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We study the dynamics of charged, spherically symmetric dust shells in the presence of a positive
cosmological constant. We find generalizations of the well-known solutions in asymptotically flat
spacetime, in particular orbits into “parallel universes,” but also new solutions corresponding to a
“bounce” of the shell before an event horizon has formed. We also discuss “bubble” solutions, in which a
charged shell and an oppositely charged singularity are spontaneously created and annihilated.
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I. INTRODUCTION

The study of the dynamics of thin shells in General
Relativity has a long history, dating back to the work of
Lanczos [1] and later Israel [2]. The aim of such models is
typically not to provide realistic solutions, but rather as
yielding simple analytically tractable toy models, in par-
ticular for gravitational collapse. In this spirit, Boulware [3]
studied the dynamics of spherically symmetric charged thin
dust shells in asymptotically flat spacetime, showing in
particular the existence of solutions for which the shell
crosses the Cauchy horizon, and which, depending on the
parameters, may either hit the singularity of Reissner-
Nordström spacetime or evade it and escape into another
asymptotically flat “parallel universe”.
Beyond a Cauchy horizon, which exists in rotating or

charged stationary black holes, the evolution of (test) fields
is no longer determined by their initial data, undermining
the predictivity of the theory. Penrose [4] argued that a
Cauchy horizon should be unstable, i.e., become singular
under generic fluctuations. There are several mathemati-
cally precise formulations of this strong cosmic censorship
conjecture, and while some have been shown to hold on
Reissner-Nordström spacetime [5,6], others do not hold [5];
cf. also [7] for an overview. The basic mechanism, already
identified by Penrose, is the blueshift of perturbations near
the Cauchy horizon. This effect can be countered by the
redshift due to cosmological expansion in the presence of
a positive cosmological constant. As a consequence, the
most popular formulation of strong cosmic censorship, due
to Christodoulou [8], can be violated for near-extremal
Reissner–Nordström–de Sitter (RNdS) spacetimes [9,10].
While it was subsequently shown that the expectation

value of the stress tensor of a quantum field in RNdS (in any
state that naturally arises in a gravitational collapse scenario)

diverges in a way that restores strong cosmic censorship
[11,12] (see also [13] for related earlier work), it was also
argued [14] that spacetimes that violate the strong cosmic
censorship conjecture cannot arise in a dynamical collapse,
due to quantum (gravity) effects.We take this as amotivation
to study the dynamics of spherical charged thin dust shells in
the presence of a positive cosmological constant. One goal is
to seewhether spacetimes admitting for a violation of strong
cosmic censorship can arise in this way. More generally, we
are interested in the effect of the cosmological constant on
the dynamics, i.e., whether the solutions found by Boulware
[3] are stable under turning on the cosmological constant,
and whether there are also orbits that qualitatively differ
from the ones present in the asymptotically flat setting.
Our main results are as follows: The solutions found by

Boulware [3] can indeed be naturally seen as limits of
solutions in the presence of a cosmological constant Λ. In
particular, for any set of parameters m (mass), Q (charge)
and Λ of a black hole solution, there is a collapse solution
leading to a RNdS spacetime with these parameters.
Furthermore, there are qualitatively new solutions in which
the shell ceases to collapse and expands again before
crossing the event horizon. Similar solutions were already
found for uncharged shells in the presence of a cosmo-
logical constant [15]. As we are slightly more general in our
assumptions than [3], we also find solutions corresponding
to spontaneous creation, followed by expansion, contrac-
tion, and annihilation, of a charged shell in de Sitter
spacetime. Finally, we prove that, as for a vanishing
cosmological constant [3], collapse to a naked singularity
is only possible for negative rest mass of the shell.

II. SETUP

We use units such that c ¼ G ¼ 1. We consider a
spherical thin shell of total charge Q separating a de
Sitter (dS) region from a RNdS region. The metric is in
both cases of the form
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g� ¼ −f�ðrÞdt2 þ f�ðrÞ−1dr2 þ r2dΩ2; ð1Þ

