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We present a new solution in Einstein’s general relativity representing a Schwarzschild black hole
immersed in a rotating universe. Such a solution is constructed analytically by means of the last unexplored
Lie point symmetry of the Ernst equations for stationary and axisymmetric spacetimes. This kind of Ehlers
transformation is able to embed any given solution into a rotating background, which is not of Newman-
Unti-Tamburino type. We analyze the physical properties, ergoregions and geodesics of the new metric,
which is regular outside the event horizon and has a well-defined thermodynamics. We finally consider the
Kerr generalization.
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I. INTRODUCTION

The usefulness of solution generating techniques in
general relativity is renowned. They allow one to build
basically any solution of the vacuum theory without
integrating the equations of motion, as conjectured by
the Geroch [1,2], and proved by Hauser and Ernst [3]. Such
techniques are fundamental to build rotating multi-black-
hole systems, or black rings and black Saturns in higher-
dimensional gravity. However, there are still unexplored
aspects even in the oldest and basic generating methods.
In this article we want to deepen the study of the less

known Lie point symmetries of the Ernst equations [4,5],
which are a smart incarnation of Einstein(-Maxwell)
equations for stationary and axisymmetric spacetimes.
It is well known that the Ernst equations are invariant
under the Ehlers and the Harrison transformations. Such
transformations are able to generate some of the most
significant solutions of the theory. For instance, starting
from the Schwarzschild seed metric, these transformations
lead to the Taub-NUT (Newman-Unti-Tamburino) and the
Reissner-Nordström black hole, respectively, as shown in
[6–8]. It is also well known that Ernst himself was able to
add an external electromagnetic field to black hole space-
times trough a “magnetic” version of the Harrison trans-
formation, see [9–11] for the static, the rotating, and the
accelerating cases.
For these reasons, it seems natural to ask oneself what is

the effect of the “magnetic” version of the Ehlers trans-
formation, which seems the only Lie point symmetry of the

gravitational equations which remains to be analyzed in
details, up to the authors knowledge. As mentioned above
the other symmetries give rise to physical interesting
spacetimes, therefore it is reasonable to presume that this
last uncharted one might do so, perhaps even a metric
before unknown in the literature. It turns out that such a
transformation embeds any given stationary and axisym-
metric seed spacetime into a rotating background, which
we will dub “swirling universe,” for its peculiar character-
istic. Indeed, the background can be interpreted as a
gravitational whirlpool, and its frame dragging turns a
static seed solution into a stationary metric.
In Sec. II we derive and present the transformation of the

Ernst equation we will use. In Sec. III we test the
consequences of the transformation on the spherical sym-
metric black hole, which will be our seed metric, as done
with the symmetries previously analyzed in the literature.
In this way we generate a novel and analytic exact solution
of the Einstein equations, which generalizes and deforms
the Schwarzschild spacetime. Of course, because of the
well-known no-hair theorems for black hole in four-dimen-
sional general relativity the new solution could be a black
hole only by renouncing to asymptotic flatness, in a similar
way the black holes embedded in the external electromag-
netic field of the Melvin universe are [9,12]. More
precisely, we study the background spacetime in Sec. III
A, while we analyze the full black hole spacetime in
Sec. III B, by studying the physical properties, the geo-
desics, and the thermodynamics of the novel solution. We
also briefly present the generalization to the Kerr black hole
in the rotating background in Sec. IV. We conclude the
paper by establishing a connection (via a double-Wick
rotation) between our background metric and the Taub-
NUT spacetime in Sec. V.
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II. GENERATION OF THE SOLUTION

It is well known [4] that the vacuum Einstein equations
Rμν ¼ 0 for stationary and axisymmetric spacetimes are
equivalent to the Ernst equations

ðReEÞ∇2E ¼ ∇⃗E · ∇⃗E; ð2:1Þ

where ∇⃗ and the various vectorial quantities are understood
in Euclidean space with cylindrical coordinates ðρ;φ; zÞ.
The gravitational Ernst potential E ≔ f þ ih is a complex
scalar function built from the characteristic functions
of the general stationary and axisymmetric spacetime in
pure general relativity, represented by the Lewis-Weyl-
Papapetrou (LWP) metric

ds2¼−fðdt−ωdφÞ2þf−1½ρ2dφ2þe2γðdρ2þdz2Þ�: ð2:2Þ
These spacetimes, because of the requested symmetries,
enjoy at least two commuting Killing vectors (∂t, ∂φ) and
three arbitrary functions which depend on the non-Killing
coordinates ðρ; zÞ. But, thanks to the integrability properties
of the system, γðρ; zÞ decouples from the other functions
and is uniquely determined by fðρ; zÞ and ωðρ; zÞ, see [7]
for a brief review of the Ernst formalism. In order to take
advantage of the integrability properties of the model, Ernst
found out that it is convenient to define the imaginary part
of the potential E as follows:

∇⃗h ≔
fðρ; zÞ2

ρ
e⃗φ × ∇⃗ω: ð2:3Þ

The remarkable feature of the Ernst technique consists in
revealing nontrivial symmetries of the complex equations
and the integrability of the system of coupled partial
differential equations governing the model. Note that the
Ernst formulation of the gravitational Einstein equations is
not just a redefinition of the function fields, but it is
essential to generate physically nontrivial transformations;
i.e., transformations whose effect cannot be reabsorbed into
the gauge freedom of the theory. Therefore, they generate
inequivalent metrics with respect to the starting seed.
We will mainly be interested in Lie point symmetries of

the Ernst equation (2.1), i.e., symmetries associated to a
continuous parameter (real or complex), which labels the
symmetry transformation. Obviously, Lie point symmetries
do not deplete the whole set of symmetries of the model
under consideration: for instance, also discrete symmetries
might be present. In particular, in this article we will mainly
deal with the Ehlers transformation, more details about the
symmetry transformation of the Ernst equations can be
found in [7,13,14]. In fact it is easy to verify that the
following transformation

E∶E → E0 ¼ E

1þ i|E
; ð2:4Þ

with | ∈ R, leaves the Ernst equation (2.1) formally
unchanged. As stated in the introduction, when the above
Ehlers transformation (2.4) is applied to the Schwarzschild
black hole, cast into the LWP form (2.2), one generates the
Taub-NUT spacetime. However, there is a subtlety here that
we can take advantage of, in the very same way Ernst did,
dealing with the Harrison transformation, for generating the
Schwarzschild black hole embedded into theMelvin electro-
magnetic universe instead of the Reissner-Nordströmmetric.
There exist two nonequivalent forms of the LWP metric

that can be used to construct the Ernst equations (2.1). One
form is the one given in (2.2), the other one is what we will
dub the magnetic LWP:

ds̄2¼ f̄ðdϕ−ω̄dτÞ2þ f̄−1½−ρ2dτ2þe2γ̄ðdρ2þdz2Þ�; ð2:5Þ
which is obtained from (2.2) by a discrete transformation of
the form

