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We construct the exact lens equation proposed by Frittelli et al. for the electrically charged static black
hole spacetime of the Einstein-Euler-Heisenberg (EEH) theory, which is a nonlinear electromagnetic
generalization of the Reissner-Nordström (RN) solution. We study the trajectories of light by means of the
effective Plebański pseudometric. We compare the EEH exact lens equation with the thin-lens equations, as
well as with the corresponding equations for the RN solution. The shadow of the black hole, the angular-
diameter distance to the sources, and the time delay of arrival of the images are also calculated and
discussed.
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I. INTRODUCTION

In 1912 Mie put forward the first model for nonlinear
electrodynamics [1]. Between 1932 and 1935 Born and
Infeld proposed their nonlinear theory [2], where the field
of a point charge turns out to be finite at r ¼ 0, in contrast
to the well-known 1=r2 singularity of the Coulomb field in
Maxwell-Lorentz electrodynamics. Charged black hole
solutions to the Einstein-Born-Infeld theory have been
studied since the 1930s by Hoffmann [3], and later by
Salazar et al. [4].
Then, Plebański postulated a class of nonlinear electro-

dynamics [5], which contains the Born-Infeld theory as
special case, where parity violating terms could arisen [6].
The characteristic surface depends on the field strength and
the superposition principle for the electromagnetic field
does not hold any longer. The coupling of the Einstein
theory to the class of nonlinear electrodynamics proposed
by Plebański admits regular black hole solutions, like the
one obtained by Ayón-Beato et al. [7].
Moreover, quantum electrodynamical (QED) vacuum

corrections to the Maxwell-Lorentz theory can be
accounted for by an effective nonlinear theory derived
by Euler and Heisenberg [8,9]. The vacuum is treated as a
specific type of medium, the polarizability and magnet-
izability properties of which are determined by the clouds
of virtual charges surrounding the real currents and charges
[10]. The weak field Euler-Heisenberg theory is the

effective one of QED nonperturbative quantization after
one loop. This theory is a valid physical theory [11], and a
possible direct measurement of the Euler-Heisenberg effect
has been proposed by Bordin et al. [12].
Recently, Ruffini et al. [13] considered the contributions

of the Euler-Heisenberg effective Lagrangian in order to
formulate the Einstein-Euler-Heisenberg theory and study
the spherically symmetric black hole solutions endowed
with electric and magnetic monopole charges. They
reduced the problem to screened Reissner-Nordström
solutions. A similar approach was studied by Yajima et al.
]14 ], in which the effective Euler-Heisenberg Langrangian

is considered as the low-energy limit of the Born-Infeld
theory and the nonlinearity parameters are treated as free
parameters. They analyze either numerically or analytically
the properties of spherically symmetric black holes sol-
utions of the EEH theory. Additionally, Amaro et al. [15]
considered an electrically charged static black hole solution
to the EEH theory in terms of the Plebański dual variables,
and studied all possible equatorial trajectories of test
particles, as well as the shadow of the black hole for
distant observers.
On the other hand, there exists currently a revival of

interest in the concepts of gravitational lensing in strong
fields and black hole shadows, since they are crucial for the
interpretation of the relativistic images recently reported by
the Event Horizon Telescope team from the supermassive
black hole encountered at the nucleus of the galaxy M87
[16]. The shadow is bounded by the light ring, which
contains at its center the event horizon. Then, it is possible
to investigate the nearby regions outside it.

*amaro@xanum.uam.mx
†amac@xanum.uam.mx

PHYSICAL REVIEW D 106, 064010 (2022)

2470-0010=2022=106(6)=064010(13) 064010-1 © 2022 American Physical Society

https://orcid.org/0000-0002-0243-158X
https://orcid.org/0000-0003-2431-1199
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.064010&domain=pdf&date_stamp=2022-09-06
https://doi.org/10.1103/PhysRevD.106.064010
https://doi.org/10.1103/PhysRevD.106.064010
https://doi.org/10.1103/PhysRevD.106.064010
https://doi.org/10.1103/PhysRevD.106.064010


There exist different gravitational lensing approaches
[17], those built on the view that the lens is a perturbation of
a background are known as thin-lens approaches, and they
consider that the bending takes place only at the lens plane
and that the light rays are otherwise straight lines. They also
consider that the source and the observer are really far
from the lens. The weak field thin-lens deals with small
deflection angles. It corresponds to the standard study of
gravitational lensing [18–20]. The strong field thin-lens
was developed by Virbhadra et al. [21,22]. They assume
that the bending angle is not necessarily small, so light rays
may wind several times around the black hole.
The most general approach was developed by Frittelli

et al. [23–26], and it is based on the exact study of the null
geodesics followed by the light rays. In exact lens, the
bending does not occur only in the lens plane, the locations
of the observer and the source are not restricted. In [24],
Frittelli et al. have shown that the exact lens equation in the
case of strong fields is the most accurate gravitational
lensing approach, since it respects the intrinsic nature of
general relativity, i.e., covariance and nonlinearity.
The gravitational lensing for black hole solutions within

nonlinear electrodynamics has been studied recently in
[27–31]. In this paper, we construct the exact lens equation
for the static, spherically symmetric, electrically charged
EEH black hole spacetime, by following the approach of
Frittelli et al. [23–26]. We also study the shadow of the
black hole, the angular diameter distance, and the time
delay of the signal.
The outline of the paper is as follows: The EEH theory is

reviewed in Sec. II. The construction of an exact lens
equation is revisited in Sec. III, in Sec. IV the exact lens
equation for the EEH static black hole solution is presented
and solved. Then, in Sec. V the exact and thin-lens results
are compared. In Sec. VI the calculation of lensing
observables is performed, while in Sec. VII the time delay
of the images is studied. The summary and conclusions of
the work are presented in Sec. VIII.

