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We study the observation of a stochastic gravitational-wave background (SGWB) made by a pulsar-
timing array in the spherical harmonic space of the observable. The observable is a timing residual which is
the time-averaged redshift fluctuation of a pulsar over the duration of observation. Using the Sachs-Wolfe
line-of-sight integral for the redshift fluctuation, we derive the power spectrum of the timing residual, from
which we develop a fast algorithm to compute the overlap reduction functions for the SGWB intensity and
polarization anisotropies. We find that the algorithm is less complicated and more efficient than our
previous work which is based on the expansion of the polarization basis tensors in terms of spherical
harmonics. Also, we use the power spectrum to construct the bipolar spherical harmonic coefficients that
characterize the statistical isotropy of the SGWB. In particular, the coefficients for the linear-polarization
anisotropy are worked out for the first time. Our harmonic-space method is useful for the data analysis in
future pulsar-timing-array observation on a large number of pulsars as well as for the measurement of the

statistical isotropy of the SGWB.

DOI: 10.1103/PhysRevD.106.064004

I. INTRODUCTION

The detection of gravitational waves (GWs) emitted
from the coalescence of binary black holes by the LIGO-
Virgo experiment opens up a new era of GW astronomy
and cosmology [1,2]. The current Advanced LIGO [3],
Advanced Virgo [4], KAGRA [5], and GEO600 [6] are
ground-based laser interferometers that each has two
perpendicular detector-arms to measure hundred-hertz
GW strain amplitudes. Proposed GW interferometry
experiments include FEinstein Telescope, Cosmic
Explorer, as well as space missions such as LISA,
DECIGO, Taiji, and TianQin [7], aiming to measure
GWs at frequencies ranging from kilohertz to millihertz.
Pulsar timing is another method to detect GWs by
monitoring the arrival times of radio pulses from pulsars
with ground-based radio telescopes [8]. The line of sight
from a telescope to the observed pulsar is like a detector-
arm which is sensitive to propagating nanohertz GWs
through the space. Current pulsar timing array (PTA)
experiments, monitoring roughly 100 Galactic millisecond
pulsars, include European Pulsar Timing Array (EPTA)
[9], NANOGrav [10], and Parkes Pulsar Timing Array
(PPTA) [11]. They are joined by new efforts such as
MeerKAT [12], FAST [13], Indian Pulsar Timing Array
(InPTA) [14], and the combined International Pulsar
Timing Array (IPTA) [15]. The future Square Kilometre
Array (SKA) project will observe about 6000 Galactic
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millisecond pulsars at a sensitivity three to four orders of
magnitude better than the current PTAs [16,17].

Detecting a stochastic gravitational-wave background
(SGWB) is a key science goal in GW experiments. GW's
are very weakly interacting. The observation of the SGWB
enables us to probe directly the physical processes that
produce GWs in the early Universe, such as distant
compact binary coalescences, early-time phase transitions,
cosmic string or defect networks, second-order primordial
scalar perturbations, and inflationary GWs [18]. The
SGWB is predicted to be highly isotropic; however, it
has been proposed that it could be anisotropic and even
circularly or linearly polarized [19-27].

