spacetime curvature. As such the metric
is given by AðrÞ ¼ 1

BðrÞ ¼ 1 − 2m
r and CðrÞ ¼ r2 giving the

Schwarzschild metric with a monopole test magnetic field:

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ

�
1 −

2m
r

�
−1
dr2

þ r2ðdθ2 þ sin2 θdϕ2Þ; ð3:35aÞ

A ¼ −B cos θdϕ: ð3:35bÞ

The correspondence is with the Schwarzschild black hole
threaded by a cosmic string [19,20], whose metric is

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ

�
1 −

2m
r

�
−1
dr2

þ r2ðdθ2 þ η2 sin2 θdϕ2Þ: ð3:36Þ

By the steps outlined above, the equations of motion for the
two problems are identical under (3.34). Geodesics of the
Schwarzschild spacetime with a cosmic string has previ-
ously been studied in Refs. [21–23]. As an explicit dem-
onstration, Fig. 3(a) shows a periodic orbit around a
Schwarzschild spacetime threaded by a cosmic string with
η ¼ 0.78. Specifically, this orbit labelled (2,0,1) under
Levin and Perez-Giz’s taxonomy [24] and has energy
E ¼ 0.9855756508 and angular momentum Φ ¼ 4.
Under the map (3.34) gives3 eB ≃ 4.1142 and L ≃ 6.5746
we obtain a periodic orbit followed by a charged particle
under the Lorentz force of a test magnetic monopole in a
Schwarzschild background, shown in Fig. 3(b). It has the
same topology (2,0,1), but it lies on a cone which subtends
an angle 2ξ ¼ 2 arccosð− eB

jLjÞ.

C. Charged particles in AdSn × S2 flux
compactifications

An example of a spacetime with S2 symmetric magnetic
field is the AdSn × S2 flux compactification. This is a
particular case of a more general AdSn × Sq where the
q-dimensional compactification is achieved by a q-form
flux [25]. Here, we consider the case q ¼ 2 which is
described by the action

I ¼ 1

16πG

Z
dnþ2x

ffiffiffiffiffiffi
−g

p ðR − F2Þ: ð3:37Þ

The Einstein-Maxwell equations are

Rμν ¼ 2FμλFν
λ −

1

n
F2gμν; ∇λFλμ ¼ 0: ð3:38Þ

A solution describing AdSn × S2 is given by

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
ðn−2Þ

þ a2ðdθ2 þ sin2 θdϕ2Þ; ð3:39aÞ

A ¼ −B cos θdϕ; ð3:39bÞ

fðrÞ ¼ 1 −
μ

rn−3
þ nr2

2ðn − 1Þ3B2
; a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn − 1Þ

n

r
jBj;

ð3:39cÞ

where dΩ2
ðn−2Þ is the metric of a unit (n − 2)-sphere. In the

case n ¼ 2, we take dΩ2
ðn−2Þ ¼ 0, and the solution is the

Bertotti-Robinson spacetime.
Particle motion in Bertotti-Robinson spacetime have

been studied in [26,27]. Various aspects of the AdSn × Sq

and related compactifications have been studied in
[25,28,29]. As the external space is an anti–de Sitter

FIG. 3. In Fig. 3(a), the periodic orbit (2,0,1) for the pierced Schwarzschild spacetime of η ¼ 0.78 is obtained for E ¼ 0.9855756508,
Φ ¼ 4. Under the relation (3.34), we obtain the same orbit with eB ≃ 4.1142, L ≃ 6.5746, but it lies on the surface of a Poincaré cone.
For these parameters, the cone surface is at angle ξ ¼ arccosð− eB

jLjÞ ≃ 2.2469 rad from the positive z-axis, or ≃38.739° under the
z ¼ 0 plane.

