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In this paper, we investigate the generalized covariant entropy bound in the theory where the Einstein
gravity is perturbed by the higher-order Lovelock terms. After choosing the light sheet that is smooth under
the perturbation limit, replacing the Bekenstein-Hawking entropy with the Jacobson-Myers entropy, and
introducing two reasonable physical assumptions, we show that the corresponding generalized covariant
entropy bound is satisfied under a higher-order approximation of the perturbation from the higher-order
Lovelock terms. Our result implies that the Jacobson-Myers entropy strictly obeys the entropy bound under
the perturbation level, and the generalized second law of Lanczos-Lovelock gravity is also satisfied when
the Einstein gravity is perturbed by the higher-order Lovelock terms.
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I. INTRODUCTION

The investigation of black hole thermodynamics has led
to some interesting entropy bounds that should be observed
to guarantee theoretical consistency. Bekenstein [1] has
conjectured that the entropy S and energy E of any stable
gravitational thermodynamic system satisfies a universal
bound

S ≤ 2πER; ð1Þ

in which R is defined as the circumferential radius of the
sphere surrounding the thermodynamical system. This
bound is called the Bekenstein bound and it can be indicated
by the generalized second law (GSL) of black holes. The
Bekenstein bound has been confirmed in many weakly
gravitational systems with finite size. In a strongly gravita-
tional system, it is hard to define the energy E and radius R
locally. Counterexamples can be found in the process of
gravitational collapse [2]. For a spherical system in Einstein
gravity, the Bekenstein bound can be simplified as

S ≤
A
4
; ð2Þ

in which S and A are the entropy and area of the system. It is
worth noting that this bound is not well defined in a strongly
gravitational system since the area A is dependent on the
choice of the spacelike region in the system and it can always
be selected to be arbitrarily small by an almost null

hypersurface. It was shown that this bound can be violated
in the system for large volume [3].
To find a covariant version of the entropy bound, Bousso

considered the entropy across a light sheet and proposed a
covariant entropy bound, called the Bousso bound [2],
which can be well formulated in arbitrarily curved space-
time. Consider a (D − 2)-dimensional compact spacelike
surface B with area AðBÞ. Let L be a null hypersurface
generated by the null geodesics which starts at B and is
orthogonal to B. Assume that the expansion of the null
congruence is nonpositive (i.e., L is a light sheet) and L is
not terminated until a caustic point is reached. Then, the
entropy SL passing through the light sheet L is bounded by
the quarter of AðBÞ, i.e.,

SL ≤
AðBÞ
4

: ð3Þ

This is the covariant bound proposed by Bousso and it is
conjectured to be valid in any strongly gravitational system
with arbitrary large regions. This bound is shown to hold in
various cases [4–10] and it can be regarded as a formulation
of holographic principles in spacetime.
Note that the above conjecture requires that the light

sheet L ends at a caustic point. Flanagan et al. [9] extended
this bound in which the light sheet can be terminated at
another (D − 2)-dimensional spatial surface B0 before
reaching a caustic. Then the entropy bound is modified as

SL ≤
1

4
jAðB0Þ − AðBÞj; ð4Þ

in which AðB0Þ is the area of the spatial surface B0.
This is called the generalized covariant entropy bound or
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generalized Bousso bound and it has been proved in Einstein
gravity under some physical assumptions [9–11].
General relativity (GR) is not a complete theory of gravity

due to the lack of a definitive quantum gravity theory and it
can only be regarded as an effective theory in a certain region
of scale. After considering the quantum effect or string
modification, the higher-curvature terms are often added to
Einstein-Hilbert action to modify the effective action of the
gravitational theory [12–15]. In these cases, the Einstein
gravity is perturbed by the higher-curvature terms. In this
paper, we focus on the Lanczos-Lovelock gravity, which is
the only natural generalization of Einstein gravity to higher-
dimensional spacetime if we demand that the equations of
motion are second-order differential equations of the metric
[16,17]. Moreover, unlike most higher-curvature gravita-
tional theories, Lanczos-Lovelock gravity is a ghost-free
theory and admits a consistent initial value formulation
[18,19]. As mentioned above, the generalized covariant
entropy bound (4) is only valid in Einstein gravity. It is
natural to ask whether the higher-curvature corrections can
affect the entropybound of thegravitational theory.Recently,
Matsuda et al. [20] extended the generalized covariant
entropy bound into the modified gravitational theory by
replacing the quarter of area AðBÞ=4 with some appropriate
black hole entropy SbhðBÞ, such as theWald entropy [21,22]
or Jacobson-Myers (JM) entropy [23]. Under two reasonable
assumptions, they proved the entropy bound for Wald
entropy in fðRÞ gravity and canonical scalar-tensor theory.
Moreover, they also showed that the bound using JMentropy
holds for the GR branch of spherically symmetric configu-
rations in Einstein-Gauss-Bonnet gravity. In the following,
we would like to extend their discussion into the case where
the Einstein gravity is perturbed by the higher-order
Lovelock terms and show that the JM entropy can give a
reasonable entropy bound in this theory.
The outline of this paper is as follows. In Sec. II, we briefly

review the Lanczos-Lovelock gravity and discuss the fea-
tures of Wald entropy and JM entropy. In Sec. III, we
introduce the generalized entropy bound in Lanczos-
Lovelock gravity and show the physical assumptions as
well as the key point for proving this bound. In Sec. IV, we
prove the generalized entropy bound in the theory where the
Einstein gravity is perturbed by the higher-order Lovelock
terms and show that the JMentropy strictly obeys the entropy
bound under the perturbation level. Finally, the conclusion
and discussion are presented in Sec. V.