II. THE EINSTEIN-EULER-HEISENBERG
THEORY

We revisit in this section the basic features of the
Einstein theory coupled with the weak field approximation
of the nonlinear electrodynamics proposed by Euler and
Heisenberg [8], in the formalism introducedbyPlebański [5].
The action for Einstein gravity minimally coupled to the

Euler-Heisenberg theory reads [8,32]

S ¼ 1

16πG

Z
M4

d4x
ffiffiffiffiffiffi
−g

p
R

þ 1

4π

Z
M4

d4x
ffiffiffiffiffiffi
−g

p �
−X þ 2α2

45m4
f4X2 þ 7Y2g

�
; ð1Þ

where R is the Ricci curvature scalar, G is the Newton’s
constant which we will take G ¼ 1, m the electron mass,

and α the fine structure constant. The variables X and Y are
the only two independent relativistic invariants constructed
from the Maxwell field in four dimensions, which are
defined as

X ¼ 1

4
FμνFμν; Y ¼ 1

4
Fμν

�Fμν; ð2Þ

�Fμν is the dual of the Faraday tensor Fμν ¼ Aμ;ν − Aν;μ,
and it is defined as usual �Fμν ¼ 1

2
ffiffiffiffi−gp ϵμνσρFσρ, and ϵμνσρ

is the completely antisymmetric tensor that satisfies
ϵμνσρϵ

μνσρ¼−4!.
The equations of motion derived from this action are

more easily written in terms of the Legendre dual descrip-
tion of nonlinear electrodynamics [5], which involves the
introduction of the Plebański tensor Pμν defined by

dLðX; YÞ ¼ −
1

2
PμνdFμν; ð3Þ

where LðX; YÞ is the Lagrangian density for the Euler-
Heisenberg nonlinear electrodynamics. In general it is
defined as

Pμν ¼ −ðLXFμν þ LY
�FμνÞ; ð4Þ

where subscripts on L denote differentiation. Note that Pμν

coincides with Fμν for the linear Maxwell theory. In our
case it reads

Pμν ¼ Fμν −
4α2

45m4
f4X Fμν þ 7Y�Fμνg: ð5Þ

The components of Pμν are just the electric inductionD and
the magnetic field H, therefore Eq. (5) are the constitutive
relations of the Euler-Heisenberg nonlinear electrodynam-
ics. We denote by s and t the two independent invariants in
terms of the dual Plebański variables Pμν, and are defined in
the following way

s ¼ −
1

4
PμνPμν; t ¼ −

1

4
Pμν

�Pμν; ð6Þ

where �Pμν ¼ 1
2
ffiffiffiffi−gp ϵμνσρPσρ.

The structural function Hðs; tÞ is written as

Hðs; tÞ ¼ −
1

2
PμνFμν − L: ð7Þ

For the Euler-Heisenberg theory the structural function (to
first order in α) reads

Hðs; tÞ ¼ s −
2α2

45m4
f4s2 þ 7t2g: ð8Þ

The equations of motion for the coupled system are [4]
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dF ¼ 0; d�P ¼ 0; Rμν −
1

2
Rgμν ¼ 8πTμν; ð9Þ

with the energy-momentum tensor

Tμν ¼
1

4π
½HsPμ

βPνβ þ gμνð2sHs þ tHt −HÞ�: ð10Þ

The energy-momentum tensor for the Euler-Heisenberg
nonlinear electromagnetic field is given by

Tμν ¼
1

4π

��
1 −

16α2

45m4
s

�
Pμ

βPνβ

þgμν

�
s −

2α2

45m4
f12s2 þ 7t2g

��
: ð11Þ

Setting α ¼ 0, it reduces to the standard linear Maxwell
energy-momentum tensor.

III. THE EXACT LENS EQUATION

In this section we summarize the approach of Frittelli
et al. [24], for the construction of a set of gravitational
lens equations. A more general procedure can be found
in [23,25].
Lets consider an observer whose coordinates are denoted

by xa0ðτÞ, where τ is the proper time. The observer measures
light rays reaching him from past null geodesics, whose
coordinates in the observer’s celestial sphere are denoted by
ðη1; η2Þ. The coordinates of the null geodesics xa are
parametrized by the affine parameter s, and satisfy the
null geodesic equations. These local coordinates are func-
tions of the observer’s position, the celestial coordinates
and the affine parameter, i.e., xa ¼ xaðxa0ðτÞ; η1; η2; sÞ.
As usual, x0 is a timelike coordinate, while xi (i ¼ 1, 2,

3) are spacelike. It is possible to perform the inversion
x1ðxa0ðτÞ; η1; η2; sÞ → sðxa0ðτÞ; η1; η2; x1Þ, and we can rep-
arametrize the geodesics in terms of x1, for instance, as

x0 ¼ x0ðτ; η1; η2; x1Þ; ð12Þ

x1 ¼ x1; ð13Þ

xA ¼ xAðτ; η1; η2; x1Þ; A ¼ 2; 3: ð14Þ

When studying the trajectory of light, it is often used the
backwards ray-tracing method, where the light ray travels
from the observer to the source. Hence, the initial point is
the observer’s position xa0 , while x

a determines the position
of the source. The light ray arrives the observer’s position at
time τ and ðη1; η2Þ direction in the observer’s celestial
sphere. In Fig. 1 the exact lens diagram is shown. If the
value of x1 can also be determined by observation, Eq. (12)
corresponds to the exact time of arrival equation, while
Eq. (14) corresponds to the exact lens equation.

The spatial coordinate x1 is often chosen as a radial
coordinate, while the coordinates xA are angular coordi-
nates. Therefore, the exact lens equation, Eq. (14), gives us
the angular position of the source. It corresponds to a map
from the image angles ðη1; η2Þ to the source angles ðx2; x3Þ,
whose Jacobian reads

Jðτ; η1; η2; x1Þ ¼ det
∂ðx2; x3Þ
∂ðη1; η2Þ

: ð15Þ

J ¼ 0 is a curve along which the mapping is not invertible.

There might be an image in the direction ðηð1Þ1 ; ηð1Þ2 Þ before
reaching a caustic, and another image of the same source in

the direction ðη̂ð2Þ1 ; η̂ð2Þ2 Þ beyond the caustic. J ¼ 0 defines
the caustics and separates regions where multiple images
are seen.
The value of x1 must be related to an observable, like

the angular diameter distance. This is defined as
DAðτ; η1; η2; x1Þ≡ jdAs=dΩ0j, where dAs is the infinitesi-
mal area spanned by the observer’s geodesic congruence at
the position of the source [18], and the solid angle is
dΩ0 ¼ Kdη1dη2, with K ¼ Kðη1; η2Þ.
If we take the geodesic deviation vectors as

Ma
1 ¼

∂xa

∂η1
; Ma

2 ¼
∂xa

∂η2
; ð16Þ

the area dAs reads

dAs ¼ j2½ðM1 ·M1ÞðM2 ·M2Þ − ðM1 ·M2Þ2�j1=2dη1dη2;
ð17Þ

where the dot means scalar product. The angular diameter
distance is given by

D2
A ¼ 2K−2jðM1 ·M1ÞðM2 ·M2Þ − ðM1 ·M2Þ2j1=2dη1dη2:

