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In this paper, we investigate the generalized covariant entropy bound in the theory where the Einstein
gravity is perturbed by the higher-order Lovelock terms. After choosing the light sheet that is smooth under
the perturbation limit, replacing the Bekenstein-Hawking entropy with the Jacobson-Myers entropy, and
introducing two reasonable physical assumptions, we show that the corresponding generalized covariant
entropy bound is satisfied under a higher-order approximation of the perturbation from the higher-order
Lovelock terms. Our result implies that the Jacobson-Myers entropy strictly obeys the entropy bound under
the perturbation level, and the generalized second law of Lanczos-Lovelock gravity is also satisfied when
the Einstein gravity is perturbed by the higher-order Lovelock terms.
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I. INTRODUCTION

The investigation of black hole thermodynamics has led
to some interesting entropy bounds that should be observed
to guarantee theoretical consistency. Bekenstein [1] has
conjectured that the entropy S and energy E of any stable
gravitational thermodynamic system satisfies a universal
bound

S < 27ER, (1)

in which R is defined as the circumferential radius of the
sphere surrounding the thermodynamical system. This
bound is called the Bekenstein bound and it can be indicated
by the generalized second law (GSL) of black holes. The
Bekenstein bound has been confirmed in many weakly
gravitational systems with finite size. In a strongly gravita-
tional system, it is hard to define the energy E and radius R
locally. Counterexamples can be found in the process of
gravitational collapse [2]. For a spherical system in Einstein
gravity, the Bekenstein bound can be simplified as

A
SSZ, (2)

in which S and A are the entropy and area of the system. It is
worth noting that this bound is not well defined in a strongly
gravitational system since the area A is dependent on the
choice of the spacelike region in the system and it can always
be selected to be arbitrarily small by an almost null
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hypersurface. It was shown that this bound can be violated
in the system for large volume [3].

To find a covariant version of the entropy bound, Bousso
considered the entropy across a light sheet and proposed a
covariant entropy bound, called the Bousso bound [2],
which can be well formulated in arbitrarily curved space-
time. Consider a (D — 2)-dimensional compact spacelike
surface B with area A(B). Let L be a null hypersurface
generated by the null geodesics which starts at B and is
orthogonal to B. Assume that the expansion of the null
congruence is nonpositive (i.e., L is a light sheet) and L is
not terminated until a caustic point is reached. Then, the
entropy S; passing through the light sheet L is bounded by
the quarter of A(B), i.e.,

Sp < 1@ (3)

This is the covariant bound proposed by Bousso and it is
conjectured to be valid in any strongly gravitational system
with arbitrary large regions. This bound is shown to hold in
various cases [4—10] and it can be regarded as a formulation
of holographic principles in spacetime.

Note that the above conjecture requires that the light
sheet L ends at a caustic point. Flanagan et al. [9] extended
this bound in which the light sheet can be terminated at
another (D — 2)-dimensional spatial surface B’ before
reaching a caustic. Then the entropy bound is modified as

5, < A(B) - A(B)

; (4)

in which A(B’) is the area of the spatial surface B'.
This is called the generalized covariant entropy bound or

© 2022 American Physical Society


https://orcid.org/0000-0002-1517-7146
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.064002&domain=pdf&date_stamp=2022-09-02
https://doi.org/10.1103/PhysRevD.106.064002
https://doi.org/10.1103/PhysRevD.106.064002
https://doi.org/10.1103/PhysRevD.106.064002
https://doi.org/10.1103/PhysRevD.106.064002

MING ZHANG and JIE JIANG

PHYS. REV. D 106, 064002 (2022)

generalized Bousso bound and it has been proved in Einstein
gravity under some physical assumptions [9—11].

