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Exotic objects such as the Ellis wormhole are expected to act as gravitational lenses. Much like their
nonexotic counterparts, information about these lenses can be found by considering the strong and weak
lensing fields they induce. In this work, we consider how weak gravitational lensing flexion can provide
information beyond that of shear. We find that directional flexion can distinguish between the case of a
positive or negative convergence where directional shear cannot, and therefore can provide a unique lensing
signature for objects with an Ellis wormhole-type metric. We also consider cosmic flexion, the flexion
correlation function whose signal originates from the large-scale structure of the Universe, in the context
of modified gravity. We find flexion to be a unique probe of parametric models of modified gravity,
particularly in the case of scale-dependent phenomenological post-general relativity functions.
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I. INTRODUCTION

Gravitational lensing has become one of the quintessen-
tial cosmological and astrophysical probes of the last few
decades [1–3]. Lensing probes the gravitational potential
and is therefore a useful measure of the total matter
distribution. To this end, lensing has had a great impact
at several different mass scales. Lensing is powerful for
studying galaxy cluster mass distributions [4,5]. A weaker
effect, known as galaxy-galaxy lensing, is the lensing of a
background galaxy by a foreground galaxy. Specifically,
galaxy-galaxy shear correlates the shapes of high-redshift
“source” galaxies with positions of low-redshift “lensing”
galaxies [6,7]. Even weaker is the lensing by the large-scale
structure of the Universe—specifically, the so-called cos-
mic shear—which probes the underlying matter power
spectrum [8–11]. Finally, lensing of the cosmic microwave
background (CMB) has also been detected at high signifi-
cance [12], which has been a further useful probe of
cosmological parameters.
In weak lensing, there exist a variety of simple lens

models that make the assumption of a circularly symmetric
profile. These include the Schwarzschild lens (see e.g.,
Ref. [1]), the singular isothermal sphere (SIS; see e.g.,
Ref. [13]), and the Navarro-Frenk-White (NFW) density
profile [14–16], to name a few. Recently, exotic lens models
have been discussed inwhich the lens can repulse rather than
attract light, by having, for example, negative mass. These
models have been inspired by modified gravity theories as
well as individual exotic objects such as the Ellis wormhole,
which is a particular example of the Morris-Thorne

traversable wormhole class [17–19]. In Ref. [20], a family
of exotic lensmodels is constructed by considering an exotic
spacetime metric that is static and circularly symmetric,
can describe both positive and negativemasses, and depends
on the inverse distance to the power of n (e.g., n ¼ 1 for
Schwarzschild metric, n ¼ 2 for Ellis wormhole). Then, in
Ref. [21], the gravitational shear is worked out for these
exotic lenses, and it is shown that the shear can exhibit
behavior that suggests a positivemass lens in the presence of
an exotic lens.
In cosmology, studies of the CMB have found that

observations agree with the standard cosmological model
(ΛCDM) to remarkable accuracy [12,22–24]. As we look at
more recent parts of cosmic history, using tools such as
weak lensing, ΛCDM still appears to be the law of the land.
Subtle discrepancies are found, however, between these
low-redshift observations and the high-redshift measure-
ments of the CMB [12,25–27]. These discrepancies could
indicate that ΛCDM might not be sufficient to connect all
parts of the cosmic history [28]. It is therefore necessary to
have multiple cosmological probes that complement each
other in order to get the full picture of cosmology across all
length scales and cosmic times. To this end, the effort to
explain the origin of cosmic acceleration has uncovered a
vast zoo of dark energy and modified gravity models. These
can be broadly classified according to how they modify
general relativity (GR) or replace the cosmological con-
stant, Λ—for example, by adding new scalar, vector or
tensor fields (e.g., the broad class of Horndeski models
[29,30]); adding extra spatial dimensions; introducing
higher-derivative or nonlocal operators in the action; or
introducing exotic mechanisms for mediating gravitational
interactions [31–36]. A systematic study of these models*evan.james.arena@drexel.edu
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suggests a number of new gravitational phenomena that can
arise if there are any deviations from the standard cosmo-
logical model. These include the possibility of time- and
scale-dependent variations in the gravitational constant,
leading to modifications to the growth rate of large-scale
structure and gravitational lensing [37–41]. These devia-
tions from how gravitational lensing behaves in GR can be
studied in the context of strong lensing (see Ref. [42]) and
with cosmic shear by employing both parametric and
nonparametric approaches [43–53].
Beyond shear, there exists a higher-order lensing effect

known as flexion [54–57]. Like shear, flexion occurs in the
presence of single lenses. There also exists cosmic flexion
which, like cosmic shear, is a correlation function whose
signal originates from the large-scale structure of the
Universe [55,58]. The goal of this work is to consider
how weak gravitational flexion behaves in the context of
two different types of spacetime metrics. In Secs. II and III,
we consider flexion in the presence of a family of exotic
lenses, and in Sec. IV we consider how cosmic flexion
behaves in a parametrized modified gravity model. We
conclude in Sec. V.

II. GRAVITATIONAL LENSING IN SINGLE-LENS
METRICS

A. The Schwarzschild metric

Discussions of gravitational lensing typically begin by
considering the simple case of light deflection by a point
mass M. We start with the Schwarzschild metric [59]

gμν ¼

0
BBBB@

−ð1−Rs=rÞ 0 0 0

0 ð1−Rs=rÞ−1 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

1
CCCCA ð1Þ

where we are using units c ¼ G ¼ 1, and Rs ¼ 2M is the
Schwarzschild radius. In the weak-field (i.e., far-field) limit
r ≫ Rs, the line element of the metric (ds2 ¼ gμνdxμdxν)
simply becomes

ds2 ≃ −
�
1 −

Rs

r

�
dt2 þ

�
1þ Rs

r

�
dr2 þ r2dΩ2; ð2Þ

where dΩ2 ≡ dθ2 þ sin2 θdϕ2. Since this spacetime is
spherically symmetric, we can consider only the equatorial
plane θ ¼ π=2without loss of generality, and the deflection
angle of light is simply [60]

α̂ ¼ 2Rs

b

Z
π=2

0

dϕ cosϕ ¼ 2Rs

b
ð3Þ

where b is the impact parameter.

In the thin lens approximation, the lensing equation
describes the coordinate mapping from the foreground
(angular position of the image relative to the lens), θ,1 to
background (angular position of the source), β, positions
via [1]

β ¼ b
Dd

−
Dds

Ds
α̂ðbÞ≡ θ − αðθÞ; ð4Þ

where Dd, Ds, and Dds are the observer-lens, observer-
source, and lens-source distances, respectively, θ≡ b=Dd,
and the reduced deflection angle is defined as α ¼ α̂Dds=Ds.