with dΩ2 the metric on the unit sphere. For the de Sitter
region

f−ðrÞ ¼ 1 − κ2r2; ð2Þ

where κ ¼ ffiffiffiffiffiffiffiffiffi
Λ=3

p
with Λ the cosmological constant, while

for the RNdS region

fþðrÞ ¼ 1 −
2m
r

þQ2

r2
− κ2r2; ð3Þ

where m > 0 will always be assumed. Without loss of
generality, we can also assume Q ≥ 0. While f−ðrÞ only
has a single root rH ¼ κ−1 (corresponding to the Hubble
radius) on the positive axis, fþðrÞ may have up to three
positive roots [from the form of fþðrÞ it follows that the sum
of the roots vanishes, so there can be at most three positive
ones]. One then distinguishes the following cases [16]: In the
generic black hole case fþðrÞ has three positive roots
r− < rþ < rc, called the Cauchy (or inner) horizon, the
event horizon, and the cosmological horizon. The cases when
two or all of the roots coincide are called the extremal black
hole case (r− ¼ rþ), the extremal naked singularity case
(rþ ¼ rc), and the ultraextreme case (r− ¼ rþ ¼ rc). When
two of the roots become complex and thus only a single
positive root is left, one interprets the latter as the cosmo-
logical horizon and calls this the generic naked singularity
case. The two extremal cases can be parametrized as [16,17]

m�¼P�ð1−2κ2P2
�Þ; P2

�¼ 1

6κ2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−12κ2Q2

p
Þ;

ð4Þ

see Fig. 1.
In this work, we will focus on the generic black hole case

r− < rþ < rc. Obviously, fþðrÞ is negative for r > rc.
Hence, it must be positive for rþ < r < rc, negative for
r− < r < rþ and again positive for 0 < r < r−. We call
these regions IV, I, II, and III, respectively. Similarly, f−ðrÞ
is positive for 0 < r < rH and negative for r > rH. We call
these regions Ĩ and ĨI, respectively.
We also note that in the generic black hole case, rc < rH,

as one can see as follows: For rc > rH, we would need
fþðrHÞ > 0 (by continuity from Q ¼ 0 and small enough
m, we can assume that rþ < rH), which implies that
2mκ < κ2Q2. One easily checks that this curve is always
below the green curve in Fig. 1.
The above metrics have coordinate singularities at the

roots of f�. By choosing suitable adapted coordinates, the
metrics can be analytically continued beyond the roots.
A conformal diagram of maximally extended dS is
shown in Fig. 2. As indicated above, regions Ĩ� cover
the range r ∈ ð0; rHÞ, while ĨI� cover the range

r ∈ ðrH;∞Þ. Note that ∂t is timelike in region Ĩ� but
spacelike in ĨI�. Also note that, analogously to [3], we
distinguish the regions by a further index �. For example,
in region Ĩþ, the radius r increases to the right, whereas it
decreases to the right in Ĩ−. This will be useful later in the
discussion of shell trajectories.
A conformal diagram of the maximal extension of the

generic black hole case of RNdS, cf. [16], is shown in
Fig. 3. This diagram can be extended infinitely in all
directions by continuing the pattern. From the above
discussion on the sign of fþðrÞ it follows that ∂t is timelike
in regions I� and III� but spacelike in regions II� and IV�.
We may think of region Iþ as the region outside of but still
in causal contact with the black hole, represented by region
IIþ to the upper left of it. An observer which entered region
IV− can no longer fall into the black hole, but will continue
to “conformal infinity” r ¼ ∞.
As we will also briefly discuss the naked singularity case

at the end, we also note that its conformal diagram, shown
in Fig. 4, has the same form as that of dS, Fig. 2, with the
origin of coordinates r ¼ 0 replaced by a singularity and

FIG. 1. In gray the parameter space corresponding to the
generic black hole case r− < rþ < rc. The blue and green lines
correspond to the extremal naked singularity and the extremal
black hole case, respectively. The black circle represents the
ultraextreme case. The remaining parameter space is the generic
singularity case.

FIG. 2. Maximally extended de Sitter spacetime. The dashed
lines indicate the origin of coordinates and the thick lines
conformal infinity.

