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Two-phase transition branches of the Euler-Heisenberg (EH) anti–de Sitter (AdS) black hole (BH) were
derived from its phase transition critical behavior by Magos et al.. [Phys. Rev. D 102, 084011 (2020)]. We
found that the phase transition is unstable. Considering the high-order quantum electrodynamics (QED)
correction, we rederive the EHAdS BH solution and investigate its critical thermodynamic quantities. It is
found that the corrected EHAdS BH has only one stable phase transition branch, and its critical exponents
are equivalent to that of the van der Waals system. From the microscopic point of view, we also derive its
normalized scalar curvature based on the Ruppeiner geometry. Different from two concave surfaces of the
scalar curvature without considering the high-order QED correction, we show that the corrected Ruppeiner
geometry has only one concave surface. Our results indicate that the phase transition instability derived by
Magos et al. is due to without considering the high-order QED correction.

DOI: 10.1103/PhysRevD.106.064011

I. INTRODUCTION

Black hole (BH) thermodynamics is considered as a
bridge connecting general relativity, quantum mechanics,
and classical thermodynamics. Regarding the BH in the
anti-de Sitter (AdS) spacetime as a thermodynamic system,
Hawking and Page found that its thermodynamic properties
are similar to the classical thermodynamic system [1].
Taking the negative cosmological constant as the thermo-
dynamic pressure, Dolan et al. developed the AdS BH
thermodynamics to the extended phase space [2,3]. By
investigating the P − υ critical behavior of the charged AdS
BH in the extended phase space, Kubiznak et al. found that
the critical exponents of the charged AdS BH are precisely
the same as the van der Waals (vdW) system [4]. Johnson
proposed that the charged AdS BH can be modeled as a
heat engine as the vdW fluid, and its efficiency can be
calculated similarly [5]. Aydıner et al. investigated the
Joule-Thomson expansion of the charged AdS BH and
obtained the phase transition heating-cooling regions in the

T–P plane [6]. Thermodynamics properties of various
charged AdS BHs in the extended phase space are also
extensively discussed [7–16].
Based on Dirac’s positron theory, Euler and Heisenberg

proposed a new approach to describe the electromagnetic
field. They derived the effective Lagrangian electromagnetic
field density by revising Maxwell’s equations in the vacuum
[17]. This new effective Lagrangian density has the high-
order terms of the nonlinear electromagnetic (NEM) field
[18]. Within the quantum electrodynamics (QED) frame-
work, Schwinger reformulated this nonperturbative one-loop
effective Lagrangian density, which carries the main char-
acteristics of the Euler-Heisenberg (EH) NEM field [19]. If
the electric field strength is higher than the critical value
(m2c3=eℏ), theQED effect leads to the emergence of particle
pairs in the vacuum [20]. Coupling the one-loop effective
Lagrangian density with the Einstein field equation, Yajima
et al. obtained the EHBH solution [21]. Kruglov provided an
approximation approach for the EH NEM field within the
high-order QED framework, and gave the corresponding
static spherically symmetric BH solution [22]. By utilizing
the Newman-Janis algorithm and its Azreg-Aïnou formu-
lation, Bretón et al. obtained the rotating BH solution in the
Einstein EH theory and analyzed its event horizons, ergo-
regions, and test particle circular orbits [23]. Subsequently,
they investigated the birefringence and the quasinormal
modes of the spherically symmetric EH BH. The effect of
the EH NEM field suppresses the quasinormal modes,
making the charged BH behave more Schwarzschild-
like [24].
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Magos et al. generalized the EH BH solution to the AdS
spacetime by considering the negative cosmological con-
stant [25]. They presented that the EHAdS BH is charac-
terized by the BH massM, electric charge Q, cosmological
constant Λ, and EH parameter a. By deriving the equation
of the state and the critical behavior, they found that the
critical volume shows two-phase transition branches of the
EHAdS BH. The second phase transition branch is similar
to the vdW system, and the first phase transition branch
depends on the EH NEM field, leading to the phase
transition split in a small BH region. However, some
AdS BHs have only one phase transition branch and
represent similar properties to the vdW system [7,26].
Note that these BH solutions are from the Einstein field
equation coupling the NEM fields. We suspect whether the
first phase transition branch of the EHAdS BH results from
the effect of the high-order QED.
In this analysis, we derive the EHAdS BH correction

