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Inspired by the observations of the supermassive black hole M87* by the Event Horizon Telescope
(EHT), a remarkable surge in black hole physics is to use the black hole shadow’s observables to
distinguish between general relativity and modified theories of gravity, which could also help to reveal the
astrophysical nature of the central black hole in the EHT observation. In this paper, we study a charged
rotating black hole in conformal gravity, in which the term related to the charge has different falloffs from
the usual Kerr-Newman (KN) black hole. We investigate the spacetime properties including the horizons,
ergospheres, and photon regions; then, we show the boundary of the black hole shadow and investigate its
characteristic observables. These features closely depend on the spin and charge parameters, which are
compared with those in Kerr and KN black holes. Then, presupposing that M87* is a charged rotating black
hole in conformal gravity, we constrain the black hole parameters via the observational constraints from
EHT. We find that the constraints on the inferred circularity deviation (ΔC≲ 0.1) and shadow axial ratio
(1 < Dx ≲ 4=3) for M87* are satisfied for the entire parameter space of the charged rotating black hole in
conformal gravity. However, the shadow angular diameter θd ¼ 42� 3 μas gives an upper bound on the
parameter space. Our findings indicate that the current charged rotating black hole in conformal gravity
could be a candidate for astrophysical black holes. Moreover, the EHTobservation of the axial ratioDx may
help us to distinguish between a Kerr black hole and the current charged rotating black hole in conformal
gravity in some parameter space.
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I. INTRODUCTION

Since Bardeen addressed that the shadow of a Kerr black
hole would be distorted by its spin [1], in contrast to the
perfect circular shadow of a Schwarzschild black hole [2],
the study of the shadow of a rotating black hole has
blossomed with the motivation that the trajectories of light
near a black hole and its shadow are closely connected with
the essential properties of the background theory of gravity.
Thus, physicists can use a black hole’s shadow to reveal
its near-horizon features via analytical investigations or
numerical simulation (see Refs. [3–31] and references
therein). Moreover, the size and distortion of a shadow
[32,33], which can be calculated via its boundary, has been
widely investigated to estimate a black hole’s parameters in
both general relativity (GR) and modified theories of gravity
(MG), with or without additional sources surrounding the

black hole [34–53]. This can be seen as one way that black
hole shadows could distinguish GR and other theories of
gravity, or as a way to acquire information on the surround-
ing matter, though it was found that these theoretical
features of shadows are usually not sufficient to distinguish
black holes in different theories or confirm the details of the
surrounding matter. More details about black hole shadows
can be found in Refs. [54,55].
More recently, the Event Horizon Telescope (EHT)

Collaboration captured the first image of the supermassive
black hole M87*, making black hole shadows a physical
reality [56–58]. The shadow of M87* from the EHT
observation has a deviation from circularity ΔC≲ 0.1,
an axis ratio 1 < Dx ≲ 4=3, and an angular diameter
θd ¼ 42� 3 μas. These observations are consistent with
the image of a Kerr black hole predicted from GR, but they
cannot rule out Kerr or non-Kerr black holes in MG. Thus,
the EHT observations of M87*’s shadow could be used to
test black holes in the strong gravitational field regime, as*xmeikuang@yzu.edu.cn
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the observational data could constrain the black hole
parameters in MG and even distinguish different theories
of gravity [47–53,59–61].
In this work, we mainly study the aspects of shadows for

a charged rotating black hole in conformal gravity char-
acterized by the spin and charge parameters, in which the
charge-related term has different falloffs from the usual
Kerr-Newman (KN) black hole. We show more details
about this black hole geometry in the next section. The
charged rotating black hole we consider here was intro-
duced in Ref. [63] as a solution in conformal gravity, with
the Lagrangian

L ¼ 1

2
γCμνρσCμνρσ þ

1

3
γF2; ð1Þ

which includes the Weyl-squared term minimally coupled
to the Maxwell field. Here Cμνρσ is the Weyl tensor and
F ¼ dA is the strength of the Maxwell field. Conformal
gravity was introduced by Weyl as an extension of GR [64]
and later studied by ’t Hooft and many others in
Refs. [65–68]. The analysis of the ghost instability and
unitarity of conformal gravity was studied in Refs. [69,70].
Different from GR, in conformal gravity dark matter or
dark energy is not necessary to solve several cosmological
and astrophysical problems, and readers can refer to
Ref. [71] for more details on this comparison. In addition,
Maldacena addressed that conformal gravity would reduce
to Einstein gravity for a certain boundary condition and
there could be a holographic connection between the two
theories of gravity [72]. Such advantageous features indi-
cate that the contents of conformal gravity deserve to be
explored further. One natural direction is black hole
shadows, as the recent progress of the EHT opens a new
window to test the strong-field regime.
The shadow boundary of a Kerr-like metric in conformal

gravity was investigated in Ref. [73]. Here, we consider the
charged rotating black hole geometry and extensively study
the aspects of its shadow. Starting from the null geodesics,
we study the photon regions and then figure out the shadow
boundary of the black hole. We also analyze the character-
istic observables, i.e., the shape, size, and distortion of the
shadows, and estimate the black hole parameters from
given observables. Then, we consider M87* as a charged
rotating black hole in conformal gravity and constrain its
black hole parameters using the EHT observations.
The remainder of this paper is organized as follows.