B. Weak lensing formalism

In the thin-screen approximation, one defines the con-
vergence, which is related to a dimensionless lensing
potential, ψ , with ∇2ψ ¼ 2κ. The lensing potential is the
two-dimensional analogue of the Newtonian gravitational
potential, integrated along the line of sight. Convergence is
a key lensing quantity, which can be simultaneously
thought of as a projected, dimensionless surface-mass
density of matter, and as an isotropic increase or decrease
of the observed size of a source image. In the weak lensing
regime, we can rewrite the lens equation as

βi ¼ δijθ
j − ψ ;ij θj −

1

2
ψ ;ijk θjθk ð5Þ

(where ψ ;ij is shorthand for ∂i∂jψ and ∂i ¼ ∂=∂θi). We
define a complex gradient operator ∂ ¼ ∂1 þ i∂2, such that
1 and 2 refer to two perpendicular directions locally on the
sky (i.e., x and y directions on an image of a small patch of
sky). In this formalism, the spin-0 convergence and spin-2
shear are given by [55]

κ ¼ 1

2
∂
�
∂ψ ð6Þ

γ ¼ γ1 þ iγ2 ¼ jγje2iϕ ¼ 1

2
∂∂ψ ð7Þ

and the spin-1 and spin-3 flexion fields are given by the
derivatives of the convergence and shear, respectively:

F ¼ F 1 þ iF 2 ¼ jF jeiϕ ¼ 1

2
∂∂

�
∂ψ ¼ ∂κ; ð8Þ

G ¼ G1 þ iG2 ¼ jGje3iϕ ¼ 1

2
∂∂∂ψ ¼ ∂γ; ð9Þ

where ϕ2 is the polar angle of θ. The shear is an anisotropic,
elliptical stretching of the source image. The F -flexion

1Not to be confused with the coordinate θ in the Schwarzschild
metric.

2Not to be confused with the coordinate ϕ in the Schwarzschild
metric.
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effect is a skewing distortion which manifests as a centroid
shift, whereas the G-flexion is a trefoil distortion resulting
in a triangularization of the source image.

C. Exotic spacetime metric

Consider an exotic spacetime metric, as first given by
Ref. [20]:

ds2 ¼ −
�
1 −

ε1
rn

�
dt2 þ

�
1þ ε2

rn

�
dr2 þ r2dΩ2

þOðε21; ε22; ε1; ε2Þ: ð10Þ

This generalizes the metric such that (i) the spacetime
can depend on the inverse distance to the power of n in the
weak-field, and (ii) small “book-keeping” parameters ε1
and ε2 are introduced. Notice that for n ¼ 1 with negative
ε1 and ε2, we recover the linearized Schwarzschild metric
with a negative Schwarzschild radius and hence negative
mass.
With this exotic metric, the deflection angle given in

Eq. (3) becomes [21]

α̂ ¼ ε

bn

Z
π=2

0

dϕ cosn ϕþOðε2Þ≡ ε̄

bn
ð11Þ

where we have defined ε≡ nε1 þ ε2, and absorbed the
positive-definite integral into ε such that the sign of ε̄ is the
same as ε. As Ref. [21] points out, this deflection angle
recovers the Schwarzschild (n ¼ 1) and Ellis wormhole
(n ¼ 2) cases. We further point out that the SIS (n ¼ 0)
case is also recovered.
From here, one can obtain an expression for the con-

vergence (in its interpretation as a dimensionless surface
mass density). In terms of the lensing potential, the spin-1
deflection angle is given by α ¼ ∂ψ. Therefore, by Eq. (6),
κ ¼ ∂

�α=2. Using this, Eq. (11), and the definitions of α
and θ given in Eq. (4), we find that3

κðbÞ ¼ DdsDd

Ds

ε̄ð1 − nÞ
2

1

bnþ1
: ð12Þ

By Eq. (11), we see that there exists gravitational
attraction on light rays for ε > 0 and repulsion for
ε < 0. From Eq. (12), we note that for ε > 0 and n > 1
or for ε < 0 and n < 1, the convergence is negative. In this
context, negative convergence requires that matter (and
energy) be exotic.
For ε > 0, there exists a positive root corresponding to

the Einstein ring, β ¼ 0. For ε < 0, on the other hand, there

does not exist a positive root corresponding to β ¼ 0.
This means that there is no Einstein ring for this case, which
is to be expected since this case corresponds to light
repulsion. We can still define a typical angular size for
this lens, though, as the “Einstein radius.” In either case, the
Einstein radius is defined generally as [21]

θE ≡
�jε̄jDds

DsDn
d

�
1=ðnþ1Þ

: ð13Þ

III. FLEXION IN EXOTIC SPACETIME METRICS

A. Weak lensing in exotic spacetimes

Let us restrict ourselves to θ=θE > 0 (the other image
solution occurring for θ=θE < 0 for ε > 0). Recognizing
that ε̄ ¼ sgnðεÞjε̄j, where sgnðxÞ is the signum function,
and using Eq. (13), we can then write Eq. (4) as

β ¼ θ − sgnðεÞθnþ1
E

θ

θnþ1
: ð14Þ

From here, we can compute the distortion matrix
Aij ≡ ∂βi=∂θj. The elements of this matrix are

A11 ¼ 1 − sgnðεÞ θ
nþ1
E

θnþ1
þ sgnðεÞðnþ 1Þθnþ1

E
θ1θ1
θnþ3

A12 ¼ sgnðεÞðnþ 1Þθnþ1
E

θ1θ2
θnþ3

A21 ¼ sgnðεÞðnþ 1Þθnþ1
E

θ1θ2
θnþ3

A22 ¼ 1 − sgnðεÞ θ
nþ1
E

θnþ1
þ sgnðεÞðnþ 1Þθnþ1

E
θ2θ2
θnþ3

: ð15Þ
Reference [21] was able to obtain the convergence and

shear in the case θi ¼ ðθ; 0Þ and βi ¼ ðβ; 0Þ. In this work,
we will obtain general expressions for the convergence
and both components of the shear. We do this by working
in terms of the second derivatives of the lensing potential.
The distortion matrix can be written as