solution by considering the high-order QED correction and
investigate the phase transition of this scenario. We also
analyze the critical behavior and equal area law in the cases
of the EHAdS BH and the corrected EHAdS BH. It is found
that this disturbance correction as a thermodynamic stable
probe can be used to reveal the physical properties of the
EHAdS BH. The paper is organized as follows: In Sec. II
we analyze the critical behavior and equal area law in the
framework of the EHAdS BH thermodynamics. Our
solution of the EHAdS BH with high-order QED correction
and investigation of thermodynamic behaviors are pre-
sented in Sec. III. Our conclusions is presented in Sec. IV.

II. THE EHADS BH AND THERMODYNAMIC
CHARACTERISTICS

The four-dimensional spherically symmetric line
element of the EHAdS BH is given by [25]

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2; ð1Þ

where the metric potential fðrÞ is

fðrÞ ¼ 1 −
2M
r

þQ2

r2
−
aQ4

20r6
−
Λr2

3
; ð2Þ

in whichM andQ are the mass parameter and charge of the
BH, a is the EH parameter, and Λ is defined with the
thermodynamic pressure P, i.e., Λ≡ −8πP [2,3]. The BH
horizon rþ is derived from the largest root of the equation
fðrþÞ ¼ 0. Hence, the mass M can be expressed with the
horizon radius rþ,

M ¼ rþ
2
þ Q2

2rþ
−

aQ4

40r5þ
−
Λr3þ
6

: ð3Þ

The Hawking temperature is given as

T ¼ 1

4πrþ

�
1 −

Q2

r2þ
þ aQ4

4r6þ
− Λr2þ

�
: ð4Þ

Utilizing Λ≡ −8πP, the state equation of the EHAdS BH
from the above equation can be expressed as

P ¼ T
2rþ

−
1

8πr2þ
þ Q2

8πr4þ
−

aQ4

32πr8þ
: ð5Þ

Based on Eq. (5) and the critical conditions, the critical
thermodynamic quantities of the EHAdS BH are obtained,
i.e.,

Tc ¼
1

2πrc

�
1 −

2Q2

r2c
þ aQ4

r6c

�
; ð6Þ

Pc ¼
1

8πr2c

�
1 −

3Q2

r2c
þ 7aQ4

4r6c

�
; ð7Þ

r2c ¼ 2Q2

�
2 cos

�
1

3
arccos

�
1 −

7a
16Q2

�
−
2πk
3

�
þ 1

�
;

k ¼ 0; 1; 2; ð8Þ

In the case of k ¼ 2, r2c is negative. In the cases of k ¼ 0
and k ¼ 1, they represent the two-phase transition branches
respectively. Note that the above critical thermodynamic
quantities are derived from the condition of the EH
parameter a satisfying 0 ≤ a ≤ 32Q2=7 [25]. Utilizing
the critical conditions and state equation, one can obtain

gðrþÞ≡ r6þ − 6Q2r4þ þ 7aQ4 ¼ 0: ð9Þ

By setting EH parameter a ¼ 1 and BH charge Q ¼ 0.6,
gðrþÞ as a function of rþ is plotted in Fig. 1. gðrþÞ function
curve intersects the horizontal axis twice (blue point and
red point), where the blue point corresponds to the “first
critical point” (k ¼ 1) and red point corresponds to the
“second critical point” (k ¼ 0). It indicates that there are

FIG. 1. gðrþÞ as a function of rþ, where the EH parameter is set
as a ¼ 1 and BH charge is taken as Q ¼ 0.6.
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two-phase transition branches for the usual EHAdS BH
situation.
The universal constant is defined as ε≡ Pcυc=Tc, where

υc ¼ 2rc is the specific volume [4]. Thus, we have

ε ¼ 21c
16þ 32c

; ð10Þ

where c≡ 1–2Q2=r2c . If − 1=2 < c < 0, we have ε < 0.
Figure 2 shows c as a function of a andQ. One can observe
that c ranges in ð−∞; 1=2Þ for the ε1, and c ranges in
ð1=2; 3=8Þ for the ε2, where ε1=2 corresponds to the
universal constant of the first/second critical point.
Hence, the universal constant at the first critical point
could be negative if 8Q2=7 < a < 16Q2=7, which corre-
sponds to unstable configurations of a and Q. It is also
found that ε2 is close to εvdW .
The heat capacity of the EHAdS BH is derived from