In the search of a SGWB in an interferometry network,
the responses of a pair of detectors to the GW strain
amplitude are correlated so as to filter out detector noises
and increase the signal-to-noise ratio [18]. In PTA obser-
vation, quadrupolar spatial correlations between pulsar
pairs are used to identify the presence of a SGWB [8].
Recently, the NANOGrav Collaboration [28] has found
strong evidence of a stochastic common-spectrum process
across 45 millisecond pulsars, indicating a SGWB with
the spectral energy density of Qgw(f)~5.0x 107 at a
reference frequency of f =32 nHz for a f* power-law
spectrum with a spectral index of @« = 2/3. The common-
spectrum process has also been found in the second data
release of the Parkes Pulsar Timing Array (PPTA) [29], as
well as in the data release 2 of the European Pulsar Timing
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Array (EPTA) covering a timespan up to 24 years [30] and
the second data release of the International Pulsar Timing
Array (IPTA) synthesizing decadal-length pulsar-timing
campaigns [31]. However, all of these observations have
not found statistically significant quadrupolar interpulsar
correlations in this common-spectrum process. Lately,
using the data from Advanced LIGO’s and Advanced
Virgo’s third observing run (O3) combined with the earlier
Ol and O2 runs, upper limits have been derived on an
isotropic SGWB, Qgw (f) < 3.4 x 107 at f = 25 Hz for
a = 2/3 [32], and on an anisotropic SGWB, ranging from
Qaw(f) < (0.57-9.3) x 10~ sr~! at f = 25 Hz, depend-
ing on the spectral index [33].

In this paper, we will study the observation of SGWB
intensity and polarization anisotropies in pulsar-timing-
array experiments. There has been a lot of theoretical
studies on the pulsar-timing observation of SGWB [8]. The
observable is a timing residual which is the time-averaged
redshift fluctuation of a pulsar over the duration of
observation. The redshift fluctuation due to the presence
of a SGWB is given by the Shapiro time delay between the
Earth and the observed pulsar. Previous works have dealt
with the spatial correlation functions of the timing residuals
for the intensity anisotropy [34-36] and for the circular-
polarization anisotropy [37]. In Ref. [38], instead of relying
on the Shapiro time delay, the authors have derived the
angular power spectrum of a line-of-sight integral for the
timing residual for the SGWB intensity and circular-
polarization anisotropies in the total-angular-momentum
formulation of chiral spherical gravitational waves. In all of
these works only the contribution from the Earth term has
been considered, whereas modifications of the intensity
correlation functions by the pulsar term have been dis-
cussed in Ref. [39]. Adopting the technique to expand the
polarization basis tensors in terms of spin-weighted spheri-
cal harmonics [40], a numerical scheme has been developed
to compute the correlation functions, which are extended to
including the linear-polarization anisotropy [41]. Here we
will tackle the problem in the spherical harmonic space
of the observable. Following Refs. [41,42], we will use the
Sachs-Wolfe line-of-sight integral for the timing residual
of an observed pulsar to derive the timing-residual
power spectrum.

In fact, there have been many schemes for measuring the
SGWB intensity and polarization anisotropies in the pulsar-
timing data analyses, such as the Bayesian parameter-
estimation pipeline [43,44], the spherical harmonic power
spectrum estimators [36,45,46], and the Fisher matrix of
observed pulsar pairs [47,48]. Some of the limitations of
using the spherical harmonic approach such as being
computationally demanding in the analysis pipeline and
an inhomogeneous sky coverage of pulsars in current PTA
observation have been discussed [47,48]. Our formalism
will be useful for future pulsar-timing arrays that observe a
large number of pulsars on the full sky. The algorithm

developed to compute the time-residual power spectrum
will help reduce the computational load in data fitting
processes. Lastly, using the Sachs-Wolfe line-of-sight
integral can conveniently incorporate the effects of pulsar
terms with various pulsar distances [41,42].

The paper is organized as follows. We will introduce a
polarized SGWB and its Stokes parameters in the next
section, followed by a brief account of the pulsar timing
in Sec. III. In Secs. IV and V, the power spectrum of the
timing residual will be derived. We will obtain the overlap
reduction functions in the celestial coordinates in Sec. VI
and in the computational frame in Sec. VII. We will briefly
mention the bipolar spherical harmonic coefficients in
Sec. VIIL. Section IX is our conclusion.

