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We study the finite distance boundary symmetry current algebra of the most general first order theory of
3D gravity. We show that the space of quadratic generators contains diffeomorphisms but also a notion
of dual diffeomorphisms, which together form either a double Witt or centerless BMS3 algebra.
The relationship with the usual asymptotic symmetry algebra relies on a duality between the null and
angular directions, which is possible thanks to the existence of the dual diffeomorphisms.
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I. MOTIVATIONS

Three-dimensional gravity has undoubtedly played
an important role in the understanding of infinite-
dimensional boundary symmetry algebras, and their rela-
tionship with holography, boundary dynamics, and black
hole physics. Since the seminal results on asymptotically
AdS3 [1–6], notable developments have been achieved in
asymptotically-flat spacetimes and are centered around
the BMS algebra [7–16]. This latter was introduced in
four-dimensional gravity early on [17–19], and has since
then found very important applications [20–26].
In parallel, efforts have also been devoted towards the

understanding of symmetries associated with boundaries at
finite distance [27–45]. For an arbitrary boundary in a
given theory of gravity, one would like to understand the
most general boundary symmetry algebra, and how it
reduces to the particular cases which have been studied in
the literature. In three-dimensional gravity, there is a gap in
this understanding, which we here propose to fill.
In the first order formulation, the most general finite

distance boundary symmetry algebra is the current algebra
of the group of spacetime isometries. It can also be realized
asymptotically with the most general boundary conditions
of [46,47]. Seen as a universal enveloping algebra, this
current algebra actually contains the diffeomorphisms,
which can be viewed as field-dependent gauge transforma-
tions, or quadratics in the currents.
It turns out that the space of well-defined quadratics

is actually two-dimensional. This fact seems to have
gone unnoticed so far. It implies the existence of dual

diffeomorphisms which, together with the usual ones, form
at finite distance and for tangential vector fields1 a double
Witt algebra whose flat limit is a centerless bms3 algebra.
When computed for arbitrary vector fields in e.g. Bondi
gauge, the dual diffeomorphism charge is equal to the
diffeomorphism one with the null and tangential directions
exchanged. This explains why, even when considering
tangential vector fields alone, these charges can reproduce
asymptotic symmetry algebras at finite distance, in a manner
reminiscent of symplectic symmetries [52,53].
In summary, our analysis explains how the double Witt

and bms3 algebras arise from the current algebra. For
generality we perform this study on the most general first
order theory [54–66], which allows for the presence of
curvature, torsion, and three independent central charges.

II. LAGRANGIAN AND PHASE SPACE

Our starting point is the most general first order Lorentz-
invariant theory constructed with a triad and a connection
variable. This is described by the so-called Mielke-Baekler
Lagrangian [54]

L ¼ σ0
3
e ∧ ½e ∧ e� þ 2σ1e ∧ F

þ σ2ω ∧
�
dωþ 1

3
½ω ∧ ω�

�
þ σ3e ∧ dωe:
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1The use of tangential vector fields, which characterize the
corner symmetry group [48–51] (as opposed to the extended
corner symmetry group which also probes nontangential direc-
tions), enables us to obtain integrable diffeomorphism charges
without having to impose boundary conditions on the dynamical
fields. One should note that this integrability condition does not
guarantee that the charges are conserved, nor that there is a well-
defined variational principle. Conservation and the variational
principle may require additional boundary conditions, such as the
asymptotically flat ones which we discuss below.
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Its equations of motion can be written in the form

2F þ p½e ∧ e� ≈ 0; 2dωeþ q½e ∧ e� ≈ 0; ð1Þ

which reveals sources of Lorentzian curvature and torsion
measured respectively by p and q. These parameters are
determined by the couplings via σ0 ¼ pσ1 þ qσ3 and
σ3 ¼ pσ2 þ qσ1. The solution to the torsion equation of
motion is ω ¼ Γ − qe=2, where ΓðeÞ is the torsionless
Levi-Civita connection. This can then be used to find the
second order form of the equations of motion, which is
Rμν þ 2λgμν ¼ 0 with λ ¼ ðpþ q2=4Þ ∈ R.
Sticking to the first order formulation, we find that

the presymplectic potential, which is the starting point
for the covariant phase space analysis, takes the simple
form θ ¼ 2σ1δω ∧ eþ σ2δω ∧ ωþ σ3δe ∧ e.
The theory is invariant under the internal Lorentz trans-

formations δj and translations δt, which act as

δjαe ¼ ½e; α�; δjαω ¼ dωα;