General relativity (GR) is not a complete theory of gravity
due to the lack of a definitive quantum gravity theory and it
can only be regarded as an effective theory in a certain region
of scale. After considering the quantum effect or string
modification, the higher-curvature terms are often added to
Einstein-Hilbert action to modify the effective action of the
gravitational theory [12-15]. In these cases, the Einstein
gravity is perturbed by the higher-curvature terms. In this
paper, we focus on the Lanczos-Lovelock gravity, which is
the only natural generalization of Einstein gravity to higher-
dimensional spacetime if we demand that the equations of
motion are second-order differential equations of the metric
[16,17]. Moreover, unlike most higher-curvature gravita-
tional theories, Lanczos-Lovelock gravity is a ghost-free
theory and admits a consistent initial value formulation
[18,19]. As mentioned above, the generalized covariant
entropy bound (4) is only valid in Einstein gravity. It is
natural to ask whether the higher-curvature corrections can
affect the entropy bound of the gravitational theory. Recently,
Matsuda et al. [20] extended the generalized covariant
entropy bound into the modified gravitational theory by
replacing the quarter of area A(B)/4 with some appropriate
black hole entropy Sy, (B), such as the Wald entropy [21,22]
or Jacobson-Myers (JM) entropy [23]. Under two reasonable
assumptions, they proved the entropy bound for Wald
entropy in f(R) gravity and canonical scalar-tensor theory.
Moreover, they also showed that the bound using JM entropy
holds for the GR branch of spherically symmetric configu-
rations in Einstein-Gauss-Bonnet gravity. In the following,
we would like to extend their discussion into the case where
the FEinstein gravity is perturbed by the higher-order
Lovelock terms and show that the JM entropy can give a
reasonable entropy bound in this theory.

The outline of this paper is as follows. In Sec. II, we briefly
review the Lanczos-Lovelock gravity and discuss the fea-
tures of Wald entropy and JM entropy. In Sec. III, we
introduce the generalized entropy bound in Lanczos-
Lovelock gravity and show the physical assumptions as
well as the key point for proving this bound. In Sec. IV, we
prove the generalized entropy bound in the theory where the
Einstein gravity is perturbed by the higher-order Lovelock
terms and show that the JM entropy strictly obeys the entropy
bound under the perturbation level. Finally, the conclusion
and discussion are presented in Sec. V.

II. LANCZOS-LOVELOCK GRAVITY

In this paper, we consider the Lanczos-Lovelock gravita-
tional theory with some minimally coupled matter fields. The
action of this theory in D-dimensional spacetime is given by

1 max

I= I x\/_( 2" +£mat) (5)

in which L, is the Lagrangian density of the matter fields,
Gap 18 the Minkowski metric of the spacetime, and

by-agby perd d
LB = 5?:1111 ?:d:Rgllbll "'Rgibkk (6)

is the k-order Lovelock term. Here k., = [(D —1)/2]" and
Sl = (2k)165 Y, - 5y (7)

is the generalized Kronecker tensor. The equation of motion
is given by

E, = 87T 4, (8)

in which 7', is the stress-energy tensor of the matter fields,
and

de

_ E balbl arby perdy | perdy
- 2k+1 acldl ckdkRalbl Rakbk (9)

is the generalized Einstein tensor of Lanczos-Lovelock
gravity. Employing the Noether charge method of Iyer
and Wald [21,22], the Wald entropy of Lanczos-Lovelock
gravity can be obtained and it is given by

SW = —27’[/ dD_zx P"dee becdv (10)

where we have denoted

1 Z ka .
cd k cabasb,---ayby pyeods crdy
Pab - 167 2k 5cdc7d2 cpdy Ra2b7 o 'Rakb,(' (11)

Here s is a cross section of the event horizon, y,;, is the
induced metric on s, and €, is the binormal to s. The Wald
entropy gives the correct first law in the stationary black
holes. However, as discussed in Refs. [24-27], the Wald
entropy of the Lanczos-Lovelock gravity does not obey the
linearized second law and we need to focus on the JM
entropy, i.e.,

1
Sim = Z/ dD_ZX\/?PJM (12)
with

kmdx

kak ab A
_ 2byarby feads Crdy
P = sz 5C2d2 “Crdy Razbz o debk’ (13)

in which R/ ¢, 1s the Riemann tensor of the induced metric y,,
on the cross section s. In the stationary black hole, JM

'"The square brackets [x] denote the integer part of x.
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entropy and Wald entropy give the same result, and therefore
the JM entropy also obeys the first law. Considering the
relationship between the generalized covariant entropy
bound and the generalized second law of the black holes,
it is natural to apply the JM entropy to discuss the entropy
bound in the Lanczos-Lovelock gravity.