CHRISTOPH GIESE and JOCHEN ZAHN PHYS. REV. D 106, 064005 (2022)

064005-2



the Hubble horizon rH replaced by the cosmological
horizon. The singularity is now visible from region Iþ,
i.e., it is not hidden behind a horizon.
According to the thin-shell formalism [2,18], the metrics

induced on the shell by the two metrics g� must coincide.
From the angular component of the metrics (1), it follows
that the shell must be located at the same value of the radial
coordinate with respect to the two patches. We denote its
value by R. The situation we have in mind is that in the dS
region, r ranges from 0 to R, and in the RNdS region from
R to∞. However, we will also consider other situations (in
particular, the situation where r decreases from R to 0 in the
RNdS region will naturally occur). Furthermore, again by
the condition that the induced metrics coincide, the proper
time τ of the shell is invariantly defined (up to an additive
constant). The four-velocity of the shell with respect to
proper time is thus

uμ� ¼ ðu0�; _R; 0; 0Þ ð5Þ

in the above coordinate system (the derivative with respect
to τ is denoted by a dot). Notice that the value of u0 differs
in the two regions separated by the shell. Using the
normalization of the four-velocity, we have

ðu0�Þ2 ¼ f�ðRÞ−2ð _R2 þ f�ðRÞÞ: ð6Þ

The normalized normal of the shell is, up to a sign, given by

n�μ ¼ ð− _R; u0�; 0; 0Þ: ð7Þ

The sign is by convention chosen such that nμ− points
outward with respect to the dS region and nμþ points inward
with respect to the RNdS region, i.e., they both point into
the RNdS region. We thus have

n1� ¼ ε�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ f�ðRÞ

q
; ð8Þ

with ε� ∈ fþ1;−1g indicating the direction of the radial
component of the normal. In the “standard” situation
described above, i.e., r ranging from 0 to R in the dS
region and from R to∞ in the RNdS region, we would have
ε− ¼ εþ ¼ 1. If, for example, the radial coordinate
decreases from the shell in the RNdS region, we would
have εþ ¼ −1.
For a spherically symmetric shell of pressureless dust,

the surface stress tensor of the shell is of the form

Sab ¼ σuaub; ð9Þ

with a, b referring to coordinates intrinsic to the shell and σ
independent of the angular coordinates. From the vanishing
divergence of Sab, it follows that

M ¼ 4πR2σ ¼ const; ð10Þ

which is interpreted as the rest mass of the shell. We will
mostly assume it to be positive, but will also briefly
consider the case of negative M. The surface stress
tensor Sab is related to the difference of extrinsic curvature
Kab of the shell with respect to gþ and g− via the Lanczos
equation [1,2,18]:

8πSab ¼ −Kþab þ Kþhab þ K−ab − K−hab; ð11Þ

with hab the induced metric of the shell and K ¼ Kabhab.
Contracting with uaub on both sides yields [3,18]

8πσ ¼ −
2

R
ðn1þ − n1−Þ; ð12Þ

or

FIG. 3. Extension of the RNdS spacetime. The thick, vertical
lines indicate the curvature singularities and the thick, horizontal
lines conformal infinity. The spacetime can be infinitely con-
tinued to the top, bottom, left and right.

FIG. 4. Generic naked singularity case of RNdS.
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M ¼ −Rðn1þ − n1−Þ: ð13Þ

III. SHELL DYNAMICS

With (8) and (13) we already have the fundamental
equations governing the dynamics of the shell. From these,
one finds that

ε� ¼ signðMÞsignð2mR −Q2 ∓ M2Þ: ð14Þ

We see that a sign change of ε� occurs at

R� ¼ Q2 �M2

2m
: ð15Þ

In the case M > 0, to which we now restrict for the time
being, this means that ε� ¼ 1 for R > R� and ε� ¼ −1 for
R < R�. From the assumed positivity of m it follows that
R− < 0 for M2 > Q2, so that ε− ¼ 1 in that case, irre-
spective of the value of R. On the other hand, Rþ is always
positive, so that there is always a range of the shell radius R
such that εþ ¼ −1. Another direct consequence of (8) and
(13) is

m ¼ ε−M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2R2 þ _R2

p
−
M2 −Q2

2R
; ð16Þ

which expresses the gravitational mass as a sum of a
“kinetic” energy and a “potential” energy. Note that the
kinetic term also depends on the cosmological constant,
and that the potential energy differs from the naive one by a
factor 1=2, due to the fact that “only half of the shell is
subject to its own potential;” see also [3]. Finally, we can
use (8) and (13) to determine a dynamical equation for R,

