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We investigate the phase space symmetries and conserved charges of homogeneous gravitational
minisuperspaces. These (0þ 1)-dimensional reductions of general relativity are defined by spacetime
metrics in which the dynamical variables depend only on a time coordinate and are formulated as
mechanical systems with a nontrivial field space metric (or supermetric) and effective potential. We show
how to extract conserved charges for those minisuperspaces from the homothetic Killing vectors of the field
space metric. In the case of two-dimensional field spaces, we exhibit a universal eight-dimensional
symmetry algebra A ¼ ðslð2;RÞ ⊕ RÞ ⨭ h2, based on the two-dimensional Heisenberg algebra h2 ≃ R4.
We apply this to the systematic study of the Bianchi models for homogeneous cosmology. This extends the
previous results on the slð2;RÞ algebra for Friedmann-Lemaître-Robertson-Walker cosmology and the
Poincaré symmetry for Kantowski-Sachs metrics describing the black hole interior. The presence of this
rich symmetry structure already in minisuperspace models opens new doors toward quantization and the
study of solution generating mechanisms.
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I. INTRODUCTION

One of the most useful and conceptually profound results
in modern physics comes from the work of Noether [1,2]. It
relates symmetries, which are maps between classical
solutions, to conservation laws, which are constants of
the motion along each classical solution. In gauge theories
and, in particular, general relativity, Noether’s two theo-
rems together imply that symmetry transformations (which
can be exact isometries or, more generally, asymptotic
symmetries) give rise to codimension-2 surface charges
(see [3–7] for modern references). These encode important
physical information about, e.g., the mass (or energy),
angular momentum, and possible radiation for certain
classes of spacetimes. The existence in gauge theories of
such nonvanishing charges signals the fact that boundaries
turn otherwise gauge symmetries into physical symmetries.
The charges generating these physical symmetries endow
moreover the boundary with a nontrivial algebraic struc-
ture, which in gravity has been studied extensively since the
pioneering work of Bondi and co-workers [8,9], Sachs
[10,11], and others [12–18]. In order to understand this fine
structure of general relativity, many authors have also
turned to the study of symmetry charges and algebras in
lower-dimensional gravity (see, e.g., [19–28] and [29–38]
in two and three spacetime dimensions, respectively).
Going lower in dimension, one finds (0þ1)-dimensional

models, in which case field theories reduce to mechanical
systems where the dynamical variables evolve only in time.
In general relativity, such models are called minisuperspa-
ces and arise from the reduction to a finite number of

homogeneous degrees of freedom [39]. This includes, for
example, Friedmann-Lemaître-Robertson-Walker (FLRW)
cosmologies, Bianchi models, and also the so-called
Kantowski-Sachs cosmological models [40] describing,
in particular, the black hole interior (where, due to the
exchange of the radial and temporal coordinates, the metric
does indeed become homogeneous). This article is devoted
to the study of the symmetry properties of such minisuper-
space models. As expected, they inherit from full general
relativity a remnant of diffeomorphism invariance, which
is the freedom in performing redefinitions of the time
coordinate. The generator of these reparametrizations is the
Hamiltonian itself. Our goal is to explain and show that in
most minisuperspace models the Hamiltonian can in fact
be embedded in larger symmetry algebras, which moreover
bear similarities to the boundary symmetry algebras arising
in four-dimensional general relativity. Although the min-
isuperspace models are not gauge field theories and have no
spatial boundaries, the symmetries that we unravel act as
physical symmetries (changing, e.g., the mass of a black
hole) and also interplay with the spatial cutoffs required in
order to meaningfully define the homogeneous reduction of
the Einstein-Hilbert action (and which are therefore rem-
nants of information about the boundary) [41].
The systematic study of such symmetries of minisuper-

space models was initiated in [42–47] (see also [48]), where
it was shown in the context of FLRW cosmology that the
Hamiltonian belongs to an slð2;RÞ algebra called CVH.
This latter is spanned by theHamiltonianH togetherwith the
volume V and the generator C of isotropic dilatations on
phase space. This was extended in [49] to include spatial
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curvature and a cosmological constant. In [50], the present
authors have studied theKantowski-Sachsmodel describing
the black hole interior and found that there the CVH algebra
gets extended to an isoð2; 1Þ algebra of conserved charges,
encoding the dynamics of the system in an algebraicmanner.
This was then extended to Schwarzschild (anti)de Sitter
(AdS) metrics in [51]. This body of results led to a
completely symmetry-based quantization of the black hole
interior model in [52]. In [53,54] (see also [55] for related
results), the infinite-dimensional enhancement of slð2;RÞ
and isoð2; 1Þ to the Virasoro and bms3 algebras, respec-
tively, has been studied, and it was shown that these
extended transformations (which are of course motivated
from three- and four-dimensional gravity) enable generation
of, e.g., a cosmological constant term in the minisuperspace
models. It was also shown that the (0þ 1)-dimensional
minisuperspace actions can be written as geometric actions
for the enhanced symmetry groups.
Although minisuperspace models seem to be very

simple, they contain a rich and physically useful symmetry
structure whose origin is not yet understood in a systematic
manner. This is what we aim at improving here. At first
sight, one could think of approaching this problem using
the Hamiltonian formulation, where roughly speaking the
requirement of homogeneity amounts to solving the vector
constraint. We are then left with the scalar constraint only,
which furthermore splits asH ¼ Hkin þHpot into a kinetic
term and a potential term. The kinetic term depends on the
Arnowitt, Deser and Misner (ADM) momenta, while the
potential only depends on the Ricci scalar of the three-
dimensional slice (and the spatial volume in the presence of
a cosmological constant). As explained in Appendix A, the
kinetic termHkin always forms an slð2;RÞ algebra together
with the volume (which is the integral on the slice of

ffiffiffi
q

p
)

and the smeared extrinsic curvature. This is, however, not
sufficient in order to obtain symmetries of the model, since
(as we will recall below) the construction of the conserved
charges (which generate the said symmetries) requires
the full Hamiltonian to be part of the algebra and not only
its kinetic part. When the minisuperspace model is such
that the three-dimensional Ricci curvature vanishes, the
Hamiltonian has only a kinetic term and we are therefore
guaranteed that the CVH algebra exists. This is what
happens, for example, in flat FLRW cosmology. In more
general models, where a nontrivial potential is present, we
are therefore left with the question of how to recover (if
possible) a CVH-type algebra. It turns out that studying this
problem frontally by computing Poisson brackets involving
the three-dimensional Ricci scalar is too cumbersome. An
alternative route, which is the one we set out to study here,
is to use the superspace formulation.
The authors [56–62] have also studied the phase space

symmetries of homogeneous cosmological models [with-
out explicit reference to an slð2;RÞ CVH algebra, how-
ever], but using a field space formulation. This formulation

is based on the following simple observation: When
evaluating the Einstein-Hilbert action on a minisuperspace
line element, the action reduces to a one-dimensional
mechanical model of the form

S ¼
Z

dt

�
1

2
gμν _qμ _qν −UðqÞ

�
: ð1:1Þ

For simplicity and illustrative purposes, we have set here the
lapse inherited from the line element toN ¼ 1. Its choice (in
a field-dependentmanner)will, however, be fundamental for
the construction, as we explain in detail in the rest of the
article. Here gμν is not the spacetime metric, but rather the
metric on field space, or superspace. It controls the form of
the kinetic term that depends on the coordinates qμ on field
space.N is the lapse inherited from the line element, andU is
the potential inherited from the spatial integral of the three-
dimensional Ricci scalar (i.e., it is essentially the potential
Hpot appearing in the Hamiltonian). As noticed in [56–62],
the symmetry properties of theminisuperspacemodel can be
inferred from the symmetries of the supermetric and the
potential. To explain how this comes about, suppose we
identify a vector field such that £ξgμν ¼ λgμν and £ξU ¼
−λU with λ ¼ constant. Then the quantity C ¼ ξμpμ

obtained by contracting the vector field with the momentum
is such that its Poisson bracket with the Hamiltonian gives
fC;Hg ¼ λH. From this one can immediately conclude that
Q ¼ C − tλH is a conserved quantity, which therefore
generated a symmetry of the theory. This is in essence
the relationship between the field space geometry gμν and the
symmetries of the minisuperspace phase space. In the CVH
algebra, the volume V gives rise to a conserved quantity that
is quadratic in time, at the difference with C which is linear.
Our goal is to generalize the construction of [56–62]
outlined above and explain how such quadratic charges
(and therefore a CVHalgebra) can be constructed. Aswe are
going to see in detail, this depends heavily on the choice of
the lapse and on the potential U, which is what makes the
analysis involved.
In summary,we show that the above construction based on

conformal Killing symmetries of the supermetric gμν can, for
someminisuperspacemodels, identifymanymore conserved
charges than that forming the CVH algebra. For FLRW
cosmology with a scalar field, Kantowski-Sachs cosmolo-
gies and the Bianchi models (III, V, VI), we exhibit an eight-
dimensional symmetry algebra A ¼ ðslð2;RÞ ⊕ RÞ ⨭ h2,
where h2 ≃R4 is the two-dimensional Heisenberg algebra.
For the Bianchi models (VIII, IX), only the slð2;RÞ CVH
subalgebra survives; while, oddly enough, for the Bianchi
models (IV, VII), we find that the construction fails and does
not lead to an algebra. These are all models with a two-
dimensional field space (spanned essentially by two scale
factors or one scale factor and the scalar field in the case of
FLRW with matter). We conclude the paper with a study of
three-dimensional field spaces, which arise in the Bianchi I
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and IImodels. In the case ofBianchi I, we find an algebra that
has dimension 30, while for Bianchi II the algebra is four
dimensional. In both cases, the slð2;RÞ CVH algebra
appears as a subalgebra. The reason for which some of these
algebras are much bigger than the dimensionality of the
phase space is that the generators satisfy dependency
relations. In the case of the algebra A these are analogous
to Sugawara constructions starting from four building
blocks, which are the generators of the two-dimensional
Heisenberg algebra h2. The choice of a preferred subalgebra
on which to base the group quantization will therefore
depend on which physical variable we wish to represent in
the quantum theory [41,52]. It is therefore desirable to obtain
these enlargements of the slð2;RÞ symmetry algebra, even if
classically these may seem a redundant description of the
dynamics and the symmetries. We note that this article is
devoted to the presentation of the technical construction of
these algebras and to their classification in the case of FLRW,
Kantowski-Sachs, and Bianchi models. Physical applica-
tions (e.g., to quantization and solution generating trans-
formations) will be presented elsewhere.
This article is organized as follows. We start in Sec. II by

discussing, in general, about homogeneous reductions of
general relativity. This shows how minisuperspace models
are formulated as mechanical Lagrangians of the form
(2.10) with a given field space geometry. We then explain
the relationship between conformal Killing vectors of this
field space geometry and conserved quantities. We clarify
the role of the potential and of the lapse in this procedure.
Section III is then devoted to the study of models that give
rise to a two-dimensional field space. We explain how the
algebra A arises from the geometry of two-dimensional
Minkowski field space and how the presence of a non-
vanishing potential may actually restrict this algebra to a
subalgebra. We then apply these criteria to the Bianchi
models and to the black hole interior. Finally, Sec. IV
presents the example of three-dimensional field spaces,
which arise in the case of the Bianchi I and II models
(which have three scale factors). Appendix D presents a
useful summary of the properties of the various Bianchi
models, listing their line elements, potentials, and fiducial
volumes.

II. MINISUPERSPACES

In this section, we present the formalism used to describe
homogeneous minisuperspace models in general relativity
and to study their symmetries. We start by reviewing the
homogeneous reduction of gravity and introduce a triad
formulation, which allows us to separate the homogeneous
dynamical fields from the background geometric structure
of the various minisuperspace models. This enables us to
identify an internal metric on field space (or superspace),
whose geometry controls the dynamics of the homo-
geneous symmetry-reduced action. We then explain how
the symmetries of this field space geometry can be

translated into algebraic and symmetry structures on the
phase space of the minisuperspace models.

