
Discrete gravity with local Lorentz invariance

Eugene Kur
Lawrence Livermore National Laboratory, Livermore, California 94550, USA

Alexander S. Glasser *

Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
and Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA

(Received 9 February 2022; revised 28 July 2022; accepted 10 August 2022; published 2 September 2022)

A novel structure-preserving algorithm for general relativity in vacuum is derived from a lattice gauge
theoretic discretization of the tetradic Palatini action. The resulting model of discrete gravity is
demonstrated to preserve local Lorentz invariance and symplectic structure.
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I. INTRODUCTION

Since at least the 1990s, structure-preserving algorithms
[1] have flourished in computational physics, having found
wide adoption in subfields as diverse as orbital mechanics
[2–5], geophysics [6,7], and plasma physics [8–16]. Such
algorithms are generally derived from a Lagrangian or
Hamiltonian formalism and use discretizations that pre-
serve the symplectic structure, topology, gauge symmetry,
and conservation laws of their underlying physical systems.
This preservation of mathematical structure can sub-
stantially improve the accuracy and fidelity of numerical
simulations.
Structure-preserving discretizations of general relativity

(GR) arguably have an even longer history. The most
widely explored such approach was introduced in 1961:
Regge calculus [17] is a discrete variational approximation
of GR that encodes spacetime data on a simplicial mesh.
In four spacetime dimensions, Regge calculus elegantly
approximates the Einstein-Hilbert action by a sum over
areas Ah and deficit angles δh, such that

SRegge ¼
X
h

Ahδh ⟶
Ah→0

SEH ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
R ð1Þ

in the continuum limit. Here, h labels each 2-simplex (i.e.,
triangle) of the simplicial complex, and δh describes the
failure of the 4-simplices adjoining h—i.e., fσ4jσ4 ⊃ hg—
to tesselate their embedding in flat R4 spacetime [18].
Since the 1970s, Regge calculus has not only been actively

employed as the basis of many studies in quantum gravity
(e.g., Refs. [19–26]), but also as an algorithmic approach to
classical numerical relativity (e.g., Refs. [27–35]).Despite its

success as a numerical tool, however, most studies in
numerical relativity continue to depend upon standard finite
difference methods. Two reasons cited for this include the
need to develop (i) a description of matter in Regge calculus,
as well as (ii) a better understanding of its relationship to
standard methods in numerical relativity [36,37].
In particular, because the degrees of freedom of Regge

calculus are quite distinct from those of continuum GR, it
can be challenging to initialize a Regge calculus simulation
with known GR initial conditions, or to test whether a
particular simulation using Regge calculus recovers a
known GR solution. Although various physical solutions
have indeed been thoroughly and successfully bench-
marked with Regge calculus [38,39], it would seem that
any given simulation generally requires a bespoke under-
standing of the map between discrete and continuum
degrees of freedom.
It is also worth emphasizing that, despite Regge calcu-

lus being a variational method, it nonetheless forfeits—
in its complete, nonperturbative formulation—the local
gauge symmetry of GR [23]. While local gauge symmetry
is maintained in a Regge calculus description of flat
spacetime—and even in a linearized Regge calculus of
curved spacetimes [40]—this structural feature of GR is at
best only partially preserved overall.
In this paper, an alternative variational approach to

simulating general relativity is developed that ameliorates
someof these limitations.Our effort employs familiar tools of
lattice gauge theory [41] to construct a structure-preserving
discretization of the tetradic Palatini action [42]. Using a
Poincaré group-valued connection derived from Cartan
geometry, we describe a novel variational algorithm for
numerical relativity that exactly preserves Lorentz gauge
symmetry. We further show that the algorithm is (multi)
symplectic, with a symplectic structure analogous to con-
tinuum GR.
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The approach we take is closely related to Poincaré
gauge theoretic studies of lattice quantum gravity by
Menotti et al. [43,44]. To our knowledge, however, the
classical physics of these methods, including their equa-
tions of motion, for example, have not previously been
explored, nor have they been extended to define an
algorithm for numerical relativity. Moreover, our construc-
tion is general to simplicial and cubical discretizations of
spacetime, and we develop a streamlined construction of
the aforementioned Poincaré connection.
The remainder of this paper is organized as follows: Sec. II

briefly reviews the tetradic Palatini action and its origins in
Cartan geometry; Sec. III derives a discretization of this
action in a manner that preserves Lorentz gauge invariance;
Sec. IVderives the discrete, classical equations ofmotion that
comprise the algorithm; and Sec. V describes its symplectic
structure. Finally, Sec. VI summarizes and concludes.

II. THE TETRADIC PALATINI ACTION
IN CONTINUOUS SPACETIME

Let us first review the tetradic Palatini action in the
continuum. We consider a four-dimensional Lorentzian
spacetime with connection, denoted ðM; g;ΓÞ, and employ
the following index conventions:

(i) Spacetime coordinate indices fμ; ν;…g are raised
and lowered by gμν, the metric on M.

(ii) Internal Lorentz indices fA;B;…g are raised and
lowered by ηAB, the Minkowski metric.

(iii) Any other indices fa; b;…g will be specified as
needed.

In a coordinate basis f∂μg, the affine connection Γ has
components Γσ

μν ¼ dxσð∇∂μ
∂νÞ.

