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In this work we reconsider the solution describing black holes surrounded by a quintessencelike fluid.
This geometry was introduced by Kiselev in 2003 and its physical source was originally modeled by an
anisotropic fluid. We show that the Kiselev geometry is actually an exact solution of the Einstein equations
coupled to nonlinear electrodynamics. More specifically, we show that the Kiselev geometry becomes an
exact solution in the context of power-Maxwell electrodynamics, using either an electric ansatz or a
magnetic one. In both cases the physical source can be modeled by a power-Maxwell Lagrangian, albeit
with different powers corresponding to the electric or the magnetic charges. We briefly investigate the
motion of charged particles in this geometry. Finally, we give the proper interpretation of the black-hole
thermodynamics in this context. Similarly to the Schwarzschild-de Sitter case, we note the presence of the
Schottky peaks in the heat capacity, signaling out the possibility of this thermodynamic black hole system
to function as a continuous heat machine.
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I. INTRODUCTION

Astrophysical observations from supernovae (Type Ia)
[1,2], cosmic microwave background radiation (CMBR)
[3,4], baryon acoustic oscillations (BAO) [5] and the
Hubble measurements are suggesting an accelerating
expansion of our Universe, which may be explained by
the presence of dark energy. The defining property of dark
energy can be characterized by means of an effective
equation of state parametrization of the form P ¼ wρ,
where P is the isotropic pressure, while ρ is the energy
density. For dark energy fluids one has to restrict w < − 1

3
.

For example, a positive cosmological constant Λ corre-
sponds to a dark energy model for which w ¼ −1 (see the
review [6] and references therein).
One of the candidates for dark energy is the quintessence

[7,8] (see also [9] and the references within), which can be
seen as a canonical scalar field coupled to gravity whose
potential is decreasing as the field increases. A slowly
varying scalar field ϕ with an appropriate scalar potential
VðϕÞ can lead to the accelerated expansion of the Universe
[10]. At the cosmological level, the role of the scalar field
has also been investigated in [11], where the Einstein-
Klein-Gordon equations for Friedmann-Robertson-Walker
geometries were analyzed. However, it has been proved
that the origin of quintessence at the cosmological and
galaxy scales could be significantly different, in the sense

that the quintessence state parameter w can have different
values [12].
In 2003, a spherically-symmetric static solution of

Einstein equations, describing black holes surrounded by
quintessencelike fluids has been found by Kiselev [13]. The
Kiselev geometry is sourced by an anisotropic fluid [14,15]
that behaves like a kind of dark energy since its equation of
state is pr ¼ −ρ, with pr ≠ pt, where pr is the radial
pressure, while pt denotes the tangential pressures pθ and
pφ. The isotropic pressure is P ¼ 1

3
ðpr þ 2ptÞ ¼ wρ, where

w is the Kiselev quintessence parameter. Therefore, in
order to cause the accelerated expansion of the universe,
the equation of state parameter w should be in the range
w ∈ ½−1;−1=3�. In the particular case w ¼ −2=3, one
gets in the metric function an additional linear contribution,
−kr. The parameter k, which is the Kiselev quintessence
charge can lead to a metric that was previously used in
modified Newtonian dynamics (MOND) [16], and various
other modifications of General Relativity [17,18] (see
also [19,20]).
In this paper we propose a physical source for the

Kiselev geometry in the context of nonlinear electrody-
namics. This class of theories has a long history, as they
were introduced initially in order to cure the infinite electric
field and the infinite self-energy for pointlike charged
particles. The first model was introduced by Born and
Infeld in 1934 [21] and it was soon realized that nonlinear
electrodynamics theories could act as effective classical
modifications from QED [22]. Nowadays, the nonlinear
electrodynamics theories are an active area of research and
they provided us with various interesting black hole*Corresponding author: cristian.stelea@outlook.com
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solutions in four and higher dimensions (for a review and
more references see [23,24]). Generically, the nonlinear
Lagrangian is constructed from the two quadratic electro-
magnetic invariants FμνFμν and Fμν⋆Fμν, where ⋆Fμν is the
dual of Fμν [25] (see also [26]). Here we will focus on a
simpler Lagrangian L ¼ LðFÞ that depends only the first
electromagnetic invariant, F ¼ FμνFμν. From the least
action principle we then obtain the following field equation
for the nonlinear electromagnetic field,

∂μð
ffiffiffiffiffiffi
−g

p
LFFμνÞ ¼ 0; ð1Þ

where LF is the derivative of the function L with respect to
the variable F.
Nonlinear electrodynamics has been used previously as a

source for the so-called Bardeen regular black holes (see for
instance [27,28]).
More recently, an exact solution involving a regular

Bardeen black hole with quintessence was previously
found in [29]. The results of that paper could hint towards
a possible explanation of the quintessence fields in terms
of nonlinear electromagnetic fields. However, the limit
q → 0 in which this solution reduces to the Kiselev black
hole is problematic since it would not be a solution of the
nonlinear electromagnetic field anymore as the nonlinear
electromagnetic field is sourced by the magnetic monopole
charge q. Moreover, the Lagrangian found in [29] looks
more like an on shell Lagrangian for the nonlinear
electromagnetic field of the Bardeen-Kiselev solution,
since it depends explicitly on the parameters of that
particular solution (such as the mass M, charge q, and
the quintessence parameters c1 and ω). This approach will
offer no clues regarding the electromagnetic origins of the
Kiselev parameters c and ω as they cannot be reinterpreted
in terms of quantities related to the nonlinear electromag-
netic fields.
In our work we will consider a different approach, in

context of the so-called power-Maxwell model, for which
the electromagnetic Lagrangian is defined as −αðFμνFμνÞq,
where α is a coupling constant that has to be introduced in
order to have a positive energy density of the nonlinear
Maxwell field [30,31]. In spaces with d dimensions it turns
out that the power-Maxwell electrodynamics can still enjoy
conformal invariance if the power coefficient q in the
Lagrangian is equal to d

4
[32]. For more properties of the

solutions of the power-Maxwell theory in various theories
and various dimensions see also [33–38].
Within this nonlinear electrodynamics theory, we show

that the Kiselev solution becomes an exact solution of the
Einstein-power-Maxwell equations (with or without cos-
mological constant) using either an ansatz involving
electric charges and fields, or a magnetic monopole ansatz.