II. LANCZOS-LOVELOCK GRAVITY

In this paper, we consider the Lanczos-Lovelock gravita-
tional theorywith someminimally coupledmatter fields. The
action of this theory inD-dimensional spacetime is given by

I ¼ 1

16π

Z
dDx

ffiffiffi
g

p �Xkmax

k¼0

ak
2k

LðkÞ þ Lmat

�
; ð5Þ

in which Lmat is the Lagrangian density of the matter fields,
gab is the Minkowski metric of the spacetime, and

LðkÞ ¼ δa1b1���akbkc1d1���ckdk R
c1d1
a1b1

� � �Rckdk
akbk

ð6Þ

is the k-order Lovelock term. Here kmax ¼ ½ðD − 1Þ=2�1 and

δa1b1���akbkc1d1���ckdk ¼ ð2kÞ!δ½a1c1 δ
b1
d1
� � � δakckδbk�dk

ð7Þ

is the generalized Kronecker tensor. The equation of motion
is given by

Eab ¼ 8πTab; ð8Þ

in which Tab is the stress-energy tensor of the matter fields,
and

Eab ¼ −
Xkmax

k¼0

ak
2kþ1

δba1b1���akbkac1d1���ckdk R
c1d1
a1b1

� � �Rckdk
akbk

ð9Þ

is the generalized Einstein tensor of Lanczos-Lovelock
gravity. Employing the Noether charge method of Iyer
and Wald [21,22], the Wald entropy of Lanczos-Lovelock
gravity can be obtained and it is given by

SW ¼ −2π
Z
s
dD−2x

ffiffiffi
γ

p
Pabcdϵ̂abϵ̂cd; ð10Þ

where we have denoted

Pcd
ab ¼

1

16π

Xkmax

k¼0

kak
2k

δaba2b2���akbkcdc2d2���ckdk R
c2d2
a2b2

� � �Rckdk
akbk

: ð11Þ

Here s is a cross section of the event horizon, γab is the
induced metric on s, and ϵ̂ab is the binormal to s. The Wald
entropy gives the correct first law in the stationary black
holes. However, as discussed in Refs. [24–27], the Wald
entropy of the Lanczos-Lovelock gravity does not obey the
linearized second law and we need to focus on the JM
entropy, i.e.,

SJM ¼ 1

4

Z
s
dD−2x

ffiffiffi
γ

p
ρJM ð12Þ

with

ρJM ¼
Xkmax

k¼1

kak
2k−1

δa2b2���akbkc2d2���ckdk R̂
c2d2
a2b2

� � � R̂ckdk
akbk

; ð13Þ

in which R̂cd
ab is the Riemann tensor of the inducedmetric γab

on the cross section s. In the stationary black hole, JM

1The square brackets [x] denote the integer part of x.
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entropy andWald entropy give the same result, and therefore
the JM entropy also obeys the first law. Considering the
relationship between the generalized covariant entropy
bound and the generalized second law of the black holes,
it is natural to apply the JM entropy to discuss the entropy
bound in the Lanczos-Lovelock gravity.

III. GENERALIZED COVARIANT
ENTROPY BOUND

In this section, we first introduce the basic setups of the
generalized covariant entropy bound in Lanczos-Lovelock
gravity. Let L be a null hypersurface generalized by null
geodesics, which starts at a compact (D − 2)-dimensional
spatial surface B0 and ends at another compact (D − 2)-
dimensional spatial surface B1. Let ka ¼ ð∂=∂uÞa be the
tangent vector field of the null geodesics, in which u is an
affine parameter of the null geodesics such that the spatial
surfacesB0 andB1 are given by u ¼ 0 and u ¼ 1, separately.
Any spatial surface B determined by the same u is called the
cross section of the null hypersurface. Suppose that the
expansion θ associated with ka is nonpositive everywhere on
L, i.e., θ ≤ on L. Then, we can choose ðu; xÞ to a coordinate
system on the null hypersurface L, in which x ¼
fx1; � � � xD−2g denotes the coordinate of the cross section
and every geodesic is determined by a constant x. Then, the
covariant entropy bound in Lanczos-Lovelock gravity
demands that the entropy SL passing through the null
hypersurface L should satisfy

SL ≤ jSJMðB0Þ − SJMðB1Þj; ð14Þ

in which SJMðBÞ is evaluated by the JM entropy formula (12)
on the cross-section B.
To prove the entropy bound, we first define the gener-

alized expansion Θ of the JM entropy as the change of
entropy per unit area, i.e.,

dSJM
du

¼ 1

4

Z
B
dD−2x

ffiffiffi
γ

p
Θ: ð15Þ

Noting that the JM entropy is a purely spatial quantity in
the (D − 2)-dimensional slice B, i.e., it is determined by the
induced metric γab, we can regard SJM as an action on the
cross-section B. Then, the Lie-derivative Lk ¼ ∂u can be
seen as a variation on SJM. After assuming that B is compact
and dropping the surface terms in ∂uSJM, we can get