3We use the symbol “≃” to indicate that numerical values are
given up to five significant figures.
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spacetime, particle motion might be of interest in the
context of the AdS=CFT correspondence [30]. In the
following let us consider black holes in the case
AdS4 × S2. In this case,

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdζ2 þ sin2 ζdψ2Þ
þ a2ðdθ2 þ sin2 θdϕ2Þ; ð3:40aÞ

fðrÞ ¼ 1 −
2m
r

þ r2

4B2
; a ¼

ffiffiffi
6

p

2
jBj; ð3:40bÞ

with the gauge potential still being A ¼ −B cos θdϕ.
The Hamilton-Jacobi equation is (2.15), (2.16), and
(2.17) with

γαβdxαdxβ ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dζ2 þ sin2ζdψ2;

ḡabdθadθb ¼ a2ðdθ2 þ sin2θdϕ2Þ;

Without loss of generality, we consider the motion confined
in the ζ ¼ π

2
plane, for which the equations of motion are

a2 _θ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −

ðLþ eB cos θÞ2
sin2 θ

s
; ð3:41aÞ

a2 _ϕ ¼ Lþ eB cos θ
sin2 θ

; ð3:41bÞ

_t ¼ −
E
f
; ð3:41cÞ

_ψ ¼ Ψ
r2
; ð3:41dÞ

_r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

�
4K
6B2

þ Ψ2

r2
þ 1

�
fðrÞ

s
; ð3:41eÞ

where E and Ψ are the conserved energy and angular
momentum associated to the symmetry in the t and ψ
directions, respectively.
Equations (3.41a) and (3.41c) are precisely the same as

Eqs. (3.10a) and (3.10b) in Sec. III A, and hence the
solution may be fully described by Eq. (3.18). As discussed
in Sec. III A, we may align the coordinate system such that
θ is constant at cos θ ¼ − eB

L by choosing K ¼ L2 − e2B2.
Here we see that these quantities affect the r-motion
through Eq. (3.41e), where we define the effective potential

U ¼
�
4K
6B2

þΨ2

r2
þ 1

�
fðrÞ: ð3:42Þ

For instance, at fixed L, increasing the charge roughly
lowers the graph of U, as shown in Fig. 4.

Turning to the innermost stable circular orbits (ISCOs),
we find them by the condition U 0 ¼ U 00 ¼ 0. It turns out
that the radius of the ISCO is the solution of

24B2m2 − 4B2mrþ 15mr3 − 4r4 ¼ 0; ð3:43Þ

which is independent of K, and hence of L and e. As B
determines the AdS4 curvature scale l through B2 ¼ l2

2
, the

ISCO radius is the same as the ISCO of geodesics in AdS4
[30], and is unaffected by the particle’s charge nor the
motion in the S2 directions.

IV. MAGNETIC FIELDS WITH HYPERBOLIC
SYMMETRY

Here we consider the case where N 2 ¼ H2, the hyper-
bolic manifold of constant negative curvature. In “pseu-
dospherical” coordinates, its metric is

ḡabdyadyb ¼ dθ2 þ sinh2 θdϕ2: ð4:1Þ

We take the electromagnetic two-form to be proportional to
its volume form. That is,

F ¼ B sinh θ dθ ∧ dϕ: ð4:2Þ

This is the exterior derivative of the one-form poten-
tial A ¼ B cosh θdϕ.
The isometries of H2 are

ξð1Þ ¼ − sinϕ∂θ − coth θ cosϕ∂ϕ; ð4:3aÞ

ξð2Þ ¼ cosϕ∂θ − coth θ sinϕ∂ϕ; ð4:3bÞ

ξð3Þ ¼ ∂ϕ: ð4:3cÞ

Using Eq. (2.12) to solve for ΨðiÞ, we obtain the constants
of motion [11]

FIG. 4. m ¼ 1, B ¼ 10, L ¼ 2, Ψ ¼ 5, K ¼ L2 − q2, and
various q.
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Qð1Þ ¼−eBsinhθcosϕ−Pθ sinϕ−Pϕ cothθcosϕ; ð4:4aÞ

Qð2Þ ¼−eBsinhθ sinϕþPθ cosϕ−Pϕ cothθ sinϕ; ð4:4bÞ

Qð3Þ ¼ eB cosh θ þ Pϕ: ð4:4cÞ

Constants of motion for charged particle on hyperbolic
plane have been found previously, such as in [11] using
other equivalent methods.