ð18Þ

The value of D2
A is directly related to observable quantities,

like the luminosity L, the apparent brightness of the source
S, and the redshift z of the image, as follows

FIG. 1. The exact lens diagram. The light ray travels backwards
in time, from the observer’s position xa0 to the source position xa,
with respect to the lens. The observer measures the image
position with the celestial coordinates ðη1; η2Þ.
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S ¼ L
4πð1þ zÞ4D2

A
: ð19Þ

In the case in which multiple images are observed, D2
A is

related to the relative magnification of the image

μ12 ¼
D2

Aðηð2Þ1 ; ηð2Þ2 ; x1Þ
D2

Aðη̂ð1Þ1 ; η̂ð1Þ2 ; x1Þ
; ð20Þ

where the upper indices of ðη1; η2Þ correspond to the
observed image.
By observing the image of the source, η1, η2, and τ can

be measured, while the angular diameter distance can be
obtained from Eq. (19) or Eq. (20). Hence, with Eq. (18),
the inversion DAðτ; η1; η2; x1Þ → x1ðτ; η1; η2; DAÞ can be
done, and Eq. (14) can be interpreted as the exact lens
equation.

IV. THE EXACT LENS EQUATION FOR THE
EINSTEIN-EULER-HEISENBERG BLACK HOLE

In this section, we construct the exact lens equation
proposed by Frittelli et al. [23–26], for the static, spheri-
cally symmetric, electrically charged EEH black hole
spacetime. In particular, we follow up the procedure
presented in [24], i.e., we derive the black hole metric,
compute the light equations of motion in terms of the image
angles, study the conditions for the point of closest
approach, introduce the angle Θ, and integrate the geodesic
equations for the angular coordinates. The latter is detailed
in Kling et al. [26].

A. Electrically charged static black hole solution

In order to present the Einstein-Euler-Heisenberg (EEH)
generalization of the Reissner-Nordström solution, we
consider the following static and spherically symmetric
black hole metric [13,15]

ds2¼−fðrÞdt2þfðrÞ−1dr2þ r2ðdθ2þ sin2 θdϕ2Þ; ð21Þ

with signature f−;þ;þ;þg and fðrÞ ¼ 1–2mðrÞ=r, and
look for electrically charged black hole solutions. In [15], it
is derived an electrically charged static black hole solution
of the EEH theory in terms of the Plebański dual variables
Pμν. We assume the following ansatz,

Pμν ¼
Q
r2
ðδ0μδ1ν − δ1μδ

0
νÞ; ð22Þ

which satisfies the electromagnetic equation (9). The
electromagnetic invariants, Eq. (6), read

s ¼ Q2

2r4
; t ¼ 0: ð23Þ

The invariant s is 1
2
D2, and the pseudoinvariant t vanishes.

Integrating the Einstein equations, the mass-energy
function mðrÞ for the electrically charged static black hole
solution is

mðrÞ ¼ M −
Q̃2

2r
; ð24Þ

where the black hole charge is screened as

Q → Q̃ ¼ Q

�
1 −

α

225π
E2
QðrÞ

�
1=2

: ð25Þ

When the electric field EQðrÞ≡ Q
r2Ec

of the charged black

hole is overcritical, electron-positron pair production takes
place, and EQ is screened down to its critical value

Ec ≡ m2c3
eℏ . We use the units ℏ ¼ c ¼ 1 throughout this

work. Notice that Eq. (24) behaves asymptotically (r → ∞)
as the Reissner-Nordström (RN) solution. Additionally, for
α ¼ 0, we recover the linear RN solution. For Q ¼ 0 it
reduces to the Schwarzschild solution.

B. The light equations of motion

In linear Maxwell-Lorentz electrodynamics, the discon-
tinuities of the field propagate according to the equation for
the characteristic surfaces, gμνS;μS;ν ¼ 0, which in standard
optics is known as eikonal equation. The corresponding
linear photons travel along null geodesics of the geomet-
rical metric gμν.
In Euler-Heisenberg nonlinear electrodynamics, photons

propagate along null geodesics of the effective Plebański
pseudometric γμν [5] given by

γμν ¼ gμν þ 64πα2

45m4
Tμν; ð26Þ

which differs from the geometrical metric gμν, since it
contains the energy-momentum tensor as well. The propa-
gation equation for the nonlinear electromagnetic field
discontinuities reads

γμνS;μS;ν ¼ 0; ð27Þ

where S;μ are the normal vectors to the characteristic
surface S. Therefore, the energy-momentum tensor, Tμν

of the EH nonlinear field is responsible for the fact that
these surfaces are not null surfaces of the geometrical
metric. However, for α ¼ 0, i.e., linear Maxwell-Lorentz
electrodynamics, both metrics coincide.
Hence, the null trajectories of nonlinear photons are

obtained from the effective metric of Eq. (26). It is
convenient to use the inverse radial coordinate
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l ¼ 1ffiffiffi
2

p
r
: ð28Þ

Thus, the nonlinear photons satisfy the null condition

γμν _xμ _xν ¼
�
gμν −

64πα2

45m4
Tμν

�
_xμ _xν ¼ 0; ð29Þ

and the following geodesic equations

ṫ ¼
�
1 −

10α

225π
E2
Q

�
Cffiffiffi
2

p
fðlÞ ; ð30Þ

l̇¼�
�
1−

10α

225π
E2
Q

�
Cl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
1þ 20α

225π
E2
Q

��
B
C

�
2

l2fðlÞ
s

;

ð31Þ
�
θ̇

l2

�
2

¼
�
1þ 10α

225π
E2
Q

�
2
�
B2 −

A2

sin2θ

�
; ð32Þ

ϕ̇ ¼
�
1þ 10α

225π
E2
Q

�
Al2

sin2θ
: ð33Þ

The dot denotes derivative with respect to the affine param-
eter s. The constant ofmotionC is related to the energy of the
photon and works as an scaling parameter of the effective
potential. The constants A and B are related to the angular
momentum of the photon and the Carter constant, respec-
tively. They depend on the initial point, which in this case
corresponds to the observer’s location ðt0; l0; θ0;ϕ0Þ.
It is important to notice that the electric field EQ ≡

2Q2l2=E2
c will be evaluated at a fixed l, depending on the

particular case under consideration. For instance, in the
case of the light ring, it is evaluated at the RN light ring, i.e.,
EQðlcRNÞ ¼ 2Q2l2cRN=E

2
c. For the distance to the point of

closest approach, EQðlpRN
Þ ¼ 2Q2l2pRN

=E2
c. At the observ-

er’s position, EQðl0Þ ¼ 2Q2l20=E
2
c.

