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The gravitationally enhanced friction can reduce the speed of the inflaton to realize an ultraslow-roll
inflation, which will amplify the curvature perturbations. The amplified perturbations can generate a sizable
amount of primordial black holes (PBHs) and induce simultaneously a significant background gravitational
waves (SIGWs). In this paper, we investigate the primordial non-Gaussianity of the curvature perturbations
in the inflation with gravitationally enhanced friction. We find that when the gravitationally enhanced
friction plays a role in the inflationary dynamics, the non-Gaussianity is noticeably larger than that from the
standard slow-roll inflation. During the regime in which the power spectrum of the curvature perturbations
is around its peak, the non-Gaussianity parameter changes from negative to positive. When the power
spectrum is at its maximum, the non-Gaussianity parameter is near zero [∼Oð0.01Þ]. Furthermore, the
primordial non-Gaussianity promotes the formation of PBHs, while its effect on SIGWs is negligible.
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I. INTRODUCTION

Inflation resolves most of the problems, such as the
flatness, horizon, and monopole problems, that plague
the standard cosmological model [1–4]. During inflation
the curvature perturbations are stretched outside the Hubble
horizon and then stop propagating with the amplitudes
frozen at certain nonzero values. Inflation predicts a nearly
scale-invariant spectrum for the curvature perturbations,
which is well consistent with the cosmic microwave
background (CMB) observations [5]. The CMB observa-
tions indicate that the amplitude PR of the power spectrum
of the curvature perturbations is about 10−9 [5]. After
inflation, these superhorizon perturbations, which will
reenter the Hubble radius during the radiation- or matter-
dominated era, result in the formation of large scale cosmic
structures and at the same time lead to possible generation
of primordial black holes (PBHs) [6–8]. The possibility is
however slim for the standard slow-roll inflation since the
amplitude of the power spectrum of the curvature pertur-
bations is too small (∼10−9).
If a sizable amount of PBHs is formed in the early

universe, PBHs with different masses can be used to
explain different astronomical events. For example, the
Oð10Þ M⊙, Oð10−5ÞM⊙ and Oð10−12ÞM⊙ PBHs can

explain the gravitational wave events observed by the
LIGO/Virgo collaboration [9–12] and six ultrashort-time-
scale microlensing events in the OGLE data [13,14], and
make up all dark matter [15–18], respectively, whereM⊙ is
the mass of the Sun. To generate abundant PBHs, PR is
required to reach the order of Oð10−2Þ. Since the CMB
observations have put stringent constraints on PR only at
the CMB scales, we can realize the production of abundant
PBHs by enhancing the amplitude of the power spectrum of
the curvature perturbations about seven orders at small
scales. As PR ∝ 1=ϵ with ϵ being the slow roll parameter, a
natural way to amplify the curvature perturbations is to
include an ultraslow-roll period during inflation. Flattening
the inflationary potential can reduce the rolling speed of the
inflaton, which gives rises to an ultraslow-roll inflation
[19–41]. The ultraslow-roll inflation can also be achieved
via slowing down the inflaton by gravitationally enhancing
friction [42–47]. Moreover, some other mechanisms, such
as parametric resonance [48–53], have also been proposed
to amplify the curvature perturbations.
When the amplified curvature perturbations reenter the

Hubble horizon during the radiation- or matter-dominated
era, they will not only generate the PBHs, but also lead
simultaneously to large scalar metric perturbations, which
become an effective source of background gravitational
waves. These gravitational waves, called the scalar induced
gravitational waves (SIGWs), may be detectable by the
future GW projects such as LISA [54], Taiji [55], TianQin
[56], and PTA [57–60].
When we assess the abundance of PBHs and the energy