A. Analysis of charged-particle motion on N 2 =H2

We first review the intrinsic problem of a (nonrelativ-
istic) charged particle moving on a hyperbolic plane H2.
This problem was considered in Refs. [10–12]. Here we
provide a detailed discussion using the constants of motion
found in Eq. (4.4). Additionally, we will attempt to define
the analogue of the Poincaré cone for this problem.
In pseudo-spherical coordinates, the hyperbolic planeH2

is described by the metric

ds2 ¼ a2ðdθ2 þ sinh2 θdϕ2Þ: ð4:5Þ

Themagnetic field along this plane isF ¼ B sinh θdθ ∧ dϕ,
where the magnetic potential is A ¼ B cosh θdϕ.
The Lagrangian for this problem is

L ¼ a2

2
ð_θ2 þ sinh2 θ _ϕ2Þ þ eB cosh θ _ϕ: ð4:6Þ

The canonical momenta are

pθ ¼ a2 _θ; pϕ ¼ a2 sinh2 θ _ϕþ eB cosh θ; ð4:7Þ

and the gauge-covariant momenta are

Pθ ¼ pθ; Pϕ ¼ pϕ − eB cosh θ: ð4:8Þ

Its corresponding Hamiltonian isH¼ 1
2a2 ðp2

θþðpϕ−eBcoshθÞ2
sinh2 θ Þ,

from which we have the Hamilton-Jacobi equation

1

2a2

��
∂S
∂θ

�
2

þ 1

sinh2θ

�
∂S
∂ϕ

−eBcoshθ

�
2
�
þ∂S
∂τ

¼0: ð4:9Þ

The ansatz for S is taken to be S ¼ − 1
2
Eτ þ Lϕþ SθðθÞ,

whereE is the (nonrelativistic) total energy,W ¼ Lϕþ SθðθÞ
as the Hamilton’s characteristic function, andL is the angular
momentum associated with ϕ-motion.
Letting K ¼ 2a2E, the equations of motion are

_θ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K−

ðL−eBcoshθÞ2
sinh2θ

s
; _ϕ¼L−eBcoshθ

sinh2θ
: ð4:10Þ

For solving the equations of motion, it is convenient to let
x ¼ cosh θ, where the equations of motion becomes

_x ¼ �
ffiffiffiffiffiffiffiffiffiffi
XðxÞ

p
; ð4:11aÞ

_ϕ ¼ L − eBx
x2 − 1

; ð4:11bÞ

XðxÞ ¼ ðK − e2B2Þx2 þ 2eBLx − K − L2: ð4:11cÞ

The accessible domain of the particle are the points where
XðxÞ ≥ 0. Here, XðxÞ is a quadratic function where the
coefficient of the quadratic term is K − e2B2. The roots of
X are

x� ¼ eBL�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ L2 − e2B2Þ

p
e2B2 − K

: ð4:12Þ

We then have two cases. First, if e2B2 > K, we have x− ≤
xþ and XðxÞ is non-negative at x− ≤ x ≤ xþ. Hence the
particle is bounded in this finite region. On the other hand,
if e2B2 < K, we have x− ≥ xþ. The function XðxÞ is non-
negative for x ≤ xþ and x ≥ x−. In this case the particle’s
motion is unbounded. We have essentially recovered the
statements of Ref. [11]; the magnetic field has to be
sufficiently strong to prevent the charged particle from
escaping to infinity.
For a visual depiction of the particle motion, we wish,

as in the spherical case, to embed the trajectory in an
ambient three-dimensional space. However, by Hilbert’s
theorem a hyperbolic space cannot be embedded in a three-
dimensional space of Euclidean signature. Instead, it is
more natural to embed H2 in a three-dimensional
Minkowski spacetime R2;1 with metric

ds2 ¼ ðdX1Þ2 þ ðdX2Þ2 − ðdX3Þ2 ¼ ηijdXidXj: ð4:13Þ

The embedding is achieved by the parametrization

X1¼ asinhθcosϕ; X2¼ asinhθ sinϕ; X3 ¼ acoshθ:

ð4:14Þ
Here X3 is the timelike coordinate of this auxiliary
Minkowski spacetime.
The analogous notion of a “Poincaré cone” requires an

appropriate modification to theR2;1 case. In the S2 case, we
defined it through the inner product in R3, where vectors
are self-dual. Here, we should take the conserved quantities
QðiÞ as components of a dual vector, or one-form

J ¼ Qð1ÞdX1 þQð2ÞdX2 þQð3ÞdX3:

We define the “position vector” in R2;1 as

X ¼ X1
∂

∂X1
þ X2

∂

∂X2
þ X3

∂

∂X3
; ð4:15Þ

where the coordinates Xi are used to defined the basis
vectors ∂

∂Xi, with the corresponding dual basis dXi such that
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�
dXi;

∂

∂Xj

	
¼ δij; ð4:16Þ

for i, j ¼ 1; 2; 3, and h·; ·i denotes the inner product inR2;1.
With this inner product we have

hJ ; Xi ¼ QðiÞXi ¼ eBa; ð4:17Þ

which is the hyperbolic counterpart to Eq. (3.16).
This expression then gives the hyperbolic analogue of

the Poincaré cone, the difference being R2;1 is carries a
Lorentzian signature and we do not have a Euclidean
geometric interpretation of a cone angle.
Our next question is whether it is possible to align our

coordinate system to one of the coordinate axes, as we did
in the S2 case. As SOð2; 1Þ transformations preserves the
inner product (4.17), there is a subtlety to be considered.
Taking Qi ¼ ηijQðjÞ as components of the contravariant
vector J ¼ Qi ∂

∂Xi whose dual is J , we note that Q1 and Q2

are “spatial” components while Q3 is “timelike” in the
context of our auxiliary R2;1 Minkowski spacetime.
Observe that

QiQðiÞ ¼ Q2
ð1Þ þQ2

ð2Þ −Q2
ð3Þ ¼ −e2B2 þ K: ð4:18Þ

So the vector Q ¼ Qi ∂

∂Xi is timelike for bounded motion
(e2B2 > K), spacelike for unbounded motion (e2B2 < K),
and null in the critical case (e2B2 ¼ K). By performing
SOð2; 1Þ transformations, one may align Q along a
coordinate axis, just as we did in the spherical-symmetric
case. However, such transformations preserves the time-
like/null/spacelike character of a vector. Hence, depending
on the nature of J, we have three possibilities:
(1) If J is timelike, it can be aligned along the X3 “time”

axis, so that

Qð1Þ ¼ 0¼−cosϕðeB sinhθþPϕ cothθÞ−Pθ sinϕ;

ð4:19aÞ

Qð2Þ ¼ 0¼−sinϕðeB sinhθþPϕ cothθÞþPθ cosϕ:

ð4:19bÞ

This can be achieved by the choice K ¼
e2B2 − L2ð< e2B2Þ, for which x ¼ cosh θ is con-
stant at x ¼ eB

L . For these values, we also have _ϕ ¼
−L and Eq. (4.19) is achieved. As a result, the
motion is confined to a constant x ¼ cosh θ ¼ eB

L ,
which, in turn, correspond to X3 being constant. An
example of this motion is shown by the red circle
in Fig. 5.

(2) If J is null, we align it along the null direction
X3 ¼ �X1, such that Qð2Þ ¼ 0 and Qð3Þ ¼ �Qð1Þ.

This is achieved by fixing K ¼ e2B2, and choosing
initial conditions such that

Pθ ¼ −
eB sinϕ

cosh θ þ cosϕ sinh θ
; ð4:20aÞ

Pϕ ¼ −
eB sinh θðsinh θ þ cosh θ cosϕÞ

cosh θ þ cosϕ sinh θ
: ð4:20bÞ

An example of such a motion is shown by the
black curve in Fig. 5.