Up to a choice of local Lorentz gauge, the metric g
uniquely determines a tetrad field e on M, a vector-valued
1-form with components eA ¼ eAμdxμ ∈ ΓðT�MÞ defined to
satisfy

gμν ¼ eAμ ηABeBν : ð2Þ

Since gμν is nondegenerate, eAμ ðpÞ defines an isomorphism
between the tangent space TpM and the “internal Lorentz
space” at p ∀p ∈ M. As a result, any vector field X ∈
ΓðTMÞ can be equally well described in terms of the
Lorentz frame f∂A ¼ eμA∂μg, such that X ¼ XA

∂A ¼ Xμ
∂μ.

(Here, eμAe
A
ν ¼ δμν defines a matrix inverse.) In general,

f∂Ag is a noncoordinate basis (since the commutator
½∂A; ∂B� need not vanish) and is dual to feAg.
Parallel transport may be defined in the Lorentz frame

by the 1-form spin connection ω, with components
ωA
B ¼ ωA

μBdx
μ ∈ ΓðT�MÞ, such that

∇μXA ¼ ∂μXA þ ωA
μBX

B: ð3Þ

Since the Lorentz frame arises, ultimately, as a change of
basis, the spin connection components have a definite
relation to Γσ

μν. In particular, ωA
μB ¼ eAð∇∂μ

∂BÞ, which can
be more suggestively expanded as

∇μeAν ¼ ∂μeAν þ ωA
μBe

B
ν − Γσ

μνeAσ ¼ 0: ð4Þ

The name “Lorentz frame” can be justified by requiring
ηAB to be invariant under parallel transport:

0 ¼ ∇μηAB ¼ ∂μηAB − ωC
μAηCB − ωC

μBηAC

¼ −ðωμBA þ ωμABÞ: ð5Þ

Due to its resulting antisymmetry, ω is defined by this
condition as an soð3; 1Þ-valued 1-form. Studying Eqs. (4)
and (5), we also see that the metric compatibility of Γ
follows immediately from this η compatibility of ω.
In Einstein GR, Γ is assumed to be not only metric

compatible but torsion free, such that Γσ
½μν� ¼ 0. The result-

ing Levi-Civita connection ΓLC is then uniquely determined
by g. Thus, as a further consequence of vanishing torsion, by
Eqs. (2) and (4) the metric g also uniquely determines—up
to Lorentz gauge—the R4 and soð3; 1Þ-valued 1-forms e
and ω, respectively, on M.
Conversely, the metric g and the connection ΓLC can be

uniquely recovered from the fields e and ω on a torsion-free
manifold. (More precisely, g can be canonically recovered
up to an overall constant factor.) There is an equivalence,
therefore, between a Lorentzian manifold ðM; g;ΓLCÞ and
its torsion-free Cartan geometric counterpart ðM; e;ωÞ
[45]. Let us describe the origin of this nomenclature.
The 1-forms e and ω are more economically regarded as

components of the Cartan connection A ¼ Aμdxμ on M,
defined by1

A ¼
�
ω e

0 0

�
∈ Γðp ⊗ T�MÞ: ð6Þ

Here, p ¼ soð3; 1Þ ⋉ R4 ⊂ gl5ðRÞ denotes the Lie algebra
of the Poincaré group, so that A is a p-valued 1-form
on M. Following the previous discussion, a torsion-free
Lorentzian manifold can be equivalently defined by its
metric g or its p-valued Cartan connection A, and solving
for the dynamics of A similarly determines the dynamics of
g. In what follows, we therefore regard the tetradic Palatini
action as a dynamical theory of the Cartan connection A
on M.

1A p-valued Cartan connection A is formally defined on an
SOð3; 1Þ-principal bundle P over M such that A∶TpP → p is an
isomorphism ∀p ∈ P. The pair ðP; AÞ defines a Cartan geom-
etry [45]. In physical applications, however, A is conventionally
defined by its pullback to M, and its overlying bundle is elided.
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To that end, we first recall the curvature 2-form of the
Cartan connection, defined as

F¼ dAþA∧A¼
�dωþω∧ω De

0 0

�
¼
�
R T

0 0

�
; ð7Þ

where De ¼ deþ ω ∧ e denotes the exterior covariant
derivative of e. In components,

RA
Bμν ¼ ∂μω

A
νB − ∂νω

A
μB þ ωA

μCω
C
νB − ωA

νCω
C
μB ð8Þ

denotes the Lorentz curvature RA
B ∈ Γð∧2 T�MÞ, while

TA
μν ¼ ðDeAÞμν ¼ ∂μeAν − ∂νeAμ þ ωA

μBe
B
ν − ωA

νBe
B
μ ð9Þ

denotes the torsion TA ∈ Γð∧2 T�MÞ. As previously
noted, torsion is assumed to vanish, TA ¼ 0, a priori in
Einstein GR. In the tetradic Palatini theory, however,
torsion does not vanish by assumption, but rather as a
dynamical consequence of the action varied in vacuum, as
we presently demonstrate.
The 4-form Lagrangian LPal ∈ Γð∧4 T�MÞ of the

tetradic Palatini action SPal ¼
R
M LPal is defined in terms

of the tetrad e and spin connection ω by [42]

LPal ¼ ϵABCDðeA ∧ eB ∧ RCDÞ: ð10Þ

It should be noted that Eq. (10) is often called the Einstein-
Cartan-Sciama-Kibble (ECSK) action [46,47]. However,
because ECSK theory prioritizes the role of torsion in
gravity, whereas we will pursue only the torsionless
vacuum equations of Einstein-Cartan gravity, we prefer
the nomenclature tetradic Palatini action. We note that the
Lorentz invariance of LPal follows directly from the
SOð3; 1Þ invariance of the Levi-Civita symbol ϵABCD—
that is,