The incident angle ψ that the null geodesic makes with
the optical axis is defined by cotψ ¼ ffiffiffiffiffiffi

γrr
p

dr=ð ffiffiffiffiffiffi
γθθ

p
dθÞ,

while the azimuthal angle γ that the direction of the light
ray makes around the optical axis is defined by
cot γ ¼ ffiffiffiffiffiffi

γθθ
p

dθ=ð ffiffiffiffiffiffiffi
γϕϕ

p dϕÞ. At the observer’s position,
both are related to the constants of motion via

�
B
C

�
2

¼
�
1 −

20α

225π
E2
Qðl0Þ

�
sin2ψ
l20fðl0Þ

; ð34Þ

�
A
C

�
2

¼
�
1 −

20α

225π
E2
Qðl0Þ

�
sin2θ0sin2γ

sin2ψ
l20fðl0Þ

: ð35Þ

When the observer is far away from the black hole, l0 ¼ 0

and the nonlinear term E2
Qðl0Þ ¼ 0. The nonlinear contri-

bution becomes relevant for observers closer to the black

hole. The angles ðγ;ψÞ correspond to the image angles,
while ðθ;ϕÞ correspond to the source angles.
Equations (30)–(33) can be rewritten for C ¼ 1, in terms
of the observer’s location and the image angles as

ṫ ¼
�
1 −

10α

225π
E2
Q

�
1ffiffiffi
2

p
fðlÞ ; ð36Þ

_l¼�
�
1−

10α

225π
E2
Q

�
l2
�
1−
�
1þ 20α

225π
E2
Q

��
1−

20α

225π
E2
Qðl0Þ

�

×

�
sin2ψ
l20fðl0Þ

�
l2fðlÞ

�
1=2

; ð37Þ

�
θ̇

l2

�
2

¼
�
1þ 10α

225π
E2
Q

�
2
�
1 −

20α

225π
E2
Qðl0Þ

�

×

�
sin2ψ
l20fðl0Þ

−
ðsin θ0 sin γ sinψÞ2

l20fðl0Þsin2θ
�
; ð38Þ

ϕ̇ ¼
�
1þ 10α

225π
E2
Q

��
1 −

10α

225π
E2
Qðl0Þ

�

×
l2 sin θ0 sin γ sinψ

l0
ffiffiffiffiffiffiffiffiffiffi
fðl0Þ

p
sin2θ

: ð39Þ

C. The point of closest approach, the light ring,
and the shadow of the black hole

As mentioned above, the most efficient approach for
studying light trajectories is the backwards ray-tracing
method, where the light propagates from the observer back-
wards in time until reaching the source. First, the light ray
points toward the black hole (l̇ > 0) until reaching the point
to closest approach lp. Then, it propagates outwards (l̇ < 0)
in the direction of the source. The value of lp is obtained from
the condition l̇ ¼ 0. Otherwise l̇ ≠ 0, and the geodesics,
Eqs. (36)–(39), can be reparametrized in terms of l.
If the light rays cross the unstable circular orbit (the light

ring), they are trapped by the black hole. The position of the
light ring is denoted by lc and is obtained from the conditions
l̇ ¼ 0 and l̈ ¼ 0. These conditions can be computed from
Eq. (37) and its derivative with respect to the affine
parameter, while using fðlÞ ¼ 1–2

ffiffiffi
2

p
Mlþ 2Q̃2l2. Hence,

lc corresponds to the smaller root of the quadratic polynomial

1 − 3
ffiffiffi
2

p
Mlc þ 4Q̃2

cl2c ¼ 0: ð40Þ

In order to compute the inverse radial distance of the EEH
light ring (lc), one should remember that the charge is
screened at the inverse radial distance of the RN light ring
(lcRN), namely

Q̃c ¼ Q

�
1 −

α

225π
E2
QðlcRNÞ

�
1=2

; ð41Þ
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where the electric field EQðlcRNÞ≡ 2Q2l2cRN=E
2
c. Thus,

lc ¼
3
ffiffiffi
2

p
M

8Q̃2
c

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8

9

Q̃2
c

M2

s �
; ð42Þ

with lcRN being the radial distance of the linear case, i.e.,

Eq. (42) forα ¼ 0. The radius of the light ring is rc ¼ 1=
ffiffiffi
2

p
lc.

We are interested in light rays that do not cross the light
ring, lp < lc. For these, the closest distant, which satisfies
the condition l̇ ¼ 0 on Eq. (37), is the smallest of the
positive roots of

2Q̃2
pl4p−2

ffiffiffi
2

p
Ml3pþ l2p

−
l20ð1−2

ffiffiffi
2

p
Ml0þ2Q̃2

0l
2
0Þ

½1þ 20α
225πE

2
QðlpRN

Þ�½1− 20α
225πE

2
Qðl0Þ�sin2ψ

¼ 0: ð43Þ

The screened charges, Q̃0 at the observer’s position and Q̃p

at the closest distance, are given by

Q̃0 ¼ Q
�
1 −

α

225π
E2
Qðl0Þ

�
1=2

; ð44Þ

Q̃p ¼ Q

�
1 −

α

225π
E2
QðlpRN

Þ
�

1=2
; ð45Þ

where lpRN
corresponds to the linear RN case of Eq. (43),

for lpRN
< lcRN. From Eqs. (43) and (34), with C ¼ 1, one

obtains the following useful relation

B2 ¼ 1

½1þ 20α
225πE

2
QðlpRN

Þ�l2pð1 − 2
ffiffiffi
2

p
Mlp þ 2Q̃2

pl2pÞ
: ð46Þ

The light ring distance lc is the critical value of the
closest approach lp. The corresponding critical incident
angle ψc can be obtained from Eq. (43) for lp ¼ lc. In order
that a light ray is not trapped by the black hole [33], the
incident angle must fulfill the condition sin2 ψ > sin2 ψc,
with

sin2ψc ¼
½1 − 20α

225πE
2
QðlcRNÞ�

½1 − 20α
225πE

2
Qðl0Þ�

l20fðl0Þ
l2cfðlcÞ

; ð47Þ

where fðlcÞ ¼ 1–2
ffiffiffi
2

p
Mlc þ 2Q̃2

cl2c with the screened
charge, Eq. (41), and fðl0Þ ¼ 1–2

ffiffiffi
2

p
Ml0 þ 2Q̃2

0l
2
0 with

Q̃0, Eq. (44).
The radius of the black hole shadow rsh is related to the

critical angle: rsh ¼ r0 tanψc ≈ r0 sinψc, for a small criti-
cal angle. From Eq. (47), the radius of the shadow of the
EEH black hole reads