δtϕe ¼ dωϕþ q½e;ϕ�; δtϕω ¼ p½e;ϕ�: ð2Þ

The commutators of these internal gauge transformations
can be represented by the six-dimensional algebra

½Ji; Tj� ¼ εijkTk; ½Ji; Jj� ¼ εijkJk;

½Ti; Tj� ¼ εijkðpJk þ qTkÞ; ð3Þ

whose Casimir operators are

C1 ¼ TiTi þpJiJi; C2 ¼ JiTi þ TiJi − qJiJi: ð4Þ

As wewill see below in (6) in terms of the charges, defining
P ≔ T − qJ=2 shows that this algebra is nothing but the
isometry algebra gλ of the underlying spacetime manifold
[i.e. soð2; 2Þ, isoð2; 1Þ, or soð3; 1Þ when λ is negative,
vanishing, or positive respectively]. On shell of (1), diffeo-
morphisms δdξ ¼ £ξ can be written as field-dependent gauge
transformations in the form

δdξ ≈ δjξ ⌟ω þ δtξ ⌟ e: ð5Þ

This follows from the topological nature of the theory.

III. QUASILOCAL ALGEBRA AND DUAL
DIFFEOMORPHISMS

Using the covariant phase space formalism and consid-
ering field-independent gauge parameters, the charges of
Lorentz transformations and translations are found to be

J ðαÞ¼ 2

I
αðσ1eþσ2ωÞ; T ðϕÞ¼ 2

I
ϕðσ1ωþσ3eÞ;

where all the boundary integrals are on φ ∈ S1. These
charges form the centrally extended current algebra

fJ ðαÞ; T ðϕÞg ¼ T ð½α;ϕ�Þ − 2σ1

I
αdϕ;

fJ ðαÞ;J ðβÞg ¼ J ð½α; β�Þ − 2σ2

I
αdβ;

fT ðϕÞ; T ðχÞg ¼ pJ ð½ϕ; χ�Þ þ qT ð½ϕ; χ�Þ − 2σ3

I
ϕdχ:

After defining the generator P ≔ T − qJ =2, this can be
rewritten in the more familiar form

fJ ðαÞ;PðϕÞg ¼ Pð½α;ϕ�Þ − c1

I
αdϕ;

fJ ðαÞ;J ðβÞg ¼ J ð½α; β�Þ − c2

I
αdβ;

fPðϕÞ;PðχÞg ¼ λ

�
J ð½ϕ; χ�Þ − c2

I
ϕdχ

�
; ð6Þ

where the central charges are now c1 ¼ 2σ1 − qσ2 and
c2 ¼ 2σ2. We will however continue to work with T for the
moment, as it leads to a simpler expression for the diffeo-
morphisms via (5). The ðJ ; T Þ current algebra is well
defined at any location in the bulk. The corresponding
universal enveloping algebra, built with arbitrary field-
dependent smearing parameters, describes in principle all
the symmetries of the theory. This includes in particular the
diffeomorphisms defined as (5).
Field-dependent gauge transformations are generically

not integrable without imposing extra conditions on the
gauge parameters and/or the dynamical fields. In particular,
when viewing diffeomorphisms as field-dependent gauge
transformations as in (5), one finds the familiar nonintegr-
able contribution −ξ ⌟ θ to their charge =δDðξÞ. Without
placing boundary conditions on ðe;ωÞ, the diffeomorphisms
can therefore be made integrable by considering tangent
vector fields. Their charge can then be written as

DðξÞ ¼ J ðξ ⌟ωÞ þ T ðξ ⌟ eÞ;

which mirrors (5). Let us momentarily focus on tangent
vector fields, before relaxing this requirement later on.
It is now natural to ask if, aside from the diffeomor-

phisms, there is another combination of field-dependent
gauge transformations which can be made integrable and
consistently defined on phase space, and if so what the
properties of the corresponding charge is. The answer is
affirmative, and the object fulfilling these requirements is
the dual diffeomorphism charge. For tangent vector fields,
it is defined as