In both cases we show explicitly how one can relate the
Kiselev quintessence parameters k and ω to the corre-
sponding electric chargeQe or the magnetic chargeQm and
the power coefficient q appearing in the power-Maxwell
Lagrangian. We found the interesting fact that the power q
corresponding to an electric charge and the power q for a
magnetic charge differ considerably (while they agree for
q ¼ 1, that is for the usual Maxwell electrodynamics). This
might signal the absence of dyonic black holes in these
theories and probably there will be problems when dealing
with the rotating versions of these geometries.
We then describe some of the properties of these

solutions: we study the motion of charged and uncharged
particles around these black holes, noting that light will
travel on the null geodesics defined by an “effective
geometry”, instead of the null geodesics of the background
geometry [39,23,40].
The motion of particles moving around different types of

black holes surrounded by quintessence has been exten-
sively studied in recent years. In this regard, for the
Schwarzschild black hole surrounded by quintessence,
the null and timelike geodesics have been investigated
by many authors, see for instance [41–46]. In the present
paper, we are discussing the effective potential for charged
particles moving around the black hole described by
Kiselev’s solution as an exact solution of the power-
Maxwell nonlinear electrodynamics. By comparing the
results with those for the usual Schwarzschild-Kiselev
black hole, one can point out the effects of the nonlinear
electromagnetic fields.
The structure of this paper is as follows: In the next

section we review the properties of the Kiselev solution that
describes a black hole surrounded by a quintessencelike
anisotropic fluid. In Sec. III we introduce the power-
Maxwell theory and show that the Kiselev solution
becomes an exact solution in this theory. In Sec. IV we
discuss the geodesic motion for timelike and null cases We
also present the effective potential for charged particles
moving around the black hole in this geometry. In Sec. V
we approach the thermodynamic properties of the Kiselev
black holes. In particular, we point out the presence of the
Schottky peaks in the heat capacity [47–49] which hints to
the possibility of interpreting the Kiselev black hole as a
continuous heat machine. Section VI is dedicated to
conclusions and avenues for further work.

II. THE KISELEV GEOMETRY

The Kiselev geometry is described by the following
static four-dimensional line element [13],

ds2 ¼ −gðrÞdt2 þ dr2

gðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ; ð2Þ

where2

1The parameter c in [29] corresponds to the parameter k in our
paper. 2In some works the parameter k is denoted as c.
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gðrÞ ¼ 1 −
2M
r

−
k

r3wþ1
: ð3Þ

Here w is the equation of state parameter and k is a positive
quintessence parameter, which is related to the fluid
quintessence energy density ρ by

ρ ¼ −
3kw

r3ðwþ1Þ ;

while components of the anisotropic pressures can be
written as pr ¼ −ρ and the tangential pressures are given
by

pθ ¼ pφ ¼ −
3ð3wþ 1Þkw

2r3ðwþ1Þ : ð4Þ

In order to have an accelerated expansion, the equation
of state parameter w should belong to the interval
w ∈ ½−1;−1=3�.
The horizons of this geometry will correspond to sol-

utions of the equation gðrÞ ¼ 0. As it can be noticed in
Fig. 1, for fixed values of M and k, one may have, besides
the black hole’s horizon rb, situated just after 2M, an
additional (outer) quintessence horizon, rq. The two hori-
zons are given by the intersection between the fðrÞ ¼ gðrÞ
sheet and the r ¼ 0 plane. Once w is decreasing to the
limiting value w → −1, the quintessence horizon comes
closer to the black hole’s horizon. In the opposite casewhere
w is increasing to w → −1=3, the quintessence horizon

moves to bigger values of the radial coordinate. For
w ¼ −1=3, we have a static black hole surrounded by a
spherically symmetric cloud of strings, with

gðrÞ ¼ 1 − k −
2M
r

; ð5Þ

and the unique horizon

rb ¼
2M
1 − k

: ð6Þ

This spacetime is still singular as it contains conical
singularities. There is no quintessence horizon, the effect
of the quintessence fluid being encoded only in the constant
k, which is responsible for the deficit or the excess of
solid angle.
For the limiting value w ¼ −1, one recovers the

Schwarzschild-de Sitter geometry, with

gðrÞ ¼ 1 −
2M
r

− kr2:

In this case, three real roots of the corresponding cubic
equation, among which two are positive, are obtained for the
relation between the parameters 27kM2 < 1. Otherwise,
one has one real root and two complex conjugated roots.
The physically important case corresponding to w ¼

−2=3 is particularly simple, since one has a linear con-
tribution in the metric function, which becomes

gðrÞ ¼ 1 −
2M
r

− kr: ð7Þ

The two horizons, solution of the equation gðrÞ ¼ 0, are
obtained for 8kM < 1 and they are given by

r� ¼ 1

2k

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8kM

p i
: ð8Þ

However, note that ifM ¼ 0, i.e., in absence of the black
hole horizon, while the geometry still has a quintessence
horizon, located at rþ, there is a naked curvature singularity
in origin unless w ¼ −1 and w ¼ − 1

3
. In this case the

quintessence horizon plays the role of a cosmological
horizon, similar to the de Sitter case.

III. THE KISELEV SOLUTION
IN POWER-MAXWELL ELECTRODYNAMICS

One interesting class of nonlinear electromagnetic
sources is the power-Maxwell theory. The full action in
this case is given by [30,31],

FIG. 1. The metric function fðrÞ ¼ gðrÞ given in (3), for w ∈
½−1=3;−1� with M ¼ 0.8 and k ¼ 0.2. The blue plane corre-
sponds to gðrÞ ¼ 0.
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I ¼ −
1

16πG

Z
V
d4x

ffiffiffiffiffiffi
−g

p ðR − αFqÞ

−
1

8πG

Z
∂V

d3x
ffiffiffiffiffiffi
−γ

p
K þ Ibd; ð9Þ

where we denoted F ¼ FμνFμν and K is the usual Gibbons-
Hawking boundary term, defined on the spacetime boun-
dary ∂V, on which the induced metric is denoted by γab. The
terms Ibd refer to possible countertermlike terms (for the
gravitational and/or electromagnetic fields) needed to
render the full action (9) finite.
The field equations derived from this action can be

written in the form,

Gμν ¼ Tμν; ð10Þ

∂μð
ffiffiffiffiffiffi
−g

p
FμνFq−1Þ ¼ 0; ð11Þ

where the stress-energy tensor of the electromagnetic field
is defined as:

Tμν ¼ 2α

�
qFμρF

ρ
νFq−1 −

1

4
gμνFq

�
: ð12Þ

We are looking for a spherically-symmetric geometry of the
Kiselev form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ; ð13Þ

where

fðrÞ ¼ 1 −
2M
r

− krp: ð14Þ

Here k is a positive parameter, which can be related to
the original quintessence parameter in Kiselev’s solution,
while p ¼ −ð3wþ 1Þ is now a positive parameter. If w ∈
½−1;− 1

3
� then 0 ≤ p ≤ 2, although in the general solution

one can keep p general.