density of SIGWs, the curvature perturbations are assumed
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usually to be of a Gaussian distribution. This is because the
curvature perturbations generated during the standard slow-
roll inflation are nearly Gaussian with negligible non-
Gaussianity. However, once the inflation departs from the
slow-roll inflation or it is driven by the noncanonical fields,
the primordial non-Gaussianity of the curvature perturba-
tions may no longer be ignored. The primordial non-
Gaussianity in the ultraslow-roll inflation has been studied
widely [61–73], because the abundance of PBHs is
extremely sensitive to the primordial non-Gaussianity of
the curvature perturbations. For the PBHs generated from
inflation with gravitationally enhanced friction mechanism
[42,74,75], the primordial non-Gaussianity might be non-
negligible too since the inflation field couples derivatively
with the gravity and the rolling of the inflaton is ultraslow. In
this paper we study, in the ultraslow-roll inflation achieved
through gravitationally enhanced friction, the non-
Gaussianity of the curvature perturbations and its effect on
the PBH abundance and the energy density of SIGWs.
The paper is organized as follows: In Sec. II, we briefly

review the inflation model with the nonminimal derivative
coupling between inflation field and gravity. Section III
studies the primordial non-Gaussianity of the curvature
perturbations. In Sec. IV, the effect of the non-Gaussianity
of the curvature perturbations on the abundance of PBHs
and the energy density of SIGWs are assessed. Finally, we
give our conclusions in Sec. V.

II. INFLATION WITH THE GRAVITATIONALLY
ENHANCED FRICTION

To enhance the friction term in the equation of motion of
the inflaton through the gravity, we consider a nonminimal
derivative coupling between the inflaton field ϕ and gravity,
with the action given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R −

1

2

�
gμν −

1

M2
pl

θðϕÞGμν

�

× ∇μϕ∇νϕ − VðϕÞ
�
; ð1Þ

where Mpl is the reduced Planck mass, and g is the
determinant of the metric tensor gμν, R is the Ricci scalar,
Gμν is the Einstein tensor, θðϕÞ is the coupling function,
and VðϕÞ is the potential of the scalar inflaton field.
In the spatially flat Friedmann-Robertson-Walker

background

ds2 ¼ −dt2 þ aðtÞ2dx2 ð2Þ

with aðtÞ being the scale factor, one can obtain, from the
action (1), the background equations

3H2 ¼ 1

M2
pl

�
1

2

�
1þ 9

M2
pl

θðϕÞH2

�
_ϕ2 þ VðϕÞ

�
; ð3Þ

−2 _H ¼ 1

M2
pl

��
1þ 3

M2
pl

θðϕÞH2 −
1

M2
pl

θðϕÞ _H
�
_ϕ2 −

1

M2
pl

θ;ϕH _ϕ3 −
2

M2
pl

θðϕÞH _ϕ ϕ̈

�
; ð4Þ

�
1þ 3

M2
pl

θðϕÞH2

�
ϕ̈þ

�
1þ 1

M2
pl

θðϕÞð2 _H þ 3H2Þ
�
3H _ϕþ 3

2M2
pl

θ;ϕH2 _ϕ2 þ V;ϕ ¼ 0; ð5Þ

where an overdot denotes the derivative with respective to
the cosmic time t, H ¼ _a

a is the Hubble parameter,
θ;ϕ ¼ dθ=dϕ, and V;ϕ ¼ dV=dϕ.
To describe the slow-roll inflation, we define the slow-

roll parameters

ϵ ¼ −
_H
H2

; δϕ ¼ ϕ̈

H _ϕ
;

δX ¼
_ϕ2

2M2
plH

2
; δD ¼ θ _ϕ2

4M4
pl

: ð6Þ

When fϵ; jδϕj; δX; δDg ≪ 1 are satisfied, the slow-roll
inflation is obtained.
In order to find the power spectrum of the curvature

perturbations, we need to derive the quadratic action for the
curvature perturbations R from the action given in Eq. (1),
which takes the form [76–78]

Sð2Þ ¼
Z

dtd3xa3Q

�
_R2 −

c2s
a2

ð∂RÞ2
�
; ð7Þ

where
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Q ¼ w1ð4w1w3 þ 9w2
2Þ

3w2
2

; ð8Þ

c2s ¼
3ð2w2

1w2H − w2
2w4 þ 4w1 _w1w2 − 2w2

1 _w2Þ
w1ð4w1w3 þ 9w2

2Þ
; ð9Þ

and

w1 ¼ M2
plð1 − 2δDÞ;

w2 ¼ 2HM2
plð1 − 6δDÞ;

w3 ¼ −3H2M2
plð3 − δX − 36δDÞ;

w4 ¼ M2
plð1þ 2δDÞ: ð10Þ

From Eq. (7), we obtain the Mukhanov-Sasaki equation

u00k þ
�
c2sk2 −

z00

z

�
uk ¼ 0; ð11Þ

where z2 ¼ 2a2Q, and uk ¼ zRk. Solving this Mukhanov-
Sasaki equation yields the power spectrum of the curvature
perturbations