D�ðξÞ ≔ pJ ðξ ⌟ eÞ þ qT ðξ ⌟ eÞ þ T ðξ ⌟ωÞ:
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The proof leading to this charge is as follows. We start with
the most general linear combination of field-dependent
gauge transformations obtained by contracting a vector
field with a connection or a triad. This is

=δGðξÞ ¼ a=δJ ðξ ⌟ eÞ þ b=δJ ðξ ⌟ωÞ þ c=δT ðξ ⌟ eÞ
þ d=δT ðξ ⌟ωÞ:

Writing out explicitly these field-dependent charges, it is
not hard to see that they can be made integrable without
restricting the dynamical fields if we impose the algebraic
relation bσ1 þ dσ3 − aσ2 − cσ1 ¼ 0 and consider tangent
vector fields. With integrability being achieved, we can
then compute the brackets of these new charges with the
diffeomorphisms, the Lorentz transformations, and the
translations. We then find that all these brackets are well
defined, aside from

fGðξÞ;T ðϕÞg ¼ −aJ ð£ξϕÞ− cT ð£ξϕÞ

− 2ðbσ3 þ dσ0 − aσ1 − cσ3Þ
I

½ξ ⌟e;ϕ�ω;

which does not close because of the field-dependent piece.
This latter is problematic because it is not the charge of an
integrable gauge transformation. Moreover, when consid-
ering iterated Poisson brackets it leads to higher and higher
order terms in the fields. Canceling this piece by imposing
the vanishing of its coefficient, and choosing for conven-
ience the normalization d ¼ 1, we find a ¼ p and
c ¼ bþ q. We therefore obtain the well-defined charges
GðξÞ ¼ pJ ðξ ⌟ eÞ þ qT ðξ ⌟ eÞ þ T ðξ ⌟ ωÞ þ bDðξÞ.
Finally, we can take b ¼ 0 and consider D� and D as the
independent charges. In summary, starting from the four-
dimensional space of field-dependent gauge transformations
=δGðξÞ, we have imposed two conditions in order to achieve
integrability and obtain a stable algebra. We are therefore
left with a two-dimensional space, which can be para-
metrized by the independent generators D� and D.
The explicit expression for these charges, which we will

need later on, is

DðξÞ ¼
I

2σ1ðξ ⌟ωÞeþ σ2ðξ ⌟ωÞωþ σ3ðξ ⌟ eÞe;

D�ðξÞ ¼
I

2σ3ðξ ⌟ωÞeþ σ1ðξ ⌟ωÞωþ σ0ðξ ⌟ eÞe; ð7Þ

where we should recall that in order to write these charges
we have assumed that ξ is tangent and field independent.
With the definition of D� in terms of field-dependent

gauge transformations, we can compute the action of the
corresponding bulk symmetry on the fields using (2). On
shell of (1) this gives

δd�ξ e ≈ £ξωþ q£ξe; δd�ξ ω ≈ p£ξe: ð8Þ

This action is therefore geometrical, just as the combination
(5) giving the action of the diffeomorphisms D. As
surprising as it may seem, one can explicitly check that
the transformations δd�ξ are indeed symmetries of the theory.
This is in fact to be expected since we have obtained D� in
terms of field-dependent gauge transformations, and all
such transformations are symmetries of the Lagrangian
regardless of the nature of the gauge parameters in (2).
From the point of view of the charges of field-dependent
gauge transformations, the existence of D� is therefore just
as legitimate as that of D. We can further argue in this
direction using the Sugawara construction.
Seen as a universal enveloping algebra, the current

algebra formed by ðJ ; T Þ actually contains the diffeo-
morphisms, which can be reconstructed as quadratics in
the currents. This is the essence of the Sugawara con-
struction. This latter enables us to obtain, starting from
the current algebra, aWitt algebra from generatorswhich are
quadratic in the currents.2 Although in three-dimensional
gravity the Sugawara construction has only been used to
describe the diffeomorphisms D, we can now show that it
also consistently leads to the dual diffeomorphisms D�.
For this, let us switch to the Fourier representation,

where the currents are denoted ðJ i
n; T i

nÞ with n ∈ Z. The
generators (3) are the zero modes n ¼ 0. We then consider
the quadratic generators