CP ¼ T
�
∂S
∂T

�
P
;

¼ 2πr2þðaQ4 − 4Q2r4þ þ 4r6þ þ 32Pπr8þÞ
−7aQ4 þ 12Q2r4þ − 4r6þ þ 32Pπr8þ

: ð11Þ

Figure 3 illustrates CP as a function of rþ. We can observe
that CP curves are discontinuity. A sign change for both
critical points in the CP diagram, showing the thermody-
namic instability of the EHAdS BH.
The P − V and T − S type Maxwell’s equal area law can

be given by [15]

PiðV2 − V1Þ ¼
Z

V2

V1

PdV; ð12Þ

T iðS2 − S1Þ ¼
Z

S2

S1

TdS; ð13Þ

where Pi (or T i) represents the pressure (or temperature) of
the isobar (or isotherm), V is the thermodynamic volume, S

is the entropy, and the subscript 1 (or 2) stands for the
start (or end) phase of isobaric (or isothermal) process.
According to Eqs. (5) and (12), we have

Pi ¼
Tpt

2r1
−

1

8πr21
þ Q2

8πr41
−

aQ4

32πr81
; ð14Þ

Pi ¼
Tpt

2r2
−

1

8πr22
þ Q2

8πr42
−

aQ4

32πr82
; ð15Þ

2Pi ¼
3ðr22xð2πr2Tptð1þ xÞ − 1Þ þQ2Þ

4πr42xð1þ xþ x2Þ

−
3aQ4ð1þ xþ x2 þ x3 þ x4Þ

80πr82x
5ð1þ xþ x2Þ : ð16Þ

Using Eqs. (14)–(16), we have

FIG. 2. Left panel: c as a function of a for the EHAdS BH with Q ¼ 0.6. Right panel: c as a function of Q for the EHAdS BH with
a ¼ 1. The red curve is for k ¼ 0, the blue curve is for k ¼ 1, and the green curve is for εvdW ¼ 3=8.

FIG. 3. CP as a function of rþ for the EHAdS BH. The red
curves are for k ¼ 0, the blue curves are for k ¼ 1. The blue point
and red point represent the first critical point and the second
critical point, respectively. We take EH parameter a ¼ 1 and BH
charge Q ¼ 0.6.
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r22 ¼
1þ 4xþ x2

6x2
A; ð17Þ

where x≡ r1=r2 (0<x< 1), A≡2Q2½1þ2 cosðarccosð1−
ð27aBÞ=ð40Q2ÞÞ=3−2kπ=3Þ�, and B≡ ð5þ20xþ29x2þ
32x3þ29x4þ20x5þ5x6Þ=ð1þ4xþx2Þ3. The phase tran-
sition temperature Tpt can be derived as

Tpt ¼
ð1þ xÞðr22x2 −Q2ð1þ x2ÞÞ

4πr32x
3

þ ð1þ xÞaQ4ð1þ xÞð1þ x2Þð1þ x4Þ
16πr72x

7
: ð18Þ

We also construct the T − S type equal area law by utilizing
Eqs. (4) and (13). The phase transition pressure Ppt can be
written as

Ppt ¼
r22x

2 −Q2ð1þ xþ x2Þ
8πr42x

3

þ aQ4ð1þ xþ x2 þ x3 þ x4 þ x5 þ x6Þ
32πr82x

7
: ð19Þ

We define a parameter χZ ≡ Z−Zc1
Zc0−Zc1

(0 < χZ < 1) to mea-
sure the temperature (pressure) of different phase transition
branches, where Z is the phase transition temperature Tpt

(pressure Ppt). The subscripts c0 and c1 denote the k value
of the two critical points.
Using Eqs. (17)–(19), the isobaric (isothermal) curves of

the EHAdS BH on the P − V (T − S) plane are shown in
Fig. 4. The length of the isothermal (isobaric) horizontal
segment increases gradually with the temperature (pres-
sure) increase for the first phase transition branch, while it
is different from the second phase transition branch.
Furthermore, instability may occur before (the red dash
curves bulge) or after (the blue dash curves bulge) phase
transition. Figure 5 shows reentry the phase transition
region. Only one stable phase transition is remained.