PR ≃ PR0

�
1þ θðϕÞ V

M4
pl

�
ð12Þ

at the time when the comoving wave number exits the
horizon, where PR0

¼ V3

12π2M6
plV

2
;ϕ
is the power spectrum of

the curvature perturbations in the minimal coupling case.
The scalar spectral index and the tensor-to-scalar ratio are
given, respectively, by [77]

ns ≃ 1 −
1

A

�
2ϵV

�
4 −

1

A

�
− 2ηV

�
; ð13Þ

r ≃
16ϵV
A

; ð14Þ

where ϵV ¼M2
pl

2
ðV;ϕ

V Þ2, ηV ¼M2
pl
V;ϕϕ

V andA¼ 1þ 3
M2

pl
θðϕÞH2.

For the potential of the inflaton field, we choose the
simple monomial potential

VðϕÞ ¼ λM4−p
pl jϕjp; ð15Þ

where λ is a free parameter and the fractional power p is set
to be p ¼ 2=5 [79]. To amplify the curvature perturbations
at the small scales to generate a sizable amount of PBHs
and at the same time to satisfy the strong constraint on the
tensor-to-scalar ratio (r < 0.036) given by the BICEP/Keck
collaboration [80], the coupling function θðϕÞ is assumed
to take the following form [42]

θðϕÞ ¼ mþ ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2ðϕ−ϕc

σs
Þ2 þ 1

q ; ð16Þ

where m is a coupling constant, which is introduced to
reduce the tensor-to-scalar ratio so as to be consistent with
the BICEP/Keck CMB observations, ω and ϕc correspond
to the peak height and position of the power spectrum of the
curvature perturbations, and σs describes the smoothing
scale around ϕ ¼ ϕc.
At the beginning of inflation, the effect of the nonminimal

derivative coupling can be neglected since ϕ deviates greatly
from ϕc, and thus the inflationary prediction corresponds to
that of the standard single-field slow-roll inflation with the
simple monomial potential. The friction will play amore and
more important role with the inflaton field rolling towardϕc.
The large friction reduces the rolling speed of the inflaton and
leads to a period of ultraslow-roll inflation. Since the second
term in parentheses of the right-hand side (rhs) of Eq. (12)
will becomedominant, the power spectrumwill be enhanced.
The amplitude of the power spectrum of the curvature
perturbations can be amplified to be the order of Oð10−2Þ
during the ultraslow-roll inflation. When these enhanced
curvature perturbations reenter the horizon during radiation-
or matter-dominated era, a sizable amount of PBHs will be
generated.
In order to use the PBHs to explain the binary black hole

events detected by the LIGO/Virgo collaboration and the
ultrashort-timescale microlensing events in the OGLE data,
and to make up all dark matter, we focus on the PBHs with
mass around Oð10Þ M⊙, Oð10−5ÞM⊙, and Oð10−12ÞM⊙,
and consider three different parameter sets, which are
shown in Tab. I. From this table, one can see that at the
CMB scale the inflationary predictions are compatible with
the BICEP/Keck CMB observations [80]. And the ampli-
tude of the power spectrum of the curvature perturbations

TABLE I. Three different parameter sets for generating the Oð10Þ M⊙, Oð10−5ÞM⊙ and Oð10−12ÞM⊙ PBHs,
respectively. ϕ� and N� are the value of inflation field and e-folding number when the pivot scale k� ¼ 0.05 Mpc−1

exits the Hubble horizon.

ϕ�=Mpl ϕc=Mpl σs λ w m ns r N�

Case 1 4.29 4.02 1.8 × 10−9 6.68 × 10−10 3.70 × 1016 6 × 108 0.971 0.0350 64
Case 2 4.30 3.63 1.8 × 10−9 6.60 × 10−10 4.08 × 1016 8 × 108 0.972 0.0340 66
Case 3 3.95 2.95 2.0 × 10−9 7.40 × 10−10 5.19 × 1016 9.5 × 108 0.971 0.0357 68.5
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can be enhanced to be the Oð10−2Þ order at the small scale
to generate the abundant PBHs, as shown in Table II.