W ≔
�
f →

ρ2

f̄
− f̄ω̄2; ω →

f̄2ω̄

f̄2ω̄2 − ρ2
;

e2γ → e2γ̄
�
ρ2

f̄2
− ω̄2

��
: ð2:6Þ

Note that the above transformation, known as “conjuga-
tion” [15], acts as an involution operator, i.e., W∘W ¼ 1.
Just to give an example, we recall that Eq. (2.6) maps the
Schwarzschild black hole into the Witten bubble of nothing
[16]. In fact the W map can also be seen as an analytical
continuation, or double-Wick rotation, of the non-Killing
coordinates of the metric, as

φ → iτ; t → iϕ: ð2:7Þ
The subtlety consists in casting our seed metric in the
magnetic LWP form (2.5) instead on the electric version
(2.2), otherwise it is well known we would just add the
NUT parameter to the chosen seed [6]. At this point we
have the full theoretical setting needed to proceed with the
generation of a new solution.
First of all we have to choose the seed. We start with the

Schwarzschild black hole whose metric, in spherical
coordinates, is

ds2 ¼ −
�
1 −

2m
r

�
dτ2 þ dr2

1 − 2m
r

þ r2dθ2 þ r2sin2θdϕ2:

ð2:8Þ
The most convenient coordinates for the generating meth-
ods, in this case, are the spherical ones ðr; θÞ, related to the
Weyl cylindrical coordinates by

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mr

p
sin θ; z ¼ ðr −mÞ cos θ: ð2:9Þ

The line element of the LWP metric (2.5) in spherical
coordinates reads
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ds2 ¼ f̄ðdϕ − ω̄dτÞ2

þ f̄−1
�
−ρ2dτ2 þ e2γ̄ðr2 − 2mrþm2sin2θÞ

×

�
dr2

r2 − 2mr
þ dθ2

��
: ð2:10Þ

Comparing the seed (2.8) to the above metric we can
identify the seed structure functions

f̄0ðr; θÞ ¼ r2sin2θ; ω̄0ðr; θÞ ¼ 0: ð2:11Þ

The value of γ̄0 is not fundamental because it is invariant
under Ehlers transformations; however we make explicit it
for completeness:

γ̄0ðr; θÞ ¼
1

2
log

�
r4sin2θ

r2 − 2mrþm2sin2θ

�
: ð2:12Þ

From definition (2.3), it is clear that h̄ is at most constant,
but that constant can be reabsorbed in a coordinate trans-
formation. Therefore without loss of generality we can
choose h̄0ðr; θÞ ¼ 0. Finally the seed Ernst gravitational
potential takes the form

Ē0ðr; θÞ ¼ f̄0ðr; θÞ: ð2:13Þ

The new solution, expressed in terms of the complex
potential, is generated via the Ehlers transformation E
(2.4), which gives

Ēðr; θÞ ¼ Ē0

1þ i|Ē0

¼ r2 sin2 θ
1þ i|r2 sin2 θ

: ð2:14Þ

Note that in case we had used the LWP metric defined in
(2.2), we would have obtained, via the Ehlers transforma-
tion acting on the Schwarzschild seed, the Taub-NUT
spacetime, as explained in [7].1

The solution, in metric form, is extracted from the
definition of the transformed Ernst potential Ē. Hence,
according to Ē ¼ f̄ þ ih̄, we find

f̄ðr;θÞ¼ r2sin2θ
1þ |2r4sin4θ

; h̄ðr;θÞ¼ |r4sin4θ
1þ |2r4sin4θ

: ð2:15Þ

ω̄ has to be found from the definition of h̄, as in (2.3). At
this scope, for sake of completeness, we write down the
relevant differential operators in the spherical coordinates

∇⃗fðr; θÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mrþm2sin2θ

p
�
e⃗r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mr

p
∂fðr; θÞ

∂r

þ e⃗θ
∂fðr; θÞ

∂θ

�
; ð2:16Þ

∇2fðr;θÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−2mrþm2sin2θ

p
�
∂

∂r

�
ðr2−2mrÞ∂fðr;θÞ

∂r

�

þ ∂

∂θ

�
∂fðr;θÞ

∂θ

��
: ð2:17Þ

The result for the metric function is

ω̄ðr; θÞ ¼ 4|ðr − 2mÞ cos θ þ ω0; ð2:18Þ

where ω0 is an integration constant related to the frame of
reference. Thus, recalling that γ̄ is not affected by the Ehlers
map, the full new metric is

ds2¼Fðr;θÞ
�
−
�
1−

2m
r

�
dt2þ dr2

1− 2m
r

þ r2dθ2
�

þ r2sin2θ
Fðr;θÞ fdφþ½4|ðr−2mÞcosθþω0�dtg2; ð2:19Þ

where we have defined the function

Fðr; θÞ ≔ 1þ |2r4 sin4 θ; ð2:20Þ

and renamed τ ¼ t, ϕ ¼ φ.
We can immediately observe that the new metric (2.19)

represents a nonasymptotically flat deformation of the
Schwarzschild black hole. Its structure is quite similar to
the Schwarzschild-Melvin spacetime [9], and indeed the
magnetic Ehlers map that we have used works in a similar
fashion as the Harrison transformation. For this reason we
do not expect that the new parameter can be considered as
either hair or a conserved charge of the black hole. The
physical description of (2.19) will be analyzed in detail in
the next section.
Starting with a more general seed we can obtain

generalizations of the metric built above. In Sec. IV we
embed the Kerr black hole in the swirling background,
while in Appendix B we generate the Zipoy-Voorhees
extension of the spacetime (2.19).

III. SCHWARZSCHILD BLACK HOLE
IN A SWIRLING UNIVERSE

In the interpretation of the new spacetime (2.19) a
fundamental point comes from the physical meaning of
the new parameter |, which defines the behavior of the
gravitational background and, to the best of our knowledge,
is unknown. Thus, we first analyze the background metric
obtained by turning off the mass parameter m in Eq. (2.19)

1Possibly the solution (2.14) can be obtained from the electric
version of the LWP metric (2.2) by using another variant of the
Ehlers transformation Ē composed by the conjugation W and the
Ehlers transformation E as follows: Ē ¼ W∘E∘W.
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and then, in Sec. III B, we study the full black hole solution
in its surrounding universe.