The χP and χT are in the ranges of (0.65,0.85) and
(0.51,0.79), respectively.

III. THE EHAdS BH WITH HIGH-ORDER QED
CORRECTION AND THERMODYNAMIC

CHARACTERISTICS

A. The solution of the corrected EHAdS BH

Classical electrodynamics is modified for strong electro-
magnetic fields because of the self-interaction of photons
[27]. QED is considered to characterize the nonlinear (due
to loop) corrections and vacuum birefringence’s effect. The
main feature of the QED correction ensures that the
particles’ electric field and electrostatic energy comply
with Coulomb’s law when r → ∞ [22]. Here, we consider
the QED high-order correction. This would relax the limit
of the energy-momentum tensor and the NEM field limit of
the EHAdS BH. Additionally, the high-order QED correc-
tion may also affect the phase transition of the EHAdS BH.

FIG. 4. The Maxwell’s equal area law of the EHAdS BH. The blue and red solid lines present the first and second phase transition
branches. We take EH parameter a ¼ 1 and BH charge Q ¼ 0.6.

FIG. 5. The blue and red line present the first and second phase
transition branches for the EHAdS BH. We take EH parameter
a ¼ 1 and BH charge Q ¼ 0.6.
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The action of the EHAdS BH is given by [25]

I ¼
Z

d4
ffiffiffiffiffiffi
−g

p �
1

2κ2
ðR − 2ΛÞ − LðF ;GÞ

�
; ð20Þ

where κ2 ≡ 8πG, R is the Ricci scalar. The one-loop
effective Lagrangian density of the EH nonlinear electro-
dynamics LðF ;GÞ¼−F þ a

2
F 2þ 7a

8
G2, and F ¼ 1

4
FμνFμν,

G ¼ 1
4
FμνF̃μν, where Fμν is the electromagnetic field

strength tensor and its dual F̃μν ¼ 1
2
ffiffiffiffi−gp ϵμνσρFσρ. The field

equations read as [25]

∇μPμν ¼ 0; Gμν þ Λgμν ¼ κ2Tμν; ð21Þ

where Pμν ¼ ð1 − aF ÞFμν − F̃μν 7a
4
G. Similarly, consider-

ing only the electric field (B ¼ 0), the above equations can
be rewritten as

∂r

�
r2E

�
aE2

2
þ 1

��
¼ 0; ð22Þ

Gμν þ Λgμν ¼ κ2Tμν: ð23Þ

Assuming that the EH nonlinear electric field near the BH
is generated by the EHAdS BH charge, Eq. (22) is replaced
with the active form of the EH nonlinear electric field, i.e.,
∂rðr2EðaE2

2
þ 1ÞÞ ¼ 4πρ, where ρ is the charge density of

the EHAdS BH. This effect can also be achieved by
imposing Coulomb’s law constraints on the EH nonlinear
electric field ∂L

∂E ¼ Q
r3 r [28]. Hence, EðrÞ is [22]

EðrÞ¼
ffiffiffi
8

pffiffiffiffiffiffi
3a

p sinh

�
1

3
ln

� ffiffiffiffiffiffiffiffi
27a

p
Qffiffiffi

8
p

r2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27aQ2

8r4
þ1

s ��
: ð24Þ

Utilizing the condition r → ∞, EðrÞ the expansion form is

EðrÞ ¼ Q
r2

−
aQ3

2r6
þ 3a2Q5

4r10
−
12a3Q7

8r14
þOðr−18Þ: ð25Þ

The (0,0) component of the energy-momentum tensor
Tμν is

T00 ¼
E2

2

�
1þ 3aE2

4

�

¼ Q2

2r4
−
aQ4

8r8
þ a2Q6

8r12
−
3a3Q8

16r16
þOðr−20Þ: ð26Þ

Considering only the first two terms of Eq. (26) and basing
on Eq. (22), we have

dm
dr

¼ Q2

2r2
−
aQ4

8r6
þ Λr2

2
: ð27Þ

The metric potential [Eq. (2)] of the EHAdS BH is obtained
by integrating the above equation. Treating the third-order
and subsequent terms as the high-order QED correction,
Eq. (26) can be written as