A. The electric ansatz

If the geometry is sourced by nonlinear electric fields we
shall use the following ansatz for the electromagnetic
potential,

Aμ ¼ ðχðrÞ; 0; 0; 0Þ; ð15Þ

from which one constructs the Maxwell tensor Fμν ¼
∂μAν − ∂νAμ. A quick computation reveals that the electro-

magnetic invariant takes the form F ¼ −2ðdχdrÞ2 < 0, which
allows us to pick α ¼ ð−1Þð−qÞ in the action, in order to have
a positive-definite energy of the electromagnetic field for
q < 0. More specifically, if one computes the components of

the electromagnetic stress-energy tensor (12), then the
energy density of the electromagnetic field is

ρ ¼ −Tt
t ¼

αFqð1 − 2qÞ
2

: ð16Þ

One can see that one can choose α ¼ ð−1Þ−q if q < 1
2
and

α ¼ −ð−1Þ−q if q > 1
2
if the energy density ρ is to be

positive-definite. In our case, for the Kiselev solution with
quintessence we will see bellow that the power parameter q
can take only negative values, such that α ¼ ð−1Þ−q is the
appropriate choice.
One can now solve directly the equation of motion for

the nonlinear electromagnetic field in (11) and one obtains

χðrÞ ¼ C1 þ C2rpþ1; ð17Þ

where C1 and C2 are constants of integration.
Solving now the Einstein equations in (11) one can

further find that the value of the power coefficient qmust be
restricted in terms of the parameter p as3

q ¼ p − 2

2p
; ð18Þ

while the quintessence parameter k in (14) can be written
as4

k ¼ 2
1
2
−2
pC

1−2
p

2 ðpþ 1Þ−2
p

p
: ð19Þ

The constant C2 can be directly related to the electric
charge Qe of this black hole solution. The electric charge
can be computed using the formula:

Qe ¼ −
α

4π

Z
S2
ðFÞq−1⋆F ¼ 2−

pþ2
2p C

−2
p

2 ðpþ 1Þ−2
p; ð20Þ

where ⋆Fμν ¼ 1
2

ffiffiffiffiffiffi−gp
ϵμναβFαβ is the dual of the Maxwell

tensor Fμν, with ϵμναβ being the Kronecker symbol, while
S2 is a 2-sphere containing the black hole horizon.
Combining (19) and (20) one can now reexpress the

constant C2 in (17) as

C2 ¼
Q

−p
2

e

2
pþ2
4 ðpþ 1Þ

ð21Þ

3Note that for 0 ≤ p ≤ 2 the power q < 0 such that α ¼
ð−1Þ−q is the right choice.

4More generally, k contains the factor αð−1Þq multiplying the
expression given in (19). However, this factor cancels out for
α ¼ ð−1Þ−q. This factor is responsible for changing the sign of k
in the usual Maxwell electrodynamics, when q ¼ 1 > 1

2
and

α ¼ −ð−1Þ−q accordingly.
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Finally, the parameter k appearing in the metric (14) can be
expressed in terms of the electric charge Qe in the
particularly simple form,

k ¼ 2
2−p
4 Q

2−p
2
e

pðpþ 1Þ : ð22Þ

Note that the obtained solution is valid for every value of the
parameter p and it can be easily modified to accommodate
the presence of a cosmological constant Λ in (9) and (14).

1. The energy conditions using the electric ansatz

One can now easily check the energy conditions satisfied
by the nonlinear electromagnetic field in our solution.
Recall that in the original Kiselev solution with quintes-
sence the parameter p ∈ ½0; 2� such that q ≤ 0. More
specifically, if one denotes the effective tangential pressures
in the electromagnetic stress-energy tensor (12) by

pθ ¼ pφ ¼ −p0; ð23Þ

then one can express the energy density ρ and the radial
pressure pr as

ρ ¼ −pr ¼ p0ð1 − 2qÞ; ð24Þ

where we defined

p0 ¼
½2ðdχdrÞ2�q

2
> 0: ð25Þ

It is now easy to check that the weak energy condition
(WEC), which requires ρ ≥ 0 and ρþ pr ≥ 0 and ρþ pt ≥
0 is satisfied for q ≤ 0. Similarly, the dominant energy
condition (DEC), which requires that ρ ≥ 0 and −ρ ≤ pr ≤
ρ and −ρ ≤ pt ≤ ρ is satisfied as well. However, the strong
energy condition (SEC) is not satisfied since ρþ pr þ
2pt < 0 in our case.

B. The magnetic ansatz

It is interesting to note that the same geometry defined by
(14) can also be sourced by using a magnetic monopole
ansatz for the electromagnetic potential. More specifically,
we shall choose:

Aμ ¼ ð0; 0; 0; Qmð1 − cos θÞÞ; ð26Þ

whereQm is a constant that can be shown to be equal to the
magnetic charge in our solution. Indeed, in this case the
magnetic monopole charge is defined by the equation,

Qm ¼ 1

4π

Z
S2
F; ð27Þ

where F ¼ Qm sin θdθ ∧ dφ denotes here the electromag-
netic 2-form, not to be confused with the electromagnetic
invariant F ¼ FμνFμν that we used in Eq. (9). In fact, it can
be shown by direct computation that this invariant takes

now the particularly simple form F ¼ 2Q2
m

r4 ≥ 0. Since this
invariant is always positive, one can simply take α ¼ 1 in
the action (9) since we are guaranteed that the energy
density of the electromagnetic field is now positive for any
power coefficient q. Indeed, if one computes the corre-
sponding energy density of the electromagnetic field for a
magnetic charge one finds the explicit expression