A. Homogeneous reduction of gravity

In this work, we are interested in the study of homo-
geneous minisuperspace models, for which the Einstein-
Hilbert action reduces to a mechanical action integrated
over a single time variable. In order to set the stage, let us
consider a four-dimensional spacetime equipped with a
metric of the general form

ds24D ¼ −NðtÞ2dt2 þ qαβðx; tÞdxαdxβ;
qαβðx; tÞ ¼ eiαðxÞejβðxÞγijðtÞ: ð2:1Þ

In this parametrization, the spatial triad eiα does not depend
on the time coordinate, but only on the position on the
spatial slice. All the dynamical information is therefore
captured in the spatially homogeneous but time-dependent
fields γij. This parametrization is a convenient way to keep
track of the fact that in, e.g., Bianchi models (see
Appendix D), the metric can depend explicitly on the
spatial coordinates but the dynamical fields that evolve in
time are homogeneous. In the full ADM field theory, the
temporal and spatial dependencies cannot be disentangled
and are captured by a single field qαβðt; xÞ, which is the
metric on a slice. Here, however, because of homogeneity,
the gravitational action will reduce to a mechanical model
with only evolution in time.
In minisuperspace models, a leftover of the ADM formu-

lation is encoded in the fact that the Hamiltonian of the
mechanical model is the scalar constraint of general rela-
tivity. Because the line element (2.1) does not contain shift
terms, i.e., space/time cross terms proportional to dtdxα, we
need, however, to ensure for consistency that the ADM
vector constraints are satisfied (which amounts to requiring
that the projection of the Einstein equations on the spatial
slice are satisfied). To this purpose, let us first compute the
extrinsic curvature of the three-dimensional slice,

Kαβ ¼
1

2N
_qαβ ¼

1

2N
eiαe

j
β _γij; K ≔ qαβKαβ ¼

1

2N
γij _γij;

ð2:2Þ

where γij is the inverse of the internal metric, γijγjk ¼ δik.
Writing Dα for the three-dimensional covariant deriva-

tive1 with respect to the hypersurface metric qαβ, imposing
the vector constraint amounts to the requirement that

1Using the convention Dα for the 3D covariant derivative, we
keep the notation ∇μ for the covariant derivative with respect to
the metric gμν on field space.
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DαðKqαβ − KαβÞ ¼ 1

2N
ððγkl _γklÞγij þ _γijÞDαðeαi eβj Þ ¼! 0:

ð2:3Þ

The internal metric γij must be chosen such that this
equation is satisfied (if this is not already the case given
the form of eαi ). As we will see shortly, it turns out that in
the majority of the cases relevant for general relativity the
internal metric only depends on two dynamical fields,
which will be denoted by aðtÞ and bðtÞ.
When the constraint (2.3) is satisfied, the dynamical

evolution is described by the scalar constraint alone, and
the evolution equations derived from the symmetry-
reduced homogeneous action coincide with the homo-
geneous reduction of the full Einstein field equations.
The Einstein-Hilbert action for the line element (2.1)
reduces to

1

16πG

Z
ti

tf

Z
Σ
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

¼ 1

16πG

Z
ti

tf

Z
Σ
d3xN

ffiffiffi
q

p ðK2 − KαβKαβ þ Rð3Þ − 2ΛÞ

þ 1

8πG

Z
Σ
d3x

ffiffiffi
q

p
K

����
tf

ti

¼ V0

G

Z
ti

tf

dt
ffiffiffi
γ

p �
1

4N
ððγij _γijÞ2 þ _γij _γ

ijÞ − 2NΛ
�

þ 1

16πG

Z
ti

tf

Z
Σ
d3xN

ffiffiffi
q

p
Rð3Þ þ SGHY: ð2:4Þ

Here we have introduced the fiducial volume

V0 ≔
1

16π

Z
Σ
d3xjej; ð2:5Þ

where e ¼ detðeiαÞ, which we want to be finite. Depending
on the topology of Σ, this may require the introduction of
cutoffs (i.e., further fiducial quantities) on the spatial
integrations, as done in Appendix D for the various models
of interest. Finally, the Gibbons-Hawking-York (GHY)
term is a total derivative and does not play any role in
the evolution of the classical system.
This symmetry-reduced action (2.4) should be seen as

the action for a mechanical model, describing the evolution
in time of the degrees of freedom γijðtÞ. The kinetic term
comes from the extrinsic curvature contribution to the four-
dimensional curvature in the Einstein-Hilbert Lagrangian,
while the three-dimensional Ricci scalar Rð3Þ plays the role
of the potential. Unfortunately, there is no general formula
at this stage for splitting Rð3Þ into a time-dependent
dynamical part and a purely spatial frame-dependent piece
(see Appendix B for the explicit computation of the 3D
curvature), and its expression will be evaluated on a case-
by-case basis. The equation of motion obtained from the

variation of this action with respect to the lapse imposes, as
expected, the scalar constraint.
Let us now illustrate this general construction with the

example of the Bianchi III line element (we give all the
other minisuperspace examples in Sec. III C),

ds2III ¼ −NðtÞ2dt2 þ aðtÞ2dx2 þ bðtÞ2L2
sðdy2 þ sinh2ydϕ2Þ:

ð2:6Þ

For this line element, the triad and the internal time-
dependent metric are given by

e1αdxα ¼ dx; e2αdxα ¼ Lsdy;

e3αdxα ¼ Ls sinh ydϕ; γij ¼ diagða2; b2; b2Þ: ð2:7Þ

One can easily check that the condition (2.3) is indeed
satisfied. The length scale Ls has been introduced in order
to have dimensionless fields a and b. Since the spatial slice
has the topologyR2 × S1, we need to introduce two fiducial
scales in order to have a finite spatial volume. Introducing
cutoffs2 in the two noncompact x and y directions, we get

V0 ¼
1

16π

Z
Lx

0

dx
Z

y0

0

dy
Z

2π

0

dϕL2
s j sinh yj

¼ 1

4
LxL2

ssinh2
�
y0
2

�
: ð2:8Þ

Up to the total time derivative, the action (2.4) evaluated for
(2.6) then gives

S ¼ −
V0

G

Z
dt

�
1

N
ð4b _a _bþ2a _b2Þ þ 2N

�
a
L2
s
þ Λab2

��
:

ð2:9Þ

This is indeed a mechanical system encoding the evolution
in time of the 2 degrees of freedom a and b, which are the
dynamical components of the minisuperspace line element.
Our goal is to now describe the phase space symmetries of
such minisuperspace models, that is identify the (possibly)
time-dependent constants of motion, to be interpreted as
Noether charges generating the symmetries of the system.
For this, we turn to a field space formulation.

B. Field space formulation

The mechanical actions of the form (2.9), obtained from
a homogeneous reduction of general relativity, always
describe a particle moving in an auxiliary curved spacetime

2Note that there are several fiducial scales entering the
equations. Ls is used to ensure that the dynamical fields are
dimensionless, while Lx; Ly;… are dimensionful cutoffs (fiducial
lengths) on the variables x; y;…, while x0; y0;… are dimension-
less cutoffs.
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and subject to a potential. The coordinates on this space-
time are the independent fields that appear in the internal
metric γij. This dynamics is described by mechanical
Lagrangians of the form

L ¼ 1

2N
g̃μν _qμ _qν − NŨðqÞ: ð2:10Þ

The tensor g̃μνðqÞ is the invertible metric on the field space,
on which the q’s are coordinates. We will denote by ds̃2mini
the corresponding line element. These quantities should not
be confused with the original spacetime metric and coor-
dinates.3 In particular, note that the dimension of the field
space metric can vary on a model-dependent basis even
when the dimension of spacetime is fixed.
In what follows, it will sometimes be useful to perform

redefinitions of the fields entering the minisuperspace
model (2.1). This induces a redefinition of the coordinates
qμ in the field space and, in turn, a redefinition of the field
space metric. It will, for example, be convenient to write the
flat field space metrics in explicit Minkowski form. These
changes of coordinates simply exploit the freedom in
changing variables in the minisuperspace model. For
example, in FLRW cosmology, one can work with the
scale factor a or with the volume a3. The range of the
coordinates in the field space formulation simply follows
the range of the dynamical variables in the minisuperspace
model. The equivalence between the equations of motion
derived from the homogeneous Lagrangian (2.10) and the
homogeneous reduction of Einstein field equations ensures
the consistency of the field space approach. The presence of
singularities or degenerate metrics occurs then in the same
way as in the standard general relativity formulation.
In the example of the Bianchi III model described above,

the Lagrangian corresponding to the reduced action (2.9) is
indeed of the form (2.10) with qμ ¼ ðq1; q2Þ ¼ ða; bÞ and

ds̃2mini ¼ −8bdadb − 4adb2; g̃μν ¼ −4
�
0 b

b a

�
;

Ũ ¼ 2

�
a
L2
s
þ Λab2

�
: ð2:11Þ

The lapse function N is a remnant of the diffeomorphism
invariance inherited from the full theory. It plays the role of

a Lagrange multiplier enforcing the Hamiltonian constraint,
and it ensures that the model is invariant under time
reparametrizations. The Lagrangian (2.10) is indeed invari-
ant under the symmetry

δfqμ ¼ f _qμ; δfN ¼ f _N þ _fN; ð2:12Þ

for a generic function f which can also be field dependent.
Performing a Legendre transform of (2.10), we obtain the
Hamiltonian on the phase space fqμ; pνg ¼ δμν , which is

L ¼ pμ _qμ − NH; pμ ¼
1

N
g̃μν _qν;

H ≔ NH ¼ 1

2
Ng̃μνpμpν þ NŨðqÞ; ð2:13Þ

with H ≈ 0 on shell. At the classical level, any choice of
lapse leads to an equivalent description of the dynamics. It
is indeed common to simply view a choice of lapse, which
can also be field dependent, as a choice of clock. For
example, working with the proper time τ, defined by
dτ ¼ Ndt, is equivalent to setting N ¼ 1.
As we are about to see, in order to study the symmetries

it will, however, be important to choose the lapse as a field-
dependent function NðqÞ and to keep track of its interplay
with the field space metric and the potential. For this
reason, we will stick to the time variable t and denote d=dt
by a dot, and we view the lapse as a conformal factor in
front of the field space metric. We therefore introduce a
rescaled metric such that

gμν ≔
1

N
g̃μν; pμ ¼ gμνpν ¼ _qμ;

ξμ ¼ gμνξμ; ∂μ ≔
∂

∂qμ
; ð2:14Þ

for any vector on the field space ξμ. The evolution of a
phase space observable O with respect to t is given by

_O≔
dO
dt

¼ ∂tOþ fO;Hg; H ≔ NH ¼ 1

2
pμpμ þNŨ:

ð2:15Þ

Below we will interpret a change of lapse as a change of
field space metric instead of a change of time (although
the two pictures are equivalent at the end of the day). We
would like to remark that the phase space is actually
independent of the choice of lapse, and hereafter we will
think of it as a function of phase space, instead of a
free field.
When working with the rescaled metric gμν, the equation

of motion obtained by varying (2.10) with respect to qμ is

q̈μ þ Γμ
ρσ _qρ _qσ þ gμν∂νŨ ¼ 0; ð2:16Þ

3We still use greek letters to denote the coordinates on the field
space. In summary, we have three kinds of indices:

(i) The coordinates and the metric on the hypersurface are xα

and qαβ, where α; β; γ;… ¼ 1;…; 3.
(ii) The internal indices for the internal metric and the frame

are i; j; k;… ¼ 1;…; 3. We also use latin letters to label
the Killing vectors below, but place them between
parentheses: ðiÞ; ðjÞ;….

(iii) The coordinates and the metric on field space are qμ and
gμν, but the range can vary on a model-dependent basis.
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where Γ is the Christoffel connection of the field space
metric gμν. In the free case, i.e., without potential, this is
simply the geodesic equation, and the scalar constraint
H ¼ pμpμ=2 ≈ 0 restricts us to the null geodesics. In this
case, the evolution of a phase space functions O along any
trajectory is given by

_O ¼ ∂tOþ pμ
∂μO; pμ

∂μpν ¼ 0: ð2:17Þ

In order to unravel the symmetries on the phase space of
this system, we first need to study the Killing vectors of the
field space metric gμν and to understand their relation with
conserved quantities.