ðϵABCDÞ0 ¼ ϵEFGHΛE
AΛF

BΛG
CΛH

D ¼ ϵABCD det½Λ�; ð11Þ

where det½Λ� ¼ 1.
Unlike the fields ðg;ΓLCÞ of the Einstein-Hilbert action,

ðe;ωÞ are taken to be independent in Eq. (10), and varied
accordingly. The variation of each field yields the respec-
tive equations of motion [48]

ðδeÞ∶ 0 ¼ ϵABCDeB ∧ RCD;

ðδωÞ∶ 0 ¼ ϵABCDDðeA ∧ eBÞ: ð12Þ

Here, we note that DðeA ∧ eBÞ ¼ DeA ∧ eB − eA ∧ DeB.
Taking RCD ¼ 1

2
RCD
GHe

G ∧ eH and TA ¼ 1
2
TA
GHe

G ∧ eH

(well-defined expansions for eA nondegenerate), it is
readily established that the former relation ðδeÞ of
Eq. (12) yields Einstein’s vacuum field equations, while
ðδωÞ yields a zero-torsion condition. In particular, since

ϵABCDeA ∧ eG ∧ eH ∧ eI ¼ δGHI
BCDevol for a volume form

vol and e ¼ det½eAμ �, the wedge product ðδeÞ ∧ eI gives

0 ¼ −
1

2
RCD

GHδ
GHI
ACD ¼ 2RHI

HA − RGH
GHδ

I
A; ð13Þ

which, using Eq. (4), can be demonstrated equivalent to
Einstein’s vacuum equations, 0 ¼ 2Rμν − Rgμν. Likewise,
ðδωÞ ∧ eI gives

0 ¼ −δGHI
ACDT

A
GH ¼ 2ðTA

CAδ
I
D þ TA

ADδ
I
C − TI

CDÞ: ð14Þ

Tracing over Eq. (14) with δDI in four dimensions leaves
0 ¼ TA

CA. By Eq. (14), therefore, TI
CD ¼ 0 in all compo-

nents, and torsion vanishes as desired.
Thus, despite making fewer initial assumptions, the

tetradic Palatini action nevertheless recovers the equations
of motion of GR in vacuum; the dynamics of the Cartan
connection indeed recover those of GR.
Before concluding our discussion of continuous space-

time, the following will be useful for the next section,
which discretizes SPal. Evaluated on a 4-tuple of vector
fields—X ¼ ðX1; X2; X3; X4Þ, Xa ∈ ΓðTMÞ—the 4-form
LPal of Eq. (10) yields

LPalðXÞ ¼ 1

2
ϵABCDðeAμeBνRCD

στ ÞϵabcdXμ
aXν

bX
σ
cXτ

d

¼ 1

2
ϵABCDðeAμeBνRCD

στ Þϵμνστ det½X�; ð15Þ

where the function det½X� is the matrix determinant of the
4-tuple, expressed in the coordinate basis induced by fxμg
and evaluated pointwise over M.

III. THE DISCRETE ACTION

We now discretize the tetradic Palatini action of the
previous section by methodically mapping its continuum
degrees of freedom to their discrete counterparts on a
lattice. Our formalism will be general to orientable sim-
plicial and cubical discretizations, and we take care to
preserve the theory’s Lorentz invariance.
To proceed, we first choose a coordinate chart on the

continuum spacetime manifold M, and construct a lattice
(simplicial or cubical) on its coordinate space inR4. As such,
the lattice inherits the Euclidean geometry of the coordinate
space (such as straight edges and flat faces), but this “lattice
geometry”will play no role in our description of spacetime.
Topological features of M must be retained in the con-
struction of the lattice, including via possible identifications
of its edges or faces. In such a case, the lattice should be
regarded as only locally embedded in coordinate spacewhile
being globally homeomorphic to the target spacetime
manifold. Such a construction is standard in the triangula-
tion of manifolds (see, e.g., Ref. [49]).
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To establish notation for lattice degrees of freedom,
we denote the set of lattice k-cells by Σk ¼ fσkg, such
that an arbitrary oriented k-cell will be denoted as σk,
or will otherwise be specified by an ordered label of
its vertices. σij ∈ Σ1, for example, denotes an edge ori-
ented from vertex σi∈Σ0 to vertex σj∈Σ0. We define
NiðσkÞ¼fj≠ ijσij⊂σkg as the set of labels of neighboring
vertices in the cell σk that share an edge with basepoint σi.
In both simplicial and cubical discretizations in four
dimensions, for example, #Niðσ4Þ ¼ 4 if σi ⊂ σ4, and 0
otherwise. We denote the permutation set of these neigh-
boring vertex labels as Πiðσ4Þ ¼ S½Niðσ4Þ�.
As described in Sec. II, the geometric information of M

is encoded in its Cartan connection—the fields eAμ ðxÞ and
ωA
μBðxÞ—which may be regarded as defined on coordinate

space. A natural first (provisional) approximation of the
tetradic Palatini action, as it appears in Eq. (15), therefore
follows by mapping these fields to the lattice, such that

SPal ¼
X
σ4∈Σ4

Z
σ4
LPalðxÞd4x

≈
X
σ4∈Σ4

σi∈σ4

ð−1ÞjπjVf

2nv
ϵμνστϵABCDðeAμeBνRCD

στ Þjσi det½Vσi �;

ð16Þ
where LPalðxÞ denotes LPal on coordinate space. The
second line approximates the integral over σ4 by averaging
the value of its integrand, as expressed in Eq. (15), at each
of its vertices. More specifically,
(1) nv denotes the number of vertices in σ4 over which

the integrand is averaged. nv ¼ 5 on a simplicial
lattice, and nv ¼ 16 on a cubical lattice.