Q1
n ≔

X
k

ðJ i
nþkT

i
−k þ T i

nþkJ
i
−kÞ;

Q2
n ≔

X
k

T i
nþkT

i
−k; Q3

n ≔
X
k

J i
nþkJ

i
−k;

where the sums run over Z. The Sugawara construction
gives the Fourier expression of the diffeomorphisms and
their dual in terms of these quadratics in the currents. We
find

Dn ¼
1

4ðσ2σ3 − σ21Þ
ðσ1Q1

n − σ2Q2
n − σ3Q3

nÞ;

D�
n ¼

1

4ðσ2σ3 − σ21Þ
ðpσ1Q3

n − pσ2Q1
n þ ðσ1 − qσ2ÞQ2

nÞ;

which as expected can be shown to match the previous
definitions of these generators with ξk ¼ e−inφ∂φ. We see
that the dual diffeomorphisms D�

n are therefore on the same
footing as Dn. Together, the diffeomorphisms and their
dual exhaust the possibilities for constructing quadratic

2The Sugawara construction can then be twisted in order to
introduce a central extension and promote the Witt algebra to a
Virasoro one.
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generators forming a well-defined algebra among them-
selves and with the currents.
The existence of the dual diffeomorphisms can also be

traced back to the fact that the Sugawara construction relies
on the quadratic Casimir operators of the global algebra
underlying the current algebra of boundary symmetries
[67]. In three-dimensional gravity this algebra always
admits two Casimirs, which in the most general formulation
studied here are given by (4). Comparing this with the above
Sugawara expressions for the quadratic generators reveals
that they are given by

D ∝ σ2C̃1 − σ1C̃2; D� ∝ ðσ1 − qσ2ÞC̃1 − pσ2C̃2;

where the tilde denotes the lift of the Casimirs to the
universal enveloping algebra. The two-dimensionality of the
space of well-defined quadratic operators matches the fact
that the underlying algebra has two Casimirs. This is a
nontrivial consistency check, as one can show that it is only
the quadratics forming a stable algebra with the currents
which can be written in terms of the Casimirs.
Sticking to tangent vectors, we can now compute the

algebra of the diffeomorphisms and their dual, to find

fD�ðξÞ;DðζÞg ¼ −D�ð½ξ; ζ�Þ;
fDðξÞ;DðζÞg ¼ −Dð½ξ; ζ�Þ;

fD�ðξÞ;D�ðζÞg ¼ −pDð½ξ; ζ�Þ − qD�ð½ξ; ζ�Þ:

Remarkably, this reflects exactly the ðJ ; T Þ current algebra
from which we started, and can therefore be thought of as its
representation in terms of vector fields instead of Lie
algebra elements. However, since the vector fields are
tangent we obtain no central extensions. This algebra can
now be put in a more suggestive form by redefining the dual
generator as A ≔ D� − qD=2, leading to

fAðξÞ;DðζÞg ¼ −Að½ξ; ζ�Þ;
fDðξÞ;DðζÞg ¼ −Dð½ξ; ζ�Þ;
fAðξÞ;AðζÞg ¼ −λDð½ξ; ζ�Þ; ð9Þ

which reflects the ðJ ;PÞ current algebra. In the case λ ¼ 0,
which can be achieved for q2 ¼ −4p, this is the centerless
bms3 algebra. When λ ≠ 0, the redefinition D� ≔ ðD�
λ−1=2AÞ=2 reveals as usual the direct sum of two Witt (or
centrerless Virasoro) algebras. Note that this also works in
the dS case λ < 0.
This is the main result of the present paper, namely the

construction, in the most general first order theory of three-
dimensional gravity, of the quadratic generators in the
universal enveloping algebra of boundary symmetries.
These are the diffeomorphisms and their dual, which at
any finite distance form a double Witt algebra. We note
that the only related result where a bms3 algebra was built

from the current algebra using two independent quadratics
seems to be [68], which however did not provide a
gravitational interpretation of this construction.