_R2 ¼ VðRÞ; ð17Þ

with

VðRÞ ¼ 1

M2R2

�
κ2M2R4 þ ðm2 −M2ÞR2 þmðM2 −Q2ÞR

þ 1

4
ðM2 −Q2Þ2

�
: ð18Þ

This is consistent with the result of [3,15] in the limits
κ → 0 and Q → 0, respectively.
We will not try to solve (17) explicitly. Instead, we are

interested in qualitative features of the trajectories, which
are governed by the turning points of R, where VðRÞ ¼ 0.
First of all, we notice that if R0 is a simple root of VðRÞ,
then a trajectory RðτÞ approaching it will reach it in finite
proper time τ. Explicit expressions for the roots of VðRÞ
can be given, but they are quite lengthy and not illuminat-
ing. However, the qualitative behavior of the roots can be
discussed in elementary terms. To begin with, there are at

most two roots in the range R > 0: By the absence of a
cubic term in the expression in brackets in (18), the sum of
the four roots vanishes (degenerate roots are counted
according to their multiplicity), so there can be at
most three positive roots. Furthermore, VðRÞ → þ∞ for
R → þ∞ and Vð0Þ ≥ 0, which, together with the previous
statement, implies that there are at most two positive roots.
In the caseM2 ≠ Q2, for which VðRÞ is strictly positive for
R → 0, we can even conclude that there are either no or two
positive roots (again counted according to multiplicity). We
call the greater of the two positive roots the outer turning
point and the lesser of the two the inner turning point.
Between the two turning points, VðRÞ is negative, so that
(17) has no solution. Hence, between the turning points lies
a forbidden region that the shell radius cannot enter.
In Fig. 5 the two turning points are plotted as a function

ofM for fixed values ofm andQ (an analogous diagram for
the case Q ¼ 0 can be found in [15]). We see that there are
two finite ranges ofM for which turning points are present.
For small values of M, both turning points lie in region III,
while for greater values of M both turning points lie in
region I. In between and for yet larger values of M, no
turning points exist. While Fig. 5 only shows the turning
points for fixed specific values of m and Q, this behavior is
generic, as will be proven below. However, apart from the
special cases of extreme black holes, there is one case
distinction that should be made: For M2 ¼ Q2, one
obviously has no positive root of VðRÞ for m ≥ Q and a
single positive root for m < Q. Hence, for the study of the
turning points in the parameter region M2 ≃Q2, it is
appropriate to distinguish the two cases. While Fig. 5
shows the turning points in the first case, the turning points

FIG. 5. The position of the outer and inner turning points (in
blue and green) form ¼ 0.2κ−1, Q ¼ 0.19κ−1 as a function ofM.
Also shown (in red and orange) are the values R� at which ε�
changes its sign. The forbidden regions are shaded in gray. The
black arrows indicate the possible trajectories of the shell.
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for Q > m, called the near-extremal case in the following,
are shown in Fig. 6.
From the above discussion, we can already identify three

qualitatively different evolutions (a finer distinction will be
made below): In the absence of positive roots of VðRÞ, i.e.,
turning points of R, the shell radius will decrease mono-
tonically until it hits the singularity at R ¼ 0 (of course
there is also the time reverse of the process, a shell
emerging from the singularity and expanding to
R → ∞). In Figs. 5 and 6 this is the case for the trajectories
labeled (e) and (j). In the presence of two turning points, we
have two types of solutions: One is expanding from the
singularity at R ¼ 0, reaching the inner turning point, and
then recollapsing into the singularity. In Figs. 5 and 6 this is
the case for the trajectories labeled (c), (h), and (i) and in
Fig. 6 also for the trajectory labeled (d). The other
possibility is to start at R ¼ ∞, collapse until the outer
turning point is reached, and then reexpand again to
R → ∞. In Figs. 5 and 6 this is the case for the trajectories
labeled (a), (b), (f), and (g).
We would like to prove that the behavior of the turning

points shown in Figs. 5 and 6 is generic. From (6), we
conclude that a turning point at R is only possible if
fþðRÞ ≥ 0 and f−ðRÞ ≥ 0. The first condition excludes
turning points in regions II and IV of RNdS, compatible
with Figs. 5 and 6, and the second condition excludes
turning points in region ĨI of dS. Furthermore, as we
learned above that VðRÞ must be negative between two
positive turning points, we can also conclude that the two
turning points must lie in the same region of RNdS, as
otherwise they would be separated by region II, where
VðRÞ is positive, by the following equivalent form of VðRÞ:

VðRÞ ¼ R2

4M2

�
f−ðRÞ − fþðRÞ −

M2

R2

�
2

− fþðRÞ: ð19Þ

Again, this feature is compatible with the behavior shown
in Figs. 5 and 6.
To fully characterize the qualitative behavior of the shell

trajectories, we have to consider the signs ε� of the radial
component of the normal vector at the turning point. From
(8), we see that a sign change of ε� can only occur where
f�ðRÞ < 0, i.e., in regions II or IV for εþ and in region ĨI
for ε−. For a trajectory reflected at an outer turning point R,
we can distinguish between the cases R ≥ Rþ, in which
case εþ is positive throughout, and R < Rþ, in which case
εþ changes signs twice, once before and once after the
reflection of the trajectory. In Figs. 5 and 6 the trajectories
(a) and (f) correspond to the first case and the trajectories
(b) and (g) to the second case.
As for ε−, we recall that R− ≤ 0 for M2 ≥ Q2, so that in

this case the sign change never happens and ε− ¼ 1

throughout the trajectory. For the case M2 < Q2, we will
show below that, as in Figs. 5 and 6, there are always two
turning points, with R− in between, i.e., in the forbidden
region. Hence, also in this case, a sign change of ε−
does not occur. However, for a trajectory starting at R ¼ 0,
ε− ¼ −1 in the range M2 < Q2, so such trajectories have
ε− ¼ −1 throughout.
To learn more about the relation between turning points

and R�, one easily verifies the relation

VðR�Þ ¼ −f�ðR�Þ: ð20Þ

Hence, for Rþ in region I or III, we see that VðRþÞ < 0, i.e.,
Rþ lies in the forbidden region between two turning points.
At the boundaries of these regions, i.e., for Rþ ¼ r−=þ=c,
we also have a root of VðRÞ, i.e., a turning point. Hence, Rþ
crosses a turning point when passing through any of the
RNdS horizons, a feature that we also identify in Figs. 5
and 6. As for R−, we first notice that for M near Q (for
M < Q), we have R− close to 0, i.e., both in Ĩ and III, so
that by (20) R− is in the forbidden region. It must thus be
contained between two turning points, which, by the
argument given above, both lie in III. If we now let M
decrease, Rþ decreases and R− increases monotonically,

until they both coincide with Q2

2m for M → 0. It follows that
for M < Q, there are always two turning points in III, and
the inner one converges to 0 for M → Q. All these features
are present in Figs. 5 and 6, the only distinction between the
two being that in the first case also the outer turning point
goes to 0 as M → Q, while in the latter case the outer
turning point is positive for M ¼ Q. Furthermore, as Rþ
starts in III forM ¼ 0 and then passes through II, I, and IV
as M increases and is contained in the forbidden region
between two turning points when passing through III or I,
this proves that for all values of m and Q there will be a
range of values of M for which two turning points in III
exist and a range for which two turning points in I exist (as
is the case in Figs. 5 and 6 for specific values of m and Q).

FIG. 6. Same as Fig. 5 but for the near-extremal case Q > m
(m ¼ 0.26κ−1, Q ¼ 0.27κ−1).
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Having now understood the qualitative features of the
turning points in the generic black hole case, we discuss the
shell trajectories through spacetime diagrams. Trajectories
of type (a) and (b) are shown in Fig. 7. They are
distinguished by εþ at the turning point, which is þ1
for (a) and −1 for (b). It follows that in the first case, the
turning point lies in IIIþ (where r increases towards
the right), whereas it lies in III− for case (b). In both
cases, the shell does not collapse into the singularity, but
emerges into another asymptotically de Sitter region, where
it expands to R → ∞. Similar trajectories were also found
for a vanishing cosmological constant; cf. case 2(c) of [3].
The paths (c) and (d) are sketched in Fig. 8, the latter

being possible only in the near- extremal case m < Q;
cf. Fig. 6. In both cases, εþ ¼ −1, corresponding to a
turning point in region III−. In the first case, ε− ¼ −1,
corresponding to a turning point in Ĩ−, while for case
(d) ε− ¼ þ1, so that the turning point lies in Ĩþ. As no
horizons are crossed, the whole trajectory lies in these
regions. Trajectory (c) can be interpreted as the sponta-
neous creation, in de Sitter space, of a charged shell and an
oppositely charged singularity. The shell expands for a
while but then recollapses into the singularity. Such a
“bubble” trajectory is also possible in the asymptotically
flat case (it does not appear in [3] only because the case
ε− ¼ −1 was excluded from the discussion). Trajectory
(d) can be interpreted as the spontaneous creation of parts
of dS and RNdS space, both ranging in r from 0 to R, and
glued together at R. The shell radius R expands from 0 to
some maximum, and then recollapses to 0, thereby termi-
nating the spacetime. Trajectories of this type are not

possible for vanishing cosmological constant [3] or vanish-
ing charge [15].
Path (e) is a trajectory without turning point, sketched in