A. Analysis of the background spacetime

When the mass parameter m vanishes the black hole
disappears and we are left with the rotating gravitational
background only

ds2 ¼ Fð−dt2 þ dr2 þ r2dθ2Þ
þ F−1r2 sin2 θðdφþ 4|r cos θdtÞ2: ð3:1Þ

In cylindrical coordinates

ρ ¼ r sin θ; z ¼ r cos θ; ð3:2Þ

the background takes the simpler form

ds2 ¼ ð1þ |2ρ4Þð−dt2 þ dρ2 þ dz2Þ

þ ρ2

1þ |2ρ4
ðdφþ 4|zdtÞ2: ð3:3Þ

Such a metric has the very same form of the one presented
in Appendix C of [17]: however, it was not studied in that
reference.
The spacetime (3.3) belongs to the Petrov type D class

[13], and all its Newman-Penrose spin coefficients are null.
These features allow us to infer that the metric (3.3) belongs
to the Kundt class (cf. Table 38.9 of [13]). We can indeed
explicitly express the background metric (3.3) in the
standard Kundt form, by performing the rescaling t → |t
and the change of coordinates

q ¼ 2|z; p ¼ ρ2: ð3:4Þ

Metric (3.3) then boils down to (after a rescaling of the
conformal factor)

ds2 ¼ ðγ2 þ p2Þð−dt2 þ dq2Þ þ γ2 þ p2

γ2p
dp2

þ γ2p
γ2 þ p2

ðdφþ 2γqdtÞ2; ð3:5Þ

where we have defined γ ¼ 1=|. This metric is equivalent to
(16.27) of [18], oncewe putm¼e¼g¼Λ¼α¼ ϵ2¼k¼0,
ϵ0 ¼ 1, and n ¼ γ2=2. One can check that the consistency
constraints of [18] are indeed satisfied.
The metric (3.5), despite being known for a long time (it

was discovered by Carter in [19]), does not have a clear
physical interpretation. In particular, the physical signifi-
cance of the parameter γ (i.e., |) is not known: it has been
called an “anti-NUT” parameter by Plebański in [20]
because of its resemblance with the NUT parameter in

the Plebański-Demiański spacetime [21].2 A generalization
in the presence of the cosmological constant and some
possible interpretation of this background is done in Sec. V.
In order to gain some physical perspective can be useful

to investigate, in some detail, the properties of the back-
ground metric by inspecting its geodesics.

1. Geodesics in the background spacetime

We define the following geodesic Lagrangian from the
background metric (3.3)

L¼ð1þ|2ρ4Þð−_t2þ _ρ2þ _z2Þþ ρ2

1þ|2ρ4
ð _φþ4|z_tÞ2; ð3:6Þ

where the dots stand for the derivatives with respect to an
affine parameter s. We can define, via the Killing vectors
ξ ¼ ∂t and Φ ¼ ∂φ, the standard conserved quantities

−E ≔ gμνuμξν; L ≔ gμνuμΦν; ð3:7Þ

where uμ is the four-momentum of the test particle, E is the
energy, and L is the angular momentum. The explicit
definitions for the conserved quantities and the resulting
Lagrangian can be found in Appendix A 1
The equations of motion derived from the Lagrangian are

quite involved. Qualitative result can be obtained from the
normalization of the four-momentum, i.e., from equation
uμuμ ¼ χ, with χ ¼ −1 for timelike geodesics and χ ¼ 0

for null geodesics. The resulting normalization equation is
(A3). For large values of ρ and for fixed z, it follows from
such an equation that

_ρ2 ≈ L2ρ−2; ð3:8Þ

which has the solution ρðsÞ ∝ ffiffiffiffiffiffiffiffi
2Ls

p
: this means that ρ is

not limited as the proper time grows.
We are interested in analyzing the behavior of z as ρ

grows. We find _z2 ¼ 0 by letting ρ → ∞ in Eq. (A3),
therefore the coordinate z reaches a constant value as ρ
approaches infinity. Moreover, the equation defining L, for
large values of ρ, gives ϕ ≈ c2L2s2. Combining this with
the approximate equation for ρ, allows one to get the polar

equation r ≈
ffiffi
2
c

q
ϕ1=4. Such an equation is the polar form of

the generalized Archimedean spiral with exponential 1=4.
Therefore we expect that a geodesic test particle follows a
spiral-like path in the ðx; yÞ plane and that it moves toward
a constant value of z. These results are in good agreement
with the numerical evaluations, as can be observed from the
plot in Fig. 1, which shows the trajectory of a test particle in
the ðx; y; zÞ space, where x ¼ ρ cos θ, y ¼ ρ sin θ.

2Actually, there exists an analogical connection between the
rotating parameter | and the NUT parameter l that will be
exploited in Sec. V.
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The statement that z reaches a constant value can be
verified by using the equation of motion for z

4|2ρ3 _ρ _zþð|2ρ4 þ 1Þ̈z ¼ 4ρ2|_tð _φþ 4|z_tÞ
|2ρ4 þ 1

: ð3:9Þ

By inspecting the equations for _t and _φ in Appendix A 1,
one can notice that _t ∝ 1=ρ4 and _φ ∝ ρ2 as ρ → ∞,
therefore the rhs of the latter equation can be neglected
for large values of ρ:

4|2ρ3 _ρ _zþð|2ρ4 þ 1Þ̈z ¼ 0: ð3:10Þ

Moreover, 1þ |2ρ4 ≈ |2ρ4 as ρ approaches infinity. By
using the approximation ρðsÞ ≈ ffiffiffiffiffiffiffiffi

2Ls
p

found above, the
equation becomes

2_zþ s̈z ¼ 0; ð3:11Þ

whose solution is

zðsÞ ¼ D
s
þ C; ð3:12Þ

where C, D are integration constants. This result clearly
shows that z becomes constant as s approaches infinity.

B. Black hole solution

1. Physical properties

The full black hole metric (2.19), which we report here
for convenience

ds2¼Fðr;θÞ
�
−
�
1−

2m
r

�
dt2þ dr2

1− 2m
r

þ r2dθ2
�

þ r2sin2θ
Fðr;θÞ fdφþ½4|ðr−2mÞcosθþω0�dtg2; ð3:13Þ

with Fðr; θÞ ¼ 1þ |2r4 sin4 θ, is a two parameters metric,
with m and | related to the mass of the black hole and the
angular velocity of the background, respectively.
In view of the previous section the spacetime (3.13)

can be interpreted as a Schwarzschild black hole
immersed into a swirling background. The main causal
structure is similar to the Schwarzschild case, as can be
readily understood by looking at some θ ¼ constant slices
of the conformal diagram. For instance, the cases θ ¼
f0;�πg precisely retrace the static spherically symmetric
black hole.
Indeed the metric (3.13) is characterized by a coordinate

singularity located at r ¼ 2m, which identifies the event
horizon of the black hole. This latter is a Killing horizon that
has the same significance of the standard Schwarzschild
horizon. The presence of the rotating background deforms
the horizon geometry, making it more oblate, while main-
taining exactly the same surface of the Schwarzschild
black hole, for the same values of the mass parameter
m. In Fig. 2 the deformation is pictured for different
intensities of the rotating gravitational background, gov-
erned by the new parameter | introduced by the Ehlers
transformation.
The solution (3.13) is free from axial conical singular-

ities: to verify this, it is sufficient to consider the ratio
between the perimeter of a small circle around the z axis,
both for θ ¼ 0 and θ ¼ π, and its radius. Such a ratio must
be equal to 2π, in case one wants to avoid angular defects. It
turns out that, for the metric (3.13), the ratios in the two
limits are equal to 2π

lim
θ→0

1

θ

Z
2π

0

ffiffiffiffiffiffiffi
gφφ
gθθ

r
dφ¼ 2π¼ lim

θ→π

1

π−θ

Z
2π

0

ffiffiffiffiffiffiffi
gφφ
gθθ

r
dφ: ð3:14Þ

The metric function ωðr; θÞ, as in the electric LWP ansatz
(2.2), is regular both asymptotically and on the symmetry
axis, thus implying the absence of Misner strings or NUT
charges. It is not only continuous, as we can appreciate by
the following limits

lim
θ→0

gtφ
gtt

¼ lim
θ→π

gtφ
gtt

¼ 0; ð3:15Þ

but also its first and second derivative are continuous.
A peculiar characteristic of this metric is that the angular

velocity Ω on the z axis is not constant, and it increases in
opposite directions in the two hemispheres