III. GENERALIZED COVARIANT
ENTROPY BOUND

In this section, we first introduce the basic setups of the
generalized covariant entropy bound in Lanczos-Lovelock
gravity. Let L be a null hypersurface generalized by null
geodesics, which starts at a compact (D — 2)-dimensional
spatial surface By and ends at another compact (D — 2)-
dimensional spatial surface B;. Let k* = (d/du)” be the
tangent vector field of the null geodesics, in which u is an
affine parameter of the null geodesics such that the spatial
surfaces By and B, are given by u = 0 and u = 1, separately.
Any spatial surface B determined by the same u is called the
cross section of the null hypersurface. Suppose that the
expansion @ associated with k¢ is nonpositive everywhere on
L,i.e.,0 <on L. Then, we can choose (u, x) to a coordinate
system on the null hypersurface L, in which x =
{x!,---xP=2} denotes the coordinate of the cross section
and every geodesic is determined by a constant x. Then, the
covariant entropy bound in Lanczos-Lovelock gravity
demands that the entropy S; passing through the null
hypersurface L should satisfy

Sy < [Smm(Bo)

— Sm(B1)ls

in which Sy (B) is evaluated by the JM entropy formula (12)
on the cross-section B.

To prove the entropy bound, we first define the gener-
alized expansion ® of the JM entropy as the change of
entropy per unit area, i.e.,

(14)

= _4/901 /7O, (15)

Noting that the JM entropy is a purely spatial quantity in
the (D — 2)-dimensional slice B, i.e., it is determined by the
induced metric y,;,, we can regard Sy, as an action on the
cross-section B. Then, the Lie-derivative £; = d,, can be
seen as a variation on Syy;. After assuming that B is compact
and dropping the surface terms in 9, Sy, we can get

1 kmax D2 N
[ - (k=1)1ab
auSJM - 4;]“1](/5:611 XW[E ] au}/ab
kmax
= —EZkak [9 dP2x fy[E*-D]eb K, (16)
k=1
in which

1 balbl'"akhkkcldl .

A Aed
[E(k)]z = _W acidy-cpdy Naghy T R:(hl;(’ (17)
and
1
K., = Eauyab (18)

is the extrinsic curvature associated with k%. These results
imply that

mdx

o Kg Z kak ba2h2 akkaCZdz L I’édek (19)

aczdz crdy Trasby aiby

after neglecting the total-derivative terms.

Choose u to be an affine parameter of the null geodesics.
Using the equation of motion, we can write the change
of ® as

doe
— =827 + F, 20
I T + (20)
in which
T — Tabkakb,
F = Eahk"kh + kV 0. (21)

This can be regarded as the Raychaudhuri equation in
Lanczos-Lovelock gravity.

In the thermodynamic limit, there exists an entropy flux
vector field s such that the entropy passing through the
null hypersurface L can be written as

S, = / dP2xdu/ys (22)
L
with the entropy density
s = —k,s°. (23)

Analogies to the assumptions in Einstein gravity [10,11],
Ref. [20] made two following assumptions in the modified
gravitational theories,

(i) 9,s(x,u) <227 (x,u),

(i) s(x,0) < —%@(x, 0) (24)

on the null hypersurface L. The first assumption is from the
requirement that the change rate of the entropy flux is not
large than the energy flux and it can also be regarded as
the consequence of the version of Bekenstein bound [20].
The second assumption is just an initial choice of the
hypersurface such that the entropy bound is valid at the
beginning of L.
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With the above setups and assumptions, it is not hard
to get

s(x,u) = s(x,0) + Au dud,s(x, u)

<s(x,0)+ 27 /u duT (x,u), (25)
0

in which we have used the first assumption at the last step.
Then, using Eq. (20) and together with the second
assumption in Eq. (24), we have

s(x,u) < s(x,0) —%@(x,l) —|—%®(x,0) +% A " daF (x, )
s—1®(x,,1)+1/”daf(x,a). (26)
4 4y

Finally, after integrating the above identity over L, we have
St < Sym(Bo) — Spm(B1)
1 1 u
+ 4/ du/ dii | dP2x\/y(u)F (i, x),
0 0

= Sim(Bo) — Sim(B1) +%Al du Au diF (it u), (27)

in which we have denoted

F(i,u) = [ dP=2x\/y(u)F (i1, x). (28)

From the above results, we can see that the key point to
examining the generalized covariant entropy bound is to
judge the sign of F(ii,u). If we have F(it,u) <0, the
inequality (27) reduces to

S1 < Sym(Bo) = Spm(By), (29)

which is the entropy bound given by Eq. (14). For the
Einstein gravity, Eq. (20) is just the Raychaudhuri equation
and we have F (i1, x) <0, which gives the proof of the
generalized covariant entropy bound in Einstein gravity. In
the following, we would like to judge the sign of F in the
Lanczos-Lovelock gravity.