T00 ¼
Q2

2r4
−
aQ4

8r8
þ βa2Q6

8r12
; ð28Þ

where the third term is the higher-order term and β ∼ 1.
Using the same method, Eq. (27) can be rewritten as

dm0

dr
¼ dm

dr
þ βa2Q6

8r10
: ð29Þ

Hence, the metric potential f0ðrÞ of the corrected EHAdS
BH is

f0ðrÞ ¼ fðrÞ þ βa2Q6

36r10
: ð30Þ

B. Thermodynamics of the EHAdS BH within
the high-order QED correction framework

In this scenario, the corrected mass M0 is

M0 ¼ M þ βa2Q6

72r9þ
: ð31Þ

The corrected Hawking temperature and equation of the
state can be written as

T 0 ¼ T −
βa2Q6

16πr11þ
; ð32Þ

P0 ¼ Pþ βa2Q6

32πr12þ
: ð33Þ

Utilizing Eq. (33) and critical conditions, one can get

QðrþÞ≡ gðrþÞ −
33a2Q6β

2r4þ
¼ 0: ð34Þ

QðrþÞ as a function of rþ is plotted in Fig. 6. QðrþÞ
function curve intersects the horizontal axis once for
different β values, indicating that there is one phase
transition of the corrected EHAdS BH.
Similarly, the critical thermodynamic quantities of the

corrected EHAdS BH are obtained, i.e.,

T 0
c ¼ −

3a2Q6β

4πr0c11
þ aQ4

2πr0c7
−

Q2

πr0c3
þ 1

2πr0c
; ð35Þ

P0
c ¼ −

11a2Q6β

32πr0c12
þ 7aQ4

32πr0c8
−

3Q2

8πr0c4
þ 1

8πr0c2
; ð36Þ
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r0c2 ¼ r2c þ
−Cþ ð−1Þk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
33a2Q6Dβ þ C2

p
D

; ð37Þ

where C≡ 14aQ4r2c − 24Q2r6c þ 5r8c , and D≡ 14aQ4−
72Q2r4c þ 20r6c . If β → 0, Eqs. (35)–(37) degenerate into
the EHAdS BH case [Eqs. (6)–(8)]. In case of β → 1, the k
value should be zero to ensure r0c2 is positive. The critical
radius can be approximated by the limit of a → 0,

lim
a→0

r0c2 ¼ lim
a→0

r2c

¼ 4Q2 cos

�
1

3
arccos

�
1 −

7a
16Q2

��
þ 2Q2 ¼ 6Q2:

ð38Þ

In this limit, we have

υ0c ≈ 2
ffiffiffi
6

p
Q; ð39Þ

T 0
c ≈

1

3
ffiffiffi
6

p
πQ

þ a

432
ffiffiffi
6

p
πQ3

−
a2β

10368
ffiffiffi
6

p
πQ5

; ð40Þ

P0
c ≈

1

96πQ2
þ 7a
41472πQ4

−
11a2β

1492992πQ6
: ð41Þ

Therefore, the universal constant ε0 of the corrected EHAdS
BH at a → 0 is

ε0 ≈
3

8
a0 þ 1

288Q2
a1 −

ð2þ 13βÞ
82944Q4

a2 þOða3Þ: ð42Þ

One can see that the ε0 ¼ 3=8 for the zeroth-order a term,
which is same as the vdW system, the first-order term is
1=288, and the second-order term is 13=82994 in com-
parison to that without the high-order QED correction. For
simplicity, we have omitted the third-order and subsequent
correction.

Furthermore, we calculate the critical exponents in the
correction situation. In the reduced parameter space, the
reduced equation of the state can be given as

p0 ¼ τ0

ε0ν0
þ 1

πP0
cυ

0
c
2

�
−

1

2ν02
þ 1

12ν04

�

−
1

πP0
cυ

0
c
2

�
a

1728Q2ν08
−

βa2

62208Q4ν012

�
; ð43Þ

where

p0 ¼ P0

P0
c
; τ0 ¼ T 0

T 0
c
; ν0 ¼ υ0

υ0c
: ð44Þ

Utilizing Eqs. (40), (41), and (43) can be rewritten as

p0 ¼ τ0

ε0ν0
−

2

ν02
þ 1

3ν04
þ hðν0Þ; ð45Þ

where hðν0Þ is

hðν0Þ ¼ að432Q2 − 7aÞð42ν06 − 7ν04 − 3Þ
559872ν012Q4

−
βa2ð66ν010 − 11ν08 − 3Þ

46656ν012Q4
þO½a3�: ð46Þ

By introducing reduced parameters t0 and ω0, which are
defined as

t0 ≡ τ0 − 1; ω0 ≡ ðν0 − 1Þ1=3; ð47Þ

one can get the expansion of the reduced state equation near
the critical point (t0 → 0, ω0 → 0),