(3) If J is spacelike, it can be aligned along the X1,
which is a spatial axis. This results in Qð2Þ ¼
Qð3Þ ¼ 0. This is attained by choosing initial con-
ditions such that

Pθ ¼ −
q sinϕ

cosϕ sinh θ
; ð4:21aÞ

Pϕ ¼ −eB cosh θ: ð4:21bÞ

This ensures Qð2Þ ¼ Qð3Þ ¼ 0 throughout the
motion. Therefore hJ ; Xi ¼ Qð1ÞX1 ¼ eBa which
means X1 is constant throughout the motion. An
example of such a motion is shown by the blue curve
in Fig. 5.

Therefore, in each of the timelike/null/spacelike cases,
there exist a submanifold in R2;1 which serves as the
analogue of the Poincaré cone.
Turning now to the general analytic solution where J is

in an arbitrary direction, we choose ϕ ¼ 0 and x ¼ x− as
the initial conditions and assuming K þ L2 − e2B2 > 0,
Eq. (4.11) has the solution

FIG. 5. Motion of charged particles on H2 with timelike, null,
and spacelike J. In the timelike case, J is aligned to the “time”
direction of R2;1, X3, and an orbit is shown in red. For the null
case J is chosen such it is along the null surface X3 ¼ X1. In the
spacelike case, J is aligned along the X1 direction.
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ϕðxÞ ¼ −
1

2
sgnðL − eBÞ

�
ζðxÞ − π

2

�

þ 1

2
sgnðLþ eBÞ

�
ηðxÞ − π

2

�
; x− < x ≤ xþ;

ð4:22Þ

ζðxÞ ¼ arcsin

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KðK þ L2 − e2B2Þ
p

×

�ðL − eBÞ2
x − 1

− ðK − e2B2 þ eBLÞ
�


; ð4:23Þ

ηðxÞ ¼ arcsin

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KðK þ L2 − e2B2Þ
p

×

�ðLþ eBÞ2
xþ 1

− ðe2B2 − K þ eBLÞ
�


: ð4:24Þ

In the case of bounded motion, the sign functions “sgn”
determines whether the trajectory encloses X3 axis. This is
demonstrated in Fig. 6, trajectories for L ¼ 1 and a¼E¼1

are plotted for various q ¼ eB. In this case, K ¼ 2a2E ¼ 2.
The X3-axis is vertical in this figure. The red dotted curve is
the unbounded trajectory as e2B2 < K.

B. Is there a correspondence between charged particle
motion with conical defect spacetimes?

By comparison with the spherically symmetric case
discussed in Sec. III B, we wish to check whether there
is an analogous correspondence between charged particle
motion with geodesics in a conical defect spacetime. It
turns out that the answer is in the negative. The main reason
for this is the equations of motion for θ and ϕ are different
when θ is nonconstant. In the spherically-symmetric case,
this can be acheived by aligning the Poincaré cone to the
X3-axis. However, geodesic motion in the hyperbolic case
are unbounded in θ, much less rendered constant.

To see this more explicitly, suppose we wish to find a
correspondence between the following two problems. The
first is charged particle motion in the following solution
containing hyperbolic symmetry:

ds2 ¼ −Adt2 þ Bdr2 þ Cðdθ2 þ sinh2 θdϕ2Þ; ð4:25aÞ

A ¼ B cosh θdϕ; ð4:25bÞ

where A, B, and C are functions of r. Separating the
Hamilton-Jacobi equations for a charged particle results in
the following equations of motion,

_t ¼ −
E
A
; ð4:26aÞ

B_r2 ¼ E2

A
−
K
C
− 1; ð4:26bÞ

_ϕ ¼ L − eB cosh θ
C sinh2 θ

; ð4:26cÞ

C2 _θ2 ¼ K −
ðL − eB cosh θÞ2

sinh2 θ
; ð4:26dÞ

where E and L are the conserved energy and angular
momentum, respectively, and K is the Carter-like separa-
tion constant.
Following the lines of Eq. (3.2), we seek a correspon-

dence to a second problem which is geodesic motion in the
spacetime

ds2 ¼ −Adt2 þ Bdr2 þ Cðdθ2 þ η2 sinh2 θdϕ2Þ; ð4:27Þ

where a conical defect is present for η ≠ 1. However, the
separated Hamilton-Jacobi equation for this case is