FIG. 1. Geodesic motion of a test particle in the gravitational
background for E ¼ 1, L ¼ 1, and | ¼ 0.1.
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Ωjθ¼0 ¼ lim
θ→0

�
−
gtφ
gφφ

�
¼ −4|ðr − 2mÞ þ ω0; ð3:16aÞ

Ωjθ¼π ¼ lim
θ→π

�
−
gtφ
gφφ

�
¼ 4|ðr − 2mÞ þ ω0: ð3:16bÞ

This is a feature shared with magnetized Reissner-
Nordström and magnetized Kerr black holes solutions [17].
The frame dragging of the whole spacetime is given

by [22]

dϕ
dt

¼ −
gtφ
gφφ

¼ −4|ðr − 2mÞ cos θ þ ω0: ð3:17Þ

Hence outside the event horizon, for r > 2m, the angular
velocity coincides with the asymptotic one ω0 for θ ¼ π

2
,

while for θ ∈ ðπ
2
; πÞ it is bigger than ω0 and for θ ∈ ð0; π

2
Þ it

is smaller than ω0. It is easy to verify that for r → ∞ the
angular velocity grows unbounded and that it is equal to ω0

on the event horizon: this would lead to the conclusion
that there exist superluminal observers, since the value of
the gravitational dragging can easily exceed 1 (i.e., the
speed of light, in our units) and, then, it would violate
causality. In this perspective, let us study the possible
occurrence of closed timelike curves (CTCs): considering
(3.13), curves in which t, r, and θ are constants are
characterized by

ds2t;r;θ¼const ¼ F−1ðr; θÞr2sin2θdϕ2: ð3:18Þ

Such intervals are always spacelike since the expression is
always positive. Therefore there are no CTCs and there are
no related causality issues: thus the “paradox” of the
superluminal observers can be justified with the bad choice

of the coordinates.3 A set of coordinates which is adapted to
timelike observers does not experience an unbounded
growth of the angular velocity, as we will see explicitly
when studying the geodesics of the spacetime.
The Kretschmann scalar RμνρσRμνρσ shows that r ¼ 2m

is a coordinate singularity, while it is divergent for r ¼ 0, as
in the case of the static spherically symmetric black hole in
pure general relativity. In particular, as r → 0 we find

RμνρσRμνρσ ≈
48m2

r6
; ð3:19Þ

which is exactly the Kretschmann scalar for the
Schwarzschild spacetime. On the other hand, the scalar
invariant decays faster than the Schwarzschild metric for
large radial distances, indeed one finds, as r → ∞,

RμνρσRμνρσ ≈
192

|4 sin12 θr12
; ð3:20Þ

therefore the solution (3.13) is locally asymptotically flat.
We finally notice that for θ ¼ 0; π the spacetime has an
asymptotic constant curvature: we find

RμνρσRμνρσjθ¼0;π ≈ −192|2 as r → ∞; ð3:21Þ

thus we see that, on the z axis, the spacetime is asimptoti-
cally of negative constant curvature.
Ergoregions.—It is clear, just by inspection, that the gtt

component of the metric (3.13) becomes null on the
event horizon, and that outside the horizon is not every-
where negative. Therefore the spacetime presents some

FIG. 2. Embedding in Euclidean three-dimensional space E3 of the event horizon of the black hole distorted by the rotating
background, for three different values of the background rotational parameter |.

3As it happens, for example, for the Alcubierre spacetime [23].
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ergoregions, analogously to Kerr or magnetized Reissner-
Nordström black holes [17]. To analyze these regions it is
convenient to use the cylindrical coordinates as defined in
(3.2) to expand, for large z, the gtt part of the metric as
follows

gttðρ; zÞ ≈
16|2ρ2zðz − 4mÞ

1þ |2ρ4
: ð3:22Þ

Hence, the ergoregions are located not only in the
proximity of the event horizon, as in Kerr spacetime,
but also close to the z axis, for large values of z. A
numerical analysis of the function gtt is represented in
Fig. 3. It shows how the ergoregions extend to infinity
around the polar axis, independently of the values of the
integrating constants of the solution ðm; |Þ. This behavior
is similar to what happens for magnetized rotating black
holes [17].

2. Petrov type

A standard procedure to determine the Petrov type of a
spacetime consists in computing the Weyl tensor in a null
tetrad basis. We define a frame by

e0 ¼ F1=2

�
1−

2m
r

�
1=2

dt; e1 ¼ F1=2

�
1−

2m
r

�
−1=2

dr;

e2 ¼ rF1=2dθ; ð3:23aÞ

e3¼ rsinθF−1=2fdφþ½4|ðr−2mÞcosθþω0�dtg: ð3:23bÞ

Given such a frame, the null tetrad is found as

kμ ¼
1ffiffiffi
2

p ðe0μ þ e3μÞ; lμ ¼
1ffiffiffi
2

p ðe0μ − e3μÞ;

mμ ¼
1ffiffiffi
2

p ðe1μ − ie2μÞ; m̄μ ¼
1ffiffiffi
2

p ðe1μ þ ie2μÞ: ð3:24Þ

It is now possible to compute the components of the Weyl
tensor in the null basis, as

Ψ0 ¼ Cμνρσkμmνkρmσ; Ψ1 ¼ Cμνρσkμlνkρmσ;

Ψ2 ¼ Cμνρσkμmνm̄ρlσ; ð3:25aÞ

Ψ3 ¼ Cμνρσlμkνlρm̄σ; Ψ4 ¼ Cμνρσlμm̄νlρm̄σ; ð3:25bÞ

where Cμνρσ is the Weyl tensor.
One can easily show that Ψ1 ¼ Ψ3 ¼ 0, while the other

components are more involved. The inspection of the scalar
invariants

I ¼ Ψ0Ψ4 − 4Ψ1Ψ3 þ 3Ψ2
2; J ¼ det

0
B@

Ψ0 Ψ1 Ψ2

Ψ1 Ψ2 Ψ3

Ψ2 Ψ3 Ψ4

1
CA;

ð3:26Þ

reveals that I3 ≠ 27J2: this implies that the spacetime is
algebraically general [13,18]. Thus, the spacetime belongs
to the general Petrov type I, contrary to its background (3.1)
or its generating seed, which are both type D. Further, this
result shows that the new black hole (3.13) does not belong
to the Plebański-Demiański class of spacetimes [21].