1. Killing vectors and conserved quantities

We now turn to the core of the discussion and explain
how the phase space symmetry algebra is related to the
symmetries of the field space metric. We begin with the
analysis of the free case, for a vanishing potential. Let us
start by considering the initial field space metric g̃μν without
conformal rescaling by the lapse. We are interested in its
conformal Killing vectors ξμ, which by definition are
such that

£ξg̃μν ¼ ∇̃μξν þ ∇̃νξμ ≐ λ̃g̃μν; £ξg̃μν ¼ −λ̃g̃μν: ð2:18Þ

Here ∇̃ is the covariant derivative with respect to g̃.
Whenever λ̃ is constant and nonvanishing, we refer to
these conformal Killing vectors as homothetic Killing
vectors, while in the vanishing case we have true Killing
vectors. It is now easy to see that the presence of a
conformal factor N does not change the fact that a given
vector ξμ is conformal, but changes, however, the value of
λ. Indeed, we have

£ξgμν ¼ ∇μξν þ∇νξμ ¼ £ξ

�
1

N
g̃μν

�

¼ ðλ̃ − £ξ logNÞ
�
1

N
g̃μν

�
≕ λgμν: ð2:19Þ

This means that a field-dependent change of lapse can
change the nature of a conformal Killing vector, by making
theweight nonconstant, constant, or vanishing. This is a first
indication of the importance of the lapse in this analysis.
In order to set the stage and continue the discussion, let

us now assume that we have fixed the lapse once and for all
and that we have found the homothetic Killing vectors of
the metric gμν, i.e., the vectors such that λ is constant (and
possibly vanishing). Thewhole set fξðiÞg of homothetic and
true Killing vectors then forms an algebra with commuta-
tion relations

½ξðiÞ; ξðjÞ� ¼ ðξμðiÞ∇μξ
ν
ðjÞ − ξμðjÞ∇μξ

ν
ðiÞÞ∂ν ¼ cijkξðkÞ; ð2:20Þ

where the coefficients cijk are the structure constants.
Furthermore, as shown in Appendix C, these Killing vectors
are also solutions of the geodesic deviation equation

pμpν∇μ∇νξρ ¼ −Rρμσνpμpνξσ: ð2:21Þ
With these vectors at hand let us now consider the phase
space functions

CðiÞ ≔ pμξ
μ
ðiÞ: ð2:22Þ

By construction, we then get that

fCðiÞ;Hg¼pν
∂νðpμξ

μ
ðiÞÞ ¼

1

2
λðiÞgμνpμpν¼ λðiÞH; ð2:23Þ

which immediately implies that we have conserved quan-
tities defined as

QðiÞ ≔ CðiÞ − tλðiÞH;

_QðiÞ ¼ ∂tQðiÞ þ fQðiÞ; Hg ¼ 0: ð2:24Þ
These conserved charges are linear in time, they are evolv-
ing constants of motion, as uncovered for FLRW cosmol-
ogy and black hole mechanics in the previous works
[42,45,47,50,52,54]. The charge QðiÞ can indeed be under-
stood as the initial condition at t ¼ 0 for the observableCðiÞ.
This set of conserved charges form part of the phase space
symmetry algebra that we set out to unravel. One can already
add to this set theHamiltonian at this stage. Then the question
that remains is whether we can extend the construction to
include charges that are quadratic (or higher polynomials) in
time. This will be the goal of the next section.
As conserved quantities, the charges (2.24) are gener-

ators of symmetries of (2.10) whose infinitesimal action is

δqμ ¼ fqμ;Qig ¼ ξμðiÞ − λðiÞtpμ ¼ ξμðiÞ − tλðiÞ _qμ; ð2:25aÞ

δpμ ¼ fpμ;Qig ¼ −pν∂μξ
ν
ðiÞ þ

1

2
tλðiÞpνpρ∂μgνρ: ð2:25bÞ

The interpretation of this symmetry transformation is as
follows. Let us start with a geodesic that is affinely
parametrized. Since the conformal Killing vectors are
solutions of the geodesic deviation equation, the result
of the transformation is to first move the point qμ to a
nearby geodesic. Then, is shifts along this new geodesic by
−tλðiÞpμ, in order to account for a potential dilatation of the
spacetime generated by ξðiÞ, so as to obtain again an affine
parametrization of the new solution.
Using the Poisson bracket on phase space, we can finally

show that the conserved charges constructed from the ξðiÞ’s
form an algebra that reproduces the Lie algebra of the
Killing vectors, i.e.,

fQðiÞ;QðjÞg ¼ −cijkQðkÞ: ð2:26Þ
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As we will illustrate below, it should be noted that the size
of this algebra (or even its existence) depends on the choice
of the lapse (or conformal factor for the metric) N. This
does not mean that we cannot recover the corresponding
conserved charges in any time parametrization, but con-
versely that their form might depend on the history of the
system. This happens because the factors of t that appear in
the expressions of the conserved charges (2.24), when
expressed in terms of another time t̃, would lead to nonlocal
terms given by the integral of the ratio of the two lapses,
associated with the original and the new times: Ndt ¼
Ñdt̃ ⇒ t ¼ R

dt̃ðÑ=NÞ [41].
Inspired by the symmetry structure that has been

exhibited in previous work for cosmological minisuper-
spaces [43,45–47,49,53] and for the black hole interior
[50,51,54], we would like to extend the above construction
to charges that are quadratic in time. This can be done in a
systematic manner in the case of two-dimensional field
spaces, which fortunately enough covers many homo-
geneous models of general relativity. The construction in
the case of higher-dimensional field spaces has to be done
on a case-by-case basis.

2. Inclusion of a potential

Before turning to the study of the two-dimensional field
space geometries, we present a first brief discussion
concerning the inclusion of a nonvanishing potential.
Once again, this is an aspect that is heavily impacted by
the choice of lapse and that we illustrate below with many
examples. Let us assume that the lapse has been chosen to
be field dependent.
If the product NðqÞŨðqÞ is equal to a constant U0, then

this constant does not play any fundamental role from the
point of view of the symmetry algebra. All of the above
discussion is still valid, except for the fact that previously
null trajectories now become massive or tachyonic. Indeed,
such a constant potential is a boundary term for the point of
view of the action. In the charge algebra, the effect of a
constant term U0 is simply to shift the value of the
Hamiltonian to obtain the charge

Q0 ≔ H − U0; fO; Hg ¼ fO;Q0g: ð2:27Þ

This is exactly what happens in the case of Kantowski-
Sachs (KS) cosmologies and the black hole interior [50,54].
We will review the explicit examples below.
Now, if the potential contains a nonconstant piece, we

use the following notation:

NðqÞŨðqÞ ¼ UðqÞ þU0; ð2:28Þ

to disentangle between a possibly constant term U0 and a
field-dependent piece UðqÞ. This separation evidently
depends on the choice of lapse, and the constant piece is
not uniquely determined. However, we must add an extra

condition on the Killing vectors in order to be able to define
the charges (2.24). This condition is the requirement that
the nonconstant piece gets rescaled similar to the super-
metric, i.e.,

£ξU ¼ ξμ∂μU ¼ −λU: ð2:29Þ

Indeed, this is necessary in order to ensure that we still have

fCðiÞ;Q0g ¼
�
CðiÞ;

1

2
pμpμ þ U

	
¼ 1

2
λðiÞpμpμ − ξμ∂μU

¼ λðiÞQ0; ð2:30Þ

so that we can once again define the conserved quantities

QðiÞ ≔ CðiÞ − tλðiÞQ0; _QðiÞ ¼ 0; ð2:31Þ

which in turn generate symmetries and form an algebra.
Moreover, the condition (2.29), for λ ≠ 0, uniquely fixes
the constant piece U0, so that the separation (2.28) actually
depends both on the lapse and the vector ξ.
It is important to notice that, under a conformal rescaling

g̃μν ¼ Ngμν of the metric, corresponding to a change of
lapse, the initial requirement £ξU ¼ −λU implies

£ξg̃μν ¼ðλþ£ξ logNÞg̃μν¼ λ̃g̃μν;

£ξŨ¼−ðλþ£ξ logNÞŨþλ
U0

N
¼−λ̃Ũþλ

U0

N
: ð2:32Þ

This means that in the presence of a nontrivial potential the
desired properties on the transformation of the metric and
the potential are not covariant under changes of the lapse.
This makes the analysis of the symmetries and their algebra
very involved, since both the number of homothetic Killing
vectors (satisfying the homothetic conditions on both the
metric and the potential) and the decomposition of the
potential (2.29) depend on the lapse. This is why we will
have to perform this analysis on a case-by-case basis.
Another method to deal with a nontrivial potential is to

use the so-called Eisenhart lift [63]. This consists in
extending the field space by the addition of a new field
y, in order to map the n-dimensional problem with potential
to an (nþ 1)-dimensional free system. The Eisenhart lift is
explicitly given by an enlarged supermetric GAB, with

GAB ¼
�
gμν 0

0 1=ð2UÞ

�
ð2:33Þ

and where the new coordinates (encoding the fields) are
xA ¼ ðqμ; yÞ. The null geodesic equation of GAB on the
configuration space ðqμ; yÞ gives exactly the same equation
as H ¼ pμpμ þU, as can easily be verified by computing
the Hamiltonian equation for Hlift ¼ GABpApB with
pA ¼ ðpμ; pyÞ. In particular, the equation of motion for
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py states that it is a constant. Once we pull this back into the
equations for qμ and pμ, these become equivalent to the
original equations for the n-dimensional problem.
It is possible to show that searching for the homothetic

Killing vectors of the supermetricGAB of the enlarged space
is the same as finding a simultaneous solution of the
rescaling equations (2.29) and (2.19) for the supermetric
and potential, £ξgμν ¼ λgμν and £ξU ¼ −λU. Although this
apparently looks equivalent, it nevertheless allows for
vector fields ξ, which can depend on the new coordinate
y and have nontrivial components along ∂y. Unfortunately,
this new coordinate does not have a physical meaning and
there is no way to extract nontrivial Dirac observables from
such a homothetic Killing vector on the Eisenhart lift metric.
Nevertheless, there exists an improved version of the lift,

called the Eisenhart-Duval lift [64,65], which adds two new
coordinates ðu; wÞ instead of the one y and uses a
Brinkmann supermetric

gμνdxμdxν − 2Udu2 þ dudw: ð2:34Þ

As shown in [66], this improved lift identifies the new
coordinate u to the time coordinate t along null geodesics,
and its Killing vectors directly provide time-dependent
conserved charges.
Finally, we would like to stress that the construction

presented here strongly relies on the separation between
configuration space and momenta. However, the classical
description is, of course, invariant under any canonical
transformation that could mix the two. In the case of a
momentum-dependent potential, we could proceed as fol-
lows: find a canonical transformation that maps the
Hamiltonian to a form like (2.13), then apply the construction
above, and finally go back to the original variables.

III. TWO-DIMENSIONAL FIELD
SPACE GEOMETRIES

We now discuss the extension of the algebra (2.26) to
charges that are quadratic in time. We will focus initially on
the case of field space geometries that are two dimensional
and flat. Interestingly, this is sufficient to cover many
minisuperspace models of general relativity, as we will
detail in Sec. III C.

A. Free case

Let us consider the case of two-dimensional field spaces.
Since every two-dimensional metric is conformally flat, we
can use coordinates such that in Lorentzian signature (which
is the field space signature of interest for us) we have

ds̃2mini ¼ −2e−φdũdṽ: ð3:1Þ

Here all the dynamical information is encoded in the
conformal factor φðũ; ṽÞ. The structure of the homothetic

Killing vectors depends on the Ricci scalar curvature, which
is given by

R ¼ −2eφ∂ũ∂ṽφ: ð3:2Þ

In the nonflat case R ≠ 0 the number of independent
homothetic Killing vectors varies on a case-by-case basis.
For example, we have the following cases:

(i) For (A)dS2, which corresponds to φ ¼ 2 logðu ∓ vÞ,
there are only the three Killing vectors

ξμ∂μ ¼ ðc1u2þ c2uþ c3Þ∂uþð�c1v2þ c2v� c3Þ∂v;
£ξgμν ¼ 0; ci ¼ const:; ð3:3Þ

where the upper sign is for AdS and the lower one is
for dS.

(ii) For φ ¼ u2v there is only one homothetic Killing
vector given by

ξμ∂μ ¼ −λðu∂u − 2v∂vÞ; £ξgμν ¼ λgμν: ð3:4Þ

(iii) For φ ¼ uv, there is only one true Killing vector
given by

ξμ∂μ ¼ −u∂u þ v∂v; £ξgμν ¼ 0: ð3:5Þ

The case of interest for us is that of a flat field spacegeometry.
In the free case (i.e., with vanishing potential), it is

always possible to reduce the problem to that in a flat field
space by a suitable choice of lapse. Indeed, in the
Lagrangian (2.10), with coordinates such that the metric
is (3.1), we can simply choose the lapse to be N ¼ e−φ, so
that gμν ¼ g̃μν=N is indeed flat. Alternatively, it might be
the case that there are null coordinates such that g̃μν by itself
is already flat. This is the case whenever we can separate
φðũ; ṽÞ ¼ φ1ðũÞ þ φ2ðṽÞ. In this case, we can simply take,
e.g., N ¼ 1, or any lapse of the form N ¼ N1ðũÞN2ðṽÞ. Let
us now assume that we are in the flat case and use standard
null coordinates to write

ds2mini ¼ −2dudv: ð3:6Þ

This metric has three true Killing vectors (two translation
and one boost) and one homothetic vector corresponding to
the dilatation of the plane. For each of these vectors, we can
compute the factor λðiÞ and the phase space function (2.22).
In null coordinates we find

Time translation∶ ξμt ∂μ ¼ ∂u þ ∂v λt ¼ 0 Ct ¼ pu þ pv;

ð3:7aÞ

Space translation∶ ξμx∂μ ¼ ∂u − ∂v λx ¼ 0 Cx ¼ pu −pv;

ð3:7bÞ
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Boost∶ ξμb∂μ ¼ u∂u−v∂v λb ¼ 0 Cb¼ upu−vpv; ð3:7cÞ

Dilatation∶ξμd∂μ¼
1

2
ðu∂uþv∂vÞ λd¼1 Cd¼

1

2
ðupuþvpvÞ:

ð3:7dÞ

Thanks to these Killing vectors, in addition to the
Hamiltonian Q0 ≔ H ¼ −pupv, we therefore get from
(2.24) the four conserved charges ðQt ¼ Ct, Qx ¼ Cx,
Qb ¼ Cb, Qd ¼ Cd − tQ0Þ, which are linear in time.
In two dimensions, the vanishing of the Ricci scalar and

of the Riemann tensor are equivalent. This has an imme-
diate implication on the existence of another set of charges.
One can indeed show (see Appendix C) that the following
quantities have a vanishing third derivative:

VðijÞ ≔ gμνξ
μ
ðiÞξ

ν
ðjÞ; V

…

ðijÞ ¼ 0: ð3:8Þ

The observables VðijÞ are similar to the 3D volume (or the
scale factor) in FLRW cosmologies [45,47] or the metric
components for the Kantowski-Sachs black hole ansatz
[51,54]. With the Killing vectors (3.7) at hand, we can
explicitly calculate the scalar products VðijÞ and find the
nontrivial combinations

Vbt ¼−2Vdx ¼ v−u≕V1; Vbx ¼−2Vdt ¼ uþ v≕V2;

Vbb ¼−4Vdd ¼ 2uv≕V3; ð3:9Þ

as well as the central elements Vxx ¼ −V tt ¼ 2. By con-
struction, the second derivative of the VðijÞ’s is a constant
and, in particular, the following charges are conserved:

Q1 ≔ V1 þ tCx; Q2 ≔ V2 þ tCt;

Q3 ≔ V3 þ 4tCd − 2t2Q0: ð3:10Þ
This can be checked using the fact that the brackets with the
Hamiltonian are fCðiÞ;Q0g ¼ λðiÞQ0 and

fV1;Q0g¼−Cx; fV2;Q0g¼−Ct; fV3;Q0g¼−4Cd:

ð3:11Þ
Together with the charges ðQ0;Qt;Qx;Qb;QdÞ found
previously, these charges form an eight-dimensional alge-
bra isomorphic to the semidirect sum ðslð2;RÞ ⊕ RÞ ⨭ h2,
where h2 is the two-dimensional Heisenberg algebra.4

One should note that the charges ðQ0;Q1;Q2;Q3;
Qt;Qx;Qb;QdÞ are the initial conditions of the phase
space functions ðQ0; V1; V2; V3; Ct; Cx; Cb; CdÞ, obtained
by setting t ¼ 0. This explains why only the former set is
conserved.

This procedure, which we have outlined here in the two-
dimensional case, can be extended to a field space of
arbitrary dimension, although it is of course not guaranteed
to then lead to the same results. If the field space is nonflat
and higher dimensional, we are indeed not guaranteed that
homothetic Killing vectors exist, nor that the observables
CðiÞ and VðijÞ, if they exist, form a closed algebra with the
Hamiltonian. We give in Appendix C the equation (C12),
which has to be satisfied by the Killing vectors in order for
this to be the case. Although this equation has a simple
form, one cannot find an a priori condition on the field
space geometry (and on the potential if this latter is
nontrivial) that guarantees the existence of an algebra on
phase space. With the construction presented here, we have,
however, the tools to investigate this on a case-by-
case basis.

1. Charge algebra

In order to study the charge algebra, it is convenient to
slightly rewrite the above generators and first introduce the
four quantities

L−1≔−Q0; L0≔Qd; L1≔
1

2
Q3; D0≔Qb; ð3:12Þ

which span slð2;RÞ ⊕ R, as well as the four generators

S�
1=2 ≔

1

2
ðQ2 �Q1Þ; S�

−1=2 ≔
1

2
ðQt �QxÞ; ð3:13Þ

which span h2. These generators can finally be repackaged
in the compact form

Ln ¼
1

4
f̈V3þ _fCd−fQ0; fðtÞ¼ tnþ1; n∈ f−1;0;1g;

ð3:14aÞ

S�
s ¼ 1

2
ðð_gV2 þ gCtÞ � ð_gV1 þ gCxÞÞ;

gðtÞ ¼ tsþ1=2; s ∈
�
−
1

2
;
1

2

	
: ð3:14bÞ

We then find that they form the algebra

fLn;Lmg ¼ ðn −mÞLnþm; ð3:15aÞ

fLn;D0g ¼ 0; ð3:15bÞ

fSϵ
s;Sϵ0

s0g ¼ 2nδϵþϵ0δsþs0 ; ð3:15cÞ

fLn;S�
s g ¼

�
n
2
− s

�
S�
nþs; ð3:15dÞ

fD0;S�
s g ¼ �S�

s ; ð3:15eÞ
4Note that this algebra has four generators, which are analo-

gous to the two positions and two momenta of a two-dimensional
space obeying the Heisenberg commutation relations.
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with n;m ∈ f0;�1g and s; s0 ¼ �1=2. As announced, this
algebra is

A ¼ ðslð2;RÞ ⊕ RÞ ⨭ h2; ð3:16Þ

where the direct sum corresponds to the two brackets
(3.15a) and (3.15b), the Heisenberg part comes from the
centrally extended bracket (3.15c), and the remaining two
brackets encode the semidirect structure.
Because the physical system that we are describing has a

four-dimensional phase space spanned by the coordinates
fu; v; pu; pvg, these charges cannot be all independent.
Indeed, one can show that they are related by the quadratic
construction

Ln ¼
X1=2

k¼−1=2
k

�
n
2
þ k

�
ðSþ

k S
−
n−k þ S−

k S
þ
n−kÞ;

D0 ¼ 2
X1=2

k¼−1=2
kS−

kS
þ
−k: ð3:17Þ

From this point of view, one may see the four generators S�
s

of h2 as the fundamental building blocks of the symmetry
algebra. They represent the four constants of the motion
that are preserved in the evolution, and any (possibly
nonlinear) combination of them will again be conserved
on trajectories and generate a symmetry. The relations
(3.17) are analogous to the Sugawara construction.
In order to make contact with the symmetry algebra

discussed in [50,54], we can start from the linear charges Sϵ
s

to build two sets of generators as

T �
n ≔

X1=2
k¼−1=2

k

�
n
2
þ k

�
S�
k S

�
n−k: ð3:18Þ

Because of the Heisenberg central extension, these two
Abelian sets of generators do not commute and give

fT �
n ; T �

mg ¼ 0;

fT þ
n ; T −

mg ¼ 1

2
ðn −mÞLnþm −

1

4
ðn2 þm2 − nm − 1ÞD0:

ð3:19Þ

Finally, these generators can be combined into

Pσ
n ≔ T −

n þ σT þ
n ; ð3:20Þ

for which we find

fPσ
n;Pσ

mg ¼ σðn −mÞLnþm;

fPσ
n;Lmg ¼ ðn −mÞPσ

nþm: ð3:21Þ

Together with the brackets (3.15a), these commutation
relations show that ðPσ

n;LnÞ span an algebra gσ which,
depending on the sign of σ, is either the isometry algebra
gσ>0 ¼ soð1; 3Þ of dS, the isometry algebra gσ<0 ¼ soð2; 2Þ
of AdS, or the isometry algebra gσ¼0 ¼ isoð2; 1Þ of
Minkowski. This latter, which is the (2þ 1)-dimensional
Poincaré algebra, is the algebra that was studied in [50,54].

2. Symmetry transformations

Let us now focus on the eight-dimensional algebra (3.16)
and investigate the corresponding symmetry group. Indeed
we view the conserved charges as Noether charges, whose
Poisson brackets have an exponentiated flow that generates
finite symmetry transformations. Thus, we start by com-
puting their infinitesimal action given by their Poisson
brackets with the field space coordinates qμ ¼ ðu; vÞ. The
action on these null coordinates is found to be

�
δu

δv

�
¼

� 1
2
_fðtÞu − fðtÞ _uþ kuþ gðtÞ

1
2
_fðtÞv − fðtÞ _v − kvþ hðtÞ

�
; ð3:22Þ

where k ∈ R, the function fðtÞ is quadratic in t, and the
functions gðtÞ and hðtÞ are linear in t. A straightforward
calculation shows that these finite transformations are
indeed symmetries of the action

S ¼ −
Z

dt _u _v : ð3:23Þ

The algebra of these transformations is

½δðf1; g1; h1; k1Þ; δðf2; g2; h2; k2Þ�Lie ¼ δðf12; g12; h12; k12Þ;
ð3:24Þ

with

f12 ¼ _f1f2 − ð1 ↔ 2Þ; ð3:25aÞ

k12 ¼ 0; ð3:25bÞ

g12 ¼ −
1

2
g1 _f2 þ f2 _g1 − k1g1 − ð1 ↔ 2Þ; ð3:25cÞ

h12 ¼ −
1

2
h1 _f2 þ f2 _h1 þ k1h1 − ð1 ↔ 2Þ: ð3:25dÞ

This is equivalent to the charge algebra (3.15), up to
the Heisenberg central extension. Each Ln generates the
coefficient tnþ1 in the function f, each S−

s generates the
coefficient tsþ1=2 of h, and each Sþ

s generates the coef-
ficient tsþ1=2 of g. Finally, D0 corresponds to k.
These infinitesimal transformations can be integrated to

a finite group action. The exponentiated generators (3.12)
give the scaled Möbius transformations, acting as the group
SLð2;RÞ ×R on the null coordinates via

GEILLER, LIVINE, and SARTINI PHYS. REV. D 106, 064013 (2022)

064013-10



�
u

v

�
↦ ð _fÞ1=2

�
ku

k−1v

�
∘ fð−1Þ ¼ 1

ctþ d

�
ku

k−1v

�
∘ fð−1Þ;

where fðtÞ ¼ atþ b
ctþ d

; ð3:26Þ

for constants coefficients ðk; a; b; c; dÞ such thatad−bc¼1.
The action of the Heisenberg generators (3.13) exponen-
tiates to that of the Abelian group R4 acting as

�
u

v

�
↦

�
uþ αtþ β

vþ γtþ δ

�
: ð3:27Þ

Again, one can check that these are symmetries of (3.23).

B. Inclusion of a potential

The algebra A obtained above always exists in the free
case. We now would like to tackle the case of a non-
vanishing potential and determine if this algebra (or a
suitable deformation thereof) exists, if a subalgebra sur-
vives, or if there is no symmetry structure. In Sec. II B 2, we
have briefly discussed our strategy for the case with a
nonvanishing potential, looking for Killing vectors along
which the potential gets rescaled. With the explicit expres-
sion for the Killing vectors for the free theory at hand, we
can now push this analysis further.
Considering an arbitrary minisuperspace model with

two-dimensional field space, one can always pick null
conformally flat coordinates such that the metric on field
space simply takes the form ds̃2mini ¼ −2e−φdũdṽ, so that
the Lagrangian reads

L ¼ −
1

N
e−φ _̃u _̃v−NŨ; ð3:28Þ

where the potential Ũ and the conformal factor φ follow
from the definition of the minisuperspace, while the lapse
N can be chosen arbitrarily. We see two natural possibilities
for studying this Lagrangian.
(1) Choose N ¼ 1=Ũ so as to trivialize the poten-

tial term.
(1.1) If the resulting conformal factor Ũe−φ is such that

the supermetric is flat, then the whole algebra A
survives by the above construction.

(1.2) If the resulting supermetric is not flat, one should
go back to the beginning of the analysis to study
the conformal Killing vectors ξðiÞ, construct the
objects CðiÞ and VðijÞ, and compute their algebra.

(2) Choose N ¼ e−φN1ðũÞN2ðṽÞ such that the super-
metric is flat, and then study whether the resulting
potential U ¼ NŨ satisfies £ξU ¼ −λU for (3.7).