ρ ¼ αFq

2
; ð28Þ

and since F > 0 one is forced to choose α ¼ 1 for every
value of q. One should contrast this to the results in the
electric case, where the value of α depends on the value of q
and the sign of F. This might make the construction of
dyonic black holes in nonlinear power-Maxwell electro-
dynamics problematic.
Moreover, with this magnetic ansatz the nonlinear

Maxwell equations in (11) are satisfied as well.
Solving now the Einstein equations in (11) one finds that

they are identically satisfied if one takes the following
parameters

q ¼ 2 − p
4

ð29Þ

in Eq. (9) and

k ¼ ð2Q2
mÞ

2−p
4

2ðpþ 1Þ ð30Þ

in the metric (14). This completes our solution using the
magnetic ansatz. Note that if p ∈ ½0; 2�, then the power
coefficient q belongs to the interval 0 ≤ q ≤ 1

2
.

1. The energy conditions using the magnetic ansatz

One can now discuss the energy conditions satisfied by
our nonlinear electromagnetic field using the magnetic
ansatz. If one considers the diagonal components of the
corresponding stress-energy tensor (12)

Tμ
ν ¼ diagð−ρ; pr; pθ; pφÞ; ð31Þ

then one finds ρ ¼ −pr ¼ 2p0

p and pθ ¼ pφ ¼ −p0, where
we defined p0 by

p0 ¼
pð2Q2

m
r4 Þ

q

4
: ð32Þ
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Note that for the Kiselev with quintessence geometry one
has 0 ≤ p ≤ 2 and therefore the quantity p0 is positive.
One can now easily check that the weak energy condition

and the DEC are both satisfied for 0 ≤ p ≤ 2, while the
SEC is violated since ρþ pr þ pθ þ pφ ¼ −2p0 < 0, just
as in the electric case.

C. The location of the horizons

We shall now describe some of the properties of the
solutions found in the power-Maxwell nonlinear electro-
dynamics. First, let us discuss the location of the horizons
in the geometry defined by (14). Recall that in our case
p ∈ ½0; 2� and k > 0.
The horizons will correspond to solutions of the equation

fðrÞ ¼ 0. Even if, for general powers p, one cannot solve
this equation analytically, it is still possible to draw some
general conclusions regarding the location of the horizons.
For this, let us define a new variable u ¼ 1

r such that
fðuÞ ¼ 1–2Mu − ku−p. Then the solutions of the equation
fðuÞ ¼ 0 will correspond to the intersection points of the
line y1 ¼ 1–2Mu with the curve y2 ¼ ku−p (see Fig. 2).
One can see that depending on the values taken byM, p and
Q one can have at most two horizons: a black hole horizon
located at rb and one horizon (the quintessence horizon in
the original Kiselev solution) located at rc > rb. This
second horizon plays the role of an effective cosmological
horizon and the static patch of the Kiselev geometry is now
restricted to values of the radial coordinate r in between
these two horizons. Outside the ‘cosmological’ horizon rc
the radial coordinate becomes timelike and the temporal
coordinate becomes spacelike, just as it happens in the

Schwarzschild-de Sitter geometry. There is however a
marked difference to the Schwarzschild-de Sitter case,
since in absence of the black hole horizon there is a naked
singularity in the bulk, unless p ¼ 2 (which corresponds to
an effective de Sitter geometry) or p ¼ 0, which corre-
sponds to a conical singularity.
As one increases the black hole mass parameter, M, the

black hole horizon rb increases while the cosmological
horizon rc shrinks. For fixed Q and p values there is a
maximum value of the mass parameterM such that the two
curves y1 and y2 have only one point of intersection,
located at

r0 ¼
2ðpþ 1ÞM

p
: ð33Þ

This situation corresponds to the extremal case, similar to
the Nariai solution in the Schwarzschild-de Sitter case. The
maximum value of the mass parameter can be expressed as

Mmax ¼
1

2
pðpþ 1Þp−12−pk

1
2−p; ð34Þ

where k is given by (19) in the electric case and (30) in the
magnetic solution.
If the mass parameter is increased beyond this value the

spacetime becomes singular, as it contains now a naked
singularity. The lesson to be learnt is that the black hole
horizon rb can only have values in between 0 and r0,
otherwise the spacetime geometry is singular.

IV. PARTICLE ORBITS IN THE POWER-
MAXWELL KISELEV BACKGROUND

In this section we shall briefly discuss the trajectories of
particles in the Kiselev geometry as parametrized in (14).
These trajectories have been previously discussed in liter-
ature in the timelike and the null cases [41–43]. One can
express the parameters of the original Kiselev geometry in
terms of our reparametrized solution as k > 0, while
p ¼ −ð3ωþ 1Þ. From this point of view we do not expect
to find new results concerning the geodesics of the original
Kiselev geometry. However, since our solution is an exact
solution of a nonlinear electrodynamics theory, one should
note that the test charged particles should couple to the
nonlinear electromagnetic fields and therefore they will be
influenced by these fields and their motion will change
accordingly. In this section we shall describe the effects of
the nonlinear electromagnetic fields for charged test par-
ticles using an effective potential method.
However, as is now known in nonlinear electrodynamics

theories, one should note that photons will follow the null
geodesics of an “effective” geometry instead of the null
geodesics of the original Kiselev background [39]. This
will signal a new effect for photon’s propagation due to our

FIG. 2. The intersection of the line described by y1 forM ¼ 0.2
and the curve y2 for k ¼ 0.3 and p ¼ 0.5.
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reinterpretation of the Kiselev geometry in terms of non-
linear electromagnetic fields.