p0ðt0;ω0Þ ≈ 1þ 1

ε0
t0 −

1

ε0
ω0t0

þ
�
4

3
−
1

ε0
þ h0ð3Þð1Þ

6

�
ω03 þOðω02t0;ω04Þ;

ð48Þ

where hð3Þð1Þ is given as

h0ð3Þð1Þ ¼ 83að732Q2 − 7aÞ
139968Q4

−
βa2131
5832Q4

: ð49Þ

With the equal area law, the volumes of small BH (ω0
1) and

large BH (ω0
2) satisfyZ

ω0
2

ω0
1

ω0dp0 ¼ 0; ð50Þ

where dp0 ¼ ð− t0
ε0 þ ð4 − 3

ε0 þ h0ð3Þð1Þ
2

Þω02Þdω0. Thus, the
above equation has a unique nontrivial solution, that is

FIG. 6. QðrþÞ as a function of rþ under different values of
parameter β for the EH parameter a ¼ 1 and BH chargeQ ¼ 0.6.
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ω0
1 ¼ −ω0

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
−

4

3ε0
þ 1

ε02
−
h0ð3Þð1Þ
6ε0

�
ð−t0Þ

s
: ð51Þ

We known that the critical exponents of the AdS BH can be
given by [4]

Cv ¼ T

�
∂S
∂T

�
v
∝ jtj−α; η ¼ V2 − V1 ∝ j − tjβ; ð52Þ

κT ¼ −
1

V

�
∂V
∂P

�
∝ jtj−γ; P − Pc ∝ jV − Vcjδ: ð53Þ

For the corrected case, the heat capacity at constant volume
is Cv0 ¼ 0, inferring that the first critical exponent as α ¼ 0.
According to Eq. (51), we have

η0 ¼ υ0cðω0
1 − ω0

2Þ ¼ 2υ0cω0
1 ∝ j − t0j1=2: ð54Þ

The second critical exponent is β ¼ 1=2. The third and
fourth critical exponents are γ ¼ 1 and δ ¼ 3 since

κT0 ¼ −
1

V

�
∂V
∂P

�
¼ −

1

P0
cðω0 þ 1Þ

dω0

dp0 ∝
ε0

t0
; ð55Þ

jp0 − 1j ¼
�
4

3
−
1

ε0
þ h0ð3Þð1Þ

6

�
ω03 ∝ jω0j3: ð56Þ

The critical exponents ðα; β; γ; δÞ are ð0; 1=2; 1; 3Þ, which
are equivalent to the critical exponents of the vdW
system [4].
The heat capacity is

CP0 ¼T 0
�
∂S0

∂T 0

�
P0

¼ 2πr2þðaQ4r4þþ4r8þð−Q2þ r2þþ8P0πr4þÞ−a2Q6βÞ
−7aQ4r4þþ4r8þð3Q2− r2þþ8P0πr4þÞþ11a2Q6β

:

ð57Þ

Figure 7 illustrates theCP0 as a function of rþ. It is found that
the sign of the CP0 does not change, indicating that the
thermodynamic instability of the BH disappears. According
to Eqs. (12) and (33), the P − V type Maxwell’s equal area
law in this scenario is constructed. We have