IV. RELATION WITH ASYMPTOTIC CHARGES
AND ALGEBRA

It is now enlightening to compare our construction with
the derivation of the asymptotic double Virasoro algebra
and its flat limit. For this, we consider the Bondi gauge line
element [69]

ds2 ¼ ðM − λr2Þdu2 − 2dudrþN dudφþ r2dφ2;

where the two free functions ðM;N Þ are independent of r
and satisfy ∂uM ¼ λN 0 and ∂uN ¼ M0, where prime is
the angular derivative. The on-shell asymptotic Killing
vectors are ξ ¼ ðξu; ξr; ξφÞ with

ξu ¼ f; ξr ¼ f00 − rg0 −
N f0

2r
; ξφ ¼ g −

f0

r
;

where ðf; gÞ are independent of r and satisfy ∂ug ¼ λf0 and
∂uf ¼ g0. These diffeomorphisms preserve the family of
metrics, and change their parameters as

δdξM ¼ gM0 þ 2Mg0 − 2g000 þ λð2N f0 þ fN 0Þ;
δdξN ¼ fM0 þ 2Mf0 − 2f000 þ 2N g0 þ gN 0:

Since these vector fields are field dependent and also
nontangent, their diffeomorphism charge should be com-
puted from the variational expression =δDðξÞ, and in par-
ticular contains the piece −ξ ⌟ θ. Using a triad e for the
above metric, and the connection ω ¼ Γ − qe=2 solving the
torsion equation, the diffeomorphism charge is then found
to be integrable and given by

DBðξÞ¼
1

2

I
fðc1Mþλc2N Þþgðc1N þc2MÞþOðr−1Þ;

where the subscript stands for Bondi. The subleading term is
exact and given by −f0ðc1N þ c2MÞ=r. At null infinity,
which is reached for r → ∞, we can separate the charge into
its null and angular components by writing D∞

B ðξÞ ¼
EðfÞ þ LðgÞ, and we find the algebra [70,71]

fEðfÞ;LðgÞg ¼ −Eð½f; g�Þ þ c1

I
fg000;

fLðg1Þ;Lðg2Þg ¼ −Lð½g1; g2�Þ þ c2

I
g1g0002 ;

fEðf1Þ; Eðf2Þg ¼ −λðLð½f1; f2�Þ − c2

I
f1f0002 Þ:

Upon redefining the generators this can be put in the
form of a double Virasoro algebra with central charges
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c� ¼ 6ðλ−1=2c1 � c2Þ. In the flat limit the above brackets
reproduce that of the centrally extended algebra bms3 with
two independent central charges.
We can observe that this algebra of asymptotic charges

reflects the ðJ ;PÞ current algebra, and in particular has the
same central extensions. As an algebra of vector fields, and
up to the central extensions, it is evidently the same algebra
as (9), although this latter was obtained from a very different
construction, i.e., using tangent vectors and the dual diffeo-
morphism charge. This suggests however that the angular
and null pieces of the asymptotic Bondi charge can be
reproduced respectively by the tangent diffeomorphism
charge and its dual. Evaluating these two charges on the
vector ξk ¼ ð0; 0; hÞ using (7) and the triad and connection
components, we discover that this is indeed the case, as

DðξkÞ≡ LðhÞ ¼ 1

2

I
hðc1N þ c2MÞ;

AðξkÞ≡ EðhÞ ¼ 1

2

I
hðc1Mþ λc2N Þ:

Although the first identification is perhaps not surprising,
since L is after all the tangential part of the Bondi
diffeomorphism charge, the second one is more unex-
pected. It shows that the nontangential u component of the
Bondi gauge diffeomorphism charge D∞

B can be written as
the dual diffeomorphism charge evaluated for a tangential
vector field. In fact, one can show that an even stronger
result holds. For an arbitrary vector field, evaluating the
charges =δAðξÞ and =δDðξÞ in Bondi gauge shows that
Aðξu; ξr; ξφÞ ¼ Dðξφ; ξr; λξuÞ. In terms of the symmetry
transformations of the fields, this means in particular that
the action of A in the tangent angular direction φ is
equivalent to a diffeomorphism in the null direction u, i.e.
that δað0;0;hÞ ≈ δdðh;0;0Þ. This can indeed be shown to hold by
using (8) and the triad and the on-shell connection
components.
Heuristically, regarding the information captured by A

everything happens as if the Cauchy slice Σ defining the
symplectic structure was redefined so as to render the u
direction tangential. What is also remarkable is that the
reconstruction of D∞