∂uSJM ¼ −
1

4

Xkmax

k¼1

kak

Z
B
dD−2x

ffiffiffi
γ

p ½Êðk−1Þ�ab∂uγab

¼ −
1

2

Xkmax

k¼1

kak

Z
B
dD−2x

ffiffiffi
γ

p ½Êðk−1Þ�abKab ð16Þ

in which

½ÊðkÞ�ba ¼ −
1

2kþ1
δba1b1���akbkac1d1���ckdk R̂

c1d1
a1b1

� � � R̂ckdk
akbk

; ð17Þ

and

Kab ¼
1

2
∂uγab ð18Þ

is the extrinsic curvature associated with ka. These results
imply that

Θ ¼ Ka
b

Xkmax

k¼1

kak
2k−1

δba2b2���akbkac2d2���ckdk R̂
c2d2
a2b2

� � � R̂ckdk
akbk

ð19Þ

after neglecting the total-derivative terms.
Choose u to be an affine parameter of the null geodesics.

Using the equation of motion, we can write the change
of Θ as

dΘ
du

¼ −8πT þ F ; ð20Þ

in which

T ¼ Tabkakb;

F ¼ Eabkakb þ ka∇aΘ: ð21Þ

This can be regarded as the Raychaudhuri equation in
Lanczos-Lovelock gravity.
In the thermodynamic limit, there exists an entropy flux

vector field sa such that the entropy passing through the
null hypersurface L can be written as

SL ¼
Z
L
dD−2xdu

ffiffiffi
γ

p
s ð22Þ

with the entropy density

s ¼ −kasa: ð23Þ

Analogies to the assumptions in Einstein gravity [10,11],
Ref. [20] made two following assumptions in the modified
gravitational theories,

ðiÞ ∂usðx; uÞ ≤ 2πT ðx; uÞ;

ðiiÞ sðx; 0Þ ≤ −
1

4
Θðx; 0Þ ð24Þ

on the null hypersurface L. The first assumption is from the
requirement that the change rate of the entropy flux is not
large than the energy flux and it can also be regarded as
the consequence of the version of Bekenstein bound [20].
The second assumption is just an initial choice of the
hypersurface such that the entropy bound is valid at the
beginning of L.
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With the above setups and assumptions, it is not hard
to get

sðx; uÞ ¼ sðx; 0Þ þ
Z

u

0

du∂usðx; uÞ

≤ sðx; 0Þ þ 2π

Z
u

0

duT ðx; uÞ; ð25Þ

in which we have used the first assumption at the last step.
Then, using Eq. (20) and together with the second
assumption in Eq. (24), we have

sðx;uÞ ≤ sðx;0Þ− 1

4
Θðx;λÞ þ 1

4
Θðx;0Þ þ 1

4

Z
u

0

dũF ðx; ũÞ

≤ −
1

4
Θðx;λÞ þ 1

4

Z
u

0

dũF ðx; ũÞ: ð26Þ

Finally, after integrating the above identity over L, we have

SL ≤ SJMðB0Þ − SJMðB1Þ

þ 1

4

Z
1

0

du
Z

u

0

dũ
Z

dD−2x
ffiffiffiffiffiffiffiffiffi
γðuÞ

p
F ðũ; xÞ;

¼ SJMðB0Þ − SJMðB1Þ þ
1

4

Z
1

0

du
Z

u

0

dũFðũ; uÞ; ð27Þ

in which we have denoted

Fðũ; uÞ ¼
Z

dD−2x
ffiffiffiffiffiffiffiffiffi
γðuÞ

p
F ðũ; xÞ: ð28Þ

From the above results, we can see that the key point to
examining the generalized covariant entropy bound is to
judge the sign of Fðũ; uÞ. If we have Fðũ; uÞ ≤ 0, the
inequality (27) reduces to

SL ≤ SJMðB0Þ − SJMðB1Þ; ð29Þ

which is the entropy bound given by Eq. (14). For the
Einstein gravity, Eq. (20) is just the Raychaudhuri equation
and we have F ðũ; xÞ ≤ 0, which gives the proof of the
generalized covariant entropy bound in Einstein gravity. In
the following, we would like to judge the sign of F in the
Lanczos-Lovelock gravity.

IV. PROOF OF THE ENTROPY BOUND WITH
HIGHER-CURVATURE CORRECTIONS

From the perspective of quantum corrections and string
theory, it is natural to consider the models of gravity where
the Einstein gravity is perturbed by higher curvature terms.
Therefore, in the following, we consider the Lanczos-
Lovelock gravity where the higher-order Lovelock terms
are treated as small corrections to the Einstein gravity, i.e.,
we consider the Lovelock theory with a0 ¼ −2Λ, a1 ¼ 1
and ak ¼ λαk for k ≥ 2, in which λ is a small quantity

which describes the perturbation from the higher-curvature
terms. From the perspective of effective field theory, the
higher-order coupling constant αk with k ≥ 3 is also a small
quantity to be proportional to λk−2. Since the order of αk
does not affect our following analysis, we will not express
them concretely. Then, we have