III. PRIMORDIAL NON-GAUSSIANITY

To study the primordial non-Gaussianity of the curvature
perturbations, we need to calculate the value of the
bispectrum BR, which is related to the three-point corre-
lation function of the curvature perturbations [81,82]

hR̂k1R̂k2R̂k3i ¼ ð2πÞ3δ3ðk1 þ k2 þ k3ÞBRðk1; k2; k3Þ:
ð17Þ

Using the in-in formula, we can calculate this three-point
correlation function and obtain the expression of the
bispectrum BRðk1; k2; k3Þ [62,83–86]
BRðk1; k2; k3Þ

¼ ℑ

�
Rk1ðteÞRk2ðteÞRk3ðteÞ

X10
i¼1

Bi
Rðk1; k2; k3Þ

�
: ð18Þ

Here ℑ represents taking the imaginary part, te denotes the
time of the end of inflation, and the expressions of
Bi
Rðk1; k2; k3Þ are given in the Appendix. Then, we can

derive the non-Gaussianity parameter fNL [81,87]

fNLðk1; k2; k3Þ ¼
5

6

BRðk1; k2; k3Þ
PRðk1ÞPRðk2Þ þ PRðk2ÞPRðk3Þ þ PRðk3ÞPRðk1Þ

; ð19Þ

where PRðkÞ ¼ 2π2

k3 PRðkÞ.
We use the numerical method to calculate the value of

BRðk1; k2; k3Þ. Since the curvature perturbation R oscil-
lates rapidly when it is in the horizon, a cutoff eλkmðτ−τ0Þ is
introduced to reduce the error in numerical calculations
[84,88], where km is the largest value of ðk1; k2; k3Þ, λ
determines how much the integral will be suppressed, and
τ0 is about several e-folding time before the km mode
crosses the Hubble horizon. As the non-Gaussianity sat-
isfies, in the squeezed limit, the consistency relation [86]

lim
k3→0

fNLðk1; k2; k3Þ ¼
5

12
ð1− nsÞ for k1 ¼ k2 ≫ k3; ð20Þ

it can be used to verify the accuracy of the numerical
calculation.
Figure 1 shows our numerical results in the squeezed

limit for the case 1. The solid, dashed and dotted lines
represent fNL, 5

12
ð1 − nsÞ and the power spectrum, respec-

tively. One can see clearly that fNL satisfies the

non-Gaussianity consistency relation, which demonstrates
fully that our numerical calculation is very reliable.
However, we must point out here that this consistency
relation could be violated if the ultraslow-roll phase results
from a flattened potential [71–73]. From Fig. 1, we find that
at the large scales, the power spectrum of the curvature
perturbations is nearly scale invariant, the value of fNL is
around zero, and thus non-Gaussianity is negligible, which
is the prediction of the standard slow-roll inflation. With the
decrease of scale, the power spectrum becomes to grow due
to the slowing down of the inflaton as a result of the
gravitationally enhanced friction, and accordingly the value
of fNL drops sharply and then stabilizes at about −0.86.
After several e-folding number, fNL begins to increase
rapidly and reaches near zero when the power spectrum
reaches its maximum value at k ¼ kpeak. Then, although the
power spectrum decreases with the increase of k, fNL will
reach its maximum value, which is about 0.47. Finally, with
the ending of the ultraslow-roll inflation, fNL returns to
about zero. In Fig. 2, we plot the fNL in the case of the

FIG. 1. fNL in the squeezed limit with k ¼ k1 ¼ k2 ¼ 106k3 for
the case 1. Dashed line shows 5

12
ð1 − nsÞ and dotted line

represents the power spectrum of curvature perturbations.
FIG. 2. fNL in the equilateral limit (k ¼ k1 ¼ k2 ¼ k3) for the
case 1.
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equilateral limit (k1 ¼ k2 ¼ k3), and find that it has features
similar to that of the squeezed limit case.