3. Geodesics

We follow the same strategy as in the background case
and define, from the metric (3.13), the following
Lagrangian (dropping the inessential ω0 term)

L ¼ F

�
−
�
1 −

2m
r

�
_t2 þ _r2

1 − 2m
r

þ r2 _θ2
�

þ F−1r2sin2θ½ _φþ 4|ðr − 2mÞ cos θ_t�2; ð3:27Þ

Proceeding in the same way as the background metric,
we obtain the conserved charges equations and the
four-momentum normalization equations, reported in
Appendix A 2.

FIG. 3. Ergoregions for the black hole embedded in a rotating
universe, with parameters m ¼ 1, | ¼ 0.3, and ω0 ¼ 0. The
ergoregions extend to infinity in the positive and negative z
directions, independently of the choice of the parametrization for
the integrating constants.
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We can extract some qualitative information, especially
regarding the quantity ðr − 2mÞ cos θ that appears in the
gravitational dragging. For stable orbits r is limited, hence
the quantity ðr − 2mÞ cos θ is limited as well. For unstable
orbits we analyze the geodesic motion as r reaches infinity,
thus considering large values of s. We notice that _t ≈ 0 and
_φ ≈ |2Lr2 sin2 θ, as r → ∞, and moreover 1 − 2m

r ≈ 1 and
F ≈ |2r4 sin4 θ. These approximations simplify the
Lagrangian (3.27), that takes the form

L ≈ |2r4 sin4 θð_r2 þ r2 _θ2Þ þ |2L2: ð3:28Þ

The constant term is inessential and can be neglected. By
changing to polar coordinates x ¼ r sin θy ¼ r cos θ, the
Lagrangian boils down to

L ≈ |2x4ð_x2 þ _y2Þ: ð3:29Þ

Being the Lagrangian independent on y, we find the
conserved quantity

A ¼ |2x4 _y2: ð3:30Þ

This result can be plugged into the Lagrangian, and by
noticing that the Lagrangian does not depend explicitly on
s, dL=ds ¼ 0, the following equation is derived:

|2x4 _x2 þ A2

|2x4
¼ B; ð3:31Þ

where B is a real constant. From the last equation we find

_x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B|2x4 − A2

p
|2x4

≈
ffiffiffiffi
B

p

|x2
; ð3:32Þ

where the numerator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B|2x4 − A2

p
depends on x which, by

our change of coordinate, is proportional to r, so when r
approaches infinity so does x. Therefore the constant A2

underneath the square root can be neglected, thus justifying
the approximation. Finally we get, by integrating,

xðsÞ ¼
�
3

ffiffiffiffi
B

p

|
sþ C

�1
3

; ð3:33Þ

with C as a real constant. So x → ∞ as s → ∞, which
means that _y ≈ 0 and y ≈ const. These results can now be
plugged into the formula for the gravitational dragging,
which gives

−
gtφ
gφφ

¼ −4|
�
y − 2m

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
�

≈
s→∞

− 4|y: ð3:34Þ

This result shows that, as s → ∞, the angular velocity
approaches a constant value.
We also plot the geodesic motion in spacetime (3.13):

this amounts to numerically integrate the geodesic equa-
tions reported in Appendix A 2, and the results are shown in
Figs. 4–6. More precisely, Fig. 4 compares geodesics in
Schwarzschild spacetime (i.e., | ¼ 0) and geodesics in our
swirling spacetime (3.13). Figure 5 shows the geodesics
around the black hole for different initial conditions.
Finally, in Appendix A 2, Fig. 6 pictures unstable geodesic
motion for two different values of the test particle angular
momentum.

4. Charges and thermodynamics

The total mass of the spacetime can be computed by
means of the surface charges provided by the phase space
formalism [24,25]. We perturb the metric with respect to
the parameters of the solution, and we call that variation

FIG. 4. Geodesic motion around the black hole. The left panel shows the Schwarzschild spacetime, while the right panel shows the
new black hole solution (3.13). The plots share the same initial conditions with E ¼ 1, L ¼ 12.
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hμν ≔ δgμν.
4 Then we find the local variation of the charge

Kξ computed along a given Killing direction ξμ.
The local variation of the charge must be integrated

between the parametric reference background Ψ̄ and the
actual parametric configuration labelled by Ψ, on a
(D − 2)-dimensional surface S containing the event
horizon ðdD−2xÞμν ¼ 1

2ðD−2Þ! ϵμνα1…αD−2
dxα1 ∧ � � � ∧ dxαD−2 .

When the variation of the charge is integrable, all the

parametric paths between the reference background and the
solution are equivalent.5

The result gives the total surface charge Qξ, defined, as
in [25,26], by

Qξ ¼
1

8π

Z
Ψ

Ψ̄

Z
S
Kξ ¼

1

8π

Z
Ψ

Ψ̄

Z
S
Kμν

ξ ðdD−2xÞμν; ð3:35Þ

where

FIG. 6. Black hole (3.13) with two different unstable orbits. The first one represents the case where L is small and shows that the orbit
approaches an asymptotic value. The second one shows an orbit with large L: the test particle on the plane defined by θ ¼ π=2 is
attracted towards the black hole.

FIG. 5. Embedding diagram and geodesics for the new metric (3.13) with different initial conditions, θ0 ¼ π
2
, _θ0 ¼ − 1

2
, L ¼ 12 for the

lhs diagram and θ0 ¼ 4
7
π, _θ0 ¼ − 1

2
sin−1ð4

7
πÞ, L ¼ −12 for the rhs diagram. Both representations share the following data: E ¼ 1,

r0 ¼ 3, _r0 ¼ 1, and ϕ0 ¼ π.

4In the particular case under consideration the parameter
space is spanned by the mass parameter of the black
hole m and by the magnitude of the rotational whirlpool
dragging, |. Thus the variation takes the form hμν ¼ δgμνðm; |Þ ¼
∂mgðm; |Þδmþ ∂|gðm; |Þδ|.

5In case the variation of the charge is not integrable, we still
have some gauge degree of freedom in defining the frame of
reference, or the normalization of the time coordinate, to recover
integrability.
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Kμν
ξ ¼ ξμ∇σhνσ − ξμ∇νh − ξσ∇μhνσ −

1

2
h∇μξν

þ 1

2
hσμð∇σξ

ν −∇νξσÞ; ð3:36Þ

and where h ≔ hμμ. If we want to compute the mass of the
black hole, we have to consider the timelike Killing vector
ξ ¼ ∂t, then we find

M ¼ Q∂t
¼ m; ð3:37Þ

as for the Schwarzschild black hole. In this case the
presence of the background does not modify the seed
black hole mass, similarly to what happens within the
context of black holes embedded in an external electro-
magnetic field [27]. Following this analogy we expect to
observe some stronger coupling with the background in
case of more general black hole seeds, as it happens in the
next section.
The angular momentum can be found analogously, just

considering the Killing vector, which generates the rota-
tional symmetry ∂φ. In this case one gets null angular
momentum

J ¼ Q∂φ
¼ 0; ð3:38Þ

even though the solution is clearly rotating. In fact the
angular momentum refers just to the dipole term in the
rotational multipolar expansion of the metric at large
distances. The fact that the metric is rotating, as its
nondiagonal form suggests, can be appreciated by the
subsequent terms of the multipolar expansion: the quadru-
pole, the octupole, etc.6