P0
i ¼ Piðr01Þ þ

βa2Q6

32πr0121

; ð58Þ

P0
i ¼ Piðr02Þ þ

βa2Q6

32πr0122

; ð59Þ

2P0
i ¼ 2Piðr02; x0Þ þ

βa2Q6ðP8
i¼0 x

0iÞ
48πr0122 x09ð1þ x0 þ x02Þ ; ð60Þ

where x0 ≡ r01=r
0
2ð0 < x0 < 1Þ, and Piðr01Þ, Piðr02Þ,

2Piðr02; x0Þ are from Eqs. (14)–(16) by replacing r1=2 with
r01=2, xwith x

0, and Tpt with T 0
pt. Based on Eqs. (58) and (60),

one can get

r022 ¼ r22 þ
−2Er22 − 4Fr62 − 5r82
2ðEþ 6Fr42 þ 10r62Þ

þ ð−1Þk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Er22 þ 4Fr62 þ 5r82Þ2 − 4GðEþ 6Fr42 þ 10r62Þβ

q
2Eþ 12Fr42 þ 20r62

; ð61Þ

in which E ≡ aQ4ð5 þ 20x0 þ 29x02 þ 32x03 þ 29x04þ
20x05 þ x06Þ=ð20x06Þ, F≡−Q2ð1þ4x0 þx02Þ=x02, andG≡
−a2Q6ð3þ 12x0 þ 19x02 þ 24x03 þ 27x04 þ 28x05 þ 27x06þ
24x07 þ 19x08 þ 12x09 þ 3x010Þ=ð12x010Þ. The phase transi-
tion temperature T 0

pt is

T 0
pt ¼ Tptðr02; x0Þ −

βa2Q6ðP11
i¼0 x

0iÞ
16πr0112 x011

: ð62Þ

The T − S type equal area law is derived from Eqs. (13) and
(32). The phase transition temperature P0

pt is

P0
pt ¼ Pptðr02; x0Þ −

βa2Q6ðP10
i¼0 x

0iÞ
32πr0122 x011

: ð63Þ

Tptðr02; x0Þ and Pptðr02; x0Þ are from Eqs. (18) and (19) by
replacing r2 with r02 and x with x0, respectively.

FIG. 7. CP0 as a function of rþ of the corrected EHAdS BH. The
red point is the critical point. We take EH parameter a ¼ 1, BH
charge Q ¼ 0.6 and parameter β ¼ 1.
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Using Eqs. (61)–(63), the isobaric (and isothermal)
curves of the corrected EHAdS BH on the P − V and
T–S planes are shown in Fig. 8. One can observe that the
length of the isothermal (or isobaric) horizontal segment
decreases gradually with the increase in temperature (or
pressure). It is the same as the vdW system and the charged
AdS BH, while the instability feature of the EHAdS BH
disappears.
On the other hand, the Ruppeiner geometry of the BH

system can reveal the microstructure of BH phase transition.
We analyze the microscopic phase transition behavior of the
EHAdS BHs by investigating the Ruppeiner geometry. The
normalized scalar curvature RN is given by [9]

RN ¼ ð∂VPÞ2 − T2ð∂V;TÞ2 þ 2T2ð∂VPÞð∂V;T;TÞ
2ð∂VPÞ2

: ð64Þ

According to Eqs. (42) and (45), the normalized scalar
curvature of the EHAdSBHwith high-order QED correction
situation can be written as

RN ¼ ð1 − 3ν02Þð1 − 3ν02 þ 4ν03τ0Þ
2ð1 − 3ν02 þ 2ν03τ0Þ2

þ að−2ν02 − ν06 þ 3ν08Þτ02
36Q2ð1 − 3ν02 þ 2ν03τ0Þ3

−
a2ð−2 − ν04 þ 3ν06Þð−6 − ν04 þ 3ν06 þ 4ν07τ0Þτ02

10368ν02Q4ð1 − 3ν02 þ 2ν03τ0Þ4

−
βa2ð−2 − ν08 þ 3ν010Þτ02

864ν02Q4ð1 − 3ν02 þ 2ν03τ0Þ3 þOða3Þ: ð65Þ

Figure 9 illustrates RN as a function of ν and τ for the
EHAdS BH with/without high-order QED correction. It is
observed that the surface of the normalized scalar curvature is
concave where the scalar curvature diverges. There is one
concave surface for the corrected situation, which is same as
the vdW system. Differently, two concave surfaces occur in
the EHAdS BH without correction, indicating that the
correction leads to the phase transition instability disappears
for the EHAdS BH from the microscopic point of view.
Because the vdW type phase transition shows a charge-

independent property in the reduced parameter space,

FIG. 8. The Maxwell’s equal area law of the corrected EHAdS BH. We take EH parameter a ¼ 1, BH charge Q ¼ 0.6 and parameter
β ¼ 1.