IV. EFFECT OF NON-GUASSIANITY ON PBHs
AND SIGWs

A. Non-Gaussian correction to the PBH abundance

When the large enough curvature perturbations reenter
the Hubble horizon during the radiation-dominated era, the
gravity of overdense regions can overcome the radiation
pressure and thus these regions will collapse to form PBHs
soon after their horizon entry. The PBH mass relates with
the horizon mass at the horizon entry of perturbations with
the wave number k:

MðkÞ ¼ γ
4πM2

pl

H
≃M⊙

�
γ

0.2

��
g�

10.75

�
−1
6

×

�
k

1.9 × 106 Mpc−1

�
−2
; ð21Þ

where γ denotes the ratio of the PBH mass to the horizon
mass and indicates the efficiency of collapse, which is set to
be γ ≃ ð1= ffiffiffi

3
p Þ3 [8] in our analysis, and g� is the effective

degrees of freedom in the energy densities at the PBH
formation. We adopt g� ¼ 106.75 since the PBHs are
assumed to form deep in the radiation-dominated.
Based on the Press-Schechter theory [89,90], the pro-

duction rate of PBHs with mass MðkÞ has the form

βðMÞ ¼
Z
δc

dδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2ðMÞ

p e
− δ2

2σ2ðMÞ ¼ 1

2
erfc

�
δcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σ2ðMÞ
p

�
;

ð22Þ

after assuming that the probability distribution function of
perturbations is Gaussian, where erfc is the complementary
error function. δc is the threshold of the density perturba-
tions for the PBH formation, which is chosen to be δc ≃ 0.4
[91,92] in our calculation of PBHs abundance. σ2ðMÞ has
the form

σ2ðMðkÞÞ ¼ 16

81

Z
d ln qW2ðqk−1Þ ðqk−1Þ4PRðqÞ; ð23Þ

which represents the coarse-grained density contrast with
the smoothing scale k. HereW is the window function. The
current fractional energy density of PBHs with mass M in
dark matter is

fðMÞ≡ 1

ΩDM

dΩPBH

d lnM
≃

βðMÞ
1.84 × 10−8

�
γ

0.2

�3
2

×

�
10.75
g�

�1
4

�
0.12

ΩDMh2

��
M
M⊙

�
−1
2

; ð24Þ

where ΩDM is the current density parameter of dark matter,
which is given to be ΩDMh2 ≃ 0.12 by the Planck 2018
observations [5]. For the Gaussian distribution of the
curvature perturbations, we obtain PBHs with masses
around Oð10Þ M⊙, Oð10−6Þ M⊙, and Oð10−13Þ M⊙,
respectively and their corresponding abundances, which
are shown in Table II.
When the effect of non-Guassianity of the curvature

perturbations on the PBH abundance is considered, the
mass fraction β is corrected to be [67,93]

β ¼ eΔ3βG; ð25Þ

where Δ3 is the 3rd cumulant, which has the form

Δ3 ¼
1

3!

�
δc
σ

�
2

S3δc; ð26Þ

with S3 being

S3 ¼
hδRðxÞδRðxÞδRðxÞi

σ4
: ð27Þ

For the Gaussian window function, hδRðxÞδRðxÞδRðxÞi can
be obtained through calculating

hδRðxÞδRðxÞδRðxÞi ¼ −64
�
4

9

�
3 2

ð2πÞ4 k
6

Z
∞

0

du
Z

∞

0

dv
Z

uþv

ju−vj
dwu3v3w3e−u

2

e−v
2

e−w
2

BRð
ffiffiffi
2

p
uk;

ffiffiffi
2

p
vk;

ffiffiffi
2

p
wkÞ: ð28Þ

In [64], it has been found that Δ3 can be approximated as

Δ3 ≈ Δa
3ðkpeakÞ ¼ 23

δ3c
PRðkpeakÞ

fNL ðkpeak; kpeak; kpeakÞ:

ð29Þ
We numerically compute Δ3 and its approximation Δa

3 .
The results are shown in Table II for three different cases.

It is easy to see that Δ3 is of the order Oð1Þ, which is much
larger than Δa

3 . Thus, the approximation given in [64] is
invalid for the model considered in the present paper.
We find that for all the cases the non-Gaussianity promotes
the formation of PBHs since their 3rd cumulants Δ3

are positive. The effect of non-Gaussianity on the PBH
abundance is non-negligible since the value of β is much
larger than βG.