_t ¼ −
E
A
; ð4:28aÞ

B_r2 ¼ E2

A
−
K
C
− 1; ð4:28bÞ

_ϕ ¼ Φ
Cη2 sinh2 θ

; ð4:28cÞ

C2 _θ2 ¼ K −
Φ2

η2 sinh2 θ
; ð4:28dÞ

where E and Φ are the conserved energy and angular
momentum, respectively, and K is the Carter-like separa-
tion constant.
We see that Eq. (4.26c) can be made equivalent to (4.28c)

by an appropriate identification of conserved quantities
only if θ is constant. However, letting x ¼ cosh θ, we see
that _θ ¼ 0, or equivalently, _x ¼ 0 if

FIG. 6. Motion of charged particle on H2 with K ¼ 2, L ¼ 2

and various q ¼ eB. Here qc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ L2

p
.

YEN-KHENG LIM PHYS. REV. D 106, 064023 (2022)

064023-12



x� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Φ2

Kη2

s
: ð4:28eÞ

When xþ and x− are distinct, the point _θ ¼ 0 is only an
instantaneous turning point, and θ does not remain constant
throughout the motion. The two roots are degenerate when
both are equal zero, x� ¼ 0. However, since x ¼ cosh θ,
this cannot hold for real θ.
Physically, this reflects the fact that geodesic motion on a

hyperbolic spactime is unbounded. For charged particles in
a magnetic field, we have seen above (and in [11]) that a
sufficiently strong eB is required to prevent the particle
from escaping to infinity. Below this threshold, θ cannot be
made constant. From these, we conclude that there is no
correspondence between charged-particle motion and geo-
desics in the conical defect spacetime, at least in the form
analogous to the spherical case.

C. Charged particle in Minkowski spacetime
with a hyperbolic magnetic field

As a simple model with a hyperbolic magnetic field,
consider the four-dimensional Minkowski spacetime R1;3

with the metric in standard Minkowski coordinates:

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2: ð4:29Þ

We introduce a hyperbolic foliation of this spacetime by
writing

t¼σcoshθ; x¼σ sinhθcosϕ; y¼σ sinhθsinϕ; z¼ z:

ð4:30Þ

(Note that this parametrization does not cover the whole
Minkowski spacetime.) The metric now becomes

ds2 ¼ −dσ2 þ σ2ðdθ2 þ sinh2 θdϕ2Þ þ dz2: ð4:31Þ

For this problem, we assume the magnetic field is a test
field that does not backreact to the curvature of spacetime.
The magnetic field arising from the potential A ¼
B cosh θdϕ solves the Maxwell’s equation with (4.31) as
the background.
To obtain the equations of motion for the particle, we

turn to its Hamilton-Jacobi equation

1

2

�
−
�
∂S
∂σ

�
2

þ
�
∂S
∂z

�
2

þ 1

r2

�
∂S
∂θ

�
2

þ 1

σ2sinh2θ

�
∂S
∂ϕ

− eB sinh θ

�
2
�
þ ∂S

∂τ
¼ 0: ð4:32Þ

Taking the ansatz S ¼ 1
2
τ þ ηzþ Lϕþ SσðσÞ þ SθðθÞ,

then we find a separation constant K, leading to

_σ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 1þ K

σ2

r
; ð4:33aÞ

σ2 _θ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −

ðL − eB cosh θÞ2
sinh2 θ

s
; ð4:33bÞ

σ2 _ϕ ¼ L − eB cosh θ
sinh2 θ

; ð4:33cÞ

_z ¼ η: ð4:33dÞ

Eliminating σ between (4.33b) and (4.33c) leads to an
equation identical to (4.11). Hence the solution (4.24) can
be carried over. The other coordinates σ and z have simple
solutions which increase linearly with τ.