II. POLARIZED SGWB

In the Minkowskian spacetime (z, X), the metric pertur-
bation h;; in the transverse traceless gauge depicts traveling
GWs at the speed of light ¢ = w/k. It can be expanded by
Fourier modes as

hi(t.%) =Y / df A ki (f. Ryefy (k)e2m/=kTle),
A —o0
(1)

where A stands for the polarization of GWs with basis
tensors e?j(lAc), which are transverse to the propagation
direction, k. Here h;; is treated as real, so the Fourier
components with negative frequencies are given by
hy(=f, k) = b (f,k) for all £>0. We define a SGWB
as a collection of GWs satisfying the condition that &;; are
random Gaussian fields with a statistical behavior com-
pletely characterized by the two-point correlation function
(h;j(t.X,)h;;(t,X,)), where the angle brackets denote their
ensemble averages. The ensemble averages of the Fourier
modes have the following form

(ha(f RO (f1 . K)) = 8(f = f1)8(k = K )Pan (f ), (2)

where the spatial translational invariance dictates the
delta function of their three-momenta, 5(/2— I?) Note
that the power spectra Py (f, lAc) remain to be direction
dependent.

For GWs coming from the sky direction —k with wave
vector £, it is customary to write the polarization basis

tensors in terms of the basis vectors in the spherical
coordinates,
e (k) =
e* (k)

o>

0 ® € —€, ® e,
® 8+ &, ® . (3)

banid

€
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in which &,, €, and k form a right-handed orthonormal
basis. Also, we can define the complex circular polarization
basis tensors as

(e, +iey) (e, —iey)

er = , e, = ,
: V2 t V2

where ey stands for the right-handed GW with a positive
helicity while e; stands for the left-handed GW with a
negative helicity. The corresponding amplitudes in Eq. (1)
in the two different bases are related to each other via

4)

(hy —ihy) (hy +ihy)
hp=—-7"-, hy =—==.
V2 V2
Analogous to the case in electromagnetic waves [49],

the coherency matrix P4, in Eq. (2) is related to the Stokes
parameters, I, Q, U, and V as

(5)

I = [<thR> <th2>}/2,
Q + iU = (hy hy),
— iU = (hghy),
V = [(hrhk) = (hLhi)]/2. (6)

which are functions of the frequency f and the propagation

direction k. I is the intensity, Q and U represent the linear
polarization, and V is the circular polarization.

II1. PULSAR TIMING

In the pulsar-timing observation, radio pulses from an
array of roughly 100 Galactic millisecond pulsars are being
monitored with ground-based radio telescopes. The redshift

|

A © ~ ny
r(z,e)zzﬂzA:/_mdf Szdk/1 dn(1

We expand

— e 2N, (f k)dV el (k

fluctuation of a pulsar in the pointing direction & on the sky
is given by the Sachs-Wolfe effect [50],

where the lower (upper) limit of integration in the line-of-
sight integral represents the point of emission (reception)
of the radio pulse. The physical distance of the pulsar from
the Earth is

D = c(n, —1n,). (8)

which is of order 1 kpc.
The quantity that is actually observed in the pulsar-
timing observation is the timing residual counted as

H1) = A “arz(r), )

where ¢’ denotes the laboratory time and ¢ is the duration of
the observation. Using the laboratory time #, we rewrite
Eq. (7) as
. 1 [+ .0 N
() == [ S, (0)

"1,

where the detector tensor is

di = ¢ie). (11)

IV. TIMING-RESIDUAL POWER SPECTRUM

Then, replacing X by ¢(5, — n)é in Eq. (10) and using the
spherical wave expansion (A7) for the plane wave (1),
Eq. (9) becomes

—Zﬂ’f”Zz Juaf(n, =Y ()Y (). (12)

F(l, é) = Zamefm(é)' (13)

‘m

Defining x = 2zf (5, — n), we have

o d . . A N A
Apm = / —f (1 - e—2mft)e—2mfi7rz /8‘2 dk hA (fv k)‘]?’m<fD’ k>’
A

o 2nf

JA (D, R) il Y 2”fD/Cd i j [ ac dieh (W)Y, 0 (2)Y5 (2 14
om(f Z mieYiy( xe”jp(x) ea-e; ( )Yiu(8)Yy,,(e). (14)