PRIMORDIAL NON-GUASSIANITY IN INFLATION WITH … PHYS. REV. D 106, 063537 (2022)

063537-5



B. Non-Gaussian correction to energy density of SIGWs

Associated with the PHB formation, the enhanced
curvature perturbations will lead to the large scalar metric
perturbations, which become the significant GW source
and emit abundant SIGWs. The current energy spectra of
SIGWs can be expressed as [94,95]

ΩGW;0h2 ¼ 0.83

�
g�

10.75

�
−1=3

Ωr;0h2ΩGWðτc; kÞ; ð30Þ

where Ωr;0h2 ≃ 4.2 × 10−5 is the current density parameter
of radiation, and

ΩGWðτc; kÞ ¼
1

12

Z
∞

0

dv
Z j1þvj

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4uv

�
2

PRðkuÞPRðkvÞ
�

3

4u3v3

�
2

ðu2 þ v2 − 3Þ2

×

��
−4uvþ ðu2 þ v2 − 3Þ ln

���� 3 − ðuþ vÞ2
3 − ðu − vÞ2

����
�
2

þ π2ðu2 þ v2 − 3Þ2Θðvþ u −
ffiffiffi
3

p
Þ
	
; ð31Þ

where τc represents the time when ΩGW stops to grow and
Θ is the Heaviside theta function.
When the non-Gaussianity of the curvature perturbations

is considered, RðxÞ has the expression [96,97]

RðxÞ ¼ RGðxÞ þ 3

5
fNLðRGðxÞ2 − hRGðxÞ2iÞ: ð32Þ

Clearly the curvature perturbationR consists of a Gaussian
part RG and a non-Gaussian one. When this non-Gaussian
correction is included, the power spectrum of the curvature
perturbations should be modified to be

PRðkÞ ¼ PG
RðkÞ þ PNG

R ðkÞ; ð33Þ

where

PNG
R ðkÞ ¼

�
3

5

�
2 k3

2π
f2NL

Z
d3p

PG
RðpÞ
p3

PG
Rðjk − pjÞ
jk − pj3 : ð34Þ

For the model considered in this paper, the result in the
preceding subsection has shown that the absolute value of
fNL is less than one and it is near zero when k ¼ kpeak.
Furthermore the maximum value of PG

R has the order of
Oð0.01Þ. Thus, we can assess easily that PNG

R ðkÞ is much
less than PG

RðkÞ since the order of its maximum should be
less than Oð10−4Þ, which indicates that the contribution of
non-Gaussianity of the curvature perturbations on the
energy density of SIGWs is negligible.

V. CONCLUSIONS

To generate a sizable amount of PBHs requires that the
amplitude of the power spectrum of the curvature pertur-
bations is enhanced to reach the Oð0.01Þ order. A simple
way to enhance the curvature perturbations during inflation
is to reduce the rolling speed of inflaton to achieve an
ultraslow-roll inflation, which can be realized by flattening
the inflationary potential or increasing the gravitational
friction. Since the ultraslow-roll inflation deviates appa-
rently from the standard slow-roll inflation, the non-
Gaussianity of the curvature perturbations might be very
large and has significant effects on the abundance of PBHs
and the energy density of SIGWs although it is negligible in
the standard slow-roll inflation.
In this paper we study the non-Gaussianity of the

curvature perturbations in the ultraslow-roll inflation
resulting from gravitationally enhanced friction. We find
that at the large scales where the power spectrum of the
curvature perturbations is nearly scale invariant, the non-
Gaussianity is negligible. The power spectrum grows with
the decrease of scale due to that the friction slows down
the inflaton, and correspondingly the value of the non-
Gaussianity parameter fNL drops sharply and then sta-
bilizes at a value in several e-folding number. Before the
power spectrum reaches its peak, fNL begins to increase
rapidly. When the power spectrum is at its maximum
value, we find that fNL is nearly zero. Then, fNL will reach
its maximum value with the increase of wave number k.
Finally, with the ending of the ultraslow-roll inflation, fNL
returns to about zero. For three different cases, which
correspond to that the PBHs can be used to explain the