Hb
a ¼ Gb

a − Λδba − λ
Xkmax

k¼2

αk
2kþ1

δba1b1���akbkac1d1���ckdk R
c1d1
a1b1

� � �Rckdk
akbk

;

ð30Þ

and

ρJM ¼ 1þ λρ ð31Þ

with

ρ ¼
Xkmax

k¼2

kαk
2k−1

δa2b2���akbkc2d2���ckdk R̂
c2d2
a2b2

� � � R̂ckdk
akbk

: ð32Þ

After considering the higher-curvature corrections, the
solution in the theory will depend on the small parameter
λ, i.e., gabðλÞ, in which λ ¼ 0 describes the solution of
Einstein gravity.
To evaluate F ðx; u; λÞ on the null hypersurface L, we

introduce the Gaussian null coordinate system fz; u; xg, in
which the line element can be expressed as

ds2ðλÞ ¼ 2ðdzþ z2αduþ zβidxiÞduþ γijdxidxj; ð33Þ

in which the null hypersurface L is given by z ¼ 0, and α,
βi, and γij are the function of u, z, x, λ. Here the index i, j,
k, l denotes the coordinate of the cross-section B. The null
generator of L is given by ka ¼ ð∂=∂uÞa. Using this line
element, the nonvanishing component of the Christoffel
symbol on L can be further obtained:

Γk
ij ¼ Γ̂k

ij; Γj
ui¼Kj

i ; Γj
zi ¼ K̄j

i ; Γ1
uz¼

1

2
βi;

Γu
ij ¼−K̄ij; Γu

ui¼−
1

2
βi; Γz

ij¼−K̄ij; Γz
zi ¼

1

2
βi;

ð34Þ

in which Γ̂k
ij is the Christoffel symbol of the induced

metric γij, and

Kij ¼
1

2
∂uγij; K̄ij ¼

1

2
∂zγij ð35Þ

are the extrinsic curvature associated with the null vectors
ð∂=∂uÞa and ð∂=∂zÞa separately. Further calculation gives
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Rkl
ij ¼ R̂kl

ij − 4K½k
½i K̄

l�
j�; Rzj

ui ¼ −∂uK
j
i − Kk

i K
j
k;

Rjk
ui ¼ −2D½jKk�

i þ K½j
i β

k�; Rzi
jk ¼ −2D½jKi

k� þ Ki
½jβk�

ð36Þ

on the hypersurface L. Using the above results and
considering the symmetry of the generalized Kronecker
tensor, it is not difficult to get

Eabkakb ¼ Rz
u þ λ

Xkmax

k¼2

αk½EðkÞ�zu; ð37Þ

on the null hypersurface L. Considering the antisymmetry
of the generalized Kronecker tensor and using Eq. (36), it is
not hard to get

½EðkÞ�zu ¼
k

2k−1
Rzj
uiδ

ji2j2���ikjk
il2m2���lkmk

Rl2m2

i2j2
� � �Rlkmk

ikjk

þ kðk− 1Þ
2k−1

Rl1m1

uj1
Rzm2

i2j2
δj1i2j2i3j3���ikjkl1m1m2l3m3���lkmk

Rl3m3

i3j3
� � �Rlkmk

ikjk

ð38Þ

for k ≥ 2.
Then, using the result

∂uR̂
cd
ab ¼ K½c

e R
d�e
ab − 2D½aD½cKd�

b�; ð39Þ

and together with Eq. (19), we can further obtain

∂uΘ ¼ ∂uθ þ λ∂uKa
b

Xkmax

k¼2

kαk
2k−1

δba2b2���akbkac2d2���ckdk R̂
c2d2
a2b2

� � � R̂ckdk
akbk

þ λKa
b∂uR̂

c2d2
a2b2

Xkmax

k¼2

kðk − 1Þαk
2k−1

× δba2b2a3b3���akbkac2d2c3d3���ckdk R̂
c3d3
a3b3

� � � R̂ckdk
akbk

: ð40Þ

Here we denote ∂u ¼ Lk. Combing the above results, we
have

F ¼ −Kb
aKa

b þ λF 2 ð41Þ

with

F 2 ¼ ðĤb
a −Hb

aÞ∂uKa
b − Kc

bK
a
cHb

a

þ ð2DdKe
a − Kd

aβ
eÞð2DbK

f
c − Kf

bβcÞPabc
def

þ Kd
aðKe

ẽR
fẽ
bc − 2DbDeKf

cÞP̂abc
def; ð42Þ

in which we have denoted

Hb
a ¼

Xkmax

k¼2

kαk
2k−1

δ̂ba2b2���akbkac2d2���ckdk R
c2d2
a2b2

� � �Rckdk
akbk

;

Ĥb
a ¼

Xkmax

k¼2

kαk
2k−1

δ̂ba2b2���akbkac2d2���ckdk R̂
c2d2
a2b2

� � � R̂ckdk
akbk

;

Pdef
abc ¼

Xkmax

k¼2

kðk − 1Þαk
2k−1

δ̂defacbd���akbkabcc3d3���ckdk R
c3d3
a3b3

� � �Rckdk
akbk

;