We compute the entropy and the temperature of the event
horizon, in order to study the Smarr law and the thermo-
dynamics of the black hole. The area of the even horizon is
found by integrating the ðθ;ϕÞ part of the metric, hence

A ¼
Z

2π

0

dφ
Z

θ

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgϕϕ

p jr¼2m ¼ 16πm2: ð3:39Þ

The entropy is then taken by the Bekenstein-Hawking
formula S ¼ A=4. The validity of the area law also for this
unconventional background is confirmed by the conformal
field theory dual to the near-horizon geometry of the black
hole. The temperature can be easily obtained via the surface

gravity, κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∇μξνÞ2=2

q
jr¼2m, where ξ ¼ ∂t. We find

T ¼ κ

2π
¼ 1

8πm
: ð3:40Þ

Note that also the entropy and the temperature of the black
hole embedded into the swirling background are unaffected
by the spacetime rotation: they remain the same of the
Schwarzschild seed. Even though the parameter | intro-
duced by the Ehlers transformation can be considered an
integration constant for the solution, it is not associated to a
new conserved charge, so reasonably it is not present as an
additional term in the first law. Again, this is a peculiarity of
the Lie point symmetries we used to generate the solution, a
general feature shared with the Harrison transformation,
thus with the Schwarzschild-Melvin spacetime [17,27].7

Hence, we can easily verify the validity of the Smarr law

M ¼ 2TS: ð3:41Þ

Further, the conserved charges satisfy the first law of
thermodynamics

δM ¼ TδS: ð3:42Þ

IV. KERR BLACK HOLE
IN A SWIRLING UNIVERSE

The generating techniques discussed in Sec. II can be
also exploited to embed a rotating black hole in a back-
ground endowed with its own rotation. By using the Kerr
metric in Boyer-Lindquist coordinates as a seed, we obtain8

ds2¼Fðdφ−ωdtÞ2þF−1
�
−ρ2dt2þΣsin2θ

�
dr2

Δ
þdθ2

��
;

ð4:1Þ

where the functions F−1 and ω can be expanded in a finite
power series of |

F−1 ¼ χð0Þ þ |χð1Þ þ |2χð2Þ;

ω ¼ ωð0Þ þ |ωð1Þ þ |2ωð2Þ; ð4:2Þ

with

χð0Þ ¼
R2

Σ sin2 θ
; ð4:3aÞ

χð1Þ ¼
4amΞ cos θ
Σ sin2 θ

; ð4:3bÞ

χð2Þ ¼
4a2m2Ξ2 cos2 θ þ Σ2 sin4 θ

R2Σ sin2 θ
; ð4:3cÞ

6However, note that in contexts where the asymptotia is not of
globally constant curvature, the notion of the gravitational
multipolar expansion needs some further analysis to be clearly
defined.

7Note that this is true only when the seed does not couple with
the background brought in by the transformation, but it does not
hold in case of more general seeds. For more general setting
including relaxed boundary conditions and thermodynamic
ensembles additional terms in the first law might appear.

8A Mathematica notebook with this solution is added in the
arXiv files, for the reader convenience.
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and

ωð0Þ ¼
2amr
−Σ

þ ω0; ð4:4aÞ

ωð1Þ ¼
4 cos θ½−aΩðr −mÞ þma4 − r4ðr − 2mÞ − Δa2r�

−Σ
; ð4:4bÞ

ωð2Þ ¼
2mf3ar5 − a5ðrþ 2mÞ þ 2a3r2ðrþ 3mÞ − r3ðcos2θ − 6ÞΩþ a2½cos2θð3r − 2mÞ − 6ðr −mÞ�Ωg

−Σ
; ð4:4cÞ

where

Δ ¼ r2 − 2mrþ a2; ρ2 ¼ Δ sin2 θ; ð4:5aÞ

Σ ¼ ðr2 þ a2Þ2 − Δa2sin2θ; Ω ¼ Δacos2θ; ð4:5bÞ

Ξ¼ r2ðcos2θ− 3Þ− a2ð1þ cos2θÞ; R2 ¼ r2 þ a2cos2θ:

ð4:5cÞ

When | ¼ 0 we recover the seed metric, i.e., the Kerr black
hole. For | ≠ 0 we have the direct generalization of the
metric (2.19).
However we notice that in this case, because of the spin-

spin interaction between the black hole and the background
frame dragging, an extra force acts on the axis of symmetry.
But since it is not symmetric on the two hemispheres, the
metric is affected by nonremovable conical singularities,
indeed

lim
θ→0

1

θ

Z
2π

0

ffiffiffiffiffiffiffi
gφφ
gθθ

r
dφ ¼ 2π

ð1 − 4am|Þ2

≠ lim
θ→π

1

π − θ

Z
2π

0

ffiffiffiffiffiffiffi
gφφ
gθθ

r
dφ

¼ 2π

ð1þ 4am|Þ2 : ð4:6Þ

In fact, even though the background spinning parameter |
couples to the Kerr angular momentum (for unit of mass)
a, it is not possible to find a relation among the physical
parameters to remove simultaneously both angular
defects, unless of course for known subcases such as
Kerr, for | ¼ 0, the spacetime discussed in Sec. III for
a ¼ 0, or the rotating background form ¼ 0. The presence
of a nonremovable conical singularity implies that a
cosmic string or a strut (with their δ-like stress-energy-
momentum tensor on a portion of the z axis) have to be
postulated in order to compensate the “force” effect
induced by the spin-spin interaction of the black hole

with the background, which would tent to add acceleration
to the black hole.9

In the case one wants to immerse the Kerr-Newman
black hole into this spinning universe, one has to use the
charged generalized version of the Ehlers transformation,
as described in [7].

V. DOUBLE-WICK ROTATION OF THE
BACKGROUND: FLAT TAUB-NUT SPACETIME

Given the analogies between the rotating background
(3.3) and theMelvin spacetime, and given that the analytical
continuation of the Melvin universe corresponds to the
Reissner-Nordström metric with a flat base manifold, it is
natural to inquire about an analog analytical continuation for
the rotating background. At this scope, we implement a
double Wick rotation between time and the azimuthal angle
t → iϕ, φ → iτ of the metric (3.3). Redefining the integra-
tion constant of the rotating background as | ¼ m=2l3,
changing the coordinate ρ ¼ l

ffiffiffiffiffiffiffiffiffiffiffi
2r=m

p
and after the rescal-

ing of the other three coordinates we obtain

ds2 ¼ −
2mr

r2 þ l2
ðdt − 2lθdϕÞ2 þ r2 þ l2

2mr
dr2

þ ðr2 þ l2Þðdθ2 þ dϕ2Þ: ð5:1Þ

It is not hard to recognize the Taub-NUT spacetime with a
flat, or possibly cylindrical if we keep the azimuthal angle
identification, base manifold. In fact, the flat Taub-NUT
metric can be generated via the Ehlers transformation,10

from the Schwarzschild metric, previously composed with a
double-Wick rotation.11 Note that the Ehlers transformation

9The metric considered in this section does not posses the
acceleration parameter: one should work with the rotating C
metric to consistently include the acceleration. That is why, in
this section, the role of the string uniquely results in the effect
of compensating the spin coupling.