In Sec. II we study the horizons, static limit, and other
spacetime properties of a charged rotating black hole in
conformal gravity. In Sec. III we obtain the photon region
by analyzing the null geodesics. In Sec. IV, with the use of
Cartesian coordinates, we show the shadow boundary with
various values of the parameters for observers at a finite
distance. In Sec. V we investigate the size and deformation
of the black hole shadow for an infinitely distant observer

and address the parameter estimation using the shadow’s
observables, from which we also calculate the energy
emission rate. In Sec. VI, by presupposing that M87* is
a charged rotating black hole in conformal gravity, we
constrain the black hole parameters using the EHT obser-
vations. The last section presents our closing remarks.

II. CHARGED ROTATING BLACK HOLE
IN CONFORMAL GRAVITY

Starting from Eq. (1), a rotating charged black hole in
conformal gravity was constructed in Ref. [63] with the
metric

ds2 ¼ Σ
�

1

Δr
dr2 þ dϑ2

�
þ 1

Σ
ððΣþ aχÞ2sin2ϑ−Δrχ

2Þdφ2

þ 2

Σ
ðΔrχ − aðΣþ aχÞsin2ϑÞdtdφ

−
1

Σ
ðΔr − a2sin2ϑÞdt2; ð2Þ

where

Σ ¼ r2 þ a2cos2ϑ; χ ¼ asin2ϑ;

Δr ¼ r2 − 2mrþ a2 þ βr3

6m
: ð3Þ

Here, m, β ¼ p2 þ q2, and a are the mass, charge, and
rotation parameters, respectively. When the charge param-
eter vanishes, the metric reduces to the well-known Kerr
black hole. This black hole is different from the usual KN
black hole where the charge term in Δr is simply a constant
β, instead of the cubed term βr3=6m in conformal gravity.
We note that, compared to the expression for the rotating
charged solution in Ref. [63], here we focus on the case
where the integral constant Λ is zero.1

A. Black hole horizons

It is known that Σ ≠ 0 and grr ¼ 0 can determine a black
hole’s horizons, which correspond to the positive roots of

Δr ¼ r2 − 2mrþ a2 þ βr3

6m
¼ 0: ð4Þ

There are three roots to the above equation. Depending on
m, a, and β, the three roots can have two real positive
values, one real positive value, or no real positive value.
The three cases correspond to the metric (2) describing a
nonextremal black hole with event horizon ðrþÞ and
Cauchy horizon ðr−Þ, an extremal black hole with event
horizon rex ¼ rþ ¼ r−, or no black hole sector, respec-
tively. When β is smaller than the critical value from the
extremal condition

1We thank professor Hai-Shan Liu for reminding us of this
point.
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βex ¼
4ð8m4 − 9a2m2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ð4m2 − 3a2Þ3

p
Þ

9a4
; ð5Þ

the metric describes a nonextremal black hole with
0 < r− < rþ. A naked singularity emerges when β > βex
because in this case none of the three roots have a real
positive value. When β ¼ 0 the horizons r� reduce to
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
, with jaj ≤ m (Kerr case). The extremal

value βex is different from that for a KN black hole
(βKNex ¼ m2 − a2). However, for a → 0 we have
βex → þ∞, which indicates that the black hole is always
nonextremal, in contrast to the finite value βKNex ¼ m2 for a
Reissner-Nordström black hole. The above scenarios in
ða; βÞ parameter space are shown in Fig. 1, where the case
for a KN black hole is also shown for comparison.
Note that here all parameters can be rescaled to be

dimensionless, depending on their dimensions related tom;
for example, a=m, r=m, and β are dimensionless quantities.
Throughout this article these quantities are dimensionless,
and for simplicity we set m ¼ 1 in the calculations unless
stated otherwise.
The explicit dependences of the horizons on the param-

eters are shown in Fig. 2. It is obvious that as β or a
increases, rþ decreases while r− increases; as the extremal
condition (5) is satisfied, rþ and r− converge to rex which
decreases as β increases but increases as a increases (see the
solid black curves). Here the effects of the charge and spin
parameters on rþ and r− are similar to that in KN spacetime
where, however, the extremal horizon is rKNex ¼ m and
independent of the charge and spin parameters.

B. Static limit surface

For a rotating black hole, the event horizon of the black
hole does not coincide with the static limit surface, at which

the asymptotical time-translational Killing vector is null
and therefore we have

gtt ¼ −
1

Σ
ðΔr − a2sin2ϑÞ ¼ 0: ð6Þ

Depending on the values of a, β, and ϑ, there are three
possibilities for the roots of the above equation: no real
positive root, a double real positive root, and two real
positive roots. We denote the real positive roots as rSL−

and
rSLþ , with rSL−

< rSLþ . The explicit expressions for the
solutions are so complicated that we do not show them
here; instead, we plot their behaviors in Fig. 3. From the
figures we can see that there exists at least one border on
which the two static limit surfaces coincide, rSL−

¼ rSLþ ,
i.e., the extremal case with one real positive root.
Here we will not explicitly describe the dependence of

rSL� on the parameters a, β, and ϑ. What we really want to
show is that the ergoregion of this rotating black hole is
bounded between rþ < r < rSLþ and r− < r < rSL−, in
which the timelike killing vector becomes spacelike
(gtt > 0). In particular, when Σ ¼ 0, which requires both
r ¼ 0 and a cosϑ ¼ 0, the spacetime has a true physical
singularity. Apart from this ring singularity, the sphere r ¼ 0
is regular. Besides, for gφφ < 0, the spacetime violates the
causality condition because of the closed timelike curves.
More detailed exhibitions of the horizons, ergoregions,
singularity, and causality-violating regions will be presented
later, together with the photon regions.