P̂def
abc ¼

Xkmax

k¼2

kðk − 1Þαk
2k−1

δ̂defacbd���akbkabcc3d3���ckdk R̂
c3d3
a3b3

� � � R̂ckdk
akbk

; ð43Þ

in which

δ̂b1���bia1���ai ¼ i!γb1½a1 � � � γ
bi
ai� ð44Þ

is the ith-order generalized Kronecker tensor on the cross-
section B.
In the following, we would like to judge the sign of FðλÞ

when the coupling constant λ is regarded as a small
parameter. If we consider the solution gabðλÞ which is an
analytic function of λ, then we can expand F ðλÞ by λ,

F ðλÞ ¼ F þ λδF þ λ2

2
δ2F þ � � � ; ð45Þ

in which we have introduced the notation

δiηðxÞ ¼ ∂
iηðx; λÞ
∂λi

����
λ¼0

ð46Þ

to denote the ith-order variation of the quantity ηðx; λÞ, and
the symbol without λ denotes its counterpart of λ ¼ 0. In
the following, we would like to analyze the sign of the
integration of F ðλÞ, i.e.,

F ¼
Z
B
dVAF ð47Þ

with dV ¼ dD−2x
ffiffiffi
γ

p
and

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðuÞ=γðũÞ

p
¼ exp

�Z
u

ũ
θð ˜̃uÞd ˜̃u

�
: ð48Þ

From Eq. (27), we can see that the entropy bound is
satisfied if F ≤ 0. For the sake of simplicity, we define the
operation “¼̂ ” as

Y¼̂
Z
B
dVAY: ð49Þ

In the following, we would like to analyze the sign of
FðλÞ after assuming that the hypersurface L is smooth
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under the perturbation limit λ → 0, i.e., we assume that Kj
i ,

θ and their derivatives along L are finite as λ → 0.

A. Zeroth-order approximation

First, we consider the zeroth-order approximation of λ.
From Eq. (41), we can obtain

F ðλÞ ¼ −Ka
bK

b
a þOðλÞ: ð50Þ

Considering the fact that Kab is a spatial tensor on B, we
have KabKab ≥ 0 and, therefore,

F ðλÞ ¼ −Ka
bK

b
a ≤ 0 ð51Þ

under the zeroth-order approximation,2 in which we neglect
the first-order term of λ. This implies that the covariant
entropy bound is satisfied under the zeroth-order approxi-
mation. This result is straightforward because the theory
under the zeroth-order approximation is just the Einstein
gravity. Assume

jKjA≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
B
dVAKb

aKa
b

s
∝ λs ð52Þ

with s ≥ 0. From Eq. (50), whether a first-order approxi-
mation of FðλÞ needs to be considered depends on the order
of jKjA. When s < 1=2, the dominate term of FðλÞ is given
by −jKj2A and therefore we have FðλÞ < 0 even if OðλÞ is
taken into account. That is to say, only if s ≥ 1=2 do we
need to consider the first-order approximation.
Define the nth-order optimal condition by vanishing the

nth-order approximation of FðλÞ. Then, the second-order
term needs to be taken into consideration only under the
zeroth-order optimal condition

jKjA ∝ λs0 ; ð53Þ

with s0 ≥ 1=2 on the light sheet L. In this case, the extrinsic
curvature of the light sheet is a small quantity. As the
example of this light sheet, it can be chosen as a null
hypersurface near the Killing horizons in a stationary black
hole or an event horizon for a dynamical black hole which
is a perturbation of a stationary one.

B. First-order approximation

In the following, we would like to discuss the first-order
approximation of FðλÞ under the zeroth-order optimal
condition

jKAj ∝ λs0 : ð54Þ

The first-order variation of F ðλÞ gives

δF ¼ −2Ka
bδK

b
a þ F 2: ð55Þ

From Eq. (42), F 2 can be schematically expressed as

F 2 ¼ ðĤ −HÞ∂uK þ C1KK þ C2K∂xK

þ C3∂xK∂xK þ C4K∂
2
xK; ð56Þ

in which we neglect the indexes onKb
a,Hb

a, Ĥ
b
a,C1, C2, and

C3, and Dm
a Kc

b is denoted by ∂
m
x K. From Eq. (36), it is not

hard to see

Rkl
ij − R̂kl

ij ¼ OðKÞ ð57Þ

under the first-order optimal condition. This implies that

H − Ĥ ¼ OðKÞ: ð58Þ

Then, under the zeroth-order optimal condition, we have

F 2 ¼ C3∂xK∂xK þOðKÞ: ð59Þ

Then, we have

F ðλÞ ¼ −Kb
aKa

b þ λC3∂xK∂xK þ λOðKÞ: ð60Þ

From Eq. (48) and noting the assumption that θ is finite
as λ → 0, it is hard to see that the minimal value Amin of A
on B is a zeroth-order term of λ. Then, we have

jKj2 ¼
Z
B
dVKb

aKa
b ≤

1

Amin
jKAj2 ∝ λ2s0 ; ð61Þ

which means

jKj ¼ Oðλs0Þ: ð62Þ

Here we define the length of the spatial tensor Ya1���am by

jYj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
B
dVYa1���amY

a1���am

s
: ð63Þ

Under the assumption that Kij and its derivatives are all
finite, it has been proven in the Appendix that

j∂mx Kj ¼ Oðλs0Þ: ð64Þ

For the last term of Eq. (60) and using the Cauchy-
Schwarz inequality (A4), we can further get

jOðKÞj¼̂
����
Z
B
dVXb

aKb
a

���� ≤ jXjjKj: ð65Þ2In this paper, we define the kth-order approximation as the
result of ignoring the ðkþ 1Þth-order term Oðλkþ1Þ.
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Noting that jXj is finite as λ → 0, we have