This procedure has to be implemented on a case-by-case
basis, and we give the examples of physical interest in
Sec. III C below. In general, we expect that demanding that
the homothetic Killing vectors of the metric also be Killing

vectors of the potential will reduce the number of admis-
sible vectors and, therefore, also reduce the size of the
symmetry algebra.
In order to illustrate this, let us consider an example,

relevant for the Bianchi models, where the shifted potential
UðqÞ ¼ NðqÞŨðqÞ − U0, as defined earlier in (2.28), is
after a suitable choice of lapse a monomial in the two null
coordinates, i.e., of the form U ¼ unvm. This leads to three
possibilities:
(1) If n ¼ 0,m ≠ 0, then there are two vectors satisfying

(2.29), given by

ξ1 ¼ ξt þ ξx; ξ2 ¼ ð2þmÞξb þ 2mξd;

λ1 ¼ 0; λ2 ¼ 2m: ð3:29Þ

(2) If n ≠ 0, m ¼ 0, we have

ξ1 ¼ ξt − ξx; ξ2 ¼ ð2þ nÞξb − 2nξd;

λ1 ¼ 0; λ2 ¼ −2n: ð3:30Þ

(3) If n, m ≠ 0, then there is a single admissible vector
given by

ξ1 ¼ ð2þ nþmÞξb þ 2ðm − nÞξd;
λ1 ¼ 2ðm − nÞ: ð3:31Þ

This shows that the existence and the number of the linear
charges QðiÞ defined in (2.24) depends on the potential.
Then, in order for the quadratic charges to exist and close
the algebra, we need to have closed brackets as in (3.11)
between the phase space functions VðijÞ ¼ gμνξ

μ
ðiÞξ

ν
ðjÞ, the

HamiltonianQ0, and the functions CðiÞ. For example, in the
third case above, with n, m ≠ 0 we compute

V11 ¼ ξ21 ¼ ð2þ nþmÞ2ξ2b − 4ðm − nÞ2ξ2d
¼ 4ð1þmÞð1þ nÞV3; ð3:32aÞ

C1 ¼ pμξ
μ
1 ¼ ð2þ nþmÞCb − 2ðm − nÞCd; ð3:32bÞ

fC1; V11g ¼ 2ðn −mÞV11; ð3:32cÞ

fQ0; V11g ¼ 8ð1þmÞð1þ nÞCd: ð3:32dÞ

In order for the last bracket to close on C1, the potential

must be such that 2þ nþm¼! 0. In this case, the algebra of
the charges reduces to slð2;RÞ ⊂ A. This situation, which
corresponds to a potential U ∝ unvm with ðnþmÞ ¼ −2
which is homogeneous of degree −2, is the two dimen-
sional equivalent of the conformal potential U ¼ 1=q2. We
shall remark that also for the cases m ¼ −1, n ¼ −1 the
algebra closes, but V11 is trivial and the algebra is two
dimensional, containing only Q0 and C1.
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We note in passing that the case of a model with
one-dimensional field space is trivial and always admits
an slð2;RÞ algebra. Indeed, if the Lagrangian is L ¼
g̃ðqÞ _q2=N − NŨ one can choose N ¼ 1=Ũ and work with
the rescaled metric g ¼ g̃ Ũ. The resulting phase space with
Hamiltonian H ¼ g−1p2=2þ 1 then supports an slð2;RÞ
algebra spanned by ðC;V;Q0Þ with

Q0 ¼ H − 1; V ¼ ξ2; C ¼ g−1pξ;

ξ ¼ c1 þ
c2
2

Z
q
dq0

ffiffiffiffiffiffiffiffiffiffi
gðq0Þ

p
; ð3:33Þ

where c1 and c2 ≠ 0 are otherwise arbitrary constants. This
simple setup is here deliberately presented in an analogous
way to the case of a higher-dimensional field space.

C. Applications

Let us now apply the construction presented above to
some examples of supermetrics on field space inherited
from minisuperspace models of general relativity. We study
KS cosmologies describing the black hole interior, Bianchi
models, and then FLRW cosmology with a scalar field.

1. Black holes and Bianchi models

The Bianchi classification is based on the nature of the
three-dimensional Lie algebra of spacetime vector fields
which leaves the spatial triads eiμðxÞ invariant. This clas-
sification does, however, leave the internal metric γij
completely arbitrary. Here we are interested in the choices
that solve the vector constraint, as explained in Sec. II A.
The classification restricted to the case of metrics solving
the vector constraint is given in Appendix D. For instance,
KS cosmologies do not belong to the family of Bianchi
models, because their spatial slices do not admit a three-
dimensional algebra of isometries. They are nonetheless
minisuperspaces satisfying the vector constraint, with a
field space geometry actually analogous to that of Bianchi
models, and they therefore naturally enter the scope of the
present analysis.
All the Bianchi models have a two-dimensional field

space, apart from Bianchi I and II, which we discuss in
Sec. IV. The KS model and the Bianchi models5 with two-
dimensional field space have an internal metric given by

III;VI0;VIII; IX;KS→ γij¼ diagða2;b2;b2Þ; ð3:34aÞ

IV; V; VII → γij ¼ diag

�
a2;

a4

b2
; b2

�
: ð3:34bÞ

The kinetic term of the symmetry-reduced action (2.4),
from which we read the supermetric g̃μν, depends only on
the internal metric γij. We find

V0

4GN
ffiffiffi
γ

p ððγij _γijÞ2 þ _γij _γ
ijÞ ¼ −

2V0

GN
g̃μν _qμ _qν; ð3:35Þ

with the configuration variables qμ ¼ ða; bÞ and the fol-
lowing supermetrics:

III;VI0; VIII; IX; KS → g̃μν ¼
�
0 b

b a

�
; ð3:36aÞ

IV; V; VII → g̃μν ¼ a
b2

�
2b2 ab

ab −a2

�
: ð3:36bÞ

Now, we can use the following change of coordinates to the
null conformal parametrization (3.1):

III;VI0; VIII; IX; KS → ũ ¼ 2σ
ffiffiffi
2

p
ffiffiffi
3

p a
ffiffiffi
b

p
;

ṽ ¼ 2
ffiffiffi
2

p

σ
ffiffiffi
3

p b3=2; ð3:37aÞ

IV; V; VII → ũ ¼ 2σ
ffiffiffi
2

p
ffiffiffi
3

p að3þ
ffiffi
3

p Þ=2b−
ffiffi
3

p
=2;

ṽ ¼ 2
ffiffiffi
2

p

σ
ffiffiffi
3

p að3−
ffiffi
3

p Þ=2b
ffiffi
3

p
=2; ð3:37bÞ

where σ is an arbitrary real parameter. With this, we find
that all the models under consideration, i.e., (III, IV, V, VI0,
VII, VIII, IX, KS), lead to actions that can all be written in
the same compact form

S ¼
Z

dt

�
−

V0

GN
_̃u _̃v−NŨ

�
ð3:38Þ

and which are distinguished by their potential Ũ. Comparing
to the general form of the Lagrangian (3.28), we see that all
these models also have a vanishing conformal factor, φ ¼ 0.
Finally, one should note that herewe are keeping track of the
dimensional constants V0 and G.
We now distinguish two families of models depending

on their potential:
(1) the models (III, V, VI, KS), for which the potential

separates in the product of two functions of the null
directions and

(2) the models (IV, VII, VIII, IX), for which this does
not happen.

Models (III, V, VI, KS).—In this case we simply need to
take N ¼ 1=Ũ. Indeed, this trivializes the potential term in
(3.38) and leads to a flat field space metric for which we
already know the construction of the algebra A following
the previous sections. In order to import verbatim these
previous results, we may need to change coordinates one

5To the list that is studied here we should add the model VIh.
This has, however, the same symmetry properties as VI0, but its
treatment involves some lengthy expressions. The interested
reader can look at [41], where the formulas pertaining to the
VIh model are reported.
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last time in order to put the (already) flat supermetric in the
precise form (3.6).
Let us illustrate this construction by focusing on the

Bianchi III model. The other models are all explicitly
analyzed in Appendix D. In conformal null coordinates, the
action (2.9) for the Bianchi III model reads

SIII ¼
Z

dt

�
−

V0

GN
_̃u _̃v−NŨ

�
; Ũ ¼ −

31=3V0

σ4=3GL2
s

ũ

ṽ1=3
:

ð3:39Þ
Taking N ¼ V2

0=ðG2L2
sŨÞ (where the dimensional factors

enter the relation between the Hamiltonian H and the
charge Q0) and changing coordinates to

u ¼ −
3ũ2

4σ2
¼ −2a2b; v ¼ ð3σ2ṽ2Þ1=3 ¼ 2b ð3:40Þ

finally puts the action in the form

SIII ¼
Z

dt

�
− _u _v−

V2
0

G2L2
s

�
: ð3:41Þ

This is precisely the setting discussed in Sec. III for the free
case, but now with a constant potential U0 which simply
shifts the Hamiltonian. Using the canonical transformation
(3.40) we can import the charges obtained previously to
find the explicit expression for the conserved charges of the
Bianchi III model. These are

Ct ¼−
pa

4ab
þapaþ2bpb

4b
; Cb¼−apa−bpb; ð3:42aÞ

Cx ¼ −
pa

4ab
−
apa þ 2bpb

4b
; Cd ¼

bpb

2
; ð3:42bÞ

V1 ¼ 2bð1 − a2Þ; V3 ¼ 8a2b2; ð3:42cÞ

V2 ¼ 2bð1þ a2Þ; Q0 ¼H −
V2
0

G2L2
s
¼ paðapa − 2bpbÞ

16ab2
:

ð3:42dÞ

By construction these charges obey the algebraA, which is
therefore fully implemented in the models (III, V, VI, KS).6

Note that we have kept track of the dimensional factors in

order to have a shift of the Hamiltonian defining Q0 with
dimension of inverse length squared.

Models (IV, VII, VIII, IX).—The study of this family is a
little more subtle. First, one should notice that setting
N ¼ 1=Ũ for these models does not lead to a flat super-
metric. Second, it turns out that this nonflat supermetric
does not admit any Killing vectors, so the method fails
when the lapse is chosen as the inverse of the full potential.
However, it turns out that for these models the potential is
actually a sum of two or three monomials of the form ũnṽm.
This opens the possibility of choosing the lapse so as to
set one of these terms of the potential to a constant. By
construction, for these models since φ ¼ 0 such a choice of
lapse will lead to a flat field space metric. One can then
choose coordinates to put this metric in the form (3.6), and
finally study the condition (2.29) for the remaining terms in
the potential.
Let us illustrate this construction on the general action of

the form

S ¼ V0

G

Z
dt

�
−
1

N
_̃u _̃vþNðc1ũn1 ṽm1 þ c2ũn2 ṽm2Þ

�
: ð3:43Þ

Without loss of generality, we can now choose the lapse
and the coordinates (with mi; ni ≠ −1) as

N ¼ V0

G
1

ũn1 ṽm1
; u¼ ũn1þ1

1þ n1
; v¼ ṽm1þ1

1þm1

; ð3:44Þ

to obtain

S ¼
Z

dt½− _u _v−ðU þU0Þ�; ð3:45Þ

with the potential

U0 ¼ −
V2
0

G2
c1;

U ¼ −
V2
0

G2
c2ððn1 þ 1ÞuÞ

n2−n1
n1þ1 ððm1 þ 1ÞvÞ

m2−m1
m1þ1 : ð3:46Þ

We are now exactly in the case (3.31) discussed above.
There is a single homothetic Killing vector, and an
slð2;RÞ subalgebra of A survives, spanned by the charges
ðC1; V11;Q0Þ, if and only if

2þ n1 þ n2 þm1 þm2 þ n1m2 þ n2m1 ¼ 0: ð3:47Þ

It turns out that this equation is satisfied for the potentials of
the Bianchi models VIII and IX, but not for the Bianchi
models IV and VII.
In summary, we have shown that the full algebra A

(3.16) can be obtained for the models (III, V, VI, KS), while
for the models (VIII, IX) only the conformal subalgebra
survives. The Bianchi models IV and VII are particular in

6In [50,54] we have used for the KS model the line element
ds2KS ¼ −N2dtþ ð8v2=v1Þdx2 þ v1L2

sdΩ2, related to the one used
here by ðv1; 8v2=v1Þ ¼ ðb2; a2Þ and ðv1; v2Þ ¼ ðu2=4; uvÞ. On
these variables we found that the transformation generated byLn is
δfvi ¼ _fvi − f _vi with fðtÞ ¼ tnþ1 (these are the superrotations
when n ∈ Z), while T −

n acts as δgðv1; v2Þ ¼ ð0; _gv1 − g _v1Þ with
gðtÞ ¼ tnþ1 (these are the supertranslations when n ∈ Z). The
action of T þ

n , which we have not studied in these two references,
is δgðv1; v2Þ ¼ ð1; v2=ð2v1ÞÞðv2 _gþ gð _v1v2=v1 − 2_v2ÞÞ=4 with
gðtÞ ¼ tnþ1. This is also a symmetry of the symmetry-reduced
KS action.
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the sense that they cannot be assigned an slð2;RÞ algebra
of phase space functions with the construction presented
here. This deserves more investigation. A classical change
of variable does not alter this conclusion, as our analysis is
completely covariant on the field space; however, a differ-
ent choice of internal metric (e.g., nondiagonal) might
change the results.

2. FLRW cosmology with scalar field

In the case of FLRW cosmology with curvature k, we
only have a single scale factor a, so the field space is one
dimensional and (3.33) easily applies. This also extends to
the case of a nonvanishing cosmological constant, where it
reproduces the results of [49]. On the other hand, without
any matter content the dynamics itself is trivial.
Let us therefore consider the addition of a scalar field Φ

and apply the above formalism to the two-dimensional field
space parametrized by the coordinates Φ and a. With the
line element

ds2FLRW¼−N2dt2þaðtÞ2
�

dr2

1−kr2
þ r2ðdθ2þ sin2 θdϕ2Þ

�
;

ð3:48Þ

the symmetry-reduced action reads

SFLRW ¼ V0

Z
dt

�
1

2N

�
a3 _Φ2 −

3a _a2

4πG

�
þ N

3ka
8πG

�
;

V0 ¼
Z
Σ
d3x

r2 sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p : ð3:49Þ

This reduced action is of the same form as the others treated
above in this article, the supermetric and the potential being

ds2mini¼
V0a3

N
dΦ2−

3V0a
4πGN

da2; Ũ¼−
3kaV0

8πG
: ð3:50Þ

Along the lines of the above discussion in the case of the
Bianchi models, we choose the lapse that sets the potential
to a constant NŨ ¼ U0, i.e.,

N ¼ −
8πV0

3Ga
; U0 ¼ −k

V2
0

G2
; ð3:51Þ

and find a map to the null coordinates (3.6) given by

u¼ 3

16π
a2e2κΦ=3; pu¼

4π

3κ

apaκþ3pΦ

a2
e−2κΦ=3;

v¼ 3

16π
a2e−2κΦ=3; pv ¼

4π

3κ

apaκ−3pΦ

a2
e2κΦ=3; ð3:52Þ

with κ2 ¼ 12πG. The charges and their algebra are found
by mapping A under this transformation.