A. Timelike trajectories

The trajectory of a massive test particle with mass m and
charge e can be determined by using the Lorentz-force
equation. In this case it reads

d2xμ

dτ2
þ Γμ

αβ

dxα

dτ
dxβ

dτ
¼ e

m
Fμ
σ
dxσ

dτ
; ð35Þ

where τ is the proper time along its trajectory. The proper
time τ is defined by using the equation,

−dτ2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ: ð36Þ

The Lorentz equation can be derived from the
Lagrangian corresponding to a charged particle moving
in an electromagnetic field defined by Aμ, given in (15) in
the electric case,

L ¼ 1

2
gμνuμuν þ

e
m
uμAμ: ð37Þ

For a test uncharged particle (e ¼ 0) which is freely
falling in the equatorial plane (θ ¼ π=2), the conserved
energy E and angular momentum L are given by

E ¼ fðrÞ_t; L ¼ r2 _φ; ð38Þ

where dot means the derivative with respect to τ. Using the
two conserved quantities E and L along the trajectory, one
can reexpress the equation (36) as describing the motion of
particle in an effective potential,

_r2 þ fðrÞ
�
1þ L2

r2

�
− E2 ¼ 0; ð39Þ

pointing out the effective potential

Veff ¼ fðrÞ
�
1þ L2

r2

�
¼

�
1 −

2M
r

− krp
��

1þ L2

r2

�
; ð40Þ

that is felt by an uncharged test particle. As expected, this
effective potential is the same with the one previously
derived in literature [41–43] for the original Kiselev
geometry once one notices that p ¼ −ð3ωþ 1Þ, while
k ¼ c > 0 is the same parameter as in the original Kiselev
geometry.
The situation is more complicated for an electrically

charged particle. In the original Kiselev geometry the
electric charge of the test particle would have no effect
on its trajectory, while in our reinterpreted Kiselev solution
in terms of the nonlinear electromagnetic fields the

situation changes. More specifically, in this case, while
the expression for the angular momentum L remains the
same as in (38), the expression of the energy E is changed
to take into account the effect of the electric charge of the
particle moving in an nonlinear electromagnetic field

E ¼ fðrÞ_tþ e
m
At; ð41Þ

where At ¼ Q
−p
2

e

2
pþ2
4 ðpþ1Þ

rpþ1 is the electric potential of the

nonlinear electromagnetic field (15). One can now reex-
press Eq. (36) in the form

_r2 ¼
�
E −

e
m
At

�
2

− fðrÞ
�
1þ L2

r2

�
¼ ðE − VþÞðE − V−Þ; ð42Þ

where we defined5

V� ¼ e
m
At �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

�
1þ L2

r2

�s
: ð43Þ

Note that it is the potential Vþ which corresponds to future
directed orbits for the charged particles. For an uncharged
particle e ¼ 0 one recovers the effective potential (40)
as Veff ¼ VþV−.
Consider now again the case of an uncharged test particle

with zero angular momentum L ¼ 0 (a test particle in radial
fall) for which the relations (39) and (40) turn into

_r2 ¼ E2 − fðrÞ; ð44Þ

and

Veff ¼ 1 −
2M
r

− krp; ð45Þ

and the ‘effective’ force acting on the particle has the
expression

F ¼ −
1

2
V 0
eff ¼ −

1

r2
½2M − pkrpþ1�:

The factor 1
2
above appears once we take into account the

fact that the equation of motion is derived from (44). Note
that in our reinterpreted Kiselev geometry the parameter
k > 0 is now related to the electric charge Qe of the
nonlinear electromagnetic field.
This effective force is attractive for p ≤ 0, as in the

Schwarzschild case, and it can have both attractive and
repulsive contributions for p > 0. The maxima of the

5For the corresponding analysis in the Reissner-Nordstrom
case see [50].
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effective potential are found by solving F ¼ 0 and one

finds the root r0 ¼ ð2MkpÞ
1

pþ1. The maximum value of the
effective potential is

Vmax
eff ¼ 1 −

2M
r0

pþ 1

p
: ð46Þ

As an example, in Fig. 3, we have represented the
effective potential (40) for p ¼ 1, i.e.,

Veff ¼ 1 −
2M
r

− kr; ð47Þ

for different values of the parameter k. The usual
Schwarzschild black hole, i.e., k ¼ 0, is represented by
the red line, while the other solid lines correspond to the
black hole in the nonlinear electrodynamics for nonzero
values of k. One may notice that, for k < 1=ð8MÞ, the
potential has a positive maximum, Vmax ¼ 1 −

ffiffiffiffiffiffiffiffiffiffi
8kM

p
, in

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2M=k

p
, and therefore there are two solutions of the

equation Veff ¼ 0, given by the intersection of the solid
curve with the horizontal axis. Once k is increasing, the
curve is approaching the horizontal axis. For 8kM > 1, the
maximum of the potential moves below the horizontal axis,
pointing out the formation of a naked singularity.
In order to have a stationary “orbit” (since L ¼ 0 one

considers a stationary particle at a fixed radial position),
with r ¼ Rc, one has to impose the conditions _r ¼ 0 and
̈r ¼ 0, i.e.,

Veffðr ¼ RcÞ ¼ E2; V 0
effðr ¼ RcÞ ¼ 0: ð48Þ

For an arbitrary parameter p, the second equation in (48)
leads to the radius

Rc ¼ r0 ¼
�
2M
kp

� 1
pþ1

; ð49Þ

and one may notice that for p < 0 there are no stationary
orbits. If p ¼ 2, the stationary orbit has the radius

Rc ¼
�
M
k

�
1=3

;

and the corresponding effective potential at r ¼ Rc reads

Veff ¼ 1 − 3ðkM2Þ1=3:

Since V 00
eff ¼ −6k < 0, this stationary orbit is unstable.

In the physically important case p ¼ 1, the stationary
radius is

Rc ¼
ffiffiffiffiffiffiffi
2M
k

r
; ð50Þ

and the effective potential reaches a maximum value

Veffðr ¼ RcÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffi
8kM

p
¼ Vmax: ð51Þ

Thus, the particle with E2 ¼ 1 −
ffiffiffiffiffiffiffiffiffiffi
8kM

p
has an unstable

stationary orbit [41,46].
As expected, the situation is more complicated when one

deals with charged test particles in nonlinear electromag-
netic fields. In this case, the circular motion is determined
by the effective potential Vþ given in (43). Circular orbits
are determined again by the conditions _r ¼ 0 and ̈r ¼ 0,
which lead in our case to

E ¼ Vþ;
dVþ
dr

¼ 0: ð52Þ

One could solve, for instance the second equation to find
the angular momentum L of the charged particle on the
circular orbit of radius r. The corresponding energy E can
be found by substituting this value of the angular momen-
tum in the first equation in (52). However, unlike the results
for the uncharged particles discussed above, the expres-
sions obtained are too complicated to be listed here and we
plan to return to this subject in future work in order to
properly address all the cases for all possible values of the
parameters involved [51].