The timing-residual correlation between a pair of Galactic pulsars a and b is constructed as
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(r(ta,24)r(ty, 2,)) /dt/ di"(z(t,2,)2(1,2,)) = D (arum @)Y i, (20) Yy (20): (15)

Cymy£omy

where the ensemble average is given by Eq. (2) as

* © df 27 7i 7 7 | * 7
(G @) :/ o (1= = fr;,)Z/z Ak Py (£ B2, (FD )T (D, E). (16)
—oo (&7, AA, VS

In terms of the Stokes parameters in Eq. (6) and the definitions,

3L i rmy (FDas f Dy k) = Jflm (fDa» ), (fDy, k) + JE , (fDas K)IE,, (FDy, K),
3% esmy (fDas [ Dy, k) = % m (fDq, )Jlfgjmz(beaic) ~ %, (fDy ’E)ngz(beai‘),
IEY (D fDy. k) = l<fDa, k)R, (D, k),
It (f D, fDy k) = J%, (fDy, K)IE, (D, K), (17)

we have

* © df =27xif nif 7
<a,glm1af2mz> = / (2ﬂf)2(1 —e 2 fla)(l —e2 .ffb) Z /2 de(f k)\ﬂf m fzmz(fDa’be’k)‘ (18)
—® X={1,V,0+iU}

We further expand the Stokes parameters in terms of ordinary and spin-weighted spherical harmonics as

Zlfm Yfm
vam Yfm

(0 +iU)(f. k) = Z(Q +iU) () 2Y 4 (B,

‘m

(Q—iU)(f. k) =D (Q=iU)s(f)_yY (k). (19)

‘m

where the specific combinations, Q £ iU, make them become spin 4 objects so that we can expand them nicely by the
corresponding spin-weighted spherical harmonics. A brief introduction to the spin-weighted spherical harmonics is found in
the Appendix.

Hence, we can express the timing-residual correlation in the following form

d . .
f (1 - €_2ﬂlﬂa)(1 - emel,,) Z ZXfm }/fm(fDa’be’ b>’ (20)

2
(27f) X={L.V,Q+iU} ¢m

(F(t0r20)r(t5. 24)) = / )

where the overlap reduction functions (ORFs) are given by

Yfm(fDavalw ) = Z Yflrn](éa)Y*fzmz(éb) £7 dl}Yﬁm(k)J]lfxnlfﬁmz(fDa’fDlwIAC)? (21)
£1mamy -
QilU(fDa’bea ) - Z Yf]inl(éa)y;zmz(éb) /8‘2 dl%:t4Yfm(]%)J]gjnlzﬂzmz(fDa?be’]%)' (22)
ymitamy

Equations (21) and (22) are the most general ORFs for a pair of Galactic pulsars a and b, respectively, at distances D,
and D, from the Earth.
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V. CALCULATION OF J4 (fD. k)

Now we calculate the contribution of a k-mode to
the redshift fluctuation of a pulsar, namely me( fD.k)

in Eq. (14). For convenience, we first assume that k points
to the direction of the polar axis or Z-axis. In this case, the
basis vectors (3) become

ef(h) =2 ®%-§®¥.
)= Qy+7y® %, (23)

and we have
¢ = sinfcos ¢pX + sin Osin Py + cos 67, (24)

2L+ 1
4

Suro- (25)

You(k) =

This gives

.. N | T N
dl/eS’L<k> = 4 EYZ:Ez(e), (26)

where the helicity R takes the value of 2 and L the value of
—2. Hence, we obtain

RL 41 (2Dl
24 L s / dxe™j, (x)

></S2 deY,., ()Y (e)Yy, (e). (27)

JSL(fD. 2

From Eq. (A8), we have

/Sz de Y, ()Y o()Ys, (&) = (_1),,,\/

5(2L+1)(2f+1)<(2) L f)(z L f>, (28)

0 0 £2 0 —m

which vanishes unless m = +2 and L = ¢ — 2,7, ¢ + 2. These nonzero integral values are given by

Substituting them in Eq. (27), we obtain

20+ 1)(£+2)! [2#/D/c )
‘]I;;ZVILJ(vai):_émiZZ”if\/( - )( - )'/O dxe”‘{(

8z  (£-2)!