IV. THREE-DIMENSIONAL FIELD
SPACE GEOMETRIES

We now briefly discuss an application of the framework
to three-dimensional field spaces, which appear, e.g., in the
Bianchi I and II models. Using the line element (D1), we
find that the reduced action for these Bianchi models takes
the form

S ¼ −
V0

G

Z
dt
�
2

N
ða _b _cþb _a _cþc _a _bÞ þ ε

N
2

a2

bc

�
; ð4:1Þ

where Bianchi I has a vanishing potential with ε ¼ 0, and
Bianchi II has ε ¼ 1. The three-dimensional field space
metric is diagonalized by the change of (field space)
coordinates

a ¼ e
ffiffi
2

p
u−2w; b ¼ evþw; c ¼ e

ffiffi
2

p
u−2v; ð4:2Þ

leading to

S¼−
V0

G

Z
dt

�
4

N
e2

ffiffi
2

p
u−v−wð _u2− _v2− _w2Þþε

N
2
e2

ffiffi
2

p
uþv−7w

�

¼−
V0

G

Z
dt

�
1

2N
g̃μν _qμ _qνþε

N
2
e2

ffiffi
2

p
uþv−7w

�
; ð4:3Þ

where we denote the new coordinates by qμ ¼ ðu; v; wÞ
even though these are not null coordinates as in the two-
dimensional case. The field space metric g̃μν is not flat and,
in the case of Bianchi II, we have, moreover, to take into
account the presence of the potential.

A. Bianchi I

In the case of the Bianchi I model, we have a free theory
with ε ¼ 0. We identify two interesting choices of lapse,
which both lead to an slð2;RÞ symmetry algebra.
A first possibility is to choose N ¼ e2

ffiffi
2

p
u−v−w, so that the

conformally rescaledmetric gμν is that of (2þ 1)-dimensional
Minkowski space. The metric then admits six exact Killing
vectors corresponding to the six Poincaré isometries. They are
given by

ξ ¼ tμ∂μ þ εμνρ∂μqνlρ; ð4:4Þ

where t ¼ ðt1; t2; t3Þ are translations and l ¼ ðl1;l2;l3Þ
are Lorentz transformations. The metric also admits an
homothetic Killing vector, corresponding to a dilatation
with

ξd ¼ u∂u þ v∂v þ w∂w; λd ¼ 2;

Cd ¼ upu þ vpv þ wpw; ð4:5Þ

which generalizes the scaling symmetry (3.7d) of the two-
dimensional models to the three-dimensional case. Starting
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with these seven conformal Killing vectors, we follow the
same procedure as above and define the quantities CðiÞ ¼
pμξ

μ
ðiÞ and VðijÞ ¼ gμνξ

μ
ðiÞξ

ν
ðjÞ. There are seven nontrivial

CðiÞ’s and ten nontrivial VðijÞ’s, given by

0
BBBBBBBBBB@

pu

pv

pw

vpw −wpv

upwþwpu

−upv−vpu

upuþ vpvþwpw

1
CCCCCCCCCCA

∈CðiÞ;

0
BBBBBBBBBBBBBBBBBB@

u

v

w

uv

uw

vw

u2 −v2

u2−w2

v2þw2

u2−v2−w2

1
CCCCCCCCCCCCCCCCCCA

∈ VðijÞ:

ð4:6Þ

Computing the triply iterated bracket of these VðijÞ’s withH

reveals that V
…

ij ¼ 0, in agreement with Eq. (C9) and the
fact that the field space geometry is flat. In order to have
phase space functions that form a closed algebra with CðiÞ,
VðijÞ, and H, we need, however, to include six new

functions produced by the time evolution _VðijÞ, as well
as another six new functions produced by V̈ðijÞ. These are
given explicitly by

0
BBBBBBBBB@

upu þ vpv

upu þ wpw

vpv þ wpw

upv − vpu

upw − wpu

vpw þ wpv

1
CCCCCCCCCA

∈ _VðijÞ;

0
BBBBBBBBB@

pupv

pupw

pvpw

p2
u − p2

v

p2
u − p2

w

p2
v þ p2

w

1
CCCCCCCCCA

∈ V̈ðijÞ: ð4:7Þ

At the end of the day, we find 7þ 10þ 1þ 6þ 6 ¼ 30
generators forming a closed algebra. There are, in particu-
lar, three generators forming an slð2;RÞ algebra. This
symmetry algebra is spanned by

Cd ¼ upu þ vpv þ wpw; Vdd ¼ u2 − v2 − w2;

H ¼ p2
u − p2

v − p2
w; ð4:8Þ

which is in agreement with the results of [43] concerning the
existence of an slð2;RÞ algebra in the case of the Bianchi I
model. We should note that the 30 phase space functions
given above are not all independent: they satisfy linear as
well as quadratic dependency relations. For instance, one
recovers Vdd as a linear combination of three other elements
ofVðijÞ. Similarly, one recoversCd as a linear combination of

three other elements of _VðijÞ, and finally, one recoversH as a
linear combination of three other elements of V̈ðijÞ. These
linear and quadratic dependency relations are obvious from
the fact that CðiÞ and VðijÞ contain the phase space variables
ðu; v; w; pu; pv; pwÞ, which can therefore be combined in
order to reproduce all the other 24 generators. The fact that
the above 30 functions have closed brackets is nonetheless a
nontrivial statement.
Alternatively, one could choose the lapse N ¼ 1

and work with the nonflat field space metric gμν ¼
e2

ffiffi
2

p
u−v−wdiagð1;−1;−1Þ. This metric admits three homo-

thetic vectors given by

ξ ¼ c1
2

ffiffiffi
2

p ∂u þ c2∂v þ c3∂w; λ ¼ c1 − c2 − c3; ð4:9Þ

where the ci’s are constants (which can evidently be chosen
so as to obtain true Killing vectors). Out of the six possible
observables VðijÞ obtained by contracting these homothetic
vectors, we find that only three are nontrivial, and fur-

thermore all proportional to V ¼ e2
ffiffi
2

p
u−v−w ¼ abc, which

is simply the 3D volume of the spatial slices. This function
forms an slð2;RÞ algebra together with H and the function
C ¼ 2

ffiffiffi
2

p
pu þ pv þ pw, which is the sum of the three

CðiÞ’s and defines the isotropic dilatation generator. As
expected, this is simply a canonical transformation of the
algebraic structure found with the previous choice of lapse.
This slð2;RÞ algebra controls the evolution of the isotropic
volume V ¼ abc, whose speed is given by the dilatation
generator C and acceleration by the Hamiltonian H.

B. Bianchi II

Finally, we turn to the subtler case of the Bianchi II
model, with both a nontrivial potential and an a priori
nonflat field space geometry. In order to treat this case, we

choose N ¼ 2=e2
ffiffi
2

p
uþv−7w so as to set the potential to a

constant. Note that here, for simplicity’s sake, we do not
include the dimensional factors in the lapse, so the value of
the Hamiltonian will be shifted simply by 1. The con-
formally rescaled metric then admits one true and two
homothetic Killing vectors with

ξ1 ¼ ∂v; λ1 ¼ 0; C1 ¼ pv; ð4:10aÞ

ξ2 ¼ ∂u; λ2 ¼ 4
ffiffiffi
2

p
; C2 ¼ pu; ð4:10bÞ

ξ3 ¼ ∂w; λ3 ¼ −8; C3 ¼ pw: ð4:10cÞ

All three VðiÞ’s are proportional to V ¼ e4
ffiffi
2

p
u−8w ¼ a4.

Together with the shifted Hamiltonian Q0 ¼ H − 1, this
leads to the charge algebra
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fCðiÞ; CðjÞg ¼ 0; fC1;Q0g ¼ 0 ¼ fC1; Vg;
fV;Q0g ¼ 8ð

ffiffiffi
2

p
C2 þ 2C3Þ; ð4:11aÞ

fC2;Q0g ¼ 4
ffiffiffi
2

p
Q0; fC3;Q0g ¼ −8Q0;

fC2; Vg ¼ −4
ffiffiffi
2

p
V; fC3; Vg ¼ 8V; ð4:11bÞ

which therefore also contains an slð2;RÞ spanned by
C ≔

ffiffiffi
2

p
C2 þ 2C3, the volume V, and Q0. This algebra

encodes the evolution of the scale factor a.

V. PERSPECTIVES

In this paper, we have studied the symmetry structure of
gravitational minisuperspaces. For this, we have considered
reductions of general relativity to one-dimensional models,
for which the variable components of a given spacetime
metric ansatz depend on a single coordinate, chosen as the
time coordinate. In that case, the Einstein-Hilbert action
reduces to mechanical systems. Imposing that the metric
ansatz satisfies the ADM vector constraint ensures that the
equations of motion resulting from the reduced action are
equivalent to the full Einstein equations for the original line
element.
We have based our study of the symmetries on the

observation that the dynamics is described by a Lagrangian
of the form (2.10). Here the variables qμ are components of
the spacetime line element, i.e., the dynamical fields of the
minisuperspace models. They depend on the time coor-
dinate t and this Lagrangian describes their evolution in
time. It depends on a metric in field space, or “supermetric,”
gμν. The isometries of this supermetric and the scaling
properties of the potential U are directly connected to
the symmetries of the mechanical model. In particular,
once we identify a homothetic vector field ξ satisfying the
conditions

£ξgμν ¼ λgμν; £ξU ¼ −λU; ð5:1Þ

then the quantity Q ¼ ξμpμ − tλH is conserved and, in
turn, it generates a symmetry of the system. However, the
noncovariance of the conformal properties of the super-
metric and the potential under (field-dependent) changes
of lapse render a systematic analysis quite involved.
This subtlety reflects the deeper fact that the conserved
charges associated with these minisuperspace symmetries
are local only with respect some particular choices of
clocks, while they might depend on the history of the
system through a nonlocal factor for a more general time
coordinate [41].
The majority of cases of interest (the black hole

interior and some Bianchi models) fall in the class of
two-dimensional field spaces, where we can always pick
coordinates in which the supermetric is conformally flat.

The advantage of this observation is twofold. On the one
hand, we can easily handle the question of the existence of
homothetic killing vectors and the related choice of lapse,
and on the other hand, it allows us to determine the
presence of charges that are quadratic in time. These are
built for flat supermetrics starting from the scalar products
between vector fields, VðijÞ ¼ ξðiÞμξ

μ
ðjÞ. Thanks to the study

of two-dimensional superspaces, we were able to identify
the existence of an eight-dimensional algebra A ¼
ðslð2;RÞ ⊕ RÞ ⨭ h2 for FLRW cosmology with a scalar
field, Kantowski-Sachs cosmologies, and the Bianchi
models III, V, and VI. Therein, the slð2;RÞ sector is a
generalization of the CVH algebra originally found in flat
cosmologies. For the Bianchi VIII and XI models, only the
CVH sector survives, while for the models IV and VII we
find that the nontrivial potential spoils the construction and
that our procedure does not produce any algebra. The
reason behind this peculiar property of the Bianchi models
IV and VII is still unclear.
We have also included a brief study of the Bianchi I and

II models, which represent two examples of three-dimen-
sional superspaces. For the Bianchi I model, we find an
algebra with 30 generators (4.6), while Bianchi II leads to a
four-dimensional algebra, still containing an slð2;RÞ
subalgebra.
Despite their apparent simplicity, the minisuperspaces

contain a rich symmetry structure. However, a clear under-
standing of the origin and physical role of this structure is
still needed. For black holes and cosmology, a subtle
relationship with the spatial boundaries and the scaling
properties of the model have already been unraveled and
studied [41,45,50], and a possible consequence on pertur-
bation theory has been recently pointed out [67]. It would
be interesting to see to what extent this feature generalizes
to the other Bianchi models.
For flat cosmologies and black holes, the infinite-

dimensional extension of the symmetry group gives a
solution generating tool that allows us to turn on an
effective cosmological constant or a scalar field
[51,53,54]. The infinite-dimensional group acts as a rescal-
ing of the coupling constants of the theory, in a manner
reminiscent of a renormalization group flow. A generali-
zation to the Bianchi models is an ongoing work and might
help us obtain a better understanding of these symmetry
structures.
Finally, the simplicity of the mechanical models allows

for a straightforward quantization, where the conserved
charges naturally provide a (full) set of Dirac observables
[41,52], that can be straightforwardly quantized by means
of the representation theory of the symmetry group. The
requirement of protection of the symmetry gives also a
valuable tool to discriminate between different effective
dynamics [43,44,50,52]. It also opens the door toward a
possible emerging description of spacetime itself, out of the
symmetry group [68].
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In the end, a deeper comprehension of the origin of the
minisuperspace symmetries could enlighten many aspects
of the holographic properties of general relativity and
hopefully help us to understand the proper notion of
observables for a quantum theory of gravity.