B. Null trajectories

Finally, let us briefly turn our attention to the null
geodesics of the metric (13). For a detailed study of the

FIG. 3. The effective potential given by (47) withM ¼ 1 for the
Schwarzschild black hole, i.e., k ¼ 0, and for the power-Maxwell
black hole with k ¼ 0.07, respectively for k ¼ 0.14.
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null geodesics and circular orbits for the Kiselev black hole
see [41,43,44].
For the line element (13), with the metric (14) and the

conserved quantities (38), in the equatorial plane (for
θ ¼ π

2
) one obtains the following relation,

_r2 ¼ E2 − fðrÞL
2

r2
ð53Þ

pointing out the effective potential

VeffðrÞ ¼ fðrÞL
2

r2
¼

�
1 −

2M
r

− krp
�
L2

r2
: ð54Þ

This potential was previously studied in [44] for the
more general case of the Schwarzschild-de Sitter with
quintessence solution. The Kiselev parameters in that work
are c ¼ k > 0 while ω ¼ − pþ1

3
in terms of our reparamet-

rization of our metric.
In order to find the null circular orbits, we impose the

conditions (48) which lead to the radius values r0 that are
solutions of the equation,

1 −
2M
r0

−
2E2r20
L2

¼ 1

p − 2

�
6M
r0

− 2

�
: ð55Þ

For example, if p ¼ 1 then one obtains [44]

r0 ¼
1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 6kM
p

k
; ð56Þ

and the following relations between the energy and the
angular momentum,

E2

L2
¼ 1 − 9kM � ð1 − 6kMÞ3=2

54M2
¼ r0 − 2M − kr30

r30
: ð57Þ

For 6kM ≪ 1, one of the circular radius is close to the last
Schwarzschild circular orbit r0 ¼ 3M, while the other one,
r ≈ ð2 − 3kMÞ=k, is not physical since it leads to a negative
value for the right hand side of the relation (57). Similar
results have been previously derived in literature [41–44].
These results depend solely on the characteristics of the
original Kiselev geometry, therefore we do not expect any
changes in terms of the nonlinear electromagnetic fields in
our reinterpreted Kiselev solution.
However, for future work, it would be interesting to

consider the behavior of massless fields with electric
charges in the background of the nonlinear electromagnetic
fields in our solution.

C. Photon orbits for the black hole in the power-
Maxwell electrodynamics

Even if we considered above the null geodesics, one
should note that photons behave differently in the context

of a nonlinear electrodynamics as compared to the standard
linear theory of Maxwell electrodynamics [23,39,40].
More precisely, photons will follow the null geodesics of

an effective geometry given by [39]

gμνeff ¼ LFgμν − 4LFFF
μ
αFαν; ð58Þ

where LFF is now the second derivative of the power-law
Lagrangian with respect to the electromagnetic invariant
F ¼ FμνFμν. In our case L ¼ −αFq such that LF ¼
−αqFq−1 and LFF ¼ −αqðq − 1ÞFq−2.
Since we are considering the null orbits of the effective

geometry, it will suffice to take into account a conformally
rescaled effective geometry of the form bellow that will
lead to the same null geodesics

grescμν ¼ gμν −
4ðq − 1Þ

F
FμαFα

ν : ð59Þ

It is now easy to check that in this case the null geodesics
of the rescaled effective geometry satisfy the following
equation in the equatorial plane θ ¼ π

2
:

−fðrÞ_t2 þ _r2

fðrÞ −
p
2
r2 _φ2 ¼ 0; ð60Þ

if one uses the electric ansatz for the metric. Formally,
taking now into account the conserved quantities (38) one
can readily identify the modified effective potential6

VeffðrÞ ¼ −
1

p

�
1 −

2M
r

− krp
�
L2

r2
: ð61Þ

Note that for 0 ≤ p ≤ 2 the effective potential for the black
hole with electric charge has the reversed sign with respect
to the corresponding potential in (54).
If one uses the solution with the magnetic ansatz, the null

geodesics of the effective geometry (58) satisfy in the
equatorial plane θ ¼ π

2
a slightly modified equation (as

opposed to the electric case),

−fðrÞ_t2 þ _r2

fðrÞ þ ð2q − 1Þr2 _φ2 ¼ 0; ð62Þ

which, however, reduces to (60) once one takes into
account (29). Therefore, in the magnetic case one has
the same effective potential (61).
The effects of this effective potential are strange! There

should be a stable circular orbit for photons, while photons
with low energies fall directly into the black hole, those
with high energies are scattered back to infinity and do not
enter the black hole. However, the interpretation of (61) as

6Note that the conserved angular momentum becomes
L ¼ p

2
r2 _φ. The constant factor p=2 can be absorbed into the

constant L, however, the effective potential retains the same form
given in (61).
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an effective potential is not the correct one once one notices
the signature of the effective geometry on which photons
propagate as in (62). Basically, the nonlinear photons will
see the radial coordinate r in the static patch as a timelike
coordinate. Their trajectories could be integrated directly,
however, we will leave this subject for further work [51].

V. THERMODYNAMIC PROPERTIES OF THE
KISELEV BLACK HOLE IN POWER-MAXWELL

ELECTRODYNAMICS

In this section we will initiate the study of the thermo-
dynamics of the Kiselev black holes in the power-Maxwell
nonlinear electrodynamics using the electric ansatz from
Sec. III. The magnetic case is completely similar. One
should contrast the simplicity of the results obtained here
with the approach used for instance in [52,53], where the
effects of the quintessence have been treated by introducing
effective pressures and effective volumes, unlike the
analysis performed bellow.
As we have seen in Sec. III C, this geometry can have at

most two horizons, one black hole horizon, located at rb
and one outer, cosmological-type horizon located at
rc > rb. Depending on the values of the parameters, if
one increases the mass M then rb increases while rc
decreases, i. e. the two horizons get closer and closer
and they will coincide in this coordinate system if the mass
reaches the maximum value (34). If one increases the mass
parameter beyond this maximum value the geometry will
have no horizon, while it will generically have a naked
curvature singularity in origin.
To compute the black hole temperature we will make use

of the definition of the surface gravity,

k2b ¼ −
1

2
∇μξν∇μξν; ð63Þ

where ξμ is a Killing vector field which is null on the black
hole horizon. Since our metric is static one picks ξμ ¼ ∂