(2) Vσi ¼ ðVi1; Vi2; Vi3; Vi4Þ is a 4-tuple of “edge vec-
tors” emanating from vertex σi. These point in the
directions of neighboring vertices in σ4, with mag-
nitudes set by the edges’ coordinate lengths.

(3) ð−1Þjπj accounts for the relative orientation between
the 4-tuple Vσi and the cell σ4, whose orientation is
inherited from M. This factor is expressed in
terms of a permutation π to be defined more
concretely below.

(4) The volume factor Vf corrects for the fact that
det½Vσi � implicitly evaluates LPal not on σ4, but on a
(hyper)parallelepiped specified by Vσi. On a cubical
lattice, these volumes coincide and Vf ¼ 1, but on a
simplicial lattice, det½Vσi � overcounts the volume of
σ4 by the ratio of a normalized hypercube to one of
its corners, such that Vf ¼ 1=4!.

This approximation of
R
σ4 by the average of vertex

evaluations is, in effect, a second-order-accurate multidi-
mensional trapezoid rule (see Ref. [50] and references
therein).

Equation (16) instructively approximates the continuum
action, but it is insufficient to determine dynamics for a
discrete theory. In particular, Eq. (16) discretely samples
degrees of freedom that are manifestly defined in the
continuum—e.g., ∂ω. (If this continuous derivative were
avoided by regarding R itself as a Lie-algebra-valued
degree of freedom, rather than ω, the resulting action
would not recover the equations of motion of Einstein GR.)
To reformulate Eq. (16) with bona fide discrete degrees of
freedom, we now hew more closely to the underlying
differential geometry of the tetradic Palatini action.
In particular, the study of structure-preserving discreti-

zations [such as discrete exterior calculus (DEC) [51] and
finite element exterior calculus (FEEC) [52,53] ] has
demonstrated the importance of preserving the degrees
of discrete differential forms. Therefore, rather than sam-
pling continuum fields at vertices, as we do in Eq. (16), we
will instead map 1-forms to data associated with edges, and
2-forms to data associated with faces.
However, an additional challenge we must overcome is

the gauge-dependent character of the fields we are model-
ing, which thwarts conventional approaches such as DEC
and FEEC. The preservation of Lorentz invariance in our
theory will require that we express discrete fields in a
definite (if arbitrary) Lorentz gauge, which is defined in
a continuum theory at each point of spacetime, and in a
discrete theory at each vertex. This pointwise gauge
selection is in tension with the desire to characterize
differential forms over edges and faces of finite extent.
For example, a scalar-valued 1-form is conventionally
approximated on an edge by its integral over that edge.
Here, such an integral involves a continuum of different
gauge choices in spacetime that prevent the simple sum-
mation of fields defined at disparate points.
A resolution to this tension is naturally found in the

holonomy of a connection. The path-ordered integral of a
1-form connection produces the means to parallel transport
between different gauge choices. It is an object that can be
naturally associated with an edge, and which by construc-
tion accounts for a difference in gauge between two
vertices. In this sense, the Cartan connection—which
retains the geometric data of a Lorentzian manifold—
provides a natural approach to a structure-preserving
discretization of GR.
To map the Cartan connection A onM to holonomies on

the discrete lattice in coordinate space, we associate to each
edge σij the following path-ordered integral:

Uij ¼P
�
exp

Z
σij

A

�
¼P

�
exp

Z
σij

�
ω e

0 0

��
¼
�Λij lij

0 1

�
:

ð17Þ

This is a standard construction of lattice gauge theory [41].
Uij constitutes the Poincaré group-valued holonomy
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associated with edge σij, expressed in the representation
SOð3; 1Þ ⋉ R4 ⊂ GL5ðRÞ and characterized by Lorentz
and translation group elements,Λij∈SOð3;1Þ and lij∈R4,
respectively.
We denote the ðA; BÞth component of the Lorentz

connection along edge σij by ΛA
ijB, and the Ath component

of the corresponding translation connection by lA
ij. We also

adopt a notation for a Lorentz holonomy with an arbitrary
number of edges. In particular, for the holonomy comprised
of (n − 1) connections between the vertices σi1 ;…; σin , we
write

ΛA
i1���inB ¼ ðΛi1i2Λi2i3 � � �Λin−1inÞAB

¼ ΛA
i1i2C

ΛC
i2i3D

� � �ΛE
in−1inB

; ð18Þ

where intermediate Lorentz indices fC;D;…; Eg are all
contracted. Here, we have implicitly defined the holonomy
to act from the right, and note that the matrix multiplication
of holonomies effects the concatenation of path-ordered
integrals, as defined in Eq. (17).
Uij is seen to “mediate” between Lorentz gauges at σi

and σj, as desired. In particular, given an arbitrary Lorentz
gauge transformation defined at each vertex, say

fgi ¼ gðσiÞ ∈ SOð3; 1Þ ∀ σi ∈ Σ0g; ð19Þ

the gauge transformation of Uij readily follows from
Eq. (17), such that

U0
ij ¼

�
gi 0

0 1

�−1
Uij

�
gj 0

0 1

�
¼

� g−1i Λijgj g−1i lij

0 1

�
:

ð20Þ

From this calculation, we note that lij can be regarded
as if “based at” σi. By examining Eq. (17), the holo-
nomy Uji is also readily calculated to be Uji ¼ U−1

ij . In
particular,

Λji ¼ ðΛijÞ−1 and lji ¼ −Λjilij: ð21Þ

We must consider holonomies on closed paths as well.
For example, given a loop ð∂σ2Þi ¼ σiσj � � � σkσi around a
single face σ2 with basepoint σi, we define

�Ωijk Θijk

0 1

�
¼ P

�
exp

I
ð∂σ2Þi

A

�
: ð22Þ

Note that when a holonomy is comprised of the connec-
tions along the edges of a single face σ2 ∈ Σ2 (i.e., when it
is a “minimal” nontrivial loop), we use the symbol Ω
for its Lorentz holonomy rather than Λ as in Eq. (18),
and we suppress some of its indices. This notation is

general to the simplicial and cubical setting, such that, for
example,

Simplicial∶ ΩAB
ijk ¼ ðΛijΛjkΛkiÞACηCB;

Cubical∶ ΩAB
ijk ¼ ðΛijΛji0Λi0kΛkiÞACηCB: ð23Þ

Here, i0 labels the vertex diagonal to i on the appropriate
face of a cubical lattice; in a more typical notation,
ði; j; i0; kÞ ¼ ðn;nþ â;nþ âþ b̂;nþ b̂Þ. Ω thereby char-
acterizes Lorentz curvature over a face σ2, while Θ
characterizes the corresponding torsion.
To see how these holonomies can be substituted for the

fields of Eq. (16), let us examine their continuous limit. We
Taylor-expand around σi to find [41]

Λij ≈ 1þ ωijðσiÞΔþ ωijðσiÞ2
Δ2

2
þOðΔ3Þ;

lij ≈ eijðσiÞΔþ ωijðσiÞeijðσiÞ
Δ2

2
þOðΔ3Þ;

Ωijk − Ωikj ≈ 2AfRijkðσiÞΔ2 þOðΔ3Þ: ð24Þ

Here, ωijðσiÞ denotes the component of the continuum
Lorentz connection along the lattice edge σij, evaluated at
σi. eijðσiÞ is defined analogously. RijkðσiÞ denotes the
component of the continuum Lorentz curvature at σi
corresponding to edge vectors σij and σik. Δ denotes the
length of σij and σik in coordinate space (in this expansion,
we assume these to be equal for simplicity, though they
need not be in general), and ω, e, and R are implicitly
expressed in the corresponding coordinate basis. The area
factor Af is analogous to Vf in Eq. (16)—it corrects for the
implicit overcounting of area in the simplicial setting on the
parallelogram formed by σij and σik. In particular, Af ¼ 1

on a cubical lattice and Af ¼ 1=2 on a simplicial lattice. It
is further worth noting that the difference Ω − Ω−1 in
Eq. (24) is, in fact, soð3; 1Þ-valued, since ðΩ − Ω−1ÞTη ¼
ηðΩ−1 −ΩÞ ∀Ω ∈ SOð3; 1Þ.
With the expansions of Eq. (24) in mind, it is now

straightforward to reconstruct a discrete tetradic Palatini
action using edge holonomies, such that Eq. (16) is
recovered to least order in the continuum limit. In particu-
lar, we define the following action summed over lattice
hypercells fσ4g ¼ Σ4:

S ¼
X
σ4∈Σ4

Lðσ4Þ;

Lðσ4Þ ¼
X
σi⊂σ4

π∈Πiðσ4Þ

ð−1Þjπj
2ρfnv

ϵABCDðlA
iπð1Þl

B
iπð2ÞΩ

CD
iπð3Þπð4ÞÞ: ð25Þ

With factors Vf and Af as defined above, the quantity ρf ¼
Vf=Af satisfies ρf ¼ 1 (ρf ¼ 12) for cubical (simplicial)
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lattices. Note that we need not explicitly antisymmetrize Ω
and Ω−1, because the Levi-Civita symbol does this for us.
This cancels the factor of 2 appearing in Eq. (24). The sum
over permutations π replaces ϵμνστ in Eq. (16) and the
corresponding summation of spacetime indices. In particu-
lar, as first introduced in Eq. (16), π ∈ Πiðσ4Þ is now
explicitly defined as a permutation of vertices neighboring
σi in σ4. We define the parity jπj to correct for any
disagreement between the overall orientation of coordinate
space and the orientation of edge vectors in σ4, emanating
from σi and ordered by π.
It is worth emphasizing the following important features

of this discrete action:
(1) The discrete Lagrangian Lðσ4Þ is locally Lorentz

invariant. Under an arbitrary gauge transformation
fgi ∈ SOð3; 1Þgσi∈Σ0 using Eq. (20), we find

ðϵABCDlA
iπð1Þl

B
iπð2ÞΩ

CD
iπð3Þπð4ÞÞ0

¼ ϵABCDðg−1i liπð1ÞÞAðg−1i liπð2ÞÞBðg−1i Ωiπð3Þπð4ÞgiÞCD
¼ ϵABCDlA

iπð1Þl
B
iπð2ÞΩ

CD
iπð3Þπð4Þ: ð26Þ

The last equality above follows from the Lorentz
group relation ðgiÞEFηFD ¼ ðg−1i ÞDFη

FE and the
SOð3; 1Þ-invariance of the Levi-Civita symbol.