10In this section we are referring to transformations applied to
the magnetic LWP metric, as explained in Sec. II.

11While this is true for a generic sign of the constant curvature
of the seed base manifold, only the metric with positive curvature
can be interpreted as a black hole in Einstein gravity.
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can be used to build, from the Minkowski seed, the
rotating background, just considering m ¼ 0 in the pro-
cedure of Sec. II. This is analogous to what happens to the
Melvin universe, which can be obtained from Minkowski
spacetime through an Harrison transformation and whose

double-Wick dual corresponds to the flat Reissner-
Nordström metric. This fact strengthens the link between
the Melvin universe and our rotating background. Actually
this correspondence can be summarized by the following
proportion:

MelvinUniverse ∶Harrison transformation ¼ RotatingUniverse ∶Ehlers transformation ð5:2Þ

This formal analogy can be exploited to build new
solutions, even outside the range of the generating tech-
nique based on the Lie point symmetries of the Ernst
equations. That is because even if the symmetry trans-
formations such as the Ehlers and the Harrison maps break
in the presence of the cosmological constant. However, as
noted in [28], the Melvin universe can still be generalized
when the cosmological constant is not zero, and it still
preserves its relation with the flat Reissner-Nordström
metric with a constant curvature base manifold.12 There-
fore, thanks to the analogy with the Melvin case, we have in
our hand a procedure to generalize the rotating background
(3.3) in the presence of the cosmological constant. It is
sufficient to operate a double-Wick rotation of the cosmo-
logical version of the flat Taub-NUT metric (5.1)

ds2 ¼ −
Λ
3
r4 þ 2l2Λr2 þ 2mr − l4Λ

r2 þ l2
ðdt − 2lθdϕÞ2

þ ðr2 þ l2Þdr2
Λ
3
r4 þ 2l2Λr2 þ 2mr − l4Λ

þ ðr2 þ l2Þðdθ2 þ dϕ2Þ: ð5:3Þ

Thus, using the same change of coordinates and para-
metrization of the case above, we get

ds2¼ð1þ |2ρ4Þ
�
−dτ2þ ρ2dρ2

Λ
4|2þρ2−Λ

2
ρ4− |2Λ

12
ρ8

þdz2
�

þ
�

Λ
4|2

þρ2−
Λ
2
ρ4−

|2Λ
12

ρ8
�ðdψþ4|zdτÞ2

1þ |2ρ4
: ð5:4Þ

It is not difficult to realize that this metric still corresponds,
up to a change of coordinates, to the nonexpanding and
nonaccelerating Kuntdt class of the Plebański-Demiański
family presented in Eq. (16.26) of [18]. The explicit change
of coordinates works as in Sec. III A, namely q ¼ 2|z and
p2 ¼ ρ, together with the rescaling t → |t and the redefi-
nitions γ ¼ 1=|, Λ̃ ¼ 4Λ. Then, metric (5.4) becomes

ds2 ¼ ðγ2 þ p2Þ
�
−dτ2 þ dp2

P
þ dq2

�

þ P
γ2 þ p2

ðdψ þ 2γqdτÞ2; ð5:5Þ

where

P ¼ γ4Λ̃þ γ2p − 2γ2Λ̃p2 −
Λ̃
3
p4: ð5:6Þ

The latter corresponds to Eq. (16.26) of [18], where
m ¼ e ¼ g ¼ α ¼ ϵ2 ¼ 0, ϵ0 ¼ 1, k ¼ γ4Λ̃, ϵ ¼ 2γ2Λ̃, and
n ¼ γ2=2.
The analogy between the rotating background and the

Taub-NUT spacetime can be pushed further: it is known
[29] that the Melvin spacetime corresponds to a couple of
magnetically charged Reissner-Nordström black holes
moved toward infinity. In this sense, the magnetic field
that permeates the Melvin spacetime is nothing but the field
generated by two black hole sources at infinity. Thus, it is
natural to ask ourselves if a similar construction also holds
for the rotating background (3.1), i.e., if it can be obtained
as a limit of a double black hole metric.
By relying on the above considerations and, more

specifically, on the proportion (5.2), the natural candidate
for a “ancestor” metric is the double-Taub-NUT spacetime
with opposite NUT parameters [30]: the rotation of the two
counterrotating Taub-NUT black holes, once they are
pushed at infinity, should produce the rotation of the
background that is experienced in the background space-
time. This interpretation is also consistent with the behavior
of the angular velocity (3.16): we noticed that the angular
velocity increases in opposite directions in the two hemi-
sphere, coherently with the fact that the two black holes
rotate in different directions. Moreover this picture is
enforced by the geometry of the ergoregions, since the
latter thrive for large values of z on the axis of symmetry.

VI. SUMMARY AND CONCLUSIONS

Being inspired by the work of Ernst that used the
Harrison transformation to immerse any stationary and
axisymmetric spacetime into the Melvin electromagnetic
universe, we have considered, in this article, a symmetry

12Metrics without a topological spherical base manifold are
interpreted as black holes in the presence of the cosmological
constant.
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transformation of the Ernst equations that embeds any
given seed spacetime into a rotating background. This
transformation, which consists in a proper composition of
the Ehlers transformation with a couple of discrete sym-
metries, known as conjugations, allows us to take advan-
tage of the Ernst solution generating technique to
nonlinearly superpose the Schwarzschild black hole and
a swirling universe. The background geometry can be
interpreted as a gravitational whirlpool generated by a
couple of counter-rotating sources at infinity. Its frame
dragging transforms the static Schwarzschild metric into a
stationary one, removing the asymptotic flatness, but
without drastically altering the black hole causal structure
nor introducing pathological features. The analogies
between the swirling background and the Melvin universe
are numerous, like the metric structure, the ergoregions and
the deformations engraved on the event horizon: in fact the
former universe can be considered as the rotating counter-
part of the latter.
For this reason we expect that this spinning background

can be used as a regularizing instrument for a metric with
conical singularities, exactly as the electromagnetic back-
ground brought by the Harrison transformation does. In the
former case to have nontrivial physical effects one needs to
exploit the interplay between the coupling of the electro-
magnetic field of the seed with the one of the background,
as suggested by the analysis of the transformed Kerr
metric, in Sec. IV. Indeed the interaction between the
Kerr parameter a and the background parameter | gen-
erates an additional “force” that impels the system to
accelerate. Unfortunately the geometry of the spacetime is
not general enough to accommodate this physical feature
into that metric, yielding a conical singularity which
compensates the mutual rotational coupling. On the other
hand we count that the spin-spin interaction between the
seed and the background environment can play a relevant
role into the regularization gravitational models that
otherwise would be mathematically defective and physi-
cally incomplete. For instance, as Ernst showed that the
electromagnetic background can eliminate the conical
defect of the accelerating and charged black hole, we
foresee that the procedure presented in this paper can
remove the axial singularities of the rotating C metric,
providing at the same time a reasonable physical explica-
tion for its acceleration, works in this direction are in
progress [31]. Also this model furnishes alternative sce-
narios for black hole nucleation and pair creation, without
relying on the electromagnetic field, as discussed in the
literature so far [32–34].
Clearly this procedure may be relevant for other sys-

tems, not necessarily accelerating, such as balancing multi-
black-hole sources to reach an equilibrium configuration.
Also in that case the frame dragging of the background can
play a role in removing cosmic strings or strut from the
singular spacetime. On the other hand, preliminary studies

suggest that the spin-spin interaction between the swirling
universe and a Taub-NUT spacetime are not sufficient to
mend also the singular behavior of that metric, i.e., to
remove the Misner string.13