Aij ¼ βi;j¼ δij − ψ ;ij

¼
�
1 − κ − γ1 −γ2

−γ2 1 − κ þ γ1

�

¼
�
1 − ψ ;11 −ψ ;12
−ψ ;12 1 − ψ ;22

�
: ð16Þ

Using this with Eq. (15), we see that

ψ ;11 ¼ sgnðεÞ θ
nþ1
E

θnþ1
− sgnðεÞðnþ 1Þθnþ1

E
θ21
θnþ3

ψ ;12 ¼ −sgnðεÞðnþ 1Þθnþ1
E

θ1θ2
θnþ3

ψ ;22 ¼ sgnðεÞ θ
nþ1
E

θnþ1
− sgnðεÞðnþ 1Þθnþ1

E
θ22
θnþ3

: ð17Þ

3Note that this expression includes a coefficient DdsDd=Ds not
present in Refs. [20,21]. This coefficient, with dimensionality r
(i.e., distance), is necessary so that convergence is dimensionless:
ε̄ has dimensionality rn [see Eq. (10)] and impact parameter has
dimensionality r.
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The convergence is therefore given by

κ ¼ 1

2
ðψ ;11þψ ;22 Þ

¼ sgnðεÞ ð1 − nÞ
2

θnþ1
E

θnþ1
ð18Þ

and the components of the shear are

γ1 ¼
1

2
ðψ ;11 −ψ ;22 Þ

¼ −sgnðεÞ ð1þ nÞ
2

θnþ1
E

θnþ3
ðθ21 − θ22Þ ð19Þ

γ2 ¼ ψ ;12

¼ −sgnðεÞð1þ nÞ θ
nþ1
E θ1θ2
θnþ3

: ð20Þ

The total shear is therefore

γ ¼ −sgnðεÞ ð1þ nÞ
2

θnþ1
E

θnþ1
e2iϕ: ð21Þ

Now, the flexion fields can be obtained either by
differentiating the convergence and shear directly, or by
first obtaining the third derivatives of the lensing potential.
We choose to do the latter for completeness. From Eq. (17),
we obtain

ψ ;111 ¼ −sgnðεÞ3ð1þ nÞθnþ1
E

θ1
θnþ3

þ sgnðεÞð1þ nÞð3þ nÞθnþ1
E

θ31
θnþ5

ψ ;112 ¼ −sgnðεÞð1þ nÞθnþ1
E

θ2
θnþ3

þ sgnðεÞð1þ nÞð3þ nÞθnþ1
E

θ21θ2
θnþ5

ψ ;122 ¼ −sgnðεÞð1þ nÞθnþ1
E

θ1
θnþ3

þ sgnðεÞð1þ nÞð3þ nÞθnþ1
E

θ1θ
2
2

θnþ5

ψ ;222 ¼ −sgnðεÞ3ð1þ nÞθnþ1
E

θ2
θnþ3

þ sgnðεÞð1þ nÞð3þ nÞθnþ1
E

θ32
θnþ5

:

From this, the components of the F -flexion are given by

F 1 ¼
1

2
ðψ ;111þψ ;122 Þ

¼ −sgnðεÞ ð1 − n2Þ
2

θnþ1
E

θ1
θnþ3

ð23Þ

F 2 ¼
1

2
ðψ ;112 þψ ;222 Þ

¼ −sgnðεÞ ð1 − n2Þ
2

θnþ1
E

θ2
θnþ3

ð24Þ

such that the total F -flexion is

F ¼ −sgnðεÞ ð1 − n2Þ
2

θnþ1
E

θnþ2
eiϕ; ð25Þ

and the components of the G-flexion are given by

G1 ¼
1

2
ðψ ;111 −3ψ ;122 Þ

¼ sgnðεÞ ð1þ nÞð3þ nÞ
2

θnþ1
E

θ31 − 3θ1θ
2
2

θnþ5
ð26Þ

G2 ¼
1

2
ð3ψ ;112 −ψ ;222 Þ

¼ sgnðεÞ ð1þ nÞð3þ nÞ
2

θnþ1
E

3θ21θ2 − θ32
θnþ5

ð27Þ

such that the total G-flexion is

G ¼ sgnðεÞ ð1þ nÞð3þ nÞ
2

θnþ1
E

θnþ2
e3iϕ: ð28Þ

As pointed out by Ref. [21], the expression for con-
vergence given by Eq. (18) is consistent with the
Schwarzschild lens for ε > 0 and n ¼ 1. We point out
that this is also true of the shear, given by Eq. (21), and the
flexions, given by Eqs. (25) and (28). Additionally, we note
that all four lensing fields recover the SIS lens for ε > 0 and
n ¼ 0. One will also immediately notice that the lensing
fields in the ε < 0 case are the negatives of the ε > 0 case.

B. Discussion of shear and flexion behavior

1. Lensing field signatures from ordinary matter

Let us first discuss the behavior of convergence, shear,
and flexion in nonexotic, typical weak lensing situations.
As an illustrative example, consider the SIS lens (ε > 0 and
n ¼ 0). This type of lens corresponds to an ordinary,
positive mass, for which κ > 0. We can study the behavior
of the shear and flexion lensing fields by considering the
simple example of a source (background) galaxy located at
polar angle ϕ ¼ 0 around the lens. Then, the direction of
the field is encoded in the sign of the lensing field
amplitude. Around such a lens, there exists “tangential”
alignment of galaxy ellipticities, such that the shear given
by Eq. (21) γ < 0 (again, for ϕ ¼ 0). F -flexion, which has
the spin properties of a vector, points radially toward the
lens, such that F < 0 in Eq. (25). G-flexion oscillates
around the lens as a spin-3 quantity; however, its behavior
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could also be described as a type of radial alignment, but
where G > 0 in Eq. (28).
This is the behavior of lensing fields in the presence of

some ordinary positive mass, and therefore it also describes
the picture of galaxy-galaxy lensing. Furthermore, this
lensing signature is also found in lensing by cosmological
large-scale structure. In cosmology, there exists matter
density perturbations relative to some mean density in
the Universe. There are regions of mass overdensity (a mass
peak) and regions of mass underdesnity (a mass trough).
The mass overdensity can be modeled as, for example, an
SIS lens. In the presence of a mass overdensity, there is
tangential shear alignment and radial flexion alignment of
background galaxies. Lensing fields display the opposite
behavior when a mass underdensity is a lens: there is
tangential antialignment4 of shear: γ > 0 (again, for ϕ ¼ 0)
and antiradial alignment for flexion: F > 0 and G < 0.
This is all to say that, when we simultaneously observe

tangential alignment of shear and radial alignment of
flexion, we expect there to be a mass peak (e.g., a positive
mass lens or some local mass overdensity) and when
antitangential alignment of shear and antiradial alignment
of flexion is observed, we expect the lens to be some local
mass underdensity.