(2) The Poincaré holonomies Uij ¼ ðΛij;lijÞ are not to
be confused with the Poincaré symmetry group of
Minkowski spacetime. There is a gauge symmetry
transformation that acts on our Poincaré holonomies,
but the gauge group is Lorentz, not Poincaré. Such
“internal” or “vertical” (e.g., Lorentz) gauge groups
are typical in Cartan geometries, despite their con-
nections’ “external” or “horizontal” (e.g., transla-
tion) components [45]. Even as the internal Lorentz
gauge symmetry of our theory transforms the tetrad,
it leaves spacetime geometry (i.e., the metric)
completely unaffected—regardless of what (global)
symmetries the geometry may or may not possess.
By contrast, the Poincaré symmetry group of Min-
kowski spacetime is composed of global transfor-
mations of the spacetime. It is a subgroup of the full
diffeomorphism group that leaves the Minkwoski
metric invariant (i.e., the metric is invariant only if it
happens to be Minkowski). This distinction means,
in particular, that our use of Poincaré holonomies
should not be taken to imply that we are describing
Minkowski spacetime. Indeed, our theory is capable
of describing any (discrete) spacetime.

IV. THE DISCRETE EQUATIONS OF MOTION

We now compute equations of motion (EOMs) by
varying the discrete action with respect to the connection.
To compactify notation, when an element of the permuta-
tion π appears in an index, it will hereafter be denoted only
by a corresponding underlined number—for example,
1 ¼ πð1Þ. As usual in a first-order formalism, we assume

Λij and lij to be independent. Varying the action with
respect to lA

ij, and applying the expression for Uji from
Eq. (21) where appropriate, we find

0 ¼ ∂S
lA
ij
¼

X
σ4⊃σij

� X
π∈Πiðσ4Þ
πð1Þ¼j

ð−1Þjπj
ρfnv

ϵABCDlB
i2ΩCD

i34

−
X

π∈Πjðσ4Þ
πð1Þ¼i

ð−1Þjπj
ρfnv

ϵEBCDΛE
jiAl

B
j2ΩCD

j34

�
: ð27Þ

The first sum of Eq. (27) arises from terms with basepoint i,
and the second from terms with basepoint j. We note that
although frames are permuted at distinct basepoints in these
two lines, their parities are understood to be induced by a
global orientation and are therefore mutually consistent.
Equation (27) is a counterpart to ðδeÞ of Eq. (12), and it
constitutes a discrete reformulation of Einstein’s vacuum
equations.
In particular, we may examine the continuum limit of

Eq. (27) on a cubical lattice coordinatized by fxμg with
regular lattice spacing Δ. Expanding each degree of free-
dom near σi as in Eq. (24) and taking edge vectors along
coordinate directions (e.g., σijk∂μ), we find, at leading
order OðΔ3Þ,

0 ¼ ϵμνστϵABCDeBνRCD
στ;

mirroring (δe) of Eq. (12).
We now derive the Lorentz connection EOM, exercising

caution to ensure that the variation of Λij is constrained to
the SOð3; 1Þ manifold. In particular, ΛTηΛ ¼ η implies
ðΛ−1δΛÞTηþ ηðΛ−1δΛÞ ¼ 0, so that Λ−1δΛ ∈ soð3; 1Þ for
a variation δΛ. We can impose this constraint by taking a
variation that satisfies ðΛ−1δΛÞAB ¼ ðΛ−1δΛÞ½AB�, but is
otherwise arbitrary.
To that end, we consider as an example the variation of

ΩAB
i34 ¼ ðΛi3Λ34Λ4iÞAB in the simplicial setting with respect

to the Lorentz connection on the edge σi3:

δΩAB
i34 ¼ ðΛA

i3CΛC
3iDÞδΛD

i3EΛE
34FΛFB

4i

¼ ΛA
i3CΛB

i43EðΛ½Cj
3iDδΛ

DjE�
i3 Þ

¼ ΛA
i3½CjΩ

B
i43FΛF

i3jE�ðΛ½Cj
3iDδΛ

DjE�
i3 Þ:

The term in parentheses on the first line is a conveniently
chosen form of δAD—the Kronecker delta. The second line
follows from the notation of Eq. (18), from the identity
ðΛ−1ÞAB ¼ ΛBA, and from asserting the antisymmetry of
the variation ðΛ−1δΛÞ½CE�. The third line follows after
inserting another Kronecker delta to form a closed-loop
holonomy. (In general, when Ω based at σi is varied
with respect to its Lorentz connection along σjk, the result
can be expressed in terms of Ω or Ω−1 along with two
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antisymmetrized Lorentz transformations that effect a
parallel transport from σi to σk.)
To further facilitate thevariation of the action,we introduce

a couple of concise notations. For brevity, we denote

ajπj ¼ ð−1Þjπj
ρfnv

and also define

Pk12
CD ¼ ϵABCDlA

k1l
B
k2:

P is antisymmetric both in its Lorentz indices and in its
vertex permutation indices. It can be roughly regarded
as a (nonidempotent) projection that annihilates any
l ∈ spanflk1;lk2g.
Continuing in this way, we vary S with respect to

ðΛjiδΛijÞ½MN� to find, in the simplicial case,

0 ¼ ∂Ssimplicial

ðΛjiδΛijÞ½MN�

¼
X
σ4⊃σij

� X
π∈Πiðσ4Þ
πð3Þ¼j

ajπjðPi12
CDΩD

i4jEÞΛE
ij½MjΛ

C
ijjN�

þ
X
k∈σ4
k≠i;j

X
π∈Πkðσ4Þ
πð3Þ¼i
πð4Þ¼j

ajπjðPk12
CDΩD

kijEÞΛE
kj½MjΛ

C
kjjN�

þ
X

π∈Πjðσ4Þ
πð4Þ¼i

ajπjðPj12
CDΩD

j3iEÞδE½Mjδ
C
jN�

�
: ð28Þ

The first line of Eq. (28) arises from terms with basepoint i,
the middle line from terms with basepoint k ≠ i, j in σ4,
and the last line from terms with basepoint j. The Lorentz
EOM for a cubical discretization follows similarly:

0 ¼ ∂Scubic
ðΛjiδΛijÞ½MN�

¼
X
σ4⊃σij

� X
π∈Πiðσ4Þ
πð3Þ¼j

ajπjðPi12
CDΩD

i4jEÞΛE
ij½MjΛ

C
ijjN�

þ
X
k∈σ4
k≠i;j

X
π∈Πkðσ4Þ
πð3Þ¼i
k0¼j

ajπjðPk12
CDΩD

k4iEÞΛE
kij½MjΛ

C
kijjN�

þ
X
k∈σ4
k≠i;j

X
π∈Πkðσ4Þ
πð4Þ¼j
k0¼i

ajπjðPk12
CDΩD

k3jEÞΛE
kj½MjΛ

C
kjjN�

þ
X

π∈Πjðσ4Þ
πð4Þ¼i

ajπjðPj12
CDΩD

j3iEÞδE½Mjδ
C
jN�

�
: ð29Þ

Equations (28) and (29) enforce discrete zero-torsion
conditions analogous to ðδωÞ of Eq. (12). Again employing
the ordering of Eq. (24) on a cubical lattice, it is readily
computed that the least nontrivial contribution to Eq. (29) is
OðΔ3Þ and arises from its second and third lines alone, with
ΩD

E ¼ δDE . This leading-order expression is given by

0 ¼ ϵμναβϵABNM½∂νðeAαeBβ Þ þ ωA
νIe

I
αeBβ þ ωB

νJe
A
αeJβ�;

mirroring (δω) of Eq. (12).
Equations (27)–(29) define the desired algorithm for

vacuum numerical relativity. However, while these equa-
tions suffice to compute simulation steps in the bulk, the
evolution of boundary connections—including connec-
tions along both spacelike and timelike boundaries—still
requires some explanation. In particular, even if initial and
boundary connections are known a priori, Eqs. (27)–(29)
involve data from holonomies that generally extend outside
of the boundary wall, and are therefore underspecified on
the boundary.
The strategy we adopt [54] to derive equations of motion

for boundary connections, therefore, is to extend all space-
like and timelike boundary surfaces outward from the bulk,
creating a narrow “double wall” of some fiducial thickness
ϵ around the simulation domain. This double wall is then
populated with cells of width ϵ, such that connections
between an inner-wall vertex σiin and an outer-wall vertex
σiout will have Λiiniout ∼ 1þOðϵÞ and liiniout ∼OðϵÞ. The
connections lying along the outer wall itself are chosen to
copy the initial or boundary conditions of the inner wall.
Then, equations of motion for the inner-wall connections
can be derived as usual from Eqs. (27)–(29), as they now
behave as connections in the bulk. Finally, we take ϵ → 0
in the resulting equations of motion for the (inner-wall)
boundary connections.
It isworthnoting that not all boundary and initial conditions

will satisfy the discrete equations of motion. Just as
boundary constraints must be satisfied in the continuum
theory, care must be taken to ensure that Eqs. (27)–(29) are
satisfied on the initial surfaces of the discrete theory.

V. SYMPLECTIC STRUCTURE
OF THE DISCRETE ACTION

Variational integrators for field theories have a natural
multisymplectic structure (see, e.g., Refs. [55,56] and
references therein), generalizing the ordinary symplectic
structure possessed by variational integrators in particle
mechanics [57]. Here we review the proof that variational
integrators are naturally (multi)symplectic, thereby con-
firming the multisymplectic structure of Eqs. (27)–(29).
In a variational integrator for particle mechanics, the

action evaluated on a temporal cell ½ti; tiþ1� provides a
generating function for a canonical (symplectic) trans-
formation across the cell [57]. Specifically, the discrete
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action Si for cell i is a generating function for the canonical
transformation ðqi; piÞ → ðqiþ1; piþ1Þ, where qi, qiþ1 are
the particle coordinates at the left and right ends of the cell,
respectively, pi ¼ − ∂Si

∂qi
, and piþ1 ¼ ∂Si

∂qiþ1
. The equations of

motion (e.g., ∂Si−1
∂qi

þ ∂Si
∂qi

¼ 0) guarantee that the momentum
at a point is identical whether using the left or right cell to
define it. In this way, the symplectic transformations inside
the cells are glued consistently across cells to produce a
global symplectic evolution.
In field theory, the situation is slightly different. A field ϕ

has a multimomentum πμ (one for each dimension of
spacetime) [58], which in the case of a scalar field can be
recast as a 3-form: π¼πμd3xμ¼ 1