∂t

such that the surface gravity becomes kb ¼ f0ðrbÞ
2

and the
black hole temperature becomes

Tb ¼
kb
2π

¼ f0ðrbÞ
4π

¼ p − 2
2−p
4 Q

2−p
2
e rpb

4πprb
; ð64Þ

where rb is the radius of the event horizon. For very small
values of the black hole horizon radius rb one can see from
(64) that Tb →

1
4πrb

, which is the temperature of a
Schwarzschild black hole with horizon radius rb ¼ 2M.
Note that rb can only increase up to the maximum value r0
in (33) that corresponds to the extremal case when the black
hole and the cosmological horizon coincide. In terms of the
electric charge Qe and the parameter p, this maximum
value of the black hole horizon can be expressed as

r0 ¼ Q
2−p
2p
e ð2p−2

4 pÞ1p: ð65Þ

This is precisely the value for which the black hole
temperature (64) reaches zero, as expected.
One can associate as well a temperature to the cosmo-

logical horizon, rc,

Tc ¼ −
kc
2π

¼ −
f0ðrcÞ
4π

: ð66Þ

The minus sign appears here in order to account for the fact
that kc < 0 on the cosmological horizon.
Note that the entropy of these black holes should satisfy

the area-law, which means that the black hole entropy is
Sb ¼ Ab

4
, where Ab is the area of the black hole horizon. One

can also associate an entropy with the cosmological
horizon Sc ¼ Ac

4
, where Ac is the area of the cosmological

horizon. The situation here is reminiscent of black holes in
de Sitter spacetime. Once again one has a black hole
horizon surrounded by an outer, cosmological horizon and
the two horizons will coincide in the extremal case,
described by the so-called Nariai-de Sitter black hole.
Similarly to the black hole in the de Sitter case, an

important difficulty is associated with the definition of the
quasilocal mass for this class of spacetimes. The problem
arises here because of the absence of a globally-defined
timelike Killing vector at spacial infinity. However, there
does exist a Killing vector that is timelike inside the static
patch of the Kiselev geometry, while it becomes spacelike
outside the cosmological horizon and this vector could still
be used to define a notion of quasilocal mass. Another
problem is related to the fact that for general values of p the
spacetime is not asymptotically de Sitter, nor asymptoti-
cally flat and there are no counterterms known to render the
action and the conserved physical quantities finite.
However, to compute the quasilocal mass one can still

make use of the background subtraction method of Brown
and York [54,55]. Unlike the counterterm method in de
Sitter case [56], this procedure will produce results that
depend on the choice of the reference background. Let us
begin by writing the metric induced on equal time surfaces
(they are the r ¼ const surfaces outside the cosmological
horizon) in the form,

habdxadxb ¼ −fðrÞdt2 þ r2ðdθ2 þ sin2 θdφ2Þ
≡ −fðrÞdt2 þ σijdϕidϕj: ð67Þ

If ξμ ¼ ∂

∂t is the Killing vector generating an isometry on the

boundary and if nμ ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞp

; 0; 0; 0� is the unit normal
on a surface of fixed t then, following [56] we define the
conserved charge associated to the Killing vector ξμ using
the formula
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M ¼ 1

8π

Z
S2
d2ϕ

ffiffiffi
σ

p
Tabξ

anb; ð68Þ

where we defined [54,55]

Tab ¼ ðKab − KhabÞ − ðK0
ab − K0h0abÞ: ð69Þ

Here Kab is the extrinsic curvature of the metric (67)
induced on the boundary, K is its trace, while K0

ab, K
0 and

h0ab are the corresponding quantities computed for the
reference background. This mass formula is used for a
surface of fixed time r outside the cosmological horizon,
while in the limit in which this boundary is pushed to future
infinity r → ∞ one obtains a finite result for the conserved
quasilocal mass.
In our case we shall pick the reference geometry as the

one corresponding toM ¼ 0 in (14). A simple computation
leads to a remarkable simple formula for the conserved
mass

M ¼ lim
r→∞

r
ffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞ

p
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f0ðrÞ

q
−

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
�; ð70Þ

which can be compared to a similar expression derived in
[57]. Using now the function (14) while f0ðrÞ ¼ 1 − krp,
one obtains the quasilocal mass M ¼ M.
To express the mass M ¼ M in terms of the extensive

parameters Sb and Qe we shall use the relation fðrbÞ ¼ 0.
One obtains

M ¼ rb
2pðpþ 1Þ

�
pðpþ 1Þ − 2

2−p
4 Q

2−p
2
e rpb

�
: ð71Þ

One can now check that Tb ¼ ð∂M
∂Sb

Þ
Qe

is indeed the
Hawking temperature (64), where Sb ¼ πr2b is the black
hole entropy.
If one defines the electric potential of the black hole as

Φe
b ¼

�
∂M
∂Qe

�
Sb

¼ p − 2

2p
Q

2−p
2
e rpþ1

b

2
2þp
4 ðpþ 1Þ

; ð72Þ

then it is easy to verify that the first law of thermodynamics
is satisfied

dM ¼ TbdSb þΦe
bdQe; ð73Þ

as well as a Smarr like relation of the form

M ¼ 2TbSb þ
2p

p − 2
ΦeQe: ð74Þ

This is precisely the same Smarr relation found in [31], as
expected. Note that there are similar relations corresponding
to the cosmological horizon rc,

dM ¼ −TcdSc þΦe
cdQe; ð75Þ

where

Φe
c ¼

�
∂M
∂Qe

�
Sc

¼ p − 2

2p
Q

2−p
2
e rpþ1

c

2
2þp
4 ðpþ 1Þ

; ð76Þ

while

M ¼ −2TcSc þ
2p

p − 2
Φe

cQe: ð77Þ

We are now ready to investigate the thermal stability
using the canonical ensemble method.7 We shall compute
the black hole heat capacity while keeping the black hole
charge Qe as constant. The heat capacity becomes