D. Magnetic hyperbolic Reissner-Nordström-AdS
spacetime

We now briefly consider charged particle around a
magnetic Reissner-Nordström black hole with a hyperbolic
horizon [31–35], described by

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sinh2 θdϕ2Þ;
ð4:34Þ

A¼Bcoshθdϕ; fðrÞ¼−1−
2m
r
þB2

r2
þ r2

l2
: ð4:35Þ

This metric and magnetic field solves the Einstein-Maxwell
equationswith a negative cosmological constantΛ ¼ −3=l2.
The solution for Λ ¼ 0 was also considered by [36,37] as a
static model depicting the interior of a black hole.
For a charged particle in this spacetime, the Hamilton-

Jacobi equation is

1

2

�
−
1

f

�
∂S
∂t

�
2

þ f

�
∂S
∂r

�
2

þ 1

r2

�
∂S
∂θ

�
2

þ 1

r2sin2θ

�
∂S
∂ϕ

− eB cosh θ

�
2
�
þ ∂S

∂τ
¼ 0: ð4:36Þ

With the usual ansatz, we find the separated equations
of motion

_t ¼ −
E
f
; ð4:37aÞ

_r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

�
K
r2

þ 1

�
f

s
; ð4:37bÞ

r2 _θ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −

ðL − eB cosh θÞ2
sinh2 θ

s
; ð4:37cÞ
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r2 _ϕ ¼ L − eB cosh θ
sinh2 θ

: ð4:37dÞ

Eliminating r between (4.37c) and (4.37d) we obtain an
equation identical to (4.11), so the exact solution in (4.24)
can also be carried over.
This is determined by Eq. (4.37b), from which we define

an effective potential

U¼
�
K
r2
þ1

�
f; ð4:38Þ

Fig. 7 shows various the effective potential for various K
and m. We see that bounded motion in the r-direction are
typically possible for black holes of negative mass (For
instance, Fig. 7(c) for m ¼ −1.)
To visualize the trajectory, we again make use of the

embedding in R2;1 with

X1¼ rsinhθcosϕ; X2¼ rsinhθsinϕ; X3¼ rcoshθ:

ð4:39Þ

So the trajectory is shown as a curve in auxiliary
Minkowski spacetime with X3 as its time direction. For
instance, Fig. 8 shows an example of a bounded orbit
with K ¼ e2B2 − L2. By the discussion in Sec. IVA, this
choice of K aligns the hyperbolic “Poincaré cone” along
the X3 axis. In the present case, there is motion along r as

FIG. 7. l2 ¼ 1.2, B ¼ 0.5, L ¼ 1, and various K.

FIG. 8. Charged particle in the magnetic, hyperbolic RN-AdS
spacetime with m ¼ −1, B ¼ 0.5, l2 ¼ 1, L ¼ 1, K ¼ 20,
eB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ L2

p
, and E ¼ ffiffiffiffiffi

30
p

.
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well. Hence the trajectory lies on the surface of a cone
of constant θ.

V. CONCLUSION

In this paper we have considered charged particle motion
in various spacetime with magnetic fields of spherical and
hyperbolic symmetry. Using Poisson-bracket methods,
constants of motion associated to the spherical and hyper-
bolic symmetry are found using van Holten’s procedure [9].
The equations of motion along the S2 and H2 directions are
solved exactly for the general case.
In the spherical case, trajectories are visualized in an

auxiliary flat space R3. A conserved vector J⃗ can be
constructed out of the constants of motion. The Poincaré
cone is then defined through the dot product with this
vector. We have also established a correspondence between
charged-particle motion on the Poincaré cone with geo-
desics on related spacetimes with a conical defect. We
demonstrate this correspondence with a Schwarzschild

spacetime with a test magnetic monopole field, whose
charged particle motion is in correspondence with geodesic
motion around a Schwarzschild black hole threaded by a
cosmic string.
In the hyperbolic case, we also have three constants

of motion. Instead of Euclidean flat space, trajectories
are more naturally visualized with an auxiliary three-
dimensional Minkowski spacetime R2;1. The constants
of motion can then be used to define a conserved vector
in R2;1, where it is timelike when the motion is bounded
and spacelike or null when the motion is unbouned. With
this vector we have attempted to define the analogue of the
Poincaré through the inner product under the Minkowski
metric of R2;1.
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