2. Lensing field signatures from exotic matter

Let us now turn our attention to weak lensing in the
exotic spacetime metric. Figure 1 shows the magnitude and
algebraic sign of the amplitudes of the various lensing
fields for the ε > 0 and ε < 0 cases, respectively.
First, we consider the ε > 0 case, where we know from

the deflection angle in Eq. (11) that there exists a
gravitational attraction on light rays from the lens. If and
only if n > −1, tangential alignment of shear exists.
Interestingly, for ε > 0 and n > 1, the convergence is
negative, despite there being a tangential shear. As dis-
cussed earlier, this negative convergence corresponds to
exotic matter (and energy). This was pointed out in
Ref. [21]; however, in this work, we have additional
information from the flexion fields. Here, radial alignment
of F -flexion only exists for ε > 0 and −1 < n < 1. For
n > 1, there is an antiradial F -flexion alignment despite
the fact that there is a tangential alignment of shear. G-
flexion, on the other hand, is radially aligned for n > −1.
This is all to say that there is a stark difference in the
behavior of the lensing fields for n > 1. Whereas shear and
G-flexion would indicate the presence of a mass-overdense
lens that pulls on light rays, the convergence and F -flexion
behave as if there is a mass-underdense lens. This is a
consequence of the fact that F -flexion is the derivative of
convergence and G-flexion is the derivative of shear.

Therefore, F -flexion responds locally to convergence,
and G-flexion responds nonlocally to the shear.
Next, we consider the ε < 0 case, in which there exists a

gravitational repulsion on light rays from the lens. Here, we
observe precisely the opposite behavior as in the ε > 0
case. For n > 1, the convergence and F -flexion behave
as if there is a mass-overdense lens, whereas the shear and
G-flexion act as if there is a mass-underdense lens.
In Fig. 2, we show a cartoon of the behavior of shear and

F -flexion for three different cases. In each case, there are
two source galaxies on opposite sides of a lens (one at
ϕ ¼ 0 and the other at ϕ ¼ π radians). The top panel
recovers the typical case of lensing by a nonexotic object
such as, for example, the SIS lens. In the middle case, we
see the shear and F -flexion responding to a negative
convergence with ε < 0 and −1 < n < 1. In this formal-
ism, this is considered an exotic lens. In the context of
cosmology; however, this could be interpreted as the
lensing fields responding to a local mass underdensity,
such as a cosmic void [21]. Finally, the case on the bottom
recovers that of an Ellis-wormhole type metric. Here, there
is a negative convergence for the exotic object. As
discussed earlier, while the shear is tangentially aligned,
behaving as if there is an overdense lens, the flexion
behaves as if there is an underdense lens, responding to the
convergence.

FIG. 1. Here we plot the amplitudes as a function of n for
convergence, shear, F -flexion, and G-flexion for the cases ε > 0
(top) and ε < 0 (bottom). The signs of each amplitude for shear
and flexion indicate alignment around a lens (for ϕ ¼ 0), whereas
the sign on the amplitude for convergence indicates positive or
negative convergence. Here we see how the F -flexion is coupled
to the convergence and the G-flexion to the shear for n > 1.
Specifically, we note that the F -flexion behaves opposite to that
of the shear in the presence of an n > 1 lens.

4Tangential antialignment is referred to as “cross”-alignment in
the literature.
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We can also remark on the behavior of the lensing
fields in the presence of a negative-mass compact object.
A compact object can be described by the Schwarzschild
metric (n ¼ 1). For the case of a positive mass (ε > 0),
shear is tangentially aligned, G-flexion is radially aligned,
but the convergence and F -flexion, interestingly, both
vanish. Flexion can add additional information when
looking for negative-mass compact objects (ε < 0): one
would expect the following lensing signature: tangential
antialignment of shear, radial antialignment of G-flexion,
and F ¼ 0.

3. Flexion to the rescue

In the work presented in Ref. [21], it is difficult to
distinguish between various exotic lenses. Since conver-
gence is not a directly observable quantity, one is relying
entirely on shear. For example, two vastly different lenses
—a lens with a positive convergence versus one with a
negative convergence—are both capable of exhibiting
identical directional behavior for shear. This can only be
disambiguated by examining the relative strengths of the

shear signals; however, this method could be difficult for,
e.g., an n → 1− negative convergence versus an n → 1þ
positive convergence.
There is also another difficulty with relying only on shear,

which comes from the fact that, unlike in e.g., galaxy-galaxy
lensing, exotic lenses such as the Ellis wormhole may be
completely invisible. This means that the lens position is
unknown. Shear responds rather weakly to substructure,
so using tangential alignment in order to locate the position
of a lens, while possible, may not be ideal.
Both of these problems can be ameliorated with the

addition of flexion. F -flexion in particular is locally
connected to the convergence, such that its directional
information can distinguish between negative and positive
convergences that cause identical shear directional patterns.
Additionally, F -flexion responds strongly to substructure,
and so it could be more easily used to identify an unknown
lens position. G-flexion could be useful as a systematics
check between shear and F -flexion. While it is comple-
mentary to F -flexion in terms of strength, it should follow
the directional behavior of the shear.
In Ref. [21], it can also prove difficult to distinguish

between ordinary and exotic lenses. The Ellis wormhole
(ε > 0 and n ¼ 2) is an illustrative example of this. If
relying on directional information alone, the Ellis worm-
hole creates a tangentially aligned shear pattern that
resembles that of a typical nonexotic positive-mass lens.
When we add flexion, however, the Ellis wormhole
produces a unique lensing signature: tangential alignment
of shear, antiradial alignment of F -flexion, and radial
alignment of G-flexion. To the best of our knowledge,
only an exotic lens is capable of producing this type of
lensing signature. Therefore, when combined with shear,
flexion can be used to uniquely associate particular lensing
signatures to exotic objects.