CQe
¼ Tb

�
∂Sb
∂Tb

�
Qe

¼ Tb

MSS
; ð78Þ

where we definedMSS ¼ ð∂2M
∂S2b

Þ
Qe

. Positivity of CQe
orMSS

would be sufficient to ensure the local stability of our black
holes in the power-Maxwell electrodynamics. In our case
Tb is positive and it reaches the zero value for rb ¼ r0 from
(65). Therefore, one should turn our attention to the
quantity

MSS ¼ −
pþ ðp − 1Þ22−p

4 Q
2−p
2
e rpb

8π2pr3b
: ð79Þ

Since p ∈ ½0; 2� there might be values for rb for which
MSS ¼ 0 if 0 ≤ p ≤ 1, which generically will lead to
divergences in the heat capacity CQe

, signaling type 2
phase transitions. However, if one recalls the expression of
r0 from (65) then one can express the quantity MSS as

MSS ¼ −
1 − ð1 − pÞðrbr0Þp

8π2r3b
: ð80Þ

It is now clear that if 0 ≤ p ≤ 1 then MSS can have a real

root rb ¼ r0ð1 − pÞ−1
p; however, this value is always

greater than the maximum value r0 that can be reached
by the black hole horizon. In conclusion, in the interval
0 ≤ rb ≤ r0 the heat capacity is always negative and the
black hole system in the power-Maxwell electrodynamics
is unstable for p ≤ 2. The point rb ¼ r0 is a bound point
of the heat capacity, since for this value one has
CQe

¼ Tb ¼ 0. However, at this location the heat capacity
does not change sign and there are no type 1 phase
transitions since there are no physical values of the black

7There are also stability conditions that can be checked at the
level of the nonlinear electrodynamics Lagrangian [58].

KISELEV SOLUTION IN POWER-MAXWELL ELECTRODYNAMICS PHYS. REV. D 106, 064017 (2022)

064017-11



hole horizon radius rb beyond the limit r0 given in (65) for
which the heat capacity CQe

could reach positive values.
The black hole temperature Tb varies from 0 to ∞. The

value Tb → ∞ is attained in the limit rb → 0. From (78)
and (80) it should be clear that in this limit CQe

→ 0. As
shown in Fig. 4 this signals the presence of a Schottky peak
[47–49] in the dependence of temperature of the heat
capacity (78).
With hindsight, the presence of a Schottky peak was to

be expected in our case. They usually appear in multi-
horizon spacetimes (although they have been noticed in
the anti–de Sitter case as well [49]), such as black holes in
de Sitter geometry, for which there is a cap in the energy
of the system. In this case the dependence of the heat
capacity as a function of temperature could give us
important clues regarding the underlying degrees of
freedom for such systems. One should note that, similar
to the Schwarzschild-de Sitter case, the existence of the
Schottky peaks is directly related to the existence of a
cosmological horizon [47].
Furthermore, the existence of the Schottky peak hints to

the intriguing possibility of using the black hole in the
power-Maxwell electrodynamics to function as a continu-
ous heat engine [48]. More precisely, combining (73) with
(75) one obtains

2dM ¼ TbdSb − TcdSc þ ðΦe
b þΦe

cÞdQe: ð81Þ

The continuous heat engine mode of operation will leave
the black hole energy fixed dM ¼ 0 such that

TbdSb ¼ TcdSc − ðΦe
b þΦe

cÞdQe: ð82Þ

Consider now the case with dQe > 0, with an increase of
the black hole entropy dSb > 0 such that there is a positive
heat inflow QH ¼ TbdSb > 0, with QC ¼ TcdSc the heat
flow away from the black hole. Then W ¼ −ðΦe

b þ
Φe

cÞdQe > 0 is the positive work done in this cycle.

VI. CONCLUSIONS

In recent years, Kiselev’s solution has received increased
interest in connection to the properties of the anisotropic
fluid sourcing this geometry, properties that mimic a dark
energy source. In the present work we found a physical
source for the Kiselev geometry within the context of
nonlinear electrodynamics theories. More specifically, in
Sec. III we showed that the Kiselev geometry becomes an
exact solution of the Einstein equations coupled to power-
Maxwell electrodynamics, using either an electric or a
magnetic ansatz. We also checked the energy conditions
showing that the WEC and the DEC are both satisfied,
while the SEC is violated in both cases.
In Sec. IV we studied the trajectories of charged and

uncharged particles that follow the timelike and the null
geodesics of this geometry. However, in the nonlinear
electrodynamics theories it turns out that photons will not
follow the null geodesics of the background Kiselev
geometry, instead they move along the null geodesics of
an effective geometry, defined in (58). As it appears, the
nonlinear photons will see the radial coordinate r in the static
patch as a timelike coordinate, while the time coordinate t
becomes spacelike (just as these coordinates change their
roles when crossing a horizon). Their trajectories could be
integrated directly, however, we will leave this subject for
further work [51].
In Sec. V we investigated the thermodynamics of the

Kiselev solution in the power-Maxwell geometry for the
electric case. We computed the mass using the Brown-York
subtraction method and showed that the first law of
thermodynamics and a modified Smarr relation are both
satisfied. The black hole in this case has negative heat
capacity and is therefore unstable, while it exhibits a
Schottky peak in the dependence of the heat capacity as
a function of temperature. Similarly to the de Sitter case, the
presence of the Schottky peak hints to the possibility of
using this black hole as a continuous heat engine.
As avenues for further work, it might be interesting to

investigate the effects of nonlinear power-Maxwell fields in
constructing interior fluid solutions, which describe compact
objects in General Relativity. Such solutions can be gen-
erated easily for the usual Maxwell electrodynamics [59,60]
and it might be fruitful to further investigate this matter.
Another interesting issue is the study of the behavior of

charged scalar and spinorial fields in the background of the
reinterpreted Kiselev geometry in the nonlinear electrody-
namics. Following similar analysis performed in [61–63], it

FIG. 4. The heat capacity, CQe
versus the temperature Tb forQe

¼ 0.5 and p ¼ 2
5
. One can notice the presence of a Schottky peak.
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is quite possible that for particular values of the parameter p
the solutions can be expressed analytically by means of the
Heun functions [64]. Work on these issues is in progress and
it will be reported elsewhere.
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