B using D and A does not require us to
discuss boundary conditions, which in principle are required
to deal with the −ξ ⌟ θ piece. The information along u
contained in this nonintegrable piece has been repackaged
in the charge A. Clearly, this mechanism is here possible
because the radial component ξr does not contribute to the
asymptotic charge. Going back to the previous heuristic
picture, since the r direction can never be made tangential
by a change of slicing, it is reasonable to expect that its
contribution cannot be captured by D nor A evaluated on
tangential vectors. The fact that our construction of (9) does
not accommodate the radial direction is also the reason for
which this algebra has no central extensions. It is however
possible to perform a so-called twist of the Sugawara

construction, consisting in a shift of the quadratic generators
by a linear term, and thereby introduce three independent
central charges in the algebra (9) [71]. We keep the study of
these central extensions and of the radial direction for
future work.
The fact that we have recovered the asymptotic symmetry

algebra at any arbitrary location in the bulk is reminiscent of
the so-called symplectic nature of these symmetries [52,53].
This property follows form the absence of bulk degrees of
freedom in the theory, and relies on the fact that the
diffeomorphism charge is actually independent of the radial
coordinate r. Although this is true in the metric formulation,
here, in the first order formulation, it is not manifest because
of the presence of the subleadingOðr−1Þ piece in the charge
DB. This contribution can however be removed by replacing
the Lie derivative with the Kosmann derivative [72]. This
latter is defined as Kξ ≔ £ξ þ δjk with a field-dependent

parameter given by 2ki ≔ −εijkgμνe
j
μ£ξekν, and is such that

Kξe ¼ 0 when ξ is Killing. The charge of the Lorentz
transformation is integrable and cancels exactly the sub-
leading term in DB, so that the charge associated with the
Kosmann derivative is therefore r independent.

V. PERSPECTIVES

In this paper we have studied the finite distance symmetry
algebra of the most general first order theory of three-
dimensional gravity, and explained how aspects of asymp-
totic symmetry algebras are embedded in it. This relies on
the construction of the second order charges in the universal
enveloping algebra of the ðJ ; T Þ current algebra. We have
shown that the existence of two (and only two) well-defined
quadratic charges, namely the diffeomorphism D and its
dual D�, can be understood in terms of the Sugawara
construction and its dependency on the Casimirs of the
global part of the current algebra. Focusing on tangent
vector fields, which enables us to work without imposing
boundary conditions, we have shown that these charges
form a double Witt algebra which in the flat limit reduces to
a centerless bms3 algebra. The absence of central exten-
sions comes from the tangentiality of the vector fields, and
can be lifted by considering a twisted Sugawara construc-
tion. This is outlined in [71] and will be the focus of
future work.
Our construction has raised a natural question: Is it

possible to understand the asymptotic double Virasoro
and bms3 algebras in terms of the diffeomorphisms and
their dual? We have shown that the answer is positive but
subtle. The angular part of the asymptotic Bondi gauge
charge is captured by a tangent diffeomorphism at any finite
distance in the bulk. More surprisingly, the null part of the
asymptotic Bondi gauge charge is captured by the dual
diffeomorphism evaluated on a tangent vector field. This
means that the null direction of a usual diffeomorphism can
be understood as a tangential direction from the viewpoint
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of the dual diffeomorphism. This is reminiscent of [73–75],
where a change of vector field basis is used to render any
diffeomorphism integrable.
This opens up interesting directions. At finite distance, it

is now necessary to study the diffeomorphism and its dual
for arbitrary nontangent vector fields. This requires the
discussion of integrability and boundary conditions, whose
relation with the twisted Sugawara construction must also be
spelled out. This is a necessary generalization in order to

obtain central extensions. Considering arbitrary vector fields
will potentially extend the finite distance symmetry algebra,
and a question is therefore whether this can also be realized
asymptotically. Another crucial question is if and how these
dual charges are related to those studied in four-dimensional
gravity in [76–82]. Other questions concern the role
of the dual diffeomorphisms in the quantization of the
theory and the construction of representations of its sym-
metry algebra.
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