IV. COSMIC FLEXION IN MODIFIED GRAVITY

In the standard ΛCDM model of cosmology, the field
equations of GR describe the relationship between space-
time geometry and the matter-energy content of the
universe governed by gravity. The Friedmann-Lemaître-
Robertson-Walker (FLRW) metric describes a homo-
geneous and isotropic Universe. To quantify gravitational
lensing in a cosmological context, however, it is necessary
to consider scalar perturbations in the FLRW metric. In the
conformal Newtonian gauge, the line element of such a
metric is given by [61]

ds2 ¼ a2ðτÞ
��

1þ 2Ψ
c2

�
c2dτ2 −

�
1 −

2Φ
c2

�
dl2

�
ð29Þ

where τ is the conformal time, a is the scale factor, and
dl2 ¼ dχ2 þ f2KðχÞdΩ2, where fKðχÞ is the comoving
angular distance, which is simply equal to χ for a flat
Universe, in which case dl2 ¼ δijdxidxj. The two Bardeen

FIG. 2. The behavior of shear and F -flexion for two source
(background) galaxies on opposite sides (ϕ ¼ 0 and ϕ ¼ π
radians) of three different lenses. Top: a typical scenario of
lensing by a nonexotic mass defined by ε > 0 and −1 < n < 1
(we exclude the n ¼ 1 Schwarzschild case where convergence
and F -flexion vanish). The shear has a tangential alignment
around the lens and the F -flexion points radially toward the lens
(radial alignment). Middle: lensing by some exotic object (κ < 0)
defined by ε < 0 and −1 < n < 1. Here, shear has tangential
antialignment and F -flexion points radially outward (radial
antialignment). Bottom: lensing by some exotic object (κ < 0)
defined by ε > 0 and n > 1. Here, shear has tangential alignment
and F -flexion points radially outward.
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potentials, Ψðx; τÞ and Φðx; τÞ are considered to describe
weak fields, Ψ;Φ ≪ c2. In GR, the two Bardeen potentials
are equal to each other:

ΦN ¼ Φ ¼ Ψ; ð30Þ

where ΦN is the Newtonian gravitational potential defined
via the Poisson equation. In modified gravity, these
potentials need not be equivalent.
The local deflection of light rays—propagating along

null geodesics—relative to unperturbed ones, depends on
the light travel time obtained from the metric:

dτ
dl

≈
1

c

�
1 −

1

c2
ðΦþ ΨÞ

�
: ð31Þ

Using this to obtain the deflection dα, integrating over
comoving distance, and using the lens equation, one
obtains the cosmological effective convergence (obtained
for GR in Ref. [1]),

κeffðθ; χÞ ¼
1

2c2

Z
χ

0

dχ0
fKðχ − χ0ÞfKðχ0Þ

fKðχÞ
× ∇2½ΨþΦ�ðfKðχ0Þθ; χ0Þ ð32Þ

where θ is the angular position on the sky, χ is the
comoving distance (along the line of sight), and the
Laplacian is given by ∇2 ¼ ∂

2=∂xi∂xi þ ∂
2=∂χ2, where

summation over i is implied, and x are physical distances
perpendicular to the line of sight.
In GR, the linearized Einstein equations relate the metric

perturbations (the Bardeen potentials) to the perturbations
of the cosmological fluid. These include the matter density
contrast δ≡ δρ=ρ̄, the pressure perturbation δp, the diver-
gence of the fluid velocity θ, and the stress or anisotropic
pressure σ. Computing the Einstein equations is most easily
done in Fourier space, where we exchange spatial deriv-
atives with powers of ik, where k is the comoving wave-
number. A combination of the 0–0 and 0 − i equations
yields the generalized Poisson equation [52,61]:

−k2Φ̃ ¼ 4πGa2ρ̄ Δ̃ ¼ 3

2
Ωm;0H2

0a
−1Δ̃ ð33Þ

whereH0 is the Hubble constant, Ωm;0 is the matter density
parameter at present epoch,

Δ̃ðk; aÞ ¼ δ̃ðk; aÞ þHðaÞð1þ θÞ
k2

ð34Þ

is the comoving density perturbation, HðaÞ is the Hubble
parameter, w ¼ p̄=ρ̄ is the equation of state parameter, and
the second equality in Eq. (33) is written for matter only.
We can parametrize deviations from GR through use of
the mass-screening phenomenological post-GR function

Q̃ðk; aÞ, replacing Newton’s gravitational constant by an
effective function

Geff ¼ GQ̃ ⇒ −k2Φ̃ ¼ 4πGQ̃a2ρ̄ Δ̃ : ð35Þ

From the i − j Einstein equation, one obtains

k2ðΦ̃ − Ψ̃Þ ¼ 12πGa2ρ̄ð1þ wÞσ: ð36Þ

Here, we can pursue a further deviation from GR which
quantifies the difference in the Bardeen potentials, Ψ −Φ,
through use of the gravitational slip phenomenological
post-GR function, η̃ðk; aÞ:

Ψ̃ ¼ ð1þ η̃ÞΦ̃ ⇒ k2ðΦ̃ − Ψ̃Þ ¼ 4πGQ̃ η̃ a2ρ̄ Δ̃ : ð37Þ

From this, we obtain

−k2ðΦ̃þ Ψ̃Þ ¼ 8πGQ̃

�
1þ η̃

2

�
a2ρ̄ Δ̃ ¼ 8πGΣ̃a2ρ̄ Δ̃ ð38Þ

−k2Ψ̃ ¼ 4πGQð1þ η̃Þa2ρ̄ Δ̃ ¼ 4πGΓ̃a2ρ̄ Δ̃ ð39Þ

where we have defined Σ̃ðk; aÞ ¼ Q̃ðk; aÞð1þ η̃ðk; aÞ=2Þ
and Γ̃ðk; aÞ ¼ Q̃ðk; aÞð1þ η̃ðk; aÞÞ. These two derived
post-GR functions are commonly used in cosmic shear
studies. In general, these functions can depend on both
cosmic time and scale [52].

A. Case 1: Scale-independent post-GR functions

The two derived post-GR functions have been taken to
be scale-independent for various cosmic shear studies
(e.g., see Ref. [52]). In this case, we have the following
simplification for Eq. (38):

−k2½Φ̃þ Ψ̃�ðk; aÞ ¼ 3Ωm;0H2
0a

−1ΣðaÞΔ̃ðk; aÞ: ð40Þ

Taking the Fourier transform of this, the cosmological
effective convergence can be written [52]

κeffðθ; χÞ ¼
3

2
Ωm;0

�
H0

c

�
2
Z

χ

0

dχ0
fKðχ − χ0ÞfKðχ0Þ

fKðχÞaðχ0Þ
× Σðaðχ0ÞÞΔðfKðχ0Þθ; χ0Þ: ð41Þ

This gives the effective convergence for a fixed source
redshift corresponding to a comoving distance χ. When the
sources are distributed in comoving distance, the cosmo-
logical effective convergence needs to be averaged over the
(normalized) source distribution nðχÞ. This is to say that
κeffðθÞ ¼