This can be cast into a compact form by using the recursion
relation, j,(x)/x = [je_1(x) + jrs1(x)]/(2€ + 1), which
gives

. ) 20+ 1) (€ +2)!
JSL(fD,2) = —5miz2mf\/( o ) Ef — 2;'

2zfD/c 7
x / dx e'x]f@. (31)
0

X

Through a three-dimensional rotation that takes the z-axis
into the direction k, we can relate [40]

. . ST
/ deY,5(e)Y,00(e)Y; ,(2) = 1
SZ

/ deY,:,(8)Y,00(8)Yr,(8) :411

\P_E[ (-1 +1)(¢+2) ]
2|26 =3)(20 —1)2(2¢ +1)|

/52 deY,.s(e)Yp(e)Y;,(8) = -5

g[(f—l)f(fH)(fH)]%
2r| (26-122¢+3)? |°
15[ (Z-10)e(+1D)(¢+2) |z
2 [(25 +1)(2¢ +3)%(2¢ + 5)] ' (29)
Jo—a(x) n 2j¢(x) Jera (%)
260-1)2¢+1) 26-1)2¢+3) 2+ 1)(2¢+3)]
(30)

JRL(fD, k) = ZDmm (—a, =0, —p)J2E(fD,2),  (32)

where k = (6, ¢). Here, the Wigner-D matrix is given by

V¥4 -
Dm0 20) =\ 57 g en 0.0 (39

Fan! . . .
where ¢""* is a redundant phase that reflects a remaining

degree of freedom in the rotation about the k-direction.
Hence, we have
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IR (fD.k) = D% (—a, =0, —$)J%,(fD. 2),
It (fD. k) = D%, (—a, -0, —$)J%_,(fD.2),  (34)

noting that J%,(fD,2) = J5_,(fD,2) and e™* will not

appear in physical observables.

VI. OVERLAP REDUCTION FUNCTIONS IN THE
CELESTIAL COORDINATES

Inserting the results (34) into Eq. (17), we have

J]Ifjl‘:nlfzmz (fDa’ fDlﬂ ]}) = (_I)MI [ZYf]—ml (%)—2Yf2m2 (]%) + —2Yf|—m] (]})2Yf2m2 (I%)}Jfl (fDa)‘];z (be>’
‘ﬂglj;j]lzjfzmz (fDav be7 I}) = (_I)MI:F2Y,{1_m] (I%)$2Yf2m2 (l})e:tManl (fDa>‘];2 (be)’ (35)

where we have defined the function

J,(fD) :fzmﬂ/(éfgj A QHfD/Cdxeixji%, (36)

+ida

and the phase factors e are resulted from a rotation

of angle a about the k-direction on the spin-4 objects,
|

|
0+iU
‘J]flmllfzmz’
cal harmonics Y, (k) in Eq. (22) are augmented by the
same phase factors of opposite signs eT* under the

: : +ida 0+iU ;
rotation, which exactly cancel e=** from Jz, ., . Using

Eq. (A8) and the property (A9), the ORFs in Egs. (21)
and (22) become

respectively. Simultaneously, the spin-4 spheri-

Vom(fDa fDyieg2y) = > (=1)"[1 (=1) 40T, (FD )T (FD)Y pym, (20)Y 5, (25)

ymytamy

X%zwl)(wwl)(wﬁl)(f SRS [ SRS NN

A

0 -2 2 m —m, )

ygnﬁ,:iu(fDav be;éav éb) = Z (_l)ml‘]fl (fDa)Jj;z (be)Yflml (éa)Y}zmz(éb)