rsh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 20α

225πE
2
QðlcRNÞ

1 − 20α
225πE

2
Qðl0Þ

s ffiffiffiffiffiffiffiffiffiffi
fðl0Þ

p
ffiffiffi
2

p
lc

ffiffiffiffiffiffiffiffiffiffi
fðlcÞ

p ; ð48Þ

≈
½1 − 10α

225πE
2
QðlcRNÞ�ffiffiffi

2
p

lc
ffiffiffiffiffiffiffiffiffiffi
fðlcÞ

p ; ð49Þ

for distant observers (l0 ¼ 0), where EQð0Þ ¼ 0 and
fð0Þ ¼ 1. Equation (49) is equivalent to the radius rsh
obtained in [15], while Eq. (48) is a more general result for
observers not necessarily at infinity.
In Fig. 2 we show the radius of the shadows for the EEH

and RN black holes at the observer’s location. The
respective asymptotes correspond to the case for the distant
observer. The shadows for an observer at infinity and an
observer at the innermost stable circular orbit (ISCO) are
shown in Fig. 3. The EEH shadow is always inside the RN
one as in [15], where we display the shadow radius varying
the values of Q and M.

FIG. 2. The radius of the shadows for fixed M ¼ 104 M⊙ and
Q ¼ 0.8M. The continuous line corresponds to the EEH shadow
as function of r0. Its asymptote is the dashed line at
rsh ¼ 3.55499M. The dot-dashed line corresponds to the RN
shadow. Its asymptote is the dotted line at rshRN ¼ 4.546M.

FIG. 3. The shadows for fixed M ¼ 104 M⊙ and Q ¼ 0.8M.
The left-hand side (lhs) corresponds to r0 → ∞, while the right-
hand side (rhs) corresponds to r0 ¼ 4.8913M, at the ISCO. In
both cases, the EEH shadow (darker circle) lies inside the RN one
(fainter circle).
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D. The integration of the angular coordinates

In order to integrate the geodesic equations for the
angular coordinates ðθ;ϕÞ, we introduce an angle Θ.
From Eq. (34), Eq. (39), and Eq. (38), it is given by
_Θ2 ≡ _θ2 þ sin2 θ _ϕ2 ¼ ½1þ 10α

225πE
2
Q�l2B. First, we integrate

the geodesic equations in the x–z plane [26], where ϕ ¼ 0
and Θ goes from 0 to 2π. The initial point is the observer’s
position on this plane, x̃a0 ¼ ðt0; l0; θ0 ¼ π;ϕ0 ¼ 0Þ, while
the end point is xa ¼ ðt; l;Θ;ϕ ¼ 0Þ. Hence, Θ0 ¼ π.
By means of Eq. (37) together with Eq. (43), the solution
to the angular component of the geodesic equation on the
x–z plane reads

ϕ¼ 0; Θ¼ π−
Z

l

l0

�½1þ 20α
225πE

2
Q�dl0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
B2 − ½1þ 20α

225πE
2
Q�l02fðl0Þ

q ; ð50Þ

with B given by Eq. (46) and fðl0Þ ¼ 1–2
ffiffiffi
2

p
Ml0 þ 2l02Q̃2.

The sign depends on the radial direction of the light ray.
The trajectory of the light ray within the back-

wards ray-tracing method, can be divided in two patches.
First, the ray comes inwards from l0 to lp. Then, it goes
backwards from lp to the source at ls. Thus, Θðls; l0; lpÞ
reads

Θ¼�
 
π−
Z

lp

l0

2½1þ 20α
225πE

2
Qþ�dl0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
B2− ½1þ 20α

225πE
2
Qþ�l02ð1−2

ffiffiffi
2

p
Ml0þ2l02Q̃2Þ

q

−
Z

l0

ls

½1þ 20α
225πE

2
Q−
�dl0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
B2− ½1þ 20α

225πE
2
Q−
�l02ð1−2

ffiffiffi
2

p
Ml0þ2l02Q̃2Þ

q
!
:

ð51Þ

Since the effective weak field Euler-Heisenberg nonlinear
electrodynamics of QED is valid only for constant fields
[13], Eq. (51) should be integrated considering EQ as a
constant. For numerical integrations, it can be evaluated on
the middle point, EQþ ¼ EQþð½l0 þ lp�=2Þ in the first
integral, and EQ−

¼ EQ−
ð½ls þ l0�=2Þ in the second one.

Equation (51) depends on the incident angle ψ through
the point of closest approach lp. A plot ofΘ for fixed l0 and
ls is shown in Fig. 4. The asymptote corresponds to the
critical angle ψc. The closer the rays approach to the light
ring, more turns around the black hole they make.
The integration on the x–z plane, Eq. (50), is generalized

through a rotation from an arbitrary initial point xa0 ¼
ðt0; l0; θ0;ϕ0Þ. The angle Θ is constant along the rotation.
It is convenient to introduce the complex stereographic
variable ζ¼cotθ

2
eiϕ and its complex conjugate ζ̄¼cotθ

2
e−iϕ.

Therefore, the rotation corresponds to the SUð2Þ trans-

formation ζ0 ¼ a cotΘ
2
þb

c cotΘ
2
þd
, where a, b, c, and d are the Cayley-

Klein parameters. They can be written in terms of the Euler

angles [34], with respect to the initial point. In terms of the
initial point angular coordinates,

ζ ¼ eiϕ0

 
cot θ0

2
þ eiγ cot Θðl;l0;lpÞ

2

1 − eiγ cot θ0
2
cot Θðl;l0;lpÞ

2

!
: ð52Þ

Hence, in terms of the standard spherical coordi-
nates ðθ;ϕÞ,
cosθ¼−cosθ0cosΘþsinθ0 sinΘcosγ;

tanϕ¼ sinϕ0 sinθ0− tanΘðcosϕ0 sinγ−sinϕ0cosγcosθ0Þ
cosϕ0 sinθ0þ tanΘðsinϕ0 sinγþcosϕ0cosγcosθ0Þ

:

ð53Þ
If the observer’s location ðl0; θ0;ϕ0Þ, the angular position
of the image ðγ;ψÞ, and the angle Θðls; l0;ψÞ, Eq. (51), are
known, we are able to compute the real angular position of
the source, ðθ;ϕÞ. Thus, Eq. (53) can be interpreted as the
exact lens equation for the EEH black hole, since the
inversion lsðxa0; γ;ψ ; sÞ → sðxa0; γ;ψ ; lsÞ can be done by
integrating Eq. (31) and using Eq. (46), i.e.,

s¼2

Z
lp

l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2pfðlpÞ

l2pfðlpÞ−
h

1þ 20α
225πE

2
Qþ

1þ 20α
225πE

2
QðlpRN Þ

i
l2fðlÞ

vuuut
�
1þ 10α

225π
E2
Qþ

�
dl
l2

þ
Z

l0

ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2pfðlpÞ

l2pfðlpÞ−
h

1þ 20α
225πE

2
Q−

1þ 20α
225πE

2
QðlpRN Þ

i
l2fðlÞ

vuuut
�
1þ 10α

225π
E2
Q−

�
dl
l2
:

ð54Þ

For the particular case in which the observer is located
along the z-axis, θ0 ¼ π and ϕ0 ¼ 0, Eq. (53) reduces to
cos θ ¼ cosΘ, and the exact lens equation is

θ ¼ Θðls; l0; lpÞ: ð55Þ

FIG. 4. The continuous line corresponds to Θ, Eq. (51), while
the dashed line corresponds to ψc, Eq. (47). The parameters are:
M ¼ 104 M⊙, Q ¼ 0.8M, and r0 ¼ rs ¼ 30M.

EXACT LENS EQUATION FOR THE … PHYS. REV. D 106, 064010 (2022)

064010-7



In Fig. 5 the angle Θ for the EEH black hole and for the RN
one is shown. For large image angles ψ the difference is
barely visible, but the difference becomes relevant for
values of the image angle closer to ψc. For the case θ ¼ Θ,
this difference would correspond to a different source
angular location.

V. COMPARISON WITH THE
THIN-LENS EQUATIONS

The exact lens equation, Eq. (53), has been computed
following [24], by means of the study of the trajectory of
the light ray along the null geodesic. However, as men-
tioned above, there exist other approaches for studying
gravitational lensing, like the thin-lens approaches, in
which the bending takes place at the lens plane. The source
and the observer are on the same plane.
In Fig. 6, the thin-lens diagram is shown. Ds is the

distance from the observer to the source plane, while Dd is
that to the lens plane. The angular position of the source is
β, and that for the image is ψ . The latter is the apparent
location of the source and corresponds to the incident angle
of the light ray at the observer’s position.
Dds is the distance of the source plane measured

from the lens plane. The angular position of the source
with respect to the black hole is θ, and the bending
angle is σ̂. In the framework of the thin-lens approach,
the deflection angle of the weak-field thin-lens is small,
while in the strong-field thin-lens the bending angle
increases to infinity as the rays approach the unstable
circular orbit [21,22].

A. Strong-field thin-lens equation

From the geometry of the lens diagram, Fig. 6, the
strong-field thin-lens equation reads [21]

tan β ¼ tanψ −
Dds

Ds
½tanψ þ tan ðσ̂ − ψÞ�: ð56Þ

Since in the thin-lens approach both the source and the
observer lie at infinity, the total change on θ of a light ray
which travels from the source to the observer is twice the
change from ∞ to the closest distance rp [35]. Notice that
without deflection, the total angular change would be π,
which corresponds to a straight line. Therefore, the deflec-
tion angle σ̂ in terms of the inverse radial coordinate l is
given by

σ̂ ¼ 2

Z
lp

0

½1þ 20α
225πE

2
Qðlp=2Þ�dl0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
B2 − ½1þ 20α

225πE
2
Qðlp=2Þ�l02fðl0Þ

q − π; ð57Þ

with the constant B, Eq. (46), and fðl0Þ ¼ 1–2
ffiffiffi
2

p
Ml0þ

2Q̃2l02.
In order to compare Eq. (56) with the corresponding

exact lens equation, Eq. (55), we must analyze each of the
terms. From Eq. (57) and Eq. (51), it is straightforward to
see that

σ̂ ¼ −Θðls; l0;ψÞjls¼l0¼0: ð58Þ
Introducing the inverse radial coordinate, from Fig. 6 it is
easy to check that

tan β ¼ Dds

Ds
tan θ; ð59Þ

Dd ¼
1ffiffiffi
2

p
l0
; ð60Þ

FIG. 5. The angleΘ, Eq. (51), as a function of the incident angle
ψ for the EEH black hole (continuous line) and that for the RN
linear case (dashed line) are displayed. The dot-dashed line
corresponds to the critical incident angle ψc, Eq. (47), while
the dotted line corresponds to that of the linear case α ¼ 0. The
parameters are:M ¼ 104 M⊙,Q ¼ 0.8M, and r0 ¼ rs ¼ 3000M.

FIG. 6. The thin-lens diagram.
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Dds ¼
cos θffiffiffi
2

p
ls
; ð61Þ

Ds ¼
1ffiffiffi
2

p
l0
þ cos θffiffiffi

2
p

ls
: ð62Þ

Replacing Eqs. (58)–(62) into Eq. (56), one obtains the
strong-field thin-lens equation:

θ ¼ ψ þ Θjls¼l0¼0 þ arcsin

�
ls
l0
tanψ cos ðΘjls¼l0¼0 þ ψÞ

�
:

ð63Þ

B. Weak-field thin-lens equation

In the weak-field thin-lens approximation, the angles β,
ψ , and α, are assumed to be small, i.e., tan x ≈ x. Hence,
Eq. (56) for the weak-field thin-lens becomes

β ¼ ψ −
Dds

Ds
σ̂: ð64Þ

In this case, the deflection angle can be obtained from
the Robertson expansion and integration of Eq. (57), where
it is assumed that the distance to the point of closest
approach is much bigger than the mass of the black hole
[35], i.e., rp ≫ 2M. Additionally, since the EEH solution
behaves asymptotically as the RN one, the corresponding
points of closest approach are practically equal, rpRN

≈ rp.
Furthermore, the weak-field deflection angle, up to first
order in α and to second order in M=rp, reads