OðKÞ¼̂
Z
B
dVXb

aKb
a ¼ Oðλs0Þ: ð66Þ

For the second term of Eq. (60), using the decomposition

AC3∂xK∂xK¼Xa1a2a3b1b2b3Da1Ka2a3Db1Kb2b3

¼Xa1a2a3b1b2b3Dc1Kc2c3ga1c1ga2c2ga3c3Db1Kb2b3

ð67Þ

and together with the Cauchy-Schwarz inequality (A4) as
well as Eq. (64), we have

����
Z
B
dVAC3∂xK∂xK

���� ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
B
dVκðDaKbcÞðDaKbcÞ

s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2Þ3

q
j∂xKj

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2Þ3κmax

q
j∂xKj2

¼ Oðλ2s0Þ; ð68Þ

in which we denote κ ¼ Xa1a2a3b1b2b3Xa1a2a3b1b2b3 and κmax

is the maximal value of κ. Then, we have

C3∂xK∂xK¼̂
Z
B
dVAC3∂xK∂xK ¼ Oðλ2s0Þ: ð69Þ

With a similar calculation, it is not hard to show

C∂mx K∂
n
xK¼̂ Oðλ2s0Þ ð70Þ

for any m and n.
Using the above results, we can further obtain

F ðλÞ¼̂ FðλÞ ¼ −jKj2A þOðλs0þ1Þ ð71Þ

under the first-order approximation, in which we neglect
the second-order term Oðλ2Þ. Then, we can see that if
s0 < 1, the dominate term is given by −jKj2A ∝ λ2s0 and we
have FðλÞ < 0 under the first-order approximation. When
s0 ≥ 1, we have FðλÞ ¼ 0 under the first-order approxi-
mation. This indicates that the generalized covariant
entropy bound is satisfied under the first-order approxi-
mation of λ.
For the case with s0 < 1, we can see that the leading term

of FðλÞ is always given by −jKj2A and therefore we have
FðλÞ < 0 even when the higher-order approximation is
taken into account. Then, the second-order approximation
is required only if the first-order optimal condition is
satisfied, i.e.,

jKjA ∝ λs1 ð72Þ

with s1 ≥ 1.

C. Second-order approximation

In this subsection, we evaluate the second-order approxi-
mation of FðλÞ under the first-order optimal condition (72).
For the first term of F ðλÞ, we have

Kb
aðλÞKa

bðλÞ¼½Kb
aþλδKb

aþOðλ2Þ�½Kb
aþλδKb

aþOðλ2Þ�
¼ðKb

aþλδKb
aÞðKb

aþλδKb
aÞþλ2OðKÞþOðλ3Þ:

ð73Þ

From Eq. (66), we can get

λ2OðKÞ¼̂ Oðλ2þs1Þ: ð74Þ

Considering the first-order optimal condition s1 ≥ 1, we
can further obtain

Kb
aðλÞKa

bðλÞ¼̂ jKb
a þ λδKb

aj2A ð75Þ

under the second-order approximation of λ, i.e., we neglect
the third-order term Oðλ3Þ.
To simplify, we define

jK þ λδKjA ∝ λs̃1 : ð76Þ

Considering the first-order optimal condition, we have
s̃1 ≥ 1. When s̃1 ≤ 2, we have

jKb
aðλÞjA ∝ λs̃1 : ð77Þ

From Eq. (56), we have

F 2ðλÞ ¼ ½ĤðλÞ −HðλÞ�∂uKðλÞ þ C∂mx KðλÞ∂nxKðλÞ: ð78Þ

Using Eq. (43), we have

ðĤ −HÞ∂uK ¼ ∂uðXKKÞ þOðK2Þ ð79Þ

Note that the final expression (27) in the entropy bound is
the integration of F. Therefore, we consider an integral of
the first term of the above equation,

Z
u

0

∂ũðXKKÞ ¼ XKKju0 ¼ OðK2Þ¼̂ Oðλ2s̃1Þ; ð80Þ

which means that the first term on the right-hand side of
Eq. (78) only contributes a higher-order term under the
second-order approximation. In Eqs. (79) and (80), we have
neglected the parameter λ for simplify. For the second term
of Eq. (78), using Eq. (70), we have
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C∂mx KðλÞ∂nxKðλÞ¼̂ Oðλ2s̃1Þ: ð81Þ

Combining the above results, we have

FðλÞ ¼ −jK þ λδKj2A ≤ 0 ð82Þ

under the second-order approximation. When s̃1 > 2, we
have KðλÞ ¼ Oðλ2Þ. In this case, the calculation is same as
s̃1 ≤ 2 and finally we can get FðλÞ ¼ 0 under the second-
order approximation. These results show that the entropy
bound is satisfied under the second-order approximation.
Similarly, it is not hard to see that when s̃1 < 3=2, the
higher-order approximation of FðλÞ is also nonpositive, i.e.,
the third-order approximation only needs to be considered
in the second-order optimal condition,

jK þ λδKjA ∝ λs2 ; ð83Þ

with s2 ≥ 3=2 such that the second-order approximation of
F ðλÞ vanishes and we need to consider the third-order
approximation of λ.