£imy&ymy

x¢<2f+1><2f1+1><2f2+1><f S | A B CH)

4

The two lowest moments, y), and y}, select the
unpolarized and the circularly polarized components of
an isotropic SGWB, respectively. When £ = m = 0, the
Wigner-3j symbol is proportional to &z, 2,6, m,- It immedi-
ately gives us

7(‘)/0 =0, (39)
whereas
2[+1 . )
vhe = 2—47[ C,P,(2,-2,) with (40)
7
1 *
Cy Eﬁjf(fDa)Jf(be>’ (41)

which depends solely on the separation angle as expected
for an isotropic SGWB. The power spectrum C, has an

F4 +2 +2 m —my ny

analytic form under the limit that fD, > ¢ and fD, > ¢
[38,42]. Using the integral result

Am dx eiji@ - 2if—17((;;2!!, (42)

Eq. (36) can be approximated as

(¢ -2)!

T

Jf(fD)|fD/c—>oo = 23/2ﬂi2f_1

which gives

873/2
s nee-1)

(44)

It was shown [36] that the y/,, (40) with this C, reproduces
the Hellings and Downs curve for the quadrupolar

064004-6



TIMING-RESIDUAL POWER SPECTRUM OF A POLARIZED ...

PHYS. REV. D 106, 064004 (2022)

interpulsar correlations [51]. For finite fD, and fD,, one
needs to calculate numerically the power spectrum (41) to
get corrections to the Hellings and Downs curve [42],
where it was found that the pulsar term adds power to the
power spectrum at higher-# and hence modifies the
Hellings and Downs curve at small angular separations.
This small-scale modification from the pulsar term has also
been discussed in Refs. [39,41].

For higher multipole moments, we can easily set up a
numerical scheme, similar to that in Ref. [41], to compute the
ORFs in Eqgs. (37) and (38) for any pair of Galactic pulsars on
the sky with known distances and coordinates, (D,,8,, ¢, )
and (D, 0, ¢y). The factor J, (fD,)J;, (fDy) is generally
a complex number. When fD, > ¢ and fD, > c, we can
approximate it as

] - e, (G =2)1 (£ =2)!

T (fD)T7,(fDy) = 8 (= 1)1 \/(f1+2)!(fz+2)!'
(45)
|

26+ 1

Vim(fDa fD.0) = (=1

7 4

x \/(2€ + 1)(2¢, + 1)(5

i w201+ 1
Vo (fDar fD3.0) = D (=1 =

16,

x \/(2¢€ + 1)(2¢, + 1)(

Using the property (A9), it is straightforward to show that
the ORFs in the computational frame have the conjugate
relations:

Voem = (=1)"Vhps (50)
yg—m = (_1>m+1},¥m7 (51)
v = (=1)my2EY. (52)

We have computed numerically the ORF multipole mo-
ments in Egs. (48) and (49). For fD, > ¢ and fD;, > c,
we reproduce the results for the intensity and circular-
polarization ORFs in Refs. [34-37]. For fD,= fD;, = 10c,
we confirm the contribution of the pulsar term to the ORFs
on small angular scales [39,41] and reproduce the results
for the linear-polarization ORFs [41].

VII. OVERLAP REDUCTION FUNCTIONS
IN THE COMPUTATIONAL FRAME

To compare the present method with previous works
[34-37,39,41], we also compute the ORFs in the so-called
computational frame: pulsar a is placed along the Z-axis
while pulsar b is in the X —Z plane. Then, their polar
coordinates are given by

éa = (0’ 0)’ éb = (C, 0)’ (46)

where { is their separation angle, and we have

. 201+ 1
Yflm] (eu) = 41‘-71’

Y;zmz (éb) = Y;zmz (C’ 0) = Yfzmg (C’ O) (47)

5m10’