σ̂ ¼ 4M
rp

þ 4M2

r2p

�
15π

16
− 1

�
−
3πQ2

4r2p

þ 10α

225π
E2
QðrpÞ

�
4M
rp

þ 10M2

r2p

�
3π

4
− 1

�
−
3πQ2

2r2p

�
: ð65Þ

The thin-lens deflection angle for the RN solution has
been studied in [36,37], while for the EEH solution in
[29,30]. Moreover, Eq. (65) has been computed in the
framework of the QED interpretation of the weak field
Euler-Heisenberg theory, by means of the effective
Plebański pseudometric γμν.
In order to write Eq. (65) in terms of a small incident

angle ψ , rp ¼ Dd tanψ ≈Ddψ , Fig. 6, Eqs. (59)–(62) read

β ¼ Dds

Ds
θ; ð66Þ

Dd ¼
1ffiffiffi
2

p
l0
; ð67Þ

Dds ¼
1ffiffiffi
2

p
ls
; ð68Þ

Ds ¼
1ffiffiffi
2

p
l0
þ 1ffiffiffi

2
p

ls
: ð69Þ

Replacing rp ¼ ψ=
ffiffiffi
2

p
l0, the weak-field thin-lens equation

is given by

θ ¼ ls þ l0
l0

�
ψ −

4
ffiffiffi
2

p
M

ψ

l20
ls þ l0

−
�
8M2

ψ2

�
15π

16
− 1

�
−
3πQ2

2ψ2

�
l30

ls þ l0

−
10α

225π
E2
QðrpÞ

�
4
ffiffiffi
2

p
M

ψ

l20
ls þ l0

þ
�
20M2

ψ2

�
3π

4
− 1

�
−
3πQ2

ψ2

�
l30

ls þ l0

��
: ð70Þ

In Fig. 7, the weak-field source angle θ, Eq. (70), as a
function of ψ is presented for the EEH and RN cases.
The Euler-Heisenberg effect is not relevant, since both the
observer and the source are located far away from the black
hole (r0 ¼ rs ¼ 3000M). Nevertheless, for the exact source
angle θ, Eq. (55), the nonlinear effect becomes relevant for
small image angles ψ , as shown in Fig. 5. The weak field
thin-lens and the exact source angles are plotted in Fig. 8.

VI. OBSERVABLES

Equation (53) can be interpreted as the exact lens equation
if the value of the inverse radial parameter l is related to an
observable. In order to obtain the exact expression of the
angular diameter distance, Eq. (18), we must compute the
connecting vectors, Eq. (16), which for the coordinates xa ¼
ðt; l; θ;ϕÞ and image angles ðγ;ψÞ, read

Ma
1 ¼

�
0; 0;

∂θ

∂γ
;
∂ϕ

∂γ

�
; ð71Þ

Ma
2 ¼

�
∂t
∂ψ

; 0;
∂θ

∂ψ
;
∂ϕ

∂ψ

�
: ð72Þ

FIG. 7. The source angle θ, Eq. (70), as a function of the
incident angle ψ for the EEH black hole (continuous line), and
the RN case (dashed line), are presented. The parameters are
M ¼ 104 M⊙, Q ¼ 0.8M, and r0 ¼ rs ¼ 3000M.
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Performing the following partial derivatives, Eq. (53), one
obtains

∂θ

∂γ
¼ sin θ0 sinΘ sin γ

sin θ
; ð73Þ

∂θ

∂ψ
¼ −

cos θ0 sinΘþ sin θ0 cosΘ cos γ
sin θ

∂Θ
∂ψ

; ð74Þ

∂ϕ

∂γ
¼ −

sinΘðsinΘ cos θ0 þ cosΘ sin θ0 cos γÞ
sin2 θ

; ð75Þ

∂ϕ

∂ψ
¼ −

sin θ0 sin γ
sin2θ

∂Θ
∂ψ

: ð76Þ

Since in Euler-Heisenberg nonlinear electrodynamics
light propagates along null geodesics of the effective
Plebański pseudometric, Eq. (26), the products of the
connecting vectors are given by

M1 ·M1 ¼
½1 − 10α

225πE
2
Q�

2l2

��
∂θ

∂γ

�
2

þ sin2 θ

�
∂ϕ

∂γ

�
2
�
; ð77Þ

M2 ·M2 ¼ −
�
1þ 10α

225π
E2
Q

�
fðlÞ

�
∂t
∂ψ

�
2

þ ½1− 10α
225πE

2
Q�

2l2

��
∂θ

∂ψ

�
2

þ sin2θ

�
∂ϕ

∂ψ

�
2
�
; ð78Þ

M1 ·M2 ¼
½1 − 10α

225πE
2
Q�

2l2

��
∂θ

∂γ

��
∂θ

∂ψ

�

þsin2θ

�
∂ϕ

∂γ

��
∂ϕ

∂ψ

��
: ð79Þ

Hence, from Eq. (17), the area dAs becomes

dAs ¼
��

1−
10α

225π
E2
Q

�
2 sin2θ
4l4

�
∂θ

∂γ

∂ϕ

∂ψ
−
∂ϕ

∂γ

∂θ

∂ψ

�
2

−
�
1þ 10α

225π
E2
Q

�
fðlÞ

�
∂t
∂ψ

�
2

M1 ·M1Þ
1=2

dγdψ : ð80Þ

The first term is identified as the Jacobian of the map from
the image angles ðγ;ψÞ to the source angles ðθ;ϕÞ, as defined
in Eq. (15). By means of Eqs. (73)–(76), it can be written
as J ¼ −ðsinΘ= sin θÞ∂Θ=∂ψ , and the product of the sec-
ond term reduces to M1 ·M1 ¼ ½1 − 10α

225πE
2
Q� sin2Θ=2l2.

Therefore, the area dAs reduces to

dAs ¼
sinΘ
2l2

��
1 −

10α

225π
E2
Q

�
2
�
∂Θ
∂ψ

�
2

− 2l2fðlÞ
�
∂t
∂ψ

�
2
�

1=2
dγdψ : ð81Þ

At the observer’s location, the solid angle is given in terms of
the image angles as dΩ0 ¼ sinψdψdγ. Thus, the angular
diameter distance becomes

D2
A¼

sinΘ
2l2sinψ

��
1−

10α

225π
E2
Q

�
2
�
∂Θ
∂ψ

�
2

−2l2fðlÞ
�
∂t
∂ψ

�
2
�

1=2
:

ð82Þ

The derivative ∂t=∂ψ results to be proportional to
∂Θ=∂ψ . The components of the null vector tangent to
the light rays are la ≡ ð_t; l̇; _θ; _ϕÞ, and the orthogonality
condition is γabMa

2l
b ¼ 0. Both connecting vectorsMa

1 and
Ma

2 are orthogonal to la. By using the geodesic equations
for θ and ϕ, Eq. (38) and Eq. (39) respectively, as well as
the explicit expressions Eq. (74) and Eq. (76), the following
expression is obtained:

∂t
∂ψ

¼ −
½1 − 10α

225πE
2
Qðl0Þ�

½1þ 10α
225πE

2
Q�

sinψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l20fðl0Þ

p ∂Θ
∂ψ

: ð83Þ

Replacing Eq. (83) into Eq. (81) and Eq. (82), the area and
the angular-diameter distance reduce to

dAs ¼
�
1 −

10α

225π
E2
Q

�
sinΘ
2l2

				 ∂Θ
∂ψ

				
×

�
1 −

�
1 −

10α

225π
E2
Qðl0Þ

�
2

sin2ψ
l2fðlÞ
l20fðl0Þ

�
1=2

dγdψ ;

ð84Þ

D2
A ¼

�
1−

10α

225π
E2
Q

�
sinΘ

2l2 sinψ

				∂Θ
∂ψ

				
×

�
1−
�
1−

10α

225π
E2
Qðl0Þ

�
2

sin2ψ
l2fðlÞ
l20fðl0Þ

�
1=2

; ð85Þ

FIG. 8. We display the source angle θ, as a function of the
incident angle ψ , from the exact lens equation (continuous line),
Eq. (55), together with the one of the weak-field thin-lens
equation (dashed line), Eq. (70). The dotted line corresponds
to the asymptote ψc, Eq. (47). The parameters are M ¼ 104 M⊙,
Q ¼ 0.8M, and r0 ¼ rs ¼ 3000M.
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respectively. Eq. (85) provides the angular diameter dis-
tance in terms of the inverse radial parameter l. If l ¼ ls is
the source position, the inversion DAðxa0; γ;ψ ; lsÞ →
lsðxa0; γ;ψ ; DAÞ can be done numerically.
By observation of the imaging, using Eq. (19) or

Eq. (20), it is possible to determine DA and the angles

ðγ;ψÞ. By computing the right hand side of Eq. (85) for
fixed l0 and by using the known DA from observation, one
obtains the value of ls. In order to do it, we employ the
exact expression, Eq. (51), and ∂Θ=∂lp. Using the Leibniz
integral rule,

∂Θ
∂lp

¼ lim
ϵ→0

�Z
lp−ϵ

l0

2½1þ 20α
225πE

2
Qþ�½1þ 20α

225πE
2
QðlpRN

Þ�lpð1 − 3
ffiffiffi
2

p
Mlp þ 4l2pQ̃

2
pÞdl0

ð½1þ 20α
225πE

2
QðlpRN

Þ�l2pfðlpÞ − ½1þ 20α
225πE

2
Qþ�l02fðl0ÞÞ3=2

−
2½1þ 20α

225πE
2
Qþ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1þ 20α
225πE

2
QðlpRN

Þ�l2pfðlpÞ − ½1þ 20α
225πE

2
Qþ�l02fðl0Þ

q
					
l0¼lp−ϵ

)

þ
Z

l0

ls

½1þ 20α
225πE

2
Q−
�½1þ 20α

225πE
2
QðlpRN

Þ�lpð1 − 3
ffiffiffi
2

p
Mlp þ 4l2pQ̃

2
pÞdl0

ð½1þ 20α
225πE

2
QðlpRN

Þ�l2pfðlpÞ − ½1þ 20α
225πE

2
Q−
�l02fðl0ÞÞ3=2 : ð86Þ

VII. TIME DELAY

In this section, we integrate the geodesic equation for the
t coordinate, which allows us to derive the exact equation of
the arrival time. By means of Eq. (46), the geodesic
equation, Eq. (30), integrates as follows,

t¼2
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p
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Equation (87) is the exact equation of arrival time.

We are interested in the case in which two light rays from
the same source reach the observer, i.e., when two images
with their respective image angle ψ are observed. The
difference between the time of arrival of each light ray, Δt,
corresponds to the exact time delay.
In Fig. 9 the exact time delay as a function of β is

presented. As the distance of the source from the optical
axis increases, bigger is the time delay. When the source,
the lens, and the observer lie along the same line, Δt ¼ 0,
as expected from symmetry. The EEH effect on the time
delay is barely visible when compared with the RN case,
since these light rays do not wind around the black hole.
For more distant observers, the difference is even smaller.

VIII. SUMMARY AND CONCLUSIONS

We consider the effective QED theory after one-loop,
i.e., the weak field Euler-Heisenberg nonlinear electrody-
namics [8], where the vacuum is treated as a specific type of
medium, the polarizability properties of which are deter-
mined by the clouds of virtual charges surrounding the real
ones. The Einstein-Euler-Heisenberg generalization of the
Reissner-Nordström black hole solution includes the
screening effect of the black hole charge [13,15]. We study
the light trajectories by means of the effective Plebański
pseudometric, which contains the energy-momentum ten-
sor of the nonlinear Euler-Heisenberg electromagnetic field
[5]. We derive the exact lens equation for the EEH solution,
following Frittelli et al. [23–25].
The geodesic equations are written in terms of the

incident angle of the light ray at the observer’s position,
as well as in terms of the azimuthal angle that the direction of
the light ray makes around the optical axis. We analyze the
distance to the point of closest approach, with the light ring
distance being its critical value. We integrate the geodesic
equations for the angular coordinates on the x–z plane. This

FIG. 9. The exact time delay in seconds as a function
of the source angle β in radians, for the EEH black hole
(continuous line), and that for the RN case (dashed line) are
displayed. The parameters are M ¼ 104 M⊙, Q ¼ 0.8M, r0 ¼
rs ¼ 30M.
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integration is generalized through a rotation to an arbitrary
initial point by using the complex stereographic variables.
We obtain the EEH exact lens equation and compare it

with the corresponding thin-lens equations. The differences
with the linear RN case are discussed. The effect of the
Euler-Heisenberg nonlinear electrodynamics becomes rel-
evant for light rays which approach closer to the light ring,
when the bending angle increases to infinity. Although the
difference is barely visible, due to the large distances
involved, it would correspond to a different real location of
the source. The effects increase for observers closer to the
lens, however, they are not realistic observers.
We also study the shadow of the EEH black hole, which

lays always inside the RN one. We compute the angular-
diameter distance related to observable quantities, like the
luminosity, the apparent brightness of the source, the
redshift of the image, and the relative magnification. We

analyze the exact time delay and conclude that the EEH
effect is not relevant.
It is worthwhile to stress the fact that the QED pertur-

bations induced by the EEH metric on the shadow or on the
bending angle, would be observable if one has accurate
measurements of the mass of the black hole and distance to
the observer. Presently, the improvements in observational
capabilities and the combination of lensing measurements
with other observational programs, such as orbital dynamic
observations and x-ray heat maps (gas modeling), will
provide further insights.
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