From a phenomenological point of view our rotating
background might be of some interest in the description of
black holes surrounded by interacting matter, which pro-
duces intense frame dragging, such as the one caused by the
collision of counterrotating galaxies.
Since this construction is based on a symmetry trans-

formation of the Ernst equations, it can be directly
generalized to the Einstein-Maxwell case, to the minimally
and conformally coupled scalar field case and, more
generally, to scalar-tensor theories such as Brans-Dicke,
just by using the adequate Ehlers transformation as
described in [7,35], respectively. The embedding method
presented here may reveal also useful in establishing and
improving traversability of wormhole spacetimes.
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APPENDIX A: GEODESICS

We report here the explicit expression for the geodesic
equation, both for the background and the full black hole
metric.

1. Background geodesics

The explicit expressions for the definitions of the
conserved quantities (3.7) are

_t¼Eþ 4|Lz
1þ |2ρ4

; _ϕ¼ |2Lρ2þ L
ρ2

− 4|z
Eþ 4|Lz
1þ |2ρ4

: ðA1Þ

By substituting these relations into the Lagrangian (3.6),
we get

L ¼ ð1þ |2ρ2Þ
�
L2

ρ2
−
�
Eþ 4|Lz
1þ |2ρ4

�
2

þ _ρ2 þ _z2
�
: ðA2Þ

The equation coming from the normalization of the four-
momentum uμuμ ¼ χ is

13Obviously we are referring to the noncompact time repre-
sentation of the Taub-NUT metric, because when one considers
proper periodic identification of the temporal coordinate the
spacetime can be regularized. Unfortunately this latter represen-
tation violates causality because of the appearance of closed
timelike curves, which makes this picture nonphysical.
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_ρ2þ _z2 ¼ 1

ð1þ |2ρ4Þ2
�
E2 −8|LzðEþ 6|LzÞþL2

ρ2
þ 2|2L2ρ2þ |4L2ρ6þ

�
4

ffiffiffi
2

p
|ρz

Eþ 4|Lz
1þ |2ρ4

�
2
�
þ χ

1þ |2ρ4
: ðA3Þ

2. Black hole geodesics

The conserved charges equations are

_t ¼ r½Eþ 4|L cos θðr − 2mÞ�
ðr − 2mÞð1þ |2r4 sin4 θÞ ; ðA4aÞ

_ϕ ¼ L − |r3 sin2 θ½4 cos θðE − 8|Lm cos θÞ − |3Lr5 sin6 θ þ 2|Lrð9 cos2 θ − 1Þ�
r2 sin2 θð1þ |2r4 sin4 θÞ : ðA4bÞ

L is the angular momentum and E is the energy. From the conservation of the four-momentum it follows

ð1þ |2r4sin4θÞ
��

rðEþ 4|L cos θðr − 2mÞÞ
ðr − 2mÞð1þ |2r4sin4θÞ

�
2

þ _r2

1 − 2m
r

þ r2 _θ2
�
þ L2ð1þ |2r4sin4θÞ2

r4sin4θ
¼ χ: ðA5Þ

APPENDIX B: ZIPOY-VOORHEES SPACETIME
EMBEDDED IN THE SWIRLING UNIVERSE

We apply the procedure described in Sec. II to a slightly
more general metric with respect to the Schwarzschild
black hole, the Zipoy-Voorhees metric. This class of
spacetime is relevant in general relativity because, thanks
to its richer multipolar expansion, it can be used to model
the exterior gravitational field of planets or stars. Moreover,
it can be of some interest, when supported with a
conformally coupled scalar field, to build hairy black holes
or wormholes such as the Bekenstein [36] or the Barcelo–
Visser [37] ones, as explained in [38].14 In particular, the
presence of the swirling background could be useful in the
wormhole configuration to improve both the stability and
the traversability properties of the solution.
We start by casting the Zipoy-Voorhees seed in terms

of the magnetic LWP metric (2.5), in prolate spherical
coordinates

ds̄2 ¼ f̄ðdϕ − ω̄dτÞ2

þ 1

f̄

�
−ρ2dτ2 þ κ2ðx2 − y2Þe2γ̄

�
dx2

x2 − 1
þ dy2

1 − y2

��
;

ðB1Þ

where

f̄ðx; yÞ ¼ κ2
�
x − 1

xþ 1

�
−δ
ðx2 − 1Þð1 − y2Þ; ðB2Þ

γ̄ðx;yÞ¼1

2
log

�
κ2
�
x−1

xþ1

�
−2δ

ðx2−1Þð1−y2Þ
�
x2−1

x2−y2

�
δ2
�
;

ðB3Þ

ρðx; yÞ ¼ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − 1Þðy2 − 1Þ

q
: ðB4Þ

Clearly this metric reduces to the static Schwarzschild
black hole treated in Sec. II for δ ¼ 1. For generic values of
δ ≠ 1 the metric loses the spherical symmetry and presents
naked singularities outside the event horizon, hence it is not
suitable for describing legitimate black holes in pure
general relativity. However for δ ¼ 1=2, when properly
coupled with a scalar field, it represents the first hairy black
hole ever discovered [36].
Thanks to the Ehlers transformation (2.14), and follow-

ing exactly the same procedure illustrated in Sec. II we are
able to embed the Zipoy-Voorhees metric into the swirling
background. The γ̄ function remains unvaried in the
process, while

f̄ðx;yÞ¼ κ2ð1−y2Þðx2−1Þ1þδ

ðx−1Þ2δþ |2ð1þxÞ2δðx2−1Þ2ð1−y2Þ2 ; ðB5Þ

ω̄ðx; yÞ ¼ 4|κ2yðx − δÞ þ ω0: ðB6Þ

The metric defined by (B1) and (B3), (B6) represents
the δ extension of the spacetime (2.19), therefore the
Zipoy-Voorhees spacetime is immersed in the rotating
background described in Sec. III A. Further generalizations
with angular momentum can be built straightforwardly,
starting with seeds of the family of the Tomimatsu-Sato
solutions [39,40].

14Actually the associated complex Ernst field equations remain
the same of the pure general relativistic case, so as the main
structure functions in the metric. Only the decoupled function γ
have to be slightly modified according to [38].
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