IV. PROOF OF THE ENTROPY BOUND WITH
HIGHER-CURVATURE CORRECTIONS

From the perspective of quantum corrections and string
theory, it is natural to consider the models of gravity where
the Einstein gravity is perturbed by higher curvature terms.
Therefore, in the following, we consider the Lanczos-
Lovelock gravity where the higher-order Lovelock terms
are treated as small corrections to the Einstein gravity, i.e.,
we consider the Lovelock theory with ay = —2A, a; =1
and a; = Aoy for k> 2, in which 1 is a small quantity

which describes the perturbation from the higher-curvature
terms. From the perspective of effective field theory, the
higher-order coupling constant a;, with k > 3 is also a small
quantity to be proportional to A*=2. Since the order of a;
does not affect our following analysis, we will not express
them concretely. Then, we have

ke
HY = Gl = A8, = 1y e o bR R
=2
(30)
and
pm=1+4p (31)
with
K gobrandy pesds B
p=d Sk suuh R R (32)

w-
I

2

After considering the higher-curvature corrections, the
solution in the theory will depend on the small parameter
A, i.e., gap(4), in which 2 = 0 describes the solution of
Einstein gravity.

To evaluate F(x,u, ) on the null hypersurface L, we
introduce the Gaussian null coordinate system {z, u, x}, in
which the line element can be expressed as

ds*(2) = 2(dz + 2?adu + zf;dx")du + y;dx'dx!,  (33)

in which the null hypersurface L is given by z = 0, and a,
B, and y;; are the function of u, z, x, 4. Here the index i, j,
k, [ denotes the coordinate of the cross-section B. The null
generator of L is given by k* = (d/du) Using this line
element, the nonvanishing component of the Christoffel
symbol on L can be further obtained:

A . : . — 1 .
IWkij :Fkij’ Fjui = K{? F]zi = K{? Fluz :Eﬂl’
u K u 1 Z K 4 1
r ij:_Kij’ r ui:_iﬁh Iﬁij:_l{ij’ inziﬂiﬁ

(34)

in which fkij is the Christoffel symbol of the induced
metric Yijs and

1 . 1

=0 K;; :_017ij (35)

Kij:2 ulijs T3

are the extrinsic curvature associated with the null vectors
(0/0u)* and (0/0z)“ separately. Further calculation gives
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0 e Ik 2]
RY = R — 4k K.
i C K i i i i
R* = _2pUg¥ + KlpH, Ry = =2D;Kyy + Kpfy

(36)

RS = ~0,K) - KK,

on the hypersurface L. Using the above results and
considering the symmetry of the generalized Kronecker
tensor, it is not difficult to get

kmax
Eakk" = RS, 2y ag[EV, (37)
k=2

on the null hypersurface L. Considering the antisymmetry
of the generalized Kronecker tensor and using Eq. (36), it is
not hard to get

k

K]z — j Gjirjarinje plm L
(BT, = g KA, R R
k(k=1) Lim jrivhaisisicic pl Lemy
ST Ry R it REG, R
(38)
for k > 2.
Then, using the result
ped d|
0,Re) = KERYy — 2D DIKS), (39)
and together with Eq. (19), we can further obtain
a o kak bayby---aiby eads Scdy
au® = aue + )“auKb ;Faaqdz"-ckd/{ Ruzbz o Rakbk
aA Beads 2 k(k = 1ay
+ AK[0,R ) T
k=2
ba,byazbs--apby 15c3d- Sed
aczzd;';d;---c:d:Razh; e Ruihi' (40)