Fig. 9. We have εþ ¼ þ1 for R > Rþ, the latter being in
region II. Hence, the trajectory passed through regions IVþ
and Iþ before. After traversing IIþ, εþ ¼ −1, so that the
shell then traverses III− to finally collide into the singularity
r ¼ 0, which formed outside of the shell. The time reverse
of the process describes a “shell explosion” leading to a
charged shell in de Sitter space, expanding to R ¼ ∞.
A trajectory of this type is also possible for a vanishing
cosmological constant; cf. case (1) of [3].
Trajectories (f) and (g) are sketched in Fig. 10. In the first

case, εþ is always positive, so the shell passes through
region Iþ, while in the second case, ε− ¼ −1 at the turning
point, so that the shell passes through region I−. Both
trajectories describe a shell that contracts from infinite
extension up to a minimal radius and then expands again to

(a) (b)

FIG. 7. Paths (a) and (b) describing a collapsing shell with a
turning point inside the Cauchy horizon. The turning point lies in
the region IIIþ or III− depending on the sign of εþ at the turning
point. The sign of ε− is positive in both cases.

(c) (d)

FIG. 8. The path (c) corresponds to the bubble trajectory. The
shell expands in the de Sitter space region Ĩ− and collapses after
reaching the inner turning point. The inside is the region III− of
the RNdS space. For m > Q, also a trajectory of type (d) is
possible.

(e)

FIG. 9. Path (e) may describe a collapse (left) or an explosion
(right) depending on the sign of _R. εþ changes sign in regions of
type II; thus, the world line must evolve through region Iþ.
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R ¼ ∞. The difference is that for trajectory (g) the radius r
decreases in the RNdS region away from the shell at the
turning point. Trajectories analogous to (f) and (g) do not
exist for vanishing cosmological constant [3]. They do,
however, also exist in the uncharged case Q ¼ 0 [15].
Hence, we can interpret the bounce as due to the cosmo-
logical constant, not the repulsion due to the charge.
Trajectories (h) and (i) are sketched in Fig. 11. In both

cases, the trajectory starts at R ¼ 0 with εþ ¼ −1 (region
III−), passes through region II into I, where it has a turning
point, and then continues again to III−. In the case (h), the
turning point is greater than Rþ, i.e., it lies in Iþ, while in
the case (i), εþ ¼ −1 throughout, so the turning point lies in
region I−. In case (h), the shell is seen to leave the “white
hole” region, but collapses again into the black hole, ending
up in the singularity. In case (i), the shell does not leave the
white hole region, so the exterior can be interpreted as an
“eternal” black hole. Analogous trajectories also exist for

vanishing cosmological constant; cf. case 3(a) in [3], and
for vanishing charge Q ¼ 0 [15].
Finally, for trajectory (j), shown in Fig. 12, εþ changes

sign in IV, so a collapsing shell passes through regions I−
and III− before crashing into the singularity. Such a
trajectory does not exist for vanishing cosmological
constant [3], but is also present for vanishing charge
Q ¼ 0 [15].
We may now consider the case M < 0 of negative rest

mass. As both R� and the potential VðRÞ depend onM only
through M2, the position of the turning points and of the
radii R� does not change under the replacementM → −M.
In particular, Figs. 5 and 6 are also valid under this
replacement. The signs ε�, however, are inverted under
M → −M. As an example, Fig. 13 shows the form of the
trajectories (c) and (d) in this case.
Up to now, we discussed the generic black hole case.

Trajectories for the extremal cases are discussed in [19]. We
finish by discussing the possibility of creating a naked
singularity by collapse of a charged spherical dust shell.
Hence, we are looking for a trajectory ending in the
singularity r ¼ 0 of region Iþ of the generic naked
singularity case; cf. Fig. 4. We thus require εþ ¼ þ1 for
r < rc. Furthermore, we want the inside of the shell to be

(f) (g)

FIG. 10. For the trajectories (f) and (g), the turning points lie in
regions of type I. The collapsing shell reaches the outer turning
point in region Iþ [path (f)] or I− [path (g)] depending on the sign
of εþ at the turning point.