D. nth-order approximation

In the following, we would like to prove that F ðλÞ is
always nonpositive under the nth-order approximation
when the ðn − 1Þth-order optimal conditions are based
on the mathematical induction. By concluding the first two
order results, it is equivalent to proving the following
proposition: under the nth-order optimal condition

����X
½n=2�

i¼0

λi

i!
δiK

����
A
∝ λsn ð84Þ

with

sn ≥
nþ 1

2
; ð85Þ

the ðnþ 1Þth-order approximation of FðλÞ is nonpositive,
i.e.,

FðλÞ ≤ 0 ð86Þ

after neglectingOðλnþ2Þ. Then, a saturation of this inequality
demands the ðnþ 1Þth-order optimal condition and the
ðmþ 1Þth-order optimal condition needs to be considered
only when the ðnþ 1Þth-order optimal condition is satisfied.
Proof.—Obviously, the proposition is satisfied for

n ¼ 0; 1; 2.
(Case of n ¼ 2m.) When n ¼ 2m, the ð2mÞth-order

optimal condition is given by

����Xm
i¼0

λi

i!
δiK

����
A
∝ λsn ð87Þ

with sn ≥ mþ 1=2. Then, we have

Kb
aðλÞKa

bðλÞ ¼
�Xm

i¼0

λi

i!
δiKb

a

��Xm
i¼0

λi

i!
δiKa

b

�

þ λmþ1OðKÞ þOðλ2mþ2Þ: ð88Þ

From Eq. (66), we can get

λmþ1OðKÞ¼̂ Oðλsnþmþ1Þ: ð89Þ

Then, we have

jKðλÞj2A ¼
����Xm
i¼0

λi

i!
δiK

����2
A

ð90Þ

under the ð2mþ 1Þth-order approximation of λ.
With the same calculation as the second-order approxi-

mation, it is straightforward to show

F 2ðλÞ¼̂ Oðλ2snÞ ¼ Oðλ2mþ1Þ; ð91Þ

which gives

FðλÞ ¼ −
����Xm
i¼0

λi

i!
δiK

����2
A
þOðλsnþmþ1Þ ð92Þ

under the ð2mþ 1Þth-order approximation, in which the
Oðλ2mþ2Þ terms are neglected. When sn < mþ 1, the
leading term is given by

−
����Xm
i¼0

λi

i!
δiK

����2
A

ð93Þ

and thus we have FðλÞ < 0 under the ð2mþ 1Þth-order
approximation. For the case with sn ≥ mþ 1, we have
FðλÞ ¼ 0 under the (2mþ 1)th-order approximation.
These imply that FðλÞ ≤ 0 under the ð2mþ 1Þth-order
approximation.
When s2mþ1 < mþ 1, we can see that FðλÞ < 0 even

under the higher-order approximation of λ. That is to say,
the ð2mþ 2Þth-order term needs to be taken into account
only when the ð2mþ 1Þth-order optimal condition is
satisfied, i.e.,

����Xm
i¼0

λi

i!
δiK

����
A
∝ λs2mþ1 ð94Þ

with s2mþ1 ≥ mþ 1. These show that the validity of the
proposition with n ¼ 2m.
(Case of n ¼ 2mþ 1.) When n ¼ 2mþ 1, we define

����Xm
i¼0

λi

i!
δiK

����
A
∝ λs̃2mþ1 : ð95Þ
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When s2mþ1 ≤ mþ 2, the (2mþ 1)th-order optimal con-
dition (94) implies s̃2mþ1 ≥ mþ 1. Then, with the same
calculation as second-order approximation, it is not hard to
obtain

FðλÞ ¼ −
����Xmþ1

i¼0

λi

i!
δiK

����2
A
≤ 0 ð96Þ

under the ð2mþ 2Þth-order approximation. A saturation of
this inequality demands the ð2mþ 2Þth-order optimal
condition

����Xmþ1

i¼0

λi

i!
δiK

����
A
∝ λs2mþ2 ð97Þ

with s2mþ2 ≥ mþ 3=2. This is actually the proposition
with n ¼ 2mþ 1, i.e., we have completed the proof.

▪
The above result shows that the generalized covariant

entropy bound associated with the JM entropy is valid
under any higher-order approximation of λ.