Here we denote 9, = £;. Combing the above results, we
have

F = —KZKZ + AF, (41)
with

.7:2 = (HZ - HZ)@UKZ - KIL;KZHZ
+ (2DUKG — K4p°) (2D, KL - K} p.) Pibs
 KA(KSRSE — 20,0 KD, ()

in which we have denoted

Ko
"X kay, §habsaby perdy

Hb — E L. perdr
a 2k—1 acydy--cpdy " tayby apby
k=2
kmax ka
Hb _ k 3ba2b2~~~akbk Scoads . 'Rckdk
a — 2k_1 acydy--cpdy "N ayby apby
k=2
kmax k k 1
— 1)oy » - -
J= L A— < ¢ R ..
Pdef ( ) k ddefa.b, akb,\Rgdq . crdy
abec — 2k—1 abceydy--cpd, T asby apby’
k=2
kmax k k 1
pdef o ( B )ak "defafbd---akbkkc3d3 . ~kckdk (43)
abec — 2k—1 abcesdy--cpd, "t asby apby’
k=2
in which
bbb b;
6(11.4.‘1; = l!y[al e yai] (44)

is the ith-order generalized Kronecker tensor on the cross-
section B.

In the following, we would like to judge the sign of F/(1)
when the coupling constant A is regarded as a small
parameter. If we consider the solution g,,(4) which is an
analytic function of 1, then we can expand F (1) by 4,

}LZ
F)=F +F +58F +--. (45)
in which we have introduced the notation

_ 0'n(x,4)

oAl (46)

8'n(x)

A=0

to denote the ith-order variation of the quantity #(x, 1), and
the symbol without 4 denotes its counterpart of 4 = 0. In
the following, we would like to analyze the sign of the
integration of F(4), i.e.,

F = / dVAF (47)

with dV = d”~2x,/7 and
A=y e | [“o@a]. @)

From Eq. (27), we can see that the entropy bound is
satisfied if F' < 0. For the sake of simplicity, we define the
operation “= " as

y= / dVAY. (49)
B

In the following, we would like to analyze the sign of
F(A) after assuming that the hypersurface L is smooth
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under the perturbation limit A — 0, i.e., we assume that K{ ,
6 and their derivatives along L are finite as 1 — 0.

A. Zeroth-order approximation

First, we consider the zeroth-order approximation of A.
From Eq. (41), we can obtain

F(A) = —K4¢KL + O(2). (50)

Considering the fact that K, is a spatial tensor on B, we
have K, K® > 0 and, therefore,

F(A) =-K{K5 <0 (51)
under the zeroth-order approximation,2 in which we neglect
the first-order term of A. This implies that the covariant
entropy bound is satisfied under the zeroth-order approxi-
mation. This result is straightforward because the theory

under the zeroth-order approximation is just the Einstein
gravity. Assume

K|A=,/ / dVAKLKS o 28 (52)
B

with s > 0. From Eq. (50), whether a first-order approxi-
mation of F(4) needs to be considered depends on the order
of |K| 4. When s < 1/2, the dominate term of F(4) is given
by —|K|% and therefore we have F(1) < 0 even if O(2) is
taken into account. That is to say, only if s > 1/2 do we
need to consider the first-order approximation.

Define the nth-order optimal condition by vanishing the
nth-order approximation of F(1). Then, the second-order
term needs to be taken into consideration only under the
zeroth-order optimal condition

K| 4 o 25, (53)

with sy > 1/2 on the light sheet L. In this case, the extrinsic
curvature of the light sheet is a small quantity. As the
example of this light sheet, it can be chosen as a null
hypersurface near the Killing horizons in a stationary black
hole or an event horizon for a dynamical black hole which
is a perturbation of a stationary one.

B. First-order approximation

In the following, we would like to discuss the first-order
approximation of F(4) under the zeroth-order optimal
condition

|K.A| (XASO. (54)

’In this paper, we define the kth-order approximation as the
result of ignoring the (k -+ 1)th-order term O(A*+1).