III. NULL GEODESICS AND PHOTON REGIONS

The propagation of light near a black hole is significant
in both theoretical physics and astrophysics, particularly for
circular orbits. For photons, circular orbits outside the event

FIG. 1. Parameter space ða; βÞ of a charged rotating black hole in conformal gravity (left) and a KN black hole (right). The red curves
correspond to the extremal cases which separate black holes (blue regions) from naked singularities (white regions).
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horizon of a black hole are usually unstable. This indicates
that a slight perturbation can make the photons fall into the
black hole or escape to infinity; the latter can constitute a
photon ring that confines the black hole image for distant
observers. Therefore, we start from the geodesics of the
photons in order to analyze the photon regions and the
shadow images in the charged rotating black hole space-
time (2) in conformal gravity.
We first consider particles with mass μ, whose Lagrangian

of which reads L ¼ 1
2
gμν _xμ _xν. Here a dot represents a

derivative with respect to the affine parameter λ, is which
related to the proper time via τ ¼ λμ. Following Ref. [74],
we introduce the Hamilton-Jacobi equation

H ¼ −
∂S
∂λ

¼ 1

2
gμν

∂S
∂xμ

∂S
∂xν

¼ −
1

2
μ2; ð7Þ

whereH and S are the canonical Hamiltonian and the Jacobi
action. With the conserved quantities

E≔−
∂S
∂t

¼−gφt _φ− gtt_t and Lz ≔
∂S
∂φ

¼ gφφ _φþ gφt_t; ð8Þ

the Jacobi action can be separated as

S ¼ 1

2
μ2λ − Etþ Lzφþ SrðrÞ þ SϑðϑÞ; ð9Þ

where E and Lz are the constants of motion associated
with the energy and angular momentum of the particle,
respectively.
Then, focusing on the photons (μ ¼ 0), we obtain four

first-order differential equations for geodesic motion:

_t ¼ χðLz − EχÞ
Σsin2ϑ

þ ðΣþ aχÞððΣþ aχÞE − aLzÞ
ΣΔr

; ð10Þ

_φ ¼ ðLz − EχÞ
Σsin2ϑ

þ aðEðaχ þ ΣÞ − aLzÞ
ΣΔr

; ð11Þ

Σ2 _ϑ2 ¼ K −
ðEχ − LzÞ2

sin2ϑ
≕ΘðϑÞ; ð12Þ

Σ2 _r2 ¼ ððΣþ aχÞE − aLzÞ2 − ΔrK≕RðrÞ; ð13Þ

where K is the Carter constant. Instead of the complete
solution to the above equations, we are more interested in
the photon region, which is filled by the null geodesics with

FIG. 2. Event horizon rþ (solid curve) and Cauchy horizon r− (dashed curve) with various values of a and β. The solid black curve
represents the extremal case where the event horizon and Cauchy horizon coincide.

FIG. 3. Static limit surfaces with fixed ϑ, a, and β, respectively, where the red surface denotes rSLþ while the blue surface denotes rSL−
.
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circuit orbits. For convenience, we introduce the abbrevia-
tions

LE ≡ Lz

E
; KE ≡ K

E2
: ð14Þ

Spherical orbits require _r ¼ 0 and ̈r ¼ 0, which can be
fulfilled by RðrÞ ¼ 0 and R0ðrÞ ¼ 0 according to Eq. (13).
Subsequently, the constants of motion KE and LE are given
as

KE ¼ 16r2Δr

ðΔ0
rÞ2

; aLE ¼ ðΣþ aχÞ − 4rΔr

Δ0
r
; ð15Þ

where a prime denotes a derivative to r. Substituting the
above expression into Eq. (12), we find that its non-
negativity can give the condition for the photon region,

ð4rΔr − ΣΔ0
rÞ2 ≤ 16a2r2Δrsin2ϑ: ð16Þ

In this region, for each point with coordinates ðrp; ϑpÞ,
there is a null geodesic that stays on the sphere r ¼ rp,
along which ϑ can oscillate between the extremal values
determined by the equality in Eq. (16), while φ is governed
by Eq. (11). With respect to radial perturbations, the
spherical null geodesic at r ¼ rp can be either unstable
or stable depending on the sign of R00ðrpÞ, which can be
derived from Eqs. (13) and (15) as