FIG. 9. Illustration of the normalized scalar curvature RN as a function of ν and τ by setting the EH parameter a ¼ 1 and the BH charge
Q ¼ 0.6. The left panel is the corrected EHAdS BH (β ¼ 1) and the right panel is the EHAdS BH.
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we can use the parametrization form to fit the numerical
data of the coexistence curves between ν0 and τ0. The
parametrization form is

ν0 ¼
X10
i¼0

a0iτ
0i; τ0 ∈ ð0; 1Þ: ð66Þ

The numerical results of the a0i are listed in I, where ν0l and
ν0s represent the ν0 in the large and small BH region.

Figure 10 shows that ν0 as a function of τ0. The small BH
volume increases with the temperature increase, which is
the opposite of the large BH volume.
Figure 11 shows RN as a function of τ0. We can see that

the behavior of the normalized scalar curvature RN along
the coexistence of saturated large BH and small BH curves
meets the relationship RNð1 − τ0Þ2 ∼ − 1

8
. In the small BH

region, RN has a sign change from positive to negative,
implying that the dominant micro interaction force transits
from repulsion to attraction in the small BH region. These
features also appear in charged AdS BH system [9].

IV. CONCLUSIONS

The high-order QED correction effect on the EHAdS BH
phase transition has been revealed in this analysis. Without
considering the high-order QED correction, two-phase
transition branches and thermodynamic instability are
found in the EHAdS BH. By establishing its equal area
law, we show that the two-phase transition branches coexist
in the specific temperature and pressure ranges, suggesting
that the instability disappears and the reentrant phase
transition can occur in this scenario.
Considering the high-order QED correction, we derive the

corrected EHAdS BH solution. Only one phase transition
branch is found in this scenario by using the critical condition
and equation of the state. Its universal constant is ε0 ¼ 3=8
for the zeroth-order term of a and the second-order term is
13=82994 in comparison that without the high-order QED
correction. Its critical exponents ðα; β; γ; δÞ are ð0; 1=2; 1; 3Þ,
which is equivalent to the vdW system. This implies that the
phase transitionof thehigh-orderQEDcorrectedEHAdSBH
satisfies the Maxwell behavior. Meanwhile, the sign of the
CP0 in this scenario does not change, suggesting that the
thermodynamic instability disappears for the BH. We also
constructed theMaxwell’s equal area law in this situation and
found that it is same as thevdWsystem and chargedAdSBH.
We further investigated the phase transition microstruc-

ture of the corrected EHAdS BH through the Ruppeiner
geometry. It is found that the surface of the normalized
scalar curvature is concave where the scalar curvature
diverges. There is one concave surface for the high-order
QED correction situation, which is the same as the vdW
system. Compared with this scenario, two concave surfaces
occur in the EHAdS BH without high-order QED correc-
tion, indicating that the correction leads to the phase
transition instability disappearing from the microscopic
point of view. From the critical behavior of the normalized

FIG. 10. The coexistence curves of ν0 and τ0. The discrete points
denote the numerical values and the red/blue line is the fitting
formula Eq. (66). We take a ¼ 1, Q ¼ 0.6, and β ¼ 1.

TABLE I. Values of the coefficients a0i in the fitting formula of the coexistence curves for a ¼ 1, Q ¼ 0.6, and β ¼ 1.

� � � a00 a01 a02 a03 a04 a05 a06 a07 a08 a09 a010
νQl 90.66 −1131.11 7625.30 −31455.36 83299.04 −143438.45 157364.01 −102074.48 30636.87 1373.82 −2289.27
νQs 0.280 0.141 0.0902 0.0668 0.0548 0.0483 0.0450 0.0434 0.0430 0.0432 0.0439

FIG. 11. RN along the coexistence saturated large BH (red
curve) and small BH (blue curve). The red dashed curve is RN ¼
− 1

8
ð1 − τ0Þ−2 as standard property of vdW type phase transition.

We take a ¼ 1, Q ¼ 0.6, and β ¼ 1.
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scalar curvature, it can be further found that the micro
characteristics of the corrected EHAdS BH are no different
from that of AdS charged. These results suggest that the
first phase transition branch of the EHAdS BH is in a
metastable state, and its thermodynamics is unstable. The
high-order QED correction eliminates this instability, and

the phase transition of the EHAdS BH under this correction
satisfies the Maxwell behavior.
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