The first-order variation of F (1) gives
SF = —2K$6K% + F». (55)
From Eq. (42), F, can be schematically expressed as

F,=(H-H)o,K+ C,KK + C,Ko,K
+ C30,K0.K + C,KPK, (56)
in which we neglect the indexes on K2, H2, H", C,, C,, and

(s, and D} Kj is denoted by dy'K. From Eq. (36), it is not
hard to see

R — Rl = O(K) (57)
under the first-order optimal condition. This implies that
H-H = 0O(K). (58)
Then, under the zeroth-order optimal condition, we have
F, = C30,K0,.K + O(K). (59)

Then, we have
F(4) = —K5KY + 2C30,K0.K + 20(K).  (60)
From Eq. (48) and noting the assumption that @ is finite

as A — 0, it is hard to see that the minimal value A,;, of A
on B is a zeroth-order term of A. Then, we have

|K|? :/dVKZKg < |K 47 o< A%, (61)
B

Amin
which means
K| = O(2%). (62)

Here we define the length of the spatial tensor Y, .., by

|Y| - \// dvyalu'am Ya]mam' (63)
B

Under the assumption that K;; and its derivatives are all
finite, it has been proven in the Appendix that

|07 K| = O(4%). (64)

For the last term of Eq. (60) and using the Cauchy-
Schwarz inequality (A4), we can further get

|O(K)|= < [X[IK]. (65)

/ AVXK?
B
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Noting that |X| is finite as 4 — 0, we have
O(K)= / dVXLKh = O(%). (66)
B

For the second term of Eq. (60), using the decomposition

AC30,K0,K =X1®6hbbp, K, Dy Ky,
:Xa]a2a3b|b2h3Dcl KCZCS.gu]c] guzczga303Db| Kb2h3
(67)

and together with the Cauchy-Schwarz inequality (A4) as
well as Eq. (64), we have

< \/A dVk(D,Kp)(DK")

x\/(D = 2)*|0.K|

‘ / dVAC;0,Kd.K
B

< (D - 2>3Kmax|axl(|2
— O(2), (68)

in which we denote k = X“®tbibabiy ) and Koy
is the maximal value of x. Then, we have

C;0,K0, K= / dVAC;0,K0,K = O(2*0). (69)
B

With a similar calculation, it is not hard to show
CO"Ka'K= O(4*%) (70)

for any m and n.
Using the above results, we can further obtain

F(A)= F(2) = =K% + O (71)

under the first-order approximation, in which we neglect
the second-order term (O(4%). Then, we can see that if
so < 1, the dominate term is given by —|K|% o« 4*0 and we
have F(4) < 0 under the first-order approximation. When
5o > 1, we have F(1) =0 under the first-order approxi-
mation. This indicates that the generalized covariant
entropy bound is satisfied under the first-order approxi-
mation of 4.

For the case with 5y < 1, we can see that the leading term
of F(A) is always given by —|K|% and therefore we have
F(1) <0 even when the higher-order approximation is
taken into account. Then, the second-order approximation
is required only if the first-order optimal condition is
satisfied, i.e.,

K| 4 oA (72)
with s; > 1.

C. Second-order approximation

In this subsection, we evaluate the second-order approxi-
mation of F(1) under the first-order optimal condition (72).
For the first term of F (1), we have

K5(2)K4(A) =K+ A5K5+O(2%)| K5+ A8K5 + O(22)]
= (Kb +26KE) (Kb +6K5) +22O(K) +O(43).
(73)

From Eq. (66), we can get
PO(K)ZE O(+s). (74)

Considering the first-order optimal condition s; > 1, we
can further obtain

KG(MKG(2)= |Kg + A8K[% (75)
under the second-order approximation of 4, i.e., we neglect
the third-order term O(4%).

To simplify, we define

K + A8K| 4 & 4. (76)

Considering the first-order optimal condition, we have
51 > 1. When 5, < 2, we have

|KG(4)] 4 o 2. (77)
From Eq. (56), we have
Fo(2) = [HQ2) — H(2)]0,K(2) + COYK(2)0iK(2).  (78)
Using Eq. (43), we have
(H - H)o,K = 0,(XKK) + O(K?) (79)
Note that the final expression (27) in the entropy bound is

the integration of F. Therefore, we consider an integral of
the first term of the above equation,

/ " 0,(XKK) = XKK|! = O(K*)2 O(%), (80)
0

which means that the first term on the right-hand side of
Eq. (78) only contributes a higher-order term under the
second-order approximation. In Egs. (79) and (80), we have
neglected the parameter A for simplify. For the second term
of Eq. (78), using Eq. (70), we have
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CO"K () K(A)= O(*H). (81)
Combining the above results, we have
F(1) = —|K + 26K} <0 (82)

under the second-order approximation. When §; > 2, we
have K(1) = O(4?). In this case, the calculation is same as
5, <2 and finally we can get F(4) = 0 under the second-
order approximation. These results show that the entropy
bound is satisfied under the second-order approximation.
Similarly, it is not hard to see that when §; < 3/2, the
higher-order approximation of F'(4) is also nonpositive, i.e.,
the third-order approximation only needs to be considered
in the second-order optimal condition,

K + 28K 4 & 2, (83)

with s, > 3/2 such that the second-order approximation of
F(A) vanishes and we need to consider the third-order
approximation of A.