R00ðrÞ
8E2

ðΔ0
rÞ2 ¼ 2rΔrΔ0

r þ r2ðΔ0
rÞ2 − 2r2ΔrΔ00

r : ð17Þ

The condition R00ðrpÞ > 0 indicates that the spherical null
geodesic is unstable, while R00ðrpÞ < 0 indicates that it is
stable.
The photon regions of a charged rotating black hole

in conformal gravity are shown in the ðr; ϑÞ plane in
Figs. 4 and 5, where the unstable photon orbits (orange
region) and stable photon orbits (yellow region) are dis-
tinguished. Here to cover all the cases including r > 0,
r ¼ 0, and r < 0, we shall use two different scales,
following Ref. [75]. The radial coordinate is scaled as
m exp ðr=mÞ in the region r < 0 and as rþm in the region
r > 0; hence we use the black dashed circle to denote the
throat at r ¼ 0. Moreover, the blue region representsΔr ≤ 0
and its boundaries indicate the black hole horizons. The
upward- and downward-banded regions represent the ergo-
sphere and the causality-violating regions, respectively. The
red dot indicates the singularity.
In the figures, we fix a ¼ 0.5 and 0.95, respectively, and

change β ¼ ♯βex, where ♯ ∈ ð0; 0.3; 0.6; 1Þ and βex is the
corresponding extremal value (5). As in a Kerr black hole
[75], we see an exterior photon region outside the outer
horizon and an interior photon region inside the inner
horizon, which are symmetric with respect to the equatorial
plane. All photon orbits are unstable in the exterior photon
region, while there exist both stable and unstable orbits in
the interior photon region. The exterior and interior photon
regions grow as a increases, but shrink as β increases.
Moreover, the dependences of the unidirectional membrane
region and the ergosphere region on the black hole
parameters are also obvious and consistent with the analysis
in the previous section. Also, the causality-violation region

FIG. 4. Photon regions with a ¼ 0.5, accompanied by the unidirectional membrane region, the ergosphere region, and the causality-
violation region. The bottom plots show magnified versions of the inner parts of the upper plots.
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with negative r always exists, and for small a and large
enough β we see an additional causality-violating region
that is symmetric and extends from the outer horizon to a
finite region depending on β.

IV. BLACK HOLE SHADOWS

Since the photon region determines the boundary of the
black hole shadow, in this section we construct the shadow
of the charged rotating black hole in conformal gravity.

A. Coordinates setup

For the light rays that issue from the position of an
observer into the past, the initial direction is determined by
two angles in the observer’s sky: a colatitude angle and an
azimuthal angle. Then, we consider an observer at position
ðro; ϑoÞ in Boyer-Lindquist coordinates. To fix the boun-
dary of shadow, we choose the orthonormal tetrad [75]

e0 ¼
ðΣþ aχÞ∂tþ a∂φffiffiffiffiffiffiffiffiffi

ΣΔr
p

����
ðro;ϑoÞ

; e1 ¼
ffiffiffi
1

Σ

r
∂ϑjðro;ϑoÞ;

e2 ¼ −
∂φþ χ∂tffiffiffi
Σ

p
sinϑ

����
ðro;ϑoÞ

; e3 ¼ −
ffiffiffiffiffiffi
Δr

Σ

r
∂rjðro;ϑoÞ ð18Þ

at the observation event in the domain of outer commu-
nication. In this tetrad set, e0 is to be interpreted as the four-
velocity of our observer. For this observer, e3 gives the
spatial direction towards the center of the black hole. In
addition, e0 � e3 are tangential to the principle null con-
gruences of our metric. In this way, a linear combination of
ei is tangent to a light ray sðλÞ ¼ ðtðλÞ; rðλÞ;ϑðλÞ;φðλÞÞ,
such that we have

∂λ ¼ _r∂rþ _ϑ∂ϑþ _φ∂φþ _t∂t

¼ αsð−e0þ sinθcosψe1þ sinθ sinψe2þ cosθe3Þ; ð19Þ

where the scalar factor can be determined by inserting
Eq. (18) into Eq. (19) as

αs ¼
aLz − ðΣþ aχÞEffiffiffiffiffiffiffiffiffi

ΣΔr
p

����
ðro;ϑoÞ

; ð20Þ

and it is easy to see that the direction θ ¼ 0 points to the
black hole. Moreover, here we have introduced θ and ψ
which are the aforementioned two angles, i.e., the celestial
coordinates in the observer’s sky; see the left panel of
Fig. 6. Further comparing the coefficients of ∂t and ∂r, we
find that

sinψ ¼ LE−χffiffiffiffiffiffiffi
KE

p
sinϑ

����
ϑ¼ϑo

; sinθ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ΔrKE

p
Σþaχ−aLE

����
r¼ro

: ð21Þ

Since the boundary of the shadow could correspond to the
light rays which asymptotically approach a spherical null
geodesic, so such light ray must have the same KE and LE
as the limiting spherical null geodesic. Therefore, recalling
Eq. (21), we have

KE ¼
16r2Δr

ðΔ0
rÞ2

����
r¼rp

; aLE ¼ ðΣþaχÞ− 4rΔr

Δ0
r

����
r¼rp

; ð22Þ

FIG. 5. Photon regions with a ¼ 0.95, accompanied by the unidirectional membrane region, the ergosphere region, and the causality-
violation region.

FIG. 6. These figures are taken from Ref. [55]. The left panel
shows the definition of the celestial coordinates θ and ψ on the
observer’s sky. The right panel shows the stereographic projec-
tion of the celestial sphere onto a plane.
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where rp is the radius coordinate of the limiting spherical
null geodesic.
Therefore, the boundary of the black hole shadow

depends on rp in the form of ðθðrpÞ;ψðrpÞÞ. Since the
points ðθ;ψÞ and ðθ; π − ψÞ have the same KE and LE, the
shadow is symmetric with respect to the horizontal axis.
For a > 0, θ reaches its maximum and minimum values
along the boundary curve at ψ ¼ −π=2 and ψ ¼ π=2,
respectively, which give us the corresponding rmax

p and rmin
p .