R χH
0 dχnðχÞκeffðθ; χÞ, where χH is the horizon

distance obtained for infinite redshift. By introducing the
lensing efficiency function,

WEAK GRAVITATIONAL FLEXION IN VARIOUS SPACETIMES: … PHYS. REV. D 106, 064019 (2022)

064019-7



qðχÞ¼3

2
Ωm;0

�
H0

c

�
2fKðχÞ
aðχÞ

Z
χH

χ
dχ0nðχ0ÞfKðχ

0−χÞ
fKðχ0Þ

; ð42Þ

and rearranging integration limits, we obtain

κeffðθÞ ¼
Z

χH

0

dχqðχÞΣðaðχÞÞΔðfKðχÞθ; χÞ: ð43Þ

Limber’s equation/approximation states that for twoquan-
tities, ga and gb of the form ga ¼

R χH
0 dχhaðχÞXðfKðχÞθ; χÞ

where X is some field, e.g., the density contrast, the cross-
power spectrum of ga and gb is [1,62,63]

PabðlÞ¼
Z

χH

0

dχ
haðχÞhbðχÞ

f2KðχÞ
PX

�
k¼lþ1=2

fKðχÞ
;χ
�
: ð44Þ

where l is the angular wave number. If one sets
ha ¼ hb ¼ qðχÞΣðaðχÞÞ, we obtain the convergence power
spectrum

PκðlÞ¼
Z

χH

0

dχ
q2ðχÞΣ2ðaðχÞÞ

f2KðχÞ
PMG

Δ

�
k¼lþ1=2

fKðχÞ
;χ

�
ð45Þ

where PMG
Δ ðk; zÞ ≠ PGR

Δ ðk; zÞ is the (nonlinear) matter
power spectrum inmodified gravity. It is clear that deviations
toGRmodify thecosmicshearpowerspectrumamplitudevia
ΣðaÞ. They further impact the power spectrum, though, via a
modification of the matter power spectrum. This is because
the evolution of the density contrast is modified via Eq. (33),
leading to a different cosmic evolution than in GR [48].
Next, we wish to obtain the cosmic flexion power

spectrum [55,58]. Making use of the definition of flexion
given by Eq (8), i.e.,

F i ¼ ∂iκ ¼
∂

∂θi
κ ¼ fKðχÞ

∂

∂xi
κ; ð46Þ

the cosmological effective flexion can be written as

F effðθ; χÞ ¼
3

2
Ωm;0

�
H0

c

�
2
Z

χ

0

dχ0
fKðχ − χ0ÞfKðχ0Þ

fKðχÞaðχ0Þ
× Σðaðχ0ÞÞfKðχ0ÞΔ0ðfKðχ0Þθ; χ0Þ ð47Þ

where Δ0 is the transverse gradient of the density contrast.
We therefore obtain F effðθÞ ¼

R χH
0 dχqðχÞΔ0ðfKðχÞθ; χÞ.

This time, we set ha ¼ hb ¼ fKðχÞqðχÞΣðaðχÞÞ and obtain,
via Limber’s equation,

PF ðlÞ ¼
Z

χH

0

dχq2ðχÞΣ2ðaðχÞÞPMG
Δ0

�
k ¼ lþ 1=2

fKðχÞ
; χ

�

¼ l2PκðlÞ ð48Þ

where we have noted that jX0j2 ¼ jXj2kiki and hence
(taking k ¼ ðlþ 1=2Þ=fKðχÞ ≈ l=fKðχÞ) [55]

PX0

�
l

fKðχÞ; χ
�

¼ PX

�
l

fKðχÞ; χ
�

l2

f2KðχÞ
: ð49Þ

In addition to the cosmic flexion power spectrum, we
can also obtain the convergence-flexion cross-spectrum
[55,58]. We again use Limber’s equation, but this time we
work in terms of PMG

Δ rather than PMG
Δ0 . We set hκ ¼

qðχÞΣðaðχÞÞ and hF ¼ qðχÞΣðaðχÞÞl to obtain

PκF ðlÞ ¼ lPκðlÞ: ð50Þ
We note that, owing to the fact that shear and con-

vergence statistics are the same, i.e., PγðlÞ ¼ PκðlÞ [2], so
too [because of the relations in Eq. (9)] are the F - and G-
flexion power spectra,

PGðlÞ ¼ PF ðlÞ; ð51Þ
and similarly,

PκGðlÞ ¼ PκF ðlÞ: ð52Þ

B. Case 2: Scale-dependent post-GR functions

In general the two derived post-GR functions are
functions of scale. In Fourier space,

−k2½Φ̃þ Ψ̃�ðk; aÞ ¼ 3Ωm;0H2
0a

−1Σ̃ðk; aÞΔ̃ðk; aÞ: ð53Þ
We define the following quantity:

Δ̃Σðk; aÞ≡ Σ̃ðk; aÞΔ̃ðk; aÞ; ð54Þ
and obtain the cosmological effective convergence

κeffðθ; χÞ ¼
3

2
Ωm;0

�
H0

c

�
2
Z

χ

0

dχ0
fKðχ − χ0ÞfKðχ0Þ

fKðχÞaðχ0Þ
× ΔΣðfKðχ0Þθ; χ0Þ: ð55Þ

Again using Limber’s equation, we obtain the conver-
gence power spectrum

PκðlÞ ¼
Z

χH

0

dχ
q2ðχÞ
f2KðχÞ

PMG
ΔΣ

�
k ¼ lþ 1=2

fKðχÞ
; χ

�
; ð56Þ

where PMG
ΔΣ

ðk; zÞ is defined in Fourier space via Eq. (54).
Following the same steps as before, the cosmological
effective convergence is given by

F effðθ; χÞ ¼
3

2
Ωm;0

�
H0

c

�
2
Z

χ

0

dχ0
fKðχ − χ0ÞfKðχ0Þ

fKðχÞaðχ0Þ
× fKðχ0ÞΔ0

ΣðfKðχ0Þθ; χ0Þ: ð57Þ
We immediately note that the cosmological effective

convergence depends on the transverse gradient of ΔΣ,
and therefore it is a probe of the derivative of the derived
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post-GR function Σ. This positions flexion as a unique
probe of modified gravity, allowing the measurement of
Σ0 alongside Σ.
Finally, we find that PF ðlÞ ¼ PGðlÞ ¼ l2PκðlÞ and

PκF ðlÞ ¼ PκGðlÞ ¼ lPκðlÞ, as before. Cosmic shear-
shear, flexion-flexion, and shear-flexion correlations probe
different scales (see Ref. [58] for a detailed discussion).
While cosmic shear has a broad window function for power
at the scale of arcminutes, cosmic flexion peaks at the
arcsecond scale, with shear-flexion peaking intermediate
to these two signals. With the use of cosmic flexion in
addition to cosmic shear, there exists the opportunity to
probe the behavior of modified gravity across a wide range
of cosmic scales and times.