D. nth-order approximation

In the following, we would like to prove that F(4) is
always nonpositive under the nth-order approximation
when the (n — 1)th-order optimal conditions are based
on the mathematical induction. By concluding the first two
order results, it is equivalent to proving the following
proposition: under the nth-order optimal condition

[n/2] ),l
}: SK| o A (84)
i—0 ! A
with
1
5, > (85)

= 2 ’

the (n + 1)th-order approximation of F(4) is nonpositive,
1.e.,

F(2) <0 (86)

after neglecting O(A"+2). Then, a saturation of this inequality
demands the (n -+ 1)th-order optimal condition and the
(m + 1)th-order optimal condition needs to be considered
only when the (n + 1)th-order optimal condition is satisfied.

Proof.—Obviously, the proposition is satisfied for
n=0,1,2.

(Case of n=2m.) When n =2m, the (2m)th-order
optimal condition is given by

o A5 (87)

with s, > m + 1/2. Then, we have

KL(2)Ky () = (Z : 5’K”> (Em:fv‘”{h>

i=0 i=0 "
+AmHLO(K) 4+ O(22m+2), (88)
From Eq. (66), we can get
lmHO(K)ﬁ O(/ls”erJrl)_ (89)

Then, we have

DL (%0

=0

under the (2m + 1)th-order approximation of A.
With the same calculation as the second-order approxi-
mation, it is straightforward to show
Fa(A)=

(’)(/12“'”) — O(A2m+l)’ (91)

which gives

2
+ O ﬂanrerl) (92)

St

i=0

under the (2m + 1)th-order approximation, in which the
O(4*"*2) terms are neglected. When s, <m + 1, the
leading term is given by

m_ i
> k|

i=0

(93)
A

and thus we have F(4) <0 under the (2m + 1)th-order
approximation. For the case with s, > m + 1, we have
F(2) =0 under the (2m -+ l)th-order approximation.
These imply that F(4) <0 under the (2m + 1)th-order
approximation.

When s,,,,.1 <m+ 1, we can see that F(1) <0 even
under the higher-order approximation of A. That is to say,
the (2m + 2)th-order term needs to be taken into account
only when the (2m + 1)th-order optimal condition is
satisfied, i.e.,

o ASam+i (94)

with s,,,,1 > m + 1. These show that the validity of the
proposition with n = 2m.
(Case of n =2m + 1.) When n = 2m + 1, we define

m/v
E:F&K

1=

& St (95)
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When s,,,,1 < m+ 2, the (2m + 1)th-order optimal con-
dition (94) implies §,,,.; = m + 1. Then, with the same
calculation as second-order approximation, it is not hard to
obtain

m+1 ﬂi

Zﬁéil(

i=0

2
<0 (96)

A

under the (2m + 2)th-order approximation. A saturation of
this inequality demands the (2m + 2)th-order optimal
condition

m—+1 4

ZE‘S'K

i=0

X ASZmJJ (97)
A

with s,,,.0 > m +3/2. This is actually the proposition
with n = 2m + 1, i.e.,, we have completed the proof.
(]
The above result shows that the generalized covariant
entropy bound associated with the JM entropy is valid
under any higher-order approximation of A.