3!
ϵμαβγπ

μdxα∧dxβ∧dxγ .
For any spacetime region R, we then have the boundary
fields ϕðσÞ; πðσÞ living on Σ ¼ ∂R, where πðσÞ ¼ πjΣ can
be regarded as a pseudoscalar field. The action evaluated
over R, SðRÞ, is a generating function for a submanifold

fðϕðσÞ; πðσÞ ¼ δSðRÞ
δϕ Þg in this “boundary phase space.”One

may regard SðRÞ (imprecisely) as a generating function for
a canonical transformation between any two parts of the
boundary. In the case when the boundary of R consists of
two disconnected pieces corresponding to two different
times, SðRÞ is the generating function for a canonical
transformation between those times.
In the discrete setting, we take R ¼ σd, a hypercell of

maximum dimension in our lattice (d is the spacetime
dimension). The boundary phase space no longer consists
of fields, but of pairs ðϕi; πiðσdÞÞ for each vertex σi ⊂ σd.
The discrete action over σd, LðσdÞ, is a generating
function for a manifold in the boundary phase space:

fðϕi; πiðσdÞ ¼ ∂LðσdÞ
∂ϕi

Þg, in agreement with the continuum
multisymplectic structure discussed above. Note that in this
case, the momentum at a vertex is not unique, but rather
depends on the hypercell σd used to compute it (the same
holds true in the continuum: the momentum depends on
both the location and the boundary used to define it). The

equations of motion (e.g.,
P

σd⊃σi
∂LðσdÞ
∂ϕi

¼ 0) do not guar-
antee a unique momentum at each vertex, but rather that the
sum of momenta defined for each region/boundary con-
taining that vertex vanishes. This guarantees that the
integrator will be symplectic when stepping in time.
To see this, let vertex σi be associated with time t0, and

define σdþ ¼ fσd ⊃ σi with t > t0g and σd− ¼ fσd ⊃ σi
with t < t0g. Then, if πþi ¼ −

P
σd∈σdþ

πiðσdÞ (the minus
sign takes care of the orientation for convenience) and
π−i ¼ P

σd∈σd− πiðσdÞ, we get the usual gluing of symplec-
tic transformations under time-stepping: π−i ¼ πþi .
Furthermore, this will hold true no matter how we choose
to define our time and associated time-stepping (i.e., if
there are multiple ways to perform time-stepping in our
cellular complex, each of them will be guaranteed to result
in symplectic evolution). This argument neglects subtleties

that may arise at boundaries or when the number of vertices
changes between time slices. To resolve these, a more
global perspective is necessary, following for example the
presentation in Refs. [59–61].
In the case of gravity in four dimensions, we are using

1-form fields rather than scalar fields, so the multimomen-
tum is more naturally a 2-form. Additionally, our two
primary fields (e and ω) are conjugate to each other (in the
sense that the multimomentum of ω is a function of e, while
the multimomentum of e vanishes, leaving behind an ðe;ωÞ
phase space). All of this is captured by the discrete
Eqs. (27)–(29). The boundary phase space of a cell σ4

consists of pairs ðlA
ij;ΛA

ijBÞ for each edge σij ⊂ σ4 (rather
than for each vertex, as in the case of a scalar field). The
discrete action Lðσ4Þ is a generating function, which
defines momenta conjugate to lA

ij and ΛA
ijB as the bracketed

summands of Eq. (27) and Eqs. (28) and (29), respectively.
The momentum conjugate to Λ is a function of l, while the
initialization of the algorithm (see the end of Sec. IV)
ensures the vanishing of the momentum conjugate to l on
the inner wall of the double wall boundary (i.e., torsion is
made to vanish by construction in the ϵ-width cells
making up the double wall). The symplectic structure of
the time-stepping then ensures that the momentum con-
jugate to l vanishes for the entire complex. In this way,
the discrete multisymplectic structure of our gravitational
integrator reproduces the continuous multisymplectic struc-
ture of GR.

VI. CONCLUSION

We have presented a new numerical scheme for general
relativity, detailed in Eqs. (27)–(29). This scheme preserves
both the (multi)symplectic structure and local Lorentz
invariance of the tetrad formulation of GR. Furthermore,
its discrete variables have a clear relationship with their
continuum counterparts. As such, this scheme holds promise
as an integrator for numerical relativity (its structure pres-
ervation maintains exact conservation laws and bounded
errors in simulation) and for studying the classical limits of
certain quantum gravity theories (such as loop quantum
gravity, spin foams, etc.). In these roles, the scheme’s
symplectic structure promises an improvement over non-
symplectic finite-difference and spectral methods, while its
natural associationwith continuumvariablesmakes it amore
viable alternative to other symplectic approaches to discrete
gravity (most notably Regge calculus). In future work,
implementations of this algorithm will be needed to dem-
onstrate its practical utility. Furthermore, as with Regge
calculus, further study is required to incorporate matter into
our approach (though the way forward seems clearer).
It may also be of interest to explore the potential union

between the algorithm defined here and other structure-
preserving discretizations suitable for numerical relativity.
For example, it may be useful to explore the relationship
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between our holonomy-centric approach and the recently
developed technique of group-equivariant interpolation in
symmetric spaces [62,63]. It may also be useful to compare
our effort with finite element cochain complexes suitable
for applications in numerical relativity [64]. In this way, the
algorithm we have introduced can be an advantageous
starting point for explorations into structure-preserving
discrete gravity theories.
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457 (1989).

[21] R. M. Williams and P. A. Tuckey, Regge calculus: A brief
review and bibliography, Class. Quantum Gravity 9, 1409
(1992).

[22] G. Immirzi, Quantum gravity and Regge calculus, Nucl.
Phys. B57, 65 (1997).

[23] R. Loll, Discrete approaches to quantum gravity in four
dimensions, Living Rev. Relativity 1 (1998).

[24] J. Ambjörn, J. Jurkiewicz, and R. Loll, Nonperturbative
Lorentzian Path Integral for Gravity, Phys. Rev. Lett. 85,
924 (2000).

[25] G. Gionti, Discrete gravity as a local theory of the Poincaré
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