Putting Eq. (22) into Eq. (21) with ψ ¼∓ π=2, rmax =min
p can

be solved via

ð4rΔr − ΣΔ0
rÞ ∓ 4ar

ffiffiffiffiffiffi
Δr

p
sin ϑjðr¼rp;ϑ¼ϑoÞ ¼ 0: ð23Þ

Note that for a ¼ 0, the above method that parametrizes the
shadow boundary by rp does not work.
Then, following Ref. [75], we can apply the stereo-

graphic projection (see the right panel of Fig. 6) to
transform the celestial coordinates ðθðrpÞ;ψðrpÞÞ into
the standard Cartesian coordinates ðXðrpÞ; YðrpÞÞ,

XðrpÞ ¼ −2 tan
�
θðrpÞ
2

�
sinψðrpÞ;

YðrpÞ ¼ −2 tan
�
θðrpÞ
2

�
cosψðrpÞ: ð24Þ

Then we can figure out the boundary of the shadow on a
two-dimensional plane, observed by our chosen observer
with four-velocity e0. Note that the range of the inclination
angle is ϑo ∈ ½0; π�, and ϑo ¼ 0ðπÞ corresponds to an
observer in the north (south) direction while ϑo ¼ π=2
corresponds to an observer in the equatorial plane of the
black hole. Due to the symmetry, we consider ϑo ∈ ½0; π=2�
in the following.

B. Shadow for observers at finite distance

First, we consider an observer located at a finite distance
with position ðro; ϑoÞ. We know that for a nonrotating black
hole the shape of the shadow is a perfect circle due to the

spherically symmetry if the system, and rotation will deform
this shape. In Figs. 7 and 8 we show the boundary of the
shadow for a charged rotating black hole in conformal
gravity.
The effects of the parameter β with different values of a

are shown in Fig. 7. It is clear that both a and β enhance the
deformation of the shadow. This means that the shadow of
the charged rotating black hole in conformal gravity with
parameters ða; βÞ and that of the Kerr black hole with a
certain spin may be coincident. The influence of the charge
parameter β in conformal gravity on the shadow is quali-
tatively similar to that of the KN case [55,75–77]. In Fig. 8
we fix a ¼ 0.95 and β ¼ 0.999βex. The left panel shows the
influence of the viewing angle of the observer, which
indicates that the shadow remains circular for a polar
observer with ϑo ¼ 0, while the shadow is maximally
deformed for an observer in the equatorial plane with
ϑo ¼ π=2. The right panel shows the influence of the
distance between the observer and the black hole on the
shadow, where the shadow is smaller for a farther observer,
as expected.

V. SHADOW OBSERVABLES
AND PARAMETER ESTIMATION

To carefully study how the shadow observables are
affected by the model parameters, we consider black hole
shadows observed at spatial infinity, i.e., ro ≫ m. In this
case, as addressed in Ref. [55], the coordinates in Eq. (24)
can be transformed to ᾱ ¼ roX − a sin ϑo and β̄ ¼ roY,
which are derived as

ᾱðrpÞ ¼ −
ξðrpÞ
sinϑo

;

β̄ðrpÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðrpÞ þ a2cos2ϑo − ξðrpÞ2cot2ϑo

q
; ð25Þ

where ξðrpÞ ¼ LEjrp and η ¼ KE − ðLE − aÞ2jrp . Here

ðᾱ; β̄Þ are Bardeen’s two impact parameters with dimension
[Length] describing the celestial sphere [78].

FIG. 7. Black hole shadows seen by an equatorial observer ðϑo ¼ π
2
Þ at ro ¼ 5. Plots from left to right correspond to a ¼ 0.1, a ¼ 0.5,

and a ¼ 0.95. In each plot the black, blue, red, and green curves correspond to β ¼ ð0; 0.3; 0.6; 0.999Þβex.
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Subsequently, we show the boundary of the shadow
for an observer at spatial infinity in Figs. 9 and 10, in
which the axes labels ðX; YÞ represent ðᾱ=m; β̄=mÞ. We see
that the boundary of the black hole shadow closely
depends on the parameters a, β, and ϑo, and the rules
are similar as those in the case of which the observer is at
finite distance. We note that the black hole parameters are
expected to be associated and estimated from observa-
tions. Though the image of M87* is mostly connected
with a Kerr black hole, our results show that the presence
of additional parameter also leads to the distortion of the
shadow. Thus, here we shall study how to estimate the
black hole parameters from the shadow observables
(shadow size and distortion), rather than simply describe
the properties of shadow.