APPENDIX A: ADM APPROACH TO THE
CVH ALGEBRA

We have explained in the core of the article how
homogeneous minisuperspace models lead to mechanical
Lagrangians of the form (2.10) and used the field space
geometry of these Lagrangians to characterize the presence
of a CVH algebra and possible extensions thereof. A
natural question is therefore that of the relationship
between this approach and the standard ADM field theory
approach, in which one deals directly with the geometry of
the 3þ 1 foliation instead of considering the geometry of
an auxiliary field space. The spacetime ADM approach
enables us to show that a CVH algebra always exists if the
three-dimensional Ricci scalar of the spatial slice is
vanishing, regardless of the value of the cosmological
constant. Here we recall this calculation.
Let us denote the spatial indices by α; β; γ;…. We

consider the standard ADM approach where the canonical
variables are the spatial metric qαβ and its momentum
pαβ ¼ ffiffiffi

q
p ðKqαβ − KαβÞ. We denote q ¼ detðqαβÞ. The

smeared Hamiltonian constraint is

H ¼
Z
Σ
d3xNH;

H ¼ −
ffiffiffi
q

p ðRð3Þ − 2ΛÞ − 1ffiffiffi
q

p Qαβγδpαβpγδ; ðA1Þ

where Rð3Þ is the Ricci scalar of the three-dimensional
slice and

Qαβγδ ≔
1

2
qαβqγδ − qαγqβδ: ðA2Þ

From this expression of the ADM Hamiltonian, it is
immediate to identify which term gets mapped to the terms
of the field space Hamiltonian derived from the Lagrangian
(2.10). Under the symmetry reduction to homogeneous
minisuperspaces, we have indeed that

H ¼
Z
Σ
d3xNH ⇒

sym: red:
V0N

�
1

2
g̃μνpμpν þ Ũ

�
; ðA3Þ

so Rð3Þ − 2Λ in the ADM Hamiltonian becomes the
potential Ũ of the superspace Hamiltonian, while the
DeWitt supermetric Qαβγδ becomes the field space metric
g̃μν. It should be noted, however, that this identification,
although unambiguous, cannot be made much more

explicit. It is really just an identification. This is the reason
for which exact calculations on the side of ADM or of the
superspace formulation cannot easily be compared to one
another.
An example illustrating this is the proof that the CVH

algebra always exists when Rð3Þ ¼ 0. This proof is possible
in the ADM language, but not in the superspace formu-
lation. In order to see this, we assume that the vector
constraint has been solved by the requirement of homo-
geneity, although here we keep working in a mixed
framework where we keep all the spatial integrals explicit
[this is because there might be a spatial dependency in the
frames eiαðxÞ introduced in (2.1), although these are not
the dynamical variables of the homogeneous theory]. The
Poisson bracket is fqαβðxÞ; pγδðyÞg ¼ δγðαδ

δ
βÞδ

dðx; yÞ. In

order to obtain the CVH algebra and compute Poisson
brackets, we define the smeared Hamiltonian and a volume
variable by

H ¼
Z
Σ
d3xNH; V ¼

Z
Σ
d3xq; ðA4Þ

and we choose the lapse to be N ¼ 1=
ffiffiffi
q

p
. With this choice

of lapse, it is then immediate to compute

C ≔ fV;Hg ¼ −
1

4

Z
Σ
d3xpαβqαβ ðA5Þ

and to show that we have the closed brackets

fV;Cg ¼ −18V; fC;Hg ¼ −3H þ 6Λ
Z
Σ
d3x; ðA6Þ

where in the last bracket the integral (over a finite region
with fiducial cutoffs) produces a numerical factor L0 that
plays the role of shift in the Hamiltonian when defin-
ing Q0 ¼ H − L0.
As announced, this simple calculation shows that it is

always possible to chose the lapse so as to obtain a closed
algebra between ðC;V;Q0Þ when Rð3Þ ¼ 0. However, this
calculation carried out in the ADM formulation cannot be
reproduced in the field space formulation, since there it is
not possible to write an analog of q ¼ detðqαβÞ. Of course,
for any minisuperspace model for which Rð3Þ ¼ 0, the field
space calculation will also lead to an slð2;RÞ algebra
formed by ðC;V;Q0Þ, and we are guaranteed by the above
ADM calculation that this will always work, but this has to
be computed on a case-by-case basis.

APPENDIX B: TRIAD DECOMPOSITION

The viewpoint we have taken in Sec. II A is to define
a minisuperspace as a manifold sliced in such a way
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that the line element separates into a temporal (i.e.,
orthogonal to the slice) and spatial (i.e., tangential to
the slice) dependence as in (2.1). This implies that the
trace of the extrinsic curvature and the ADM kinetic term
depend only on the internal metric γij, up to the deter-
minant of the spatial triad. This latter, once integrated out,
gives the volume V0 of the fiducial cell. More precisely,
we have

Kαβ ¼
1

2N
_qαβ

⇒
ffiffiffi
q

p ðK2 − KαβKαβÞ ¼
jej ffiffiffi

γ
p

4N2
ððγij _γijÞ2 þ _γij _γ

ijÞ; ðB1Þ

where e ≔ detðeiμÞ and γ ≔ detðγijÞ.
In order to analyze the three-dimensional curvature, it

turns out to be useful to introduce the spin connection

ωij
α ≔eβi∂½αe

j
β�−eβj∂½αeiβ�−eδieγjekα∂½δeγ�k

¼γliðeβl∂½μejβ�Þ−γljðeβl∂½μeiβ�Þ−γlkγ
niγmjðeδneγmelμ∂½δekγ�Þ

¼γl½iðeβl∂μej�β Þ−γl½iðeβl∂βej�μ Þ−γlkγ
n½iγj�mðeδneγmelμ∂δekγÞ:

ðB2Þ
One can see that this expression does not simply split into
the product of quantities depending separately on the triad
and on the internal metric. The same happens for the
curvature, which is given by

Fij
αβ ≔ 2ð∂½αωij

β� þ γklω
il
½αω

kj
β� Þ;

Rð3Þ ¼ 1

jej ϵ
αβδϵijkekδF

ij
αβ: ðB3Þ

The vector constraint (2.3) depends explicitly on the spin
connection and reads

Hα ¼ 2DβðKqαβ − KαβÞ

¼ 1

N
Dβðγkl _γkleαi eβj γij þ eαi e

β
j _γ

ijÞ

¼ 1

N
Dβðeαi eβj Þðγkl _γklγij þ _γijÞ

¼ −
πij

V0
ffiffiffi
γ

p ð∂βðeαi eβj Þ þ ðeαkeσlωkl
β þ eαk∂βe

k
σÞeσi eβj þ ðeβkeσlωkl

β þ eβk∂βe
k
σÞeαi eσj Þ

¼ −
πij

V0
ffiffiffi
γ

p ð∂βðeαi eβj Þ þ eαkγile
β
jω

kl
β − ∂βeαi e

β
j þ eαi γlje

β
kω

kl
β − ∂βe

β
j e

α
i Þ; ðB4Þ

where we have introduced the momenta

πij ≔
δLADM

δ_γij
¼ −V0

ffiffiffi
γ

p
N

ððγkl _γklÞγij þ _γijÞ; ðB5Þ

which are the conjugate momenta to the internal metric in
the ADM form of the action (2.4). The vanishing of the
vector constraint is therefore equivalent to the requirement
that πji e

ðα
k e

βÞ
j ω

ik
β ¼ 0.

APPENDIX C: PROPERTIES OF HOMOTHETIC
KILLING VECTORS

In the main text, we have used some properties of the
conformal Killing vectors, such as the fact that they are
solutions to the geodesic deviation equation. We give here a
proof of this statement as well as other properties of the
conformal Killing vectors.
Given an invertible metric gμν, we recall that the

homothetic Killing vectors are defined by the property

∇μξν þ∇νξμ ≔ 2∇ðμξνÞ ¼ λgμν; λ ¼ const: ðC1Þ

We then have the following result:
Theorem 1.—Any homothetic killing vector ξ is a

solution of the geodesic deviation equation [69]

pμpν∇μ∇νξρ ¼ −Rρμσνpμpνξσ; ðC2Þ

where pμ is the tangent vector to a geodesic (i.e., a curve
describing a solution of the equations of motion). This
vector satisfies the property pμ∇μpν ¼ 0.
Proof.—We start from the definition of the conformal

Killing vectors to get

pμpν∇μ∇νξρ ¼ −pμpν∇μ∇ρξν þ λpμpν∇μgνρ

¼ −pμpνRνσμρξ
σ þ pμpν∇ρ∇μξν; ðC3Þ

where the second line is obtained from the definition of the
Riemann tensor as a commutator of covariant derivatives.
The last term in this expression is now vanishing when ξ is
conformal with constant λ, since it gives
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pμpν∇ρ∇μξν ¼ pμpν∇ρ∇ðμξνÞ ¼ λpμpν∇ρgμν ¼ 0: ðC4Þ

This therefore proves the above statement using the
following properties of the Riemann tensor:

pμpν∇μ∇νξρ ¼ −pμpνRνσμρξ
σ ¼ −Rρμσνpμpνξσ: ðC5Þ

▪
We now give a few properties of the homothetic Killing

vectors and of the phase space functions CðiÞ and VðijÞ

constructed out of them. First, they form an algebra under
the Lie bracket

½ξðiÞ; ξðjÞ� ¼ cijkξðkÞ;

½ξðiÞ; ξðjÞ�μ ≔ ξνðiÞ∇νξ
μ
ðjÞ − ξνðjÞ∇νξ

μ
ðiÞ; ðC6Þ

and the commutator of two vectors is actually a Killing
vector, as one can check explicitly by computing

L½i;j�gμν ¼ ∇μðξσðiÞ∇σξðjÞν − ξσðjÞ∇σξðiÞνÞ þ ðμ ↔ νÞ
¼ ∇μξ

σ
ðiÞ∇σξðjÞν þ ξσðiÞ∇μ∇σξðjÞν −∇μξ

σ
ðjÞ∇σξðiÞν þ ξσðjÞ∇μ∇σξðiÞν þ ðμ ↔ νÞ

¼ ∇μξðiÞνλðjÞ −∇μξ
σ
ðiÞ∇νξðjÞσ þ ξσðiÞ∇μ∇σξðjÞν −∇μξðjÞνλðiÞ þ∇μξ

σ
ðjÞ∇νξðiÞσ þ ξσðjÞ∇μ∇σξðiÞν þ ðμ ↔ νÞ

¼ gμνλðiÞλðjÞ þ ξσðiÞRνρμσξ
ρ
ðjÞ − ξσðiÞ∇σ∇μξðjÞν − gμνλðjÞλðiÞ − ξσðjÞRνρμσξ

ρ
ðiÞ þ ξσðjÞ∇σ∇μξðiÞν þ ðμ ↔ νÞ

¼ ξρðiÞξ
σ
ðjÞðRνμσρ þ RμνσρÞ − ξσðiÞ∇σðgμνÞλðjÞ þ ξσðjÞ∇σðgμνÞλðiÞ

¼ 0: ðC7Þ

Here we have used (C1) when going from the second to the
third line and eliminated the antisymmetric terms in μ, ν.
We have then used (C1) once again, as well as the definition
of the Riemann tensor, and finally concluded by using the
antisymmetry of the Riemann tensor. This result implies
that the structure constants of the algebra of homothetic
Killing vectors satisfy

cijkλðkÞ ¼ 0: ðC8Þ

Let us now consider the phase space functions VðijÞ ¼
gμνξ

μ
ðiÞξ

ν
ðjÞ and CðiÞ ¼ pμξ

μ
ðiÞ. First, we have that the third

time derivative of the squared vectors gives

d3

dt3
VðijÞ ¼pμpνpρ∇μ∇ν∇ρðξσðiÞξðjÞσÞ

¼ 2pμpνpρ∇μðð∇νξ
σ
ðiÞÞð∇ρξðjÞσÞ−ξσðiÞRσνκρξ

κ
ðjÞÞÞ

¼−2pμpνpρð2ð∇ρξ
σ
ðjÞÞRσμκνξ

κ
ðiÞ

þ2ð∇ρξ
σ
ðiÞÞRσμκνξ

κ
ðjÞ þξσðiÞξ

κ
ðjÞð∇ρRσμκνÞÞ: ðC9Þ

This shows, in particular, that V
…

ðijÞ ¼ 0 whenever the
Riemann tensor vanishes (this is of course sufficient, but
not necessary), as in the case of the flat field space
geometry discussed in Sec. III.
We are interested in the condition for which the functions

VðijÞ and CðiÞ form a closed algebra with the Hamiltonian
H. In the free case where H ¼ pμpμ=2, we find

fVðijÞ;Hg¼pμ
∂μðξνðiÞξðjÞνÞ

¼pμξνðiÞ∇μξðjÞνþpμξνðjÞ∇μξðiÞν

¼λðiÞCðjÞþλðjÞCðiÞ−pμðξνðiÞ∇νξðjÞμþξνðjÞ∇νξðiÞμÞ
ðC10Þ

and

fVðijÞ; CðkÞg ¼ ξμðkÞ∂μðξνðiÞξðjÞνÞ
¼ ξμðkÞξ

ν
ðiÞ∇μξðjÞν þ ξμðkÞξ

ν
ðjÞ∇μξðiÞν

¼ λðiÞVðjkÞ þ λðjÞVðikÞ
− ξμðkÞðξνðiÞ∇νξðjÞμ þ ξνðjÞ∇νξðiÞμÞ; ðC11Þ

which closes if and only if

ξνðiÞ∇νξðjÞμ þ ξνðjÞ∇νξðiÞμ ¼
X
k

αkξðkÞμ; ðC12Þ

for some combination of the vectors on the rhs.