Hence, Egs. (37) and (38) simplify to

(1 (=10 2]0, (fD )T, (f D) Y 7,m(C. 0)

¢ H\ (¢ ¢ £
1 2>< 1 2>’ (48)
-2 2)\m 0 -m

Je,(fDu)J%,(fDy)Y ¢,m(£,0)

4 Z, ‘5 4 A 2
. (49)
F4 +2 +2 m 0 —-m

Although the main results in Egs. (48) and (49) look
similar to those in the previous work [41] (Egs. (33)
and (34) there), they are basically derived from different
approaches. Here, we expand the timing residual by a
single a,,,, whereas the latter uses spherical harmonic
expansion of the polarization basis tensors, which is
essentially harmonic expansion in the timing-residual
correlation function or something that behaves as a combi-
nation of two ay,,’s. The approach in the previous work is
based on a method adopted in GW interferometry that
has fixed baselines connecting different detectors [40]. The
setting in PTA observation is different; however, the
method is still workable as shown in the previous work
[41], allowing one to develop an algorithm to compute the
ORF multipole moments. Nevertheless, for the method in
this previous work, it is impossible to extract individual a,,,
from the correlation function, and it is quite involved to
derive the C,’s from that harmonic expansion. We note that
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the present approach should be more natural for PTA
observation in the sense that it is an harmonic expansion of
the observable. In fact, the algorithm in the present work
is less complicated and more efficient than that in the
previous work. Furthermore, with a,,,’s, we can construct
the bipolar spherical harmonic coefficients as follows.

VIII. BIPOLAR SPHERICAL HARMONIC
COEFFICIENTS

Bipolar spherical harmonic (BiPoSH) coefficients have

cosmic microwave background [52]. The methodology is
equally well applicable to PTA observation of the SGWB.

We have derived the ORFs using the harmonic-space
method. Let us go back to the power spectrum in the
timing-residual correlation function (15), which can be
also expanded in terms of bipolar spherical harmonics:

{Y, (e,) ® Ys,(2,)},,, as [53]

Z Agm Y, (2,

16 0m

(r(ta, e,)r(tp. 2p)) ) ® Y, ()},

been introduced and widely discussed in the context of (53)
cosmic microwave background observation, providing us
with an efficient way to measure the statistical isotropy of the =~ where A?f'}z are the expansion coefficients and
|
N N m 4 7 2 S e (a
{Yr,(20) ® Yr,(24)},, = D (=1)"V20 41 Yem (@)Y m, (85), (54)
iy m —m my
which satisfy the orthogonal condition,
ﬁ @, /S 42,{Y,(20) ® V1, (@)} (Y1 (20) ® Vs @)}y, = 80,048 0s0.800 B (55)
where we have used the relation (A10). The BiPoSH coefficients is thus related to the power spectrum by
4 4 4
Al =N (~1)mV2e T 1( ! g )<aflmla;,m ). (56)
122 = m —m, 1y 21y
From Egs. (15) and (20), we have
X _ [ df —2xift 2nift, =X
<af1m1af2m2> - (2 f)2 (1 —e ”)<1 —e ) fom(f>yfm,f|mlf2m2’ (57)
—oo (27 X={I.V.Q+iU} ¢m
where
}/)fgm(fDa’be; €qs éb) = Z 7§m,flml)f’2mzyf|ml (éa)Y;zmz(éb)' (58)
£imytymy
Using the ORFs in Egs. (37) and (38), we can then explicitly write the BiPoSH coefficients as
m © df —27if if (21’01—'_1)(2{24_1) *
A?[fz _[m (27[](')2(1_8 : jt”)(l_ez flb)\/ 47[ Jfl(fDa)sz(be)
l 2 2 l 2 2
x 9 1|1+ (=1 f+f1+fz< >+Vm1_ -1 f+f]+f2<
{ralte corase)(0 5 D) avaii- e (00 0
+(Q+iU) (f o f2>+(Q U) (f o f2>} (59)
i —1i ,
m\-4 2 2 4 2 2