A. Shadow size and deformation

To describe the distortion and size of a charged rotating
black hole in conformal gravity, we first study two
characteristic observables, Rs and δs, which were proposed

by Hioki and Maeda [32]. Here Rs is the radius of the
reference circle for the distorted shadow and δs is the
deviation of the left edge of the shadow from the reference
circle boundary. For convenience, we denote the top,
bottom, right, and left of the reference circle as ðXt; YtÞ,
ðXb; YbÞ, ðXr; 0Þ, and ðX0

l; 0Þ, respectively, and ðXl; 0Þ is
the leftmost edge of the shadow [79]. Subsequently, the
definitions of the characteristic observables are [32]

Rs ¼
ðXt − XrÞ2 þ Y2

t

2jXr − Xtj
; δs ¼

jXl − X0
lj

Rs
: ð26Þ

From the density plots of Rs and δs in Figs. 11 and 12,
we see that the black hole parameters in the conformal
gravity indeed affect the size and shape of the shadow.
Figure 11 shows that with the increase of the charge
parameter β, the radius Rs decreases rapidly. It is slightly
affected by the spin parameter a and the inclination angle
ϑo, and their effects are enlarged in the left panel of Fig. 13,
from which we find that Rs slightly decreases as a increases

FIG. 8. Left: black hole shadows with ro ¼ 5 and different viewing angles. The shadow boundaries from left to right have
ϑo ¼ 0; π=8, π=4, and π=2, respectively. Right: black hole shadows with ϑo ¼ π=2 and ro ¼ 5, 10, 20, 50 for boundaries from outer to
inner. In both panels we fix a ¼ 0.95 and β ¼ 0.999βex.

FIG. 9. Black hole shadow seen by an observer at infinite distance and ϑ0 ¼ π=2. We fix a ¼ 0.1, a ¼ 0.5, and a ¼ 0.95 from left to
right. In each panel the black, blue, red, and green curves correspond to β ¼ ð0; 0.3; 0.6; 0.999Þβex.
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while it increases as ϑo increases. On the other hand,
Fig. 12 shows that by increasing a or ϑo, the distortion
character δs increases which means that the shadow is more
distorted, as expected. Moreover, when a or ϑo is small, the
effect of β on δs is small, but when they are large enough, β
has a profoundly incremental effect. The above analysis
further implies that, compared to a Kerr black hole, the
shadow radius of this charged rotating black hole in
conformal gravity is always smaller but more distorted,
which is similar to that of a KN black hole [48].
Rs and δs may not accurately describe the shadow of some

irregular black holes as they require the shadow of black
holes to have a certain symmetry. Then, to characterize

shadows of any shape, Kumar and Ghosh proposed another
two characteristic observables—the shadow area A and
oblateness D—which are defined as [33]

A ¼ 2

Z
YðrpÞdXðrpÞ ¼ 2

Z
rmaxp

rminp

�
YðrpÞ

dXðrpÞ
drp

�
drp;

D ¼ Xr − Xl

Yt − Yb
: ð27Þ

It was found in Ref. [37] that D ¼ 1 for a Schwarzschild
black hole and

ffiffiffi
3

p
=2 ≤ D < 1 for a Kerr black hole as

viewed by an equatorial observer, where D ¼ ffiffiffi
3

p
=2 is for

the extremal case. In Figs. 14 and 15 we show the density
plots of A and D for the shadow of a charged rotating black
hole in conformal gravity. The area A monotonously
decreases as β increases. The influence of a and ϑo is
enlarged in the right panel of Fig. 13, which shows that the
area slightly decreases as the spin increases while the effect
of ϑo is negligible. As β increases, the oblateness D
becomes smaller which is significant near the extremal
case. In addition, as a or ϑo increases with the other fixed,
D also has decremental tendency. The above analysis also
implies that the shadow of a charged rotating black hole in
conformal gravity is smaller and more distorted than that of
a Kerr black hole, which matches our aforementioned
finding.
So far, we have explored how the black hole parameters

influence the two couples of shadow observables, i.e.,
ðRs; δsÞ and ðA;DÞ. Then, with given values of ðRs; δsÞ or
ðA;DÞ, we can find their contour intersection in the a-β
plane to estimate the parameters of a charged rotating black
hole in conformal gravity. This method of black hole
parameter estimation from its shadow observables was
implemented in Refs. [32,33,47,53]. Here, we fix ϑo ¼ π=2
and show the contour plots of Rs and δs as well as A and D
in Fig. 16, in which the intersection point of RsðAÞ and

FIG. 10. Black hole shadows seen by an observer at
infinite distance for different inclination angles: ϑo ¼ 0
(black), π=8 (blue), π=4 (red), and π=2 (green). We fix a
¼ 0.95 and β ¼ 0.999βex.

FIG. 11. Density plots for the radius of the reference circle Rs as a function of a and β. Here we fix ϑo ¼ π=2 in the left panel and
a ¼ 0.4 in the right panel.
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FIG. 13. Three-dimensional plots of radius Rs (left) and area A (right) of the black hole shadow. Here we fix β ¼ 0.1.

FIG. 12. Density plot of the distortion δs. Here we fix ϑo ¼ π=2 in the left panel and a ¼ 0.4 in the right panel.

FIG. 14. Density plots of the shadow area A. Here we fix ϑo ¼ π=2 in the left panel and a ¼ 0.4 in the right panel.
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δsðDÞ uniquely determines the black hole parameters a
and β.