V. CONCLUSIONS

In this work we have considered the weak gravitational
flexion that is induced by exotic lenses, such as the Ellis
wormhole, through use of an exotic spacetime metric. We
have also reported a more generalized expression for
the weak gravitational shear. We show that the analytic
equations for convergence, shear, and the flexions in this
exotic spacetime recover familiar nonexotic lenses such as
the Schwarzschild lens and the SIS lens. We find that

flexion can provide valuable information about exotic
lenses when used in addition to shear. In particular, the
directional information from F -flexion can be used to
distinguish between positive and negative convergences,
and can provide unique lensing signatures for objects such
as the Ellis wormhole, whereas the directional information
from shear alone cannot.
We also consider cosmic flexion in the context of

modified gravity. We find that the cosmological effective
flexion depends on the transverse spatial derivative of the
derived phenomenological post-GR function Σ, positioning
flexion as a unique probe of parametric modified gravity.
Additionally, we are able to construct cosmic flexion-
flexion and shear-flexion power spectra, which probe
different scales than cosmic shear, allowing for further
exploration of deviations from GR, particularly in the case
of scale-dependent post-GR functions.

ACKNOWLEDGMENTS

E. J. A. would like to thank David M. Goldberg, David J.
Bacon, and Jacob Shpiece for useful conversations about
this work. E. J. A. also thanks the anonymous referee for
very helpful suggestions regarding the uniqueness of the
different exotic lensing signatures.

[1] M. Bartelmann and P. Schneider, Weak gravitational lens-
ing, Phys. Rep. 340, 291 (2001).

[2] M. Kilbinger, Cosmology with cosmic shear observations:
A review, Rep. Prog. Phys. 78, 086901 (2015).

[3] L. F. Secco et al. (DES Collaboration), Dark energy survey
year 3 results: Cosmology from cosmic shear and robustness
to modeling uncertainty, Phys. Rev. D 105, 023515 (2022).

[4] G. Soucail, B. Fort, Y. Mellier, and J. P. Picat, A blue ring-
like structure in the center of the A 370 cluster of galaxies.,
Astron. Astrophys. 172, L14 (1987), https://ui.adsabs
.harvard.edu/abs/1987A%26A...172L..14S/abstract.

[5] J. A. Tyson, F. Valdes, and R. A. Wenk, Detection of
systematic gravitational lens galaxy image alignments:
Mapping dark matter in galaxy clusters, Astrophys. J. Lett.
349, L1 (1990).

[6] T. G. Brainerd, R. D. Blandford, and I. Smail, Measuring
galaxy masses using galaxy-galaxy gravitational lensing,
Astrophys. J. 466, 623 (1996).

[7] P. Fischer et al. (SDSS Collaboration), Weak lensing with
SDSS commissioning data: The galaxy mass correlation
function to 1h−1 Mpc, Astron. J. 120, 1198 (2000).

[8] D. J. Bacon, A. R. Refregier, and R. S. Ellis, Detection of
weak gravitational lensing by large-scale structure, Mon.
Not. R. Astron. Soc. 318, 625 (2000).

[9] N. Kaiser, G. Wilson, and G. A. Luppino, Large-scale
cosmic shear measurements, arXiv:astro-ph/0003338.

[10] L. van Waerbeke et al., Detection of correlated galaxy
ellipticities on CFHT data: First evidence for gravitational
lensing by large scale structures, Astron. Astrophys. 358,
30 (2000), https://ui.adsabs.harvard.edu/abs/2000A%26A..
.358...30V/abstract.

[11] D. M. Wittman, J. A. Tyson, D. Kirkman, I. Dell’Antonio,
and G. Bernstein, Detection of weak gravitational lensing
distortions of distant galaxies by cosmic dark matter at large
scales, Nature (London) 405, 143 (2000).

[12] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020); Erratum, 652, C4 (2021).

[13] J. Binney and S. Tremaine, Galactic Dynamics (Princeton
University Press, Princeton, NJ, 1987).

[14] J. F. Navarro, C. S. Frenk, and S. D. M. White, Simulations
of x-ray clusters, Mon. Not. R. Astron. Soc. 275, 720
(1995).

[15] J. F. Navarro, C. S. Frenk, and S. D. M. White, The structure
of cold dark matter halos, Astrophys. J. 462, 563
(1996).

[16] J. F. Navarro, C. S. Frenk, and S. D. M. White, A universal
density profile from hierarchical clustering, Astrophys. J.
490, 493 (1997).

[17] H. G. Ellis, Ether flow through a drainhole—a particle
model in general relativity, J. Math. Phys. (N.Y.) 14, 104
(1973).

WEAK GRAVITATIONAL FLEXION IN VARIOUS SPACETIMES: … PHYS. REV. D 106, 064019 (2022)