V. CONCLUSION AND DISCUSSION

In this paper, we consider the generalized covariant
entropy bound for the theory in which the Einstein gravity
is perturbed by the higher-order Lovelock terms and
introduce a small parameter 4 to characterize these pertur-
bations. After considering the linearized second law of
black holes in Lanczos-Lovelock gravity, the entropy
bound in this theory is naturally proposed by replacing
the Bekenstein-Hawking entropy with the JM entropy.
Then, we showed that the key point to examine the validity
of covariant entropy bound is to judge the sign of the
quantity F(1), and the entropy bound is satisfied if
F(4) 0. After assuming two physical assumptions and
that the metric g,,, is an analytic function of 1, we illustrate
that the dominant term of F'(4) is always nonpositive based
on the mathematical induction, i.e., the generalized covar-
iant entropy bound is valid under any higher-order approxi-
mation of A. This indicates that the entropy bound using the
M entropy is strictly satisfied under the perturbation level
of the higher-order Lovelock terms. From the discussion in
Sec. V D of Ref. [20], we can see that the above result also
indicates the validity of the generalized second law under
the higher-order approximation of A for the theory where
the Einstein gravity is perturbed by the higher-order
Lovelock terms, this is a different result from the linearized
second law of Lanczos-Lovelock gravity.

From the calculations presented in this paper, it is not
hard to check that if we replace the Bekenstein-Hawking
with the Wald entropy formula instead of the JM entropy
formula in the entropy bound, we cannot show the non-
positive of F only using the assumptions given by the
paper. This implies that the covariant entropy bound might

be used to select the black hole entropy of the gravitational
theory. Moreover, it is worth noting that our result is only
suitable for the case where the higher-order Lovelock terms
are regarded as some small corrections to Einstein gravity,
and not for the nonperturbation cases. From the discussion
in Sec. 111, the key point to examine the entropy bound is
also to check the sign of F given by Eq. (41). However, due
to the complexity of the expression, it is difficult for us to
judge its sign directly only based on the setups and
assumptions in our paper. One of our future works is going
to consider these cases. Furthermore, our strategy can also
be applied in the theory in which the Einstein gravity is
perturbed by other higher-curvature terms. For most higher-
curvature theories, since there exist higher-order field equa-
tions and the entropy of black holes cannot be expressed as a
purely spatial quantity on the cross-section B, it is hard to
simplify the expression of F like the Lanczos-Lovelock
gravity. We will leave that for future studies.
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APPENDIX: THE ORDER FOR THE
DERIVATIVE OF EXTRINSIC CURVATURE

In this paper, we only consider the cases where the null
hypersurface L is located in a finite region away from
infinity and singularity. Assuming that the hypersurface L

is smooth, K/ and its derivatives along L should be finite,
1.e., we demand

/ dV(Dg,..a K5) (DU K§) o A%n (A1)
B

with y,, > 0, in which we denote dV = d”~?x,/7 and

Dyw =Dy D, . (A2)

apay

Considering the assumption that B is compact and using the
Gauss law, we can get

[ aV(Da, o kDK
B

= / dV(DU D, 4,..q K5) (D% nKS).  (A3)
B

Using the Cauchy-Schwarz inequality
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B

< \// dvﬂalmamnal'--um/dvé’almamga|-~-am (A4)
B B

for any spatial tensor £ and ¢, it is not hard to obtain

[ vy, kD)

< \/ A dV(Dy,..q,. K5) (D" 1K)

x \/ (D -2) /9 dV(D,,..,, Kb5)(D% nKY)

o ASm1FSm-1 (AS)
which implies
N2 = O(Hmsrm-1), (A6)
Then, we have 2y,, > ¥,1 + Xm—1> 1.€.,
Hm = Xm=1 Z Xmi1 = Xm- (A7)

This inequality implies that if there exists an “m” such that
Ama1 > Xms> 1€ Yme1 — Xm > 0 we have

X=X = X2 20— 32 2 Y1 —Xm > 0. (AB)

i.e., we have y; > yo. Therefore, we only need to focus on
the case in which

XX 222 2 2 (A9)
Considering that y,, > 0 for any m > 0, the above inequal-
ity implies the existence of a limit on the sequence y,,, i.e.,

lim gz, =7 (A10)
with ¥ > 0. This result also implies that

5 (7~ ) = 0 (Al1)
Using the inequality (A7), we can further obtain
N=xozxpa=x1z ez im (G —y0) =0. (Al2)

Together with inequality (A9), this implies y; = y.
Finally, we can summarize that y; > y,. Similarly, we
can obtain y,, > y,_; for any m.

A straightforward application of the above result is

/ dV (D, ...q, K5) (D4 K§) = O(A%0) (A13)
B

for any m.
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