B. Energy emission rate

Apart from being used to estimate the model parameters,
the shadow observables are also helpful to predict various
interesting astronomical phenomena [33,39,47]. In this
subsection we analyze the energy emission rate for a
charged rotating black hole in conformal gravity using
the shadow observables. For an observer at infinite dis-
tance, the shadow of a spherically symmetric black hole
coincides with a high-energy absorption cross section,
which oscillates around a constant limiting value δlim. It
was addressed in Ref. [35] that δlim is connected to the
black hole shadow via

δlim ≈ πR2
s ; ð28Þ

with Rs defined in Eq. (26); hence, the energy emission rate
for a rotating black hole can be calculated as

d2EðϖÞ
dϖdt

¼ 2π2R2
s

eϖ=T − 1
ϖ3; ð29Þ

where ϖ is the photon frequency and T is the Hawking
temperature at the event horizon of the black hole.
The energy emission rate in this proposal has been

widely studied in GR and MG. Now we intend to discuss
the energy emission rate for the charged rotating black hole
(2), the Hawking temperature of which is

T ¼ −6a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ða2 þ r2þÞ2 þ 12r4þβ

p
12πrþða2 þ r2þÞ

. ð30Þ

In Fig. 17 we present the behavior of the energy emission
rate as a function of photon frequency. The left and middle

FIG. 15. Density plots of the oblateness D. Here we fix ϑo ¼ π=2 in the left panel and a ¼ 0.4 in the right panel.

FIG. 16. Left: the contour plot for shadow observables Rs (red) and δs (black) in the parameter plane ða; βÞ of a charged rotating black
hole in conformal gravity. Right: the contour plot for shadow observables A (red) and D (black).
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panels show that the peak of the emission rate decreases as
both β and a increase and the peak shifts to lower
frequency, while the right panel shows that the inclination
angle has the opposite effect on the emission rate.

VI. CONSTRAINTS FROM EHT
OBSERVATIONS OF M87*

The black hole image of M87* photographed by the EHT
Collaboration is crescent shaped, and its deviation from
circularity in terms of the root-mean-square distance from
the average radius of the shadow isΔC≲ 0.1. The axis ratio
is 1 < Dx ≲ 4=3 and the angular diameter is θd ¼ 42�
3 μas [56–58]. The preliminary analysis of the image of
M87* taken by the EHT Collaboration referred to a Kerr
black hole whose parameters are constrained by the above
observations, but the results cannot rule out the alternative
black holes in GR or the rotating black holes in MG. Thus,
the shadow observables ΔC, Dx, and θd can also be used to
constrain the parameters of black holes in MG, and some
attempts can be seen in Refs. [47–53,59–62].
In this section we presuppose that M87* is a rotating

charged black hole in conformal gravity and use the EHT
observations to constrain the parameters a and β. To this
end, we first review the definitions of ΔC, Dx, and θd, and
show their density plots in the parameter space ða; βÞ.
To describe the circularity deviation ΔC, we have to

recall from Sec. VA that a distorted black hole shadow is
always compared to a reference circle. The geometric
center of the shadow ðXc; YcÞ is connected with the edges
of the shaped boundary via ðXc ¼ XrþXl

2
; Yc ¼ 0Þ, and with

this point as the origin, the boundary of a black hole
shadow can be described by the polar coordinates
ðϕ; RðϕÞÞ, where

ϕ¼ tan−1
�
Y −YC

X−Xc

�
; RðϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX−XcÞ2þðY −YcÞ2

q
;

ð31Þ

while the average radius of the shadow is

R̄ ¼ 1

2π

Z
2π

0

RðϕÞdϕ: ð32Þ

Then, the circularity deviation ΔC, which measures the
deviation from a perfect circle, is defined by [47]

ΔC ¼ 1

R̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2π

Z
2π

0

ðRðϕÞ − R̄Þ2dϕ
s

: ð33Þ

The axis ratio is given by [15]

Dx ¼
1

D
¼ Yt − Yb

Xr − Xl
; ð34Þ

where the oblateness D has been defined in Eq. (27). In
fact, Dx can be seen as another way of defining the circular
derivation since the emission ring reconstructed in the EHT
images is close to circular with an axial ratio of 4∶3, which
indeed also corresponds to ΔC ≲ 0.1 [56].
Another observable from the EHT Collaboration is the

angular diameter of the shadow, which is defined as [39]

θd ¼ 2
Ra

d
; ð35Þ

where Ra ¼
ffiffiffi
A
π

q
[with A defined in Eq. (27)] is known as

the shadow areal radius and d is the distance of M87* from
the Earth.
It is obvious from Eqs. (33), (34), and (35) that ΔC, Dx,

and θd depend on the black hole parameters. Assuming
that M87* is a charged rotating black hole in conformal
gravity, we can evaluate them for the metric (2) and use
the EHT observations ΔC≲0.1, Dx∈ð1;4=3� and θd∈
½39;45�μas to give constraints on the parameters a and β.
In addition, we know that the shadow is maximally
deformed at large inclination angle ϑo ¼ π=2 ¼ 90°, while
the inclination angle (with respect to the line of sight) is
estimated to be ϑo ¼ 17° in the M87* image if considering
the orientation of the relativistic jets [80]. Thus, we show our
computational results for both ϑo ¼ 90° and ϑo ¼ 17°.