(h) (i)

FIG. 11. For trajectories (h) and (i), the turning points also lie in
region I, but the trajectories start at R ¼ 0. The expanding shells
reach the inner turning point in region Iþ [path (h)] or I− [path (i)]
depending on the sign of εþ at this radius. The inside is described
by region Ĩþ of de Sitter space.

(j)

FIG. 12. Path (j) may describe a collapse (left) or an explosion
(right) depending on the sign of _R. As εþ changes sign in regions
of type IV, the shell trajectory must evolve through region I−.

(c) (d)

FIG. 13. The trajectories (c) and (d) for the case of M < 0.
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bounded, i.e., we require also ε− ¼ þ1, so that the interior
of the shell is described by region Ĩþ; cf. Fig. 2.
We now need to know the position of the turning points.

The analysis performed above for the generic black hole
case is still valid, i.e., while in region I, both Rþ and R− are
in the forbidden region between two turning points, and R−
becomes negative at Q2 ¼ M2. This is also apparent in
Fig. 14, which shows R� and the turning points as a
function of M for m < Q. In contrast to the generic black
hole case, there is now only a single forbidden region,
contained in I, whose shape resembles that of the forbidden
region of II in the near-extremal case, Fig. 6. Hence, there is
a reduced number of types of trajectories. In the naked
singularity case with m > Q, the trajectory of type (d) is
absent, as the curve describing the outer turning point
terminates atM ¼ Q (as for the forbidden region contained
in II in the subextremal case shown in Fig. 5).
As is obvious from Fig. 14, in the naked singularity

case the only trajectories which reach the singularity are
(c), (d), and (j). The last two have signs ðεþ; ε−Þ ¼
signðMÞð−1;þ1Þ when reaching the singularity (recall
that under the change M → −M, Fig. 14 remains valid,
but the signs ðεþ; ε−Þ are flipped). They are thus not of the

desired form to describe collapse to a naked singularity. On
the other hand, the trajectory (c) has signs ðεþ; ε−Þ ¼
signðMÞð−1;−1Þ when reaching the singularity, so it has
the desired form for negative rest massM. This trajectory is
like the one depicted on the lhs of Fig. 13, with IIIþ
relabeled as Iþ. This trajectory also has a counterpart for
vanishing cosmological constant, case (4) in [3]. As for a
vanishing cosmological constant [3], we can thus conclude
that collapse to a naked singularity is only possible for
negative rest mass of the shell.
For completeness, we mention that the first subcase 3(b)

of [3] corresponds to our trajectory (d) in the naked
singularity case with M > 0 [the second subcase of 3(b)
of [3] is empty for m > 0].

IV. CONCLUSION

We have found that all types of trajectories that are
present for vanishing cosmological constant [3] are also
present for a positive cosmological constant. In particular,
there are the trajectories (a), (b) and (e) describing the
formation of a black hole. We have proven that for all
parameters of the generic black hole case the “phase
diagram” of the turning points is as represented in
Figs. 5 and 6 for the cases m > Q and m < Q. Hence,
for any set of parameters ðm;Q;ΛÞ describing a RNdS
black hole, there is a charged shell configuration which
collapses to such a black hole. As there are spacetimes in
this class for which the strong cosmic censorship conjecture
is violated [10], this means that gravitational collapse
spacetimes exist for which the strong cosmic censorship
conjecture is violated. (This is not a contradiction to the
claim made in [14] that such spacetimes can not form by
gravitational collapse, as our analysis is purely classical,
while for the argument put forward in [14] quantum
(gravity) effects are essential.)
We also saw that for a nonvanishing cosmological

constant also new types of shell trajectories are possible,
in particular trajectories which bounce before the formation
of a horizon (analogous trajectories are also present in the
vanishing charge caseQ ¼ 0 [15]). Finally, we showed that
collapse to a naked singularity is only possible for negative
rest mass M of the shell, i.e., in a situation typically
excluded by energy conditions.

FIG. 14. Same as Fig. 5 but for the naked singularity case with
Q > m (m ¼ 0.1κ−1, Q ¼ 0.15κ−1).
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