V. CONCLUSION AND DISCUSSION

In this paper, we consider the generalized covariant
entropy bound for the theory in which the Einstein gravity
is perturbed by the higher-order Lovelock terms and
introduce a small parameter λ to characterize these pertur-
bations. After considering the linearized second law of
black holes in Lanczos-Lovelock gravity, the entropy
bound in this theory is naturally proposed by replacing
the Bekenstein-Hawking entropy with the JM entropy.
Then, we showed that the key point to examine the validity
of covariant entropy bound is to judge the sign of the
quantity FðλÞ, and the entropy bound is satisfied if
FðλÞ ≤ 0. After assuming two physical assumptions and
that the metric gab is an analytic function of λ, we illustrate
that the dominant term of FðλÞ is always nonpositive based
on the mathematical induction, i.e., the generalized covar-
iant entropy bound is valid under any higher-order approxi-
mation of λ. This indicates that the entropy bound using the
JM entropy is strictly satisfied under the perturbation level
of the higher-order Lovelock terms. From the discussion in
Sec. V D of Ref. [20], we can see that the above result also
indicates the validity of the generalized second law under
the higher-order approximation of λ for the theory where
the Einstein gravity is perturbed by the higher-order
Lovelock terms, this is a different result from the linearized
second law of Lanczos-Lovelock gravity.
From the calculations presented in this paper, it is not

hard to check that if we replace the Bekenstein-Hawking
with the Wald entropy formula instead of the JM entropy
formula in the entropy bound, we cannot show the non-
positive of F only using the assumptions given by the
paper. This implies that the covariant entropy bound might

be used to select the black hole entropy of the gravitational
theory. Moreover, it is worth noting that our result is only
suitable for the case where the higher-order Lovelock terms
are regarded as some small corrections to Einstein gravity,
and not for the nonperturbation cases. From the discussion
in Sec. III, the key point to examine the entropy bound is
also to check the sign ofF given by Eq. (41). However, due
to the complexity of the expression, it is difficult for us to
judge its sign directly only based on the setups and
assumptions in our paper. One of our future works is going
to consider these cases. Furthermore, our strategy can also
be applied in the theory in which the Einstein gravity is
perturbed by other higher-curvature terms. For most higher-
curvature theories, since there exist higher-order field equa-
tions and the entropy of black holes cannot be expressed as a
purely spatial quantity on the cross-section B, it is hard to
simplify the expression of F like the Lanczos-Lovelock
gravity. We will leave that for future studies.
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APPENDIX: THE ORDER FOR THE
DERIVATIVE OF EXTRINSIC CURVATURE

In this paper, we only consider the cases where the null
hypersurface L is located in a finite region away from
infinity and singularity. Assuming that the hypersurface L
is smooth, Kj

i and its derivatives along L should be finite,
i.e., we demand

Z
B
dVðDa1���amK

b
aÞðDa1���amKa

bÞ ∝ λ2χm ðA1Þ

with χm ≥ 0, in which we denote dV ¼ dD−2x
ffiffiffi
γ

p
and

Da1���an ¼ Da1 � � �Dan: ðA2Þ

Considering the assumption that B is compact and using the
Gauss law, we can get

Z
B
dVðDa1���amK

b
aÞðDa1���amKa

bÞ

¼
Z
B
dVðDa1Da1a2���amK

b
aÞðDa2���amKa

bÞ: ðA3Þ

Using the Cauchy-Schwarz inequality
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Z
B
dVηa1���amζa1���am

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
B
dVηa1���amηa1���am

Z
B
dVζa1���amζa1���am

s
ðA4Þ

for any spatial tensor ξ and ζ, it is not hard to obtainZ
B
dVðDa1Da1a2���amK

b
aÞðDa2���amKa

bÞ

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
B
dVðDa1���amþ1

Kb
aÞðDa1���amþ1Ka

bÞ
s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2Þ

Z
B
dVðDa2���amK

b
aÞðDa2���amKa

bÞ
s

∝ λsmþ1þsm−1 ; ðA5Þ

which implies

λ2χm ¼ Oðλχmþ1þχm−1Þ: ðA6Þ

Then, we have 2χm ≥ χmþ1 þ χm−1, i.e.,

χm − χm−1 ≥ χmþ1 − χm: ðA7Þ

This inequality implies that if there exists an “m” such that
χmþ1 > χm, i.e., χmþ1 − χm > 0 we have

χ1 − χ0 ≥ χ1 − χ2 ≥ χ2 − χ3 ≥ � � � ≥ χmþ1 − χm > 0; ðA8Þ

i.e., we have χ1 > χ0. Therefore, we only need to focus on
the case in which

χ0 ≥ χ1 ≥ χ2 ≥ � � � ≥ χm ≥ � � � : ðA9Þ

Considering that χm ≥ 0 for any m ≥ 0, the above inequal-
ity implies the existence of a limit on the sequence χm, i.e.,

lim
m→∞

χm ¼ χ̄ ðA10Þ

with χ̄ ≥ 0. This result also implies that

lim
m→∞

ðχm − χm−1Þ ¼ 0: ðA11Þ

Using the inequality (A7), we can further obtain

χ1 − χ0 ≥ χ2 − χ1 ≥ � � � ≥ lim
m→∞

ðχm − χm−1Þ ¼ 0: ðA12Þ

Together with inequality (A9), this implies χ1 ¼ χ0.
Finally, we can summarize that χ1 ≥ χ0. Similarly, we
can obtain χm ≥ χm−1 for any m.
A straightforward application of the above result is

Z
B
dVðDa1���amK

b
aÞðDa1���amKa

bÞ ¼ Oðλ2χ0Þ ðA13Þ

for any m.
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