FIG. 17. Distribution of the energy emission rate in terms of the photon frequency ϖ with various values of the parameters β, ϑo,
and a.
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We give the density plots of the circularity deviation ΔC
in Fig. 18, which shows that the shadows of a charged
rotating black hole in conformal gravity satisfy ΔC ≲ 0.1
for all theoretically allowed parameters. Moreover, we
also show the density plots of Dx in Fig. 19. We see that
for the entire parameter space, the axial ratio is within the
observational constraint Dx ∈ ð1; 4=3�, which is consistent
with the conclusion from ΔC≲ 0.1, as expected. In
addition, in order to compare with Dx ∈ ð1; 2 ffiffiffi

3
p

=3� in a
Kerr black hole, we show the contour with Dx ¼ 2

ffiffiffi
3

p
=3 in

the calculation. For ϑ ¼ 90°, we see that in the current
background, although all parameters satisfy Dx < 4=3,
there is still some portion of parameter space with
Dx > 2

ffiffiffi
3

p
=3. This means that in the future, if the EHT

experiment is precise enough to constrain 2
ffiffiffi
3

p
=3 <

Dx < 4=3, then it can exclude a Kerr black hole at the
center of M87* but cannot exclude a charged rotating black
hole in conformal gravity. Nevertheless, for ϑ ¼ 17°, all
of the parameters give 1 < Dx ≤ 2

ffiffiffi
3

p
=3, so one cannot

distinguish GR and conformal gravity.

In Fig. 20 we present the density plots of θd for a charged
rotating black hole in conformal gravity. In the calculation,
we set d ¼ 16.8 Mpc and the black hole mass is m ¼
6.5 × 109 M⊙ as estimated by the EHT Collaboration.
The enlarged plots in the right panel clearly show that only
the parameter space in the left corner enclosed by the
θd ¼ 39 μas contour (the black curve) is consistent with
the EHT observations of M87*, indicating that θd gives an
upper limit on both a and β in a charged rotating black hole
in conformal gravity [Eq. (2)]. Moreover, it is not difficult to
find that the constraint on a at ϑ ¼ 17° is stricter than that at
ϑ ¼ 90°, but the difference of their effects on β is small.

VII. CLOSING REMARKS

The EHT observations on the image of black hole are
consistent with the predictions from Kerr black hole in GR,
but the observations cannot rule out either the alternative to
the Kerr black hole or black holes in other theories of
gravity. In this paper, we considered a charged rotating
black hole in conformal gravity which has remarkable
applications in cosmological and holographical framework.

FIG. 18. Density plots of the circularity deviation ΔC. The left panel is for ϑo ¼ 90° while the right panel is for ϑo ¼ 17°.

FIG. 19. Density plots of the axial ratio Dx. The left panel is for ϑo ¼ 90° while the right panel is for ϑo ¼ 17°. The black curve in the
left panel denotes the Dx ¼ 2

ffiffiffi
3

p
=3 contour which is the upper bound for a Kerr black hole.
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The charge related term in the current black hole has a
different falloff than that in a KN black hole, such that it
exhibits different configurations. The charge parameter β
would decrease the size of both the Cauchy and event
horizons, of which the tendency is similar to that in a KN
black hole but with a different slope. Also, the size of the
event horizon in the extremal case decreases as the charge
parameter increases, in contrast to the independent situation
in a KN black hole. Moreover, the falloff term also has an
influence on the static limit surfaces, ergoregions, the
causality-violating regions, and photon regions, as we
explicitly presented in Figs. 4 and 5.
Then, we figured out the shadow boundary of the black

hole with various cases for observers at both finite and
infinite distances. The effects of the spin parameter, the
charge parameter, the inclination angle, and the distance on
the shadow shape can be clearly seen in Figs. 7–10, which
are qualitatively similar to that of a Kerr or KN black hole
[75,81,82]. Then, focusing on the shadow cast for an
observer at infinity, we systematically analyzed the shadow
observables that characterize the shadow size and shape,
namely, the shadow radius Rs, distortion δs, shadow area A,
and oblateness D. We found that, compared with a Kerr

black hole, the black hole shadow is smaller and more
distorted as the charge parameter increases. Our analysis
also indicates that the shadow observables can be used to
estimate the parameters ða; βÞ of a charged rotating black
hole in conformal gravity.
Finally, we considered M87* as observed by the EHT

experiment as a charged rotating black hole in conformal
gravity, and used the EHT constraints on the circularity
deviationΔC, the axial ratioDx, and the angular diameter θd
to constrain the black hole parameters. For inclination angles
ϑ0 ¼ 90° and ϑ0 ¼ 17°, the entire ða; βÞ space satisfies
ΔC≲ 0.1 and 1 < Dx ≲ 4=3. It is worth pointing out that
for ϑ ¼ 90°, a portion of the parameter space gives
2

ffiffiffi
3

p
=3 < Dx < 4=3, where Dx ¼ 2

ffiffiffi
3

p
=3 is the upper

bound for a Kerr black hole. However, for ϑ ¼ 17°, all of
the parameters give 1 < Dx < 2

ffiffiffi
3

p
=3, so one cannot

distinguish GR and conformal gravity in this case. 39 μas ≤
θd ≤ 45 μas gives upper bounds on both a and β and
constrains the parameter space into a small portion. To
conclude, for charged rotating black hole, there exists plenty
of parameter groups ða; βÞ of which the black hole shadow
are consistent with that in EHT observations of M87*.

FIG. 20. Density plots of the angular diameter θd. The upper panels are for ϑo ¼ 90° while the bottom panels are for ϑo ¼ 17°. The
black curves in the right enlarged plots correspond to θd ¼ 39 μas.
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Our findings indicate that charged rotating black holes in
conformal gravity with these parameters could be candidates
for astrophysical black holes. Moreover, for an equatorial
observer, the EHT constraint on the axial ratioDx could help
to distinguish a Kerr black hole and a charged rotating black
hole in conformal gravity in some parameter space.
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