which shows that the intensity and circular-polarization
anisotropies induce even-parity and odd-parity BiPoSHs
respectively, whose parity is defined by the sum,
¢+ ¢, + ¢,. This selection rule has been pointed out in

|

Refs. [45,46], though the authors considered a limiting case
with fD,> ¢ and fD, > c. Using the property (A9),
under the approximation (45) we have A?’]”fz = AZ’}I. The
BiPoSH coefficients induced by the linear-polarization
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anisotropy are derived for the first time in this work. Similar
to the works in cosmic microwave background, these
BiPoSH coefficients can be used to construct optimal
estimators for testing the statistical isotropy of the SGWB
intensity and polarization [45,46].

IX. CONCLUSION

We have studied the pulsar-timing-array observation
of the Stokes parameters of an anisotropic stochastic
gravitational-wave background, based on the spherical
harmonic expansion of the pulsar timing residual. A numeri-
cal scheme to compute the overlap reduction functions
(ORFs) and the bipolar spherical harmonic (BiPoSH)
coefficients has been developed. We have used the Sachs-
Wolfe line-of-sight integral for the timing residual of a
Galactic millisecond pulsar, which properly takes into
account the contribution of the pulsar term to the ORF
multipoles at small angular separation of the pulsar pair.
Using the spherical-harmonic method, we can compute an
ORF multipole with a required angular resolution. The

$Yem(0, ) = (= )mem‘f’\/(z{ 1)@+ miZ = m>!sin2‘0(

(4m) (£ + )€ —s)!

When s = 0, it reduces to the ordinary spherical harmonics,

Yon(R) = \/(ZL;J[—)U ((;—T—Z;!!P?(COS 0)e™?,

(A2)

Spin-weighted spherical harmonics satisfy the orthogo-
nal relation,

Az di Y5, (7)Y g () = 8pp 8 (A3)
and the completeness relation,
D Y (R)Y i (R) = 8(h ~ )
‘m
=6(¢p— ¢’ )5(cos@ —cos ). (A4)

method also allows us to compute ORFs for Galactic pulsar
pairs at different distances from the Earth. Indeed, the Sachs-
Wolfe line-of-sight integral can be generalized to deal with
extragalactic pulsars at high redshifts. In future pulsar-
timing-array observation on a large number of pulsars,
our method can provide a fast algorithm for computing
accurate ORF multipoles and BiPoSH coefficients.
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APPENDIX: SPIN-WEIGHTED SPHERICAL
HARMONICS

The explicit form of the spin-weighted spherical har-
monics that we use is

(e ()

(A1)
|
Its complex conjugate is
Yo () = (1) Y oy (), (AS)
and its parity is given by
szm(_ﬁ> = szm(ﬂ 9’ ¢ + ﬂ) = (_1) —szm(ﬁ) (A6)
Also, we have the spherical wave expansion:
. 0 4
e =4 §j§jffmn%>wa> (A7)
=0 m——

where j,(x) is the spherical Bessel function.
We can calculate the integral of a product of three spin-
weighted spherical harmonics using the formula:

A ) AT NRAT N6 6 BN\(E 6
/dm]mgmyWJme4a—¢ 2 ,

-5 -5 —53 m my ms

(A8)

which involves two Wigner-3j symbols representing the coupling coefficients between different spherical harmonics [53].

The Wigner-3j symbol is zero unless it satisfies:

¢y, ¢, and 3 have to meet the triangular condition, i.e.,
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C1+ 62032 |6 — |, while my + my +m3y =0; when my =my, =m3 =0, £, + ¢, + ¢5 is even. The Wigner-3j
symbols have the reflection property and the summation relation:

(Z’ﬂl & f3> — (_1)f1+f2+f3< &
51 $2 $3 =5

(2f+1)z<:;

mym,

‘3 ) = (=1)frt0atts (l’ﬂl £ %
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