APPENDIX D: BIANCHI CLASSIFICATION

This appendix gathers all the properties of the Bianchi
models that are needed for the study of the phase space
symmetry algebra. First, we give a list of the Bianchi line
elements that satisfy the vector constraint (2.3). These are7

7To this list we should add the model VIh, which has the same
symmetry properties as VI0 but whose treatment involves some
lengthy expressions. It is reported in [41].

DYNAMICAL SYMMETRIES OF HOMOGENEOUS … PHYS. REV. D 106, 064013 (2022)

064013-19



ðIÞ ds2 ¼ −N2dt2 þ a2dx2 þ b2dy2 þ c2dz2; ðD1aÞ

ðIIÞ ds2 ¼ −N2dt2 þ a2ðdx − zdyÞ2 þ b2dy2 þ c2dz2;

ðD1bÞ

ðIIIÞ ds2 ¼ −N2dt2 þ a2dx2 þ b2L2
sðdy2 þ sinh2 ydϕ2Þ;

ðD1cÞ

ðIVÞ ds2 ¼ −N2dt2 þ a2L2
sdx2 þ

a4

b2
e−2xdy2

þ b2e−2xðdz − xdyÞ2; ðD1dÞ

ðVÞ ds2 ¼ −N2dt2 þ a2L2
sdx2 þ

a4

b2
e−2xdy2 þ b2e−2xdz2;

ðD1eÞ

ðVI0Þ ds2 ¼ −N2dt2 þ a2L2
sdx2 þ b2ðe−2xdy2 þ e2xdz2Þ;

ðD1fÞ

ðVIIhÞ ds2 ¼ −N2dt2 þ a2L2
sdx2

þ b2e−2hxðcos xdz − sin xdyÞ2

þ a4

b2
e−2hxðcos xdyþ sin xdzÞ2; ðD1gÞ

ðVIIIÞ ds2 ¼ −N2dt2 þ a2ðdxþ Ls cosh ydϕÞ2
þ L2

sb2ðdy2 þ sinh ydϕÞ2; ðD1hÞ

ðIXÞ ds2 ¼ −N2dt2 þ a2ðdxþ Ls cos θdϕÞ2
þ L2

sb2ðdθ2 þ sin θdϕÞ2: ðD1iÞ

The length scale Ls has been introduced in order to
have dimensionless fields. In terms of the decomposition
(2.1), the fundamental triads corresponding to these line
elements are

e1 ¼ e2 ¼ e3 ¼ ðD2aÞ

ðIÞ dx dy dz ðD2bÞ

ðIIÞ dx − zdy dy dz ðD2cÞ

ðIIIÞ dx Lsdy Ls sinh ydϕ ðD2dÞ

ðIVÞ Lsdx e−xdy e−xðdz − xdyÞ ðD2eÞ

ðVÞ Lsdx e−xdy e−xdz ðD2fÞ

ðVI0Þ Lsdx e−xdy exdz ðD2gÞ

ðVIIhÞ Lsdx e−hxðcos xdyþ sin xdzÞ e−hxðcos xdz − sin xdyÞ ðD2hÞ

ðVIIIÞ dxþ Ls cosh ydz Lsdy Ls sinh ydϕ ðD2iÞ

ðIXÞ dxþ Ls cos ydz Lsdθ Ls sin θdϕ ðD2jÞ

One should note that for each triad the line elements given above are not the only solutions to the vector constraint. We have
focused here on the diagonal case (i.e., when the internal metric is diagonal); a more involved analysis is needed if we want
to account for all the possible internal degrees of freedom [70]. The finite volumes of the fiducial cells are V0 ¼ 1

16π

R
Σ jej

and given by

ðI; IIÞ V0 ¼
1

16π
LxLyLz x ∈ ½0; Lx�; y ∈ ½0; Ly�; z ∈ ½0; Lz�; ðD3aÞ

ðIII;VIIIÞ V0 ¼
1

4
LxL2

ssinh2
�
y0
2

�
x ∈ ½0; Lx�; y ∈ ½0; y0�;ϕ ∈ ½0; 2π�; ðD3bÞ

ðIV;VÞ V0 ¼
1

16π
LsLyLze−x0 sinh x0 x ∈ ½0; x0�; y ∈ ½0; Ly�; z ∈ ½0; Lz�; ðD3cÞ

GEILLER, LIVINE, and SARTINI PHYS. REV. D 106, 064013 (2022)

064013-20



ðVI0Þ V0 ¼
1

16π
LsLyLzx0 x ∈ ½0; x0�; y ∈ ½0; Ly�; z ∈ ½0; Lz�; ðD3dÞ

ðVIIhÞ V0 ¼
1

32πh
LsLyLzð1 − e−2hx0Þ x ∈ ½0; x0�; y ∈ ½0; Ly�; z ∈ ½0; Lz�; ðD3eÞ

ðIXÞ V0 ¼
1

4
LxL2

s x ∈ ½0; L0�; θ ∈ ½0; π�;ϕ ∈ ½0; 2π�: ðD3fÞ

The models can be divided into three categories depend-
ing on the internal metrics, which are

ðI; IIÞ γij ¼ diagða2; b2; c2Þ; ðD4aÞ

ðIII;VI0;VIII; IXÞ γij ¼ diagða2; b2; b2Þ; ðD4bÞ

ðIV; V; VIIÞ γij ¼ diag

�
a2;

a4

b2
; b2

�
: ðD4cÞ

We see that for the Bianchi I and II models the field space is
three dimensional, while for the other Bianchi models it is
only two dimensional.
To the second category (D4b) we can also add the

Kantowski-Sachs cosmology, for which the line element,
the triad, and the fiducial volume are given by

ds2KS ¼ −N2dt2 þ a2dx2 þ b2L2
sðdθ2 þ sin2θdϕ2Þ; ðD5aÞ

e1 ¼ dx; e2 ¼ Lsdθ; e3 ¼ Ls sin θdϕ; ðD5bÞ

V0 ¼
1

4
LxL2

s ; x∈ ½0;Lx�;θ ∈ ½0;π�;ϕ∈ ½0;2π�: ðD5cÞ

The KS model does not belong to the Bianchi classification
because it does not admit three independent spacelike
Killing vectors forming a closed Lie algebra. Apart from
this difference, it fits entirely in the setup of our discussion.
We now give the expression, for each of the above

models, of the potential coming from the minisuperspace
reduction of the three-dimensional Ricci scalar. This is

1

16πG

Z
Σ
d3xjej ffiffiffi

γ
p

Rð3Þ ¼ −
V0

G
NŨmodel; ðD6Þ

with

ŨKS ¼ −
2a
L2
s
¼ −

31=3

L2
sσ

4=3

ũ

ṽ1=3
; ðD7Þ

ŨI ¼ 0; ðD8Þ

ŨII ¼
a3

2bc
; ðD9Þ

ŨIII ¼
2a
L2
s
¼ 31=3

L2
sσ

4=3

ũ

ṽ1=3
; ðD10Þ

ŨIV¼
6a
L2
0

þ b4

2L2
0a

3

¼ 1

4L2
0

ð3ũṽÞ1=3ð12þ16
ffiffi
3

p
811=

ffiffi
3

p
ðṽσ2=ũÞ4=

ffiffi
3

p
Þ; ðD11Þ

ŨV ¼ 6a
L2
0

¼ 3ð3ũ ṽÞ1=3
L2
0

; ðD12Þ

ŨVI0 ¼
2b2

L2
0a

¼ ð3σ8ṽ5Þ1=3
ũL2

0

; ðD13Þ

ŨVIIh ¼
a8 þ 2ð6h2 − 1Þa4b4 þ b8

2L2
0a

3b4

¼ ð3ũ ṽÞ1=3
2L2

0

ð6h2 − 1Þ þ ð3ũ ṽÞ1=3
4L2

0

× ð16−
ffiffi
3

p
ð3ṽσ2=ũÞ−4=

ffiffi
3

p
þ 16

ffiffi
3

p
ð3ṽσ2=ũÞ4=

ffiffi
3

p
Þ;

ðD14Þ

ŨVIII ¼
a3 þ 4ab2

2L2
sb2

¼ 31=3ðũ3 þ 4ũṽ2σ4Þ
4L2

s ṽ7=3σ16=3
; ðD15Þ

ŨIX ¼ a3 − 4ab2

2L2
sb2

¼ 31=3ðũ3 − 4ũṽ2σ4Þ
4L2

s ṽ7=3σ16=3
; ðD16Þ

where we have used the map (3.37) (which is different for
the two families of internal metrics) to also express these
quantities in the conformal null coordinates.
We see that the potentials of the Bianchi III and KS

models differ by the relative sign between potential and the
kinetic terms, i.e., of the “mass of the particle moving on
the field space.” The potential in these two cases and in the
Bianchi Vand VI models have a single term, so they can be
removed with a change of lapse, while keeping the field
space metric flat. This can be achieved with the choice of
lapse and coordinates
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ðIII;KSÞ N ¼ V0

2Ga
;

�u¼ −2a2b; pu ¼ − pa
4ab ;

v¼ 2b; pv ¼ 2bpbþapa
4b ;

ðD17Þ

ðVÞ N ¼ V0

6Ga
;

� u ¼ 3a2þ
2ffiffi
3

p
b−

2ffiffi
3

p
; pu ¼ ðabÞ−2=

ffiffi
3

p
apaþð1− ffiffi

3
p Þbpb

12a2 ;

v ¼ 3a2−
2ffiffi
3

p
b

2ffiffi
3

p
; pv ¼ ðabÞ2=

ffiffi
3

p
apaþð1þ ffiffi

3
p Þbpb

12a2 ;
ðD18Þ

ðVIÞ N ¼ V0a
2Gb2

;

� u ¼ 2 log a2b; pu ¼ apa
2
;

v ¼ b4; pv ¼ 2bpb−apa
8b4 :

ðD19Þ

We can then use these changes of coordinates in the
expression of the generators to obtain the algebra A in
terms of the scale factors and their momenta.
For the other models, it is not possible to obtain a flat

field space geometry by choosing the lapse to be the inverse
of the potential. However, looking at the potentials for the
models VIII and IX, we see that the two monomials are the
same and only differ by a sign. Furthermore, they satisfy
the condition (3.47). In these two cases, we have two
possible choices of lapse that lead to the slð2;RÞ sub-
algebra of A. The first choice of lapse and coordinates is

N ¼ V0

2Ga
; u ¼ 2a2b; v ¼ 2b; ðD20Þ

and it leads to the charges

Cd ¼
bbp
2

; V3 ¼ 8a2b2;

Q0 ¼
paðapa − 2bpbÞ

16ab2
þ V0a2

4L2
sG2b2

: ðD21Þ

The second choice of lapse and coordinates is

N ¼ −
2V0b3

Ga3
; u ¼ a4b2

2
; v ¼ 1

2b2
; ðD22Þ

and it leads to the charges

Cd ¼
bbp
2

; V3 ¼
a4

2
;

Q0 ¼ −
paðapa − 2bpbÞ

4a3
∓ 4V0b2

L2
sG2a2

; ðD23Þ

where the (−) sign is for Bianchi VIII and the (þ) sign is for
Bianchi IX. Unfortunately (3.47) is not satisfied for the
Bianchi models IV and VII, meaning that they do not
exhibit the slð2;RÞ symmetry.
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