064019-9

https://doi.org/10.1016/S0370-1573(00)00082-X
https://doi.org/10.1088/0034-4885/78/8/086901
https://doi.org/10.1103/PhysRevD.105.023515
https://ui.adsabs.harvard.edu/abs/1987A%26A...172L..14S/abstract
https://ui.adsabs.harvard.edu/abs/1987A%26A...172L..14S/abstract
https://ui.adsabs.harvard.edu/abs/1987A%26A...172L..14S/abstract
https://ui.adsabs.harvard.edu/abs/1987A%26A...172L..14S/abstract
https://ui.adsabs.harvard.edu/abs/1987A%26A...172L..14S/abstract
https://ui.adsabs.harvard.edu/abs/1987A%26A...172L..14S/abstract
https://ui.adsabs.harvard.edu/abs/1987A%26A...172L..14S/abstract
https://ui.adsabs.harvard.edu/abs/1987A%26A...172L..14S/abstract
https://ui.adsabs.harvard.edu/abs/1987A%26A...172L..14S/abstract
https://doi.org/10.1086/185636
https://doi.org/10.1086/185636
https://doi.org/10.1086/177537
https://doi.org/10.1086/301540
https://doi.org/10.1046/j.1365-8711.2000.03851.x
https://doi.org/10.1046/j.1365-8711.2000.03851.x
https://arXiv.org/abs/astro-ph/0003338
https://ui.adsabs.harvard.edu/abs/2000A%26A...358...30V/abstract
https://ui.adsabs.harvard.edu/abs/2000A%26A...358...30V/abstract
https://ui.adsabs.harvard.edu/abs/2000A%26A...358...30V/abstract
https://ui.adsabs.harvard.edu/abs/2000A%26A...358...30V/abstract
https://ui.adsabs.harvard.edu/abs/2000A%26A...358...30V/abstract
https://ui.adsabs.harvard.edu/abs/2000A%26A...358...30V/abstract
https://ui.adsabs.harvard.edu/abs/2000A%26A...358...30V/abstract
https://ui.adsabs.harvard.edu/abs/2000A%26A...358...30V/abstract
https://ui.adsabs.harvard.edu/abs/2000A%26A...358...30V/abstract
https://ui.adsabs.harvard.edu/abs/2000A%26A...358...30V/abstract
https://doi.org/10.1038/35012001
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1093/mnras/275.3.720
https://doi.org/10.1093/mnras/275.3.720
https://doi.org/10.1086/177173
https://doi.org/10.1086/177173
https://doi.org/10.1086/304888
https://doi.org/10.1086/304888
https://doi.org/10.1063/1.1666161
https://doi.org/10.1063/1.1666161


[18] M. S. Morris and K. S. Thorne, Wormholes in space-time
and their use for interstellar travel: A tool for teaching
general relativity, Am. J. Phys. 56, 395 (1988).

[19] M. S. Morris, K. S. Thorne, and U. Yurtsever, Wormholes,
TimeMachines, and theWeak Energy Condition, Phys. Rev.
Lett. 61, 1446 (1988).

[20] T. Kitamura, K. Nakajima, and H. Asada, Demagnifying
gravitational lenses toward hunting a clue of exotic matter
and energy, Phys. Rev. D 87, 027501 (2013).

[21] K. Izumi, C. Hagiwara, K. Nakajima, T. Kitamura, and H.
Asada, Gravitational lensing shear by an exotic lens object
with negative convergence or negative mass, Phys. Rev. D
88, 024049 (2013).

[22] G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J.
Rees, Formation of galaxies and large scale structure with
cold dark matter, Nature (London) 311, 517 (1984).

[23] A. G. Riess et al. (Supernova Search Team), Observational
evidence from supernovae for an accelerating universe and a
cosmological constant, Astron. J. 116, 1009 (1998).

[24] S. Perlmutter et al. (Supernova Cosmology Project Col-
laboration), Measurements of Ω and Λ from 42 high redshift
supernovae, Astrophys. J. 517, 565 (1999).

[25] T. M. C. Abbott et al. (DES Collaboration), Dark energy
survey year 3 results: Cosmological constraints from galaxy
clustering and weak lensing, Phys. Rev. D 105, 023520
(2022).

[26] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri,
J. C. Zinn, and D. Scolnic, Cosmic distances calibrated
to 1% precision with gaia EDR3 parallaxes and hubble
space telescope photometry of 75 Milky Way cepheids
confirm tension with ΛCDM, Astrophys. J. Lett. 908, L6
(2021).

[27] C. D. Huang, A. G. Riess, W. Yuan, L. M. Macri, N. L.
Zakamska, S. Casertano, P. A. Whitelock, S. L. Hoffmann,
A. V. Filippenko, and D. Scolnic, Hubble space telescope
observations of mira variables in the SN Ia host ngc 1559:
An alternative candle to measure the hubble constant,
Astrophys. J. 889, 5 (2020).

[28] N. Frusciante and L. Perenon, Effective field theory of dark
energy: A review, Phys. Rep. 857, 1 (2020).

[29] J. Bloomfield, É. É. Flanagan, M. Park, and S. Watson, Dark
energy or modified gravity? An effective field theory
approach, J. Cosmol. Astropart. Phys. 08 (2013) 010.

[30] E. Bellini and I. Sawicki, Maximal freedom at minimum
cost: Linear large-scale structure in general modifications of
gravity, J. Cosmol. Astropart. Phys. 07 (2014) 050.

[31] B. Jain and J. Khoury, Cosmological tests of gravity, Ann.
Phys. (Amsterdam) 325, 1479 (2010).

[32] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
Modified gravity and cosmology, Phys. Rep. 513, 1 (2012).

[33] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C.
Hirata, A. G. Riess, and E. Rozo, Observational probes of
cosmic acceleration, Phys. Rep. 530, 87 (2013).

[34] A. Joyce, B. Jain, J. Khoury, and M. Trodden, Beyond the
cosmological standard model, Phys. Rep. 568, 1 (2015).

[35] A. Joyce, L. Lombriser, and F. Schmidt, Dark energy
versus modified gravity, Annu. Rev. Nucl. Part. Sci. 66,
95 (2016).

[36] L. Amendola et al., Cosmology and fundamental physics
with the Euclid satellite, Living Rev. Relativity 21, 2
(2018).

[37] L. Amendola et al., Cosmology and fundamental physics
with the euclid satellite, Living Rev. Relativity 16, 6 (2013).

[38] B. Jain et al., Novel probes of gravity and dark energy,
arXiv:1309.5389.

[39] L. Amendola, M. Kunz, M. Motta, I. D. Saltas, and I.
Sawicki, Observables and unobservables in dark energy
cosmologies, Phys. Rev. D 87, 023501 (2013).

[40] T. Baker, P. G. Ferreira, C. D. Leonard, and M. Motta, New
gravitational scales in cosmological surveys, Phys. Rev. D
90, 124030 (2014).

[41] C. D. Leonard, T. Baker, and P. G. Ferreira, Exploring
degeneracies in modified gravity with weak lensing, Phys.
Rev. D 91, 083504 (2015).

[42] T. E. Collett, L. J. Oldham, R. J. Smith, M.W. Auger, K. B.
Westfall, D. Bacon, R. C. Nichol, K. L. Masters, K.
Koyama, and R. van den Bosch, A precise extragalactic
test of general relativity, Science 360, 1342 (2018).

[43] J.-P. Uzan and F. Bernardeau, Lensing at cosmological
scales: A test of higher dimensional gravity, Phys. Rev. D
64, 083004 (2001).

[44] L. Knox, Y.-S. Song, and J. A. Tyson, Distance-redshift and
growth-redshift relations as two windows on acceleration
and gravitation: Dark energy or new gravity?, Phys. Rev. D
74, 023512 (2006).
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