TABLE II. The numerical results for three cases given in Table I.

kpeak=Mpc−1 PR=10−2 fGPBH MPBH=M⊙ fNL Δa
3 Δ3

Case 1 4.46 × 105 4.91 0.00455 16.57 0.0205 0.619 4.218
Case 2 4.31 × 108 3.87 0.0178 1.91 × 10−5 0.0234 0.890 4.965
Case 3 1.77 × 1012 3.18 0.924 1.12 × 10−12 −0.0052 −0.240 6.297
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LIGO/Virgo GW events and the six ultrashort-timescale
microlensing events in the OGLE data, and make up all
dark matter, respectively, we obtain that the non-
Gaussianity will promote the generation of PBHs, while
its influence on SIWGs is negligible.
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APPENDIX: THE EXPRESSIONS
OF Bi

Rðk1; k2; k3Þ IN EQ. (18)

In order to compute bispectrum, we need derive the cubic
action of the curvature perturbations from the action given
in Eq. (1) [76,98]

S3 ¼
Z

dtd3 x

�
a3C1R _R2 þ aC2Rð∂RÞ2 þ a3C3 _R

3 þ a3C4 _Rð∂iRÞð∂iχÞ

þ a3C5∂2Rð∂χÞ2 þ aC6 _R
2
∂
2Rþ ðC7=aÞ½∂2Rð∂RÞ2 −R∂i∂jð∂iRÞð∂jRÞ�

þ aC8½∂2R∂iR∂iχ −R∂i∂jð∂iRÞð∂jχÞ� þ F 1

δL2

δR

	
; ðA1Þ

where

F 1 ¼
A4

w2
1

fð∂kRÞð∂kχÞ − ∂
−2
∂i∂j½ð∂iRÞð∂jχÞ�g þ q1R _R −

A4

a2w2

× fð∂RÞ2 − ∂
−2
∂i∂j½ð∂iRÞð∂jRÞ�g;

∂
2χ ¼ Q _R, L2 is quadratic Lagrangian given in Eq. (7), wi
and Q are given in Eqs. (10) and (8), respectively, and the
dimensionless coefficients Ci with i ¼ 1–8 are

C1 ¼
1

M2
pl

½3Qþ q1ð _Qþ 3HQÞ −Q _q1�; ðA2Þ

C2 ¼
1

M2
pl

�
A5 þ

1

a
d
dt

�
2aQw1

w2

��
; ðA3Þ

C3 ¼
1

Mpl

�
A1 þ A3

Q
w1

− q1Q

�
; ðA4Þ

C4 ¼
Q
w1

�
−
1

2
− w1

d
dt

�
A4

w2
1

�
þ 3HA4

w1

�
; ðA5Þ

C5 ¼
M2

pl

2

�
3

2w1

−
d
dt

�
A4

w2
1

�
þ 3HA4

w2
1

�
; ðA6Þ

C6 ¼ A2 −
2w1A3

w2

; ðA7Þ

C7 ¼ q3 þ
2A4Qc2s

w2

; ðA8Þ

C8 ¼ Mpl

�
q2
2
−
2c2sA4Q

w2
1

�
: ðA9Þ

Here

A1 ¼
3w1

w3
2

h
8H2ðM2

pl − 5 _ϕ2θðϕÞÞw2
1 þ 8Hð3 _ϕ2θðϕÞ −M2

plÞw1w2 þ ð2M2
pl − 3 _ϕ2θðϕÞÞw2

2

i
;

A2 ¼ −4 _ϕ2θðϕÞw
2
1

w2
2

;

A3 ¼
2w1

w2
2

h
4Hw1ðM2

pl − 3 _ϕ2θðϕÞÞ þ w2ð3 _ϕ2θðϕÞ − 2M2
plÞ
i
;

A4 ¼
w1

2w2

ð3 _ϕ2θðϕÞ − 2M2
plÞ;

A5 ¼
2 _w2w2

1 þ w2ðw2w4 − 4 _w1w1 − 2Hw2
1Þ

w2
2

;
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and

q1 ¼ −
2w1

c2sw2

;

q2 ¼ a2
d
dt

�
w1ð4M2

pl − 6 _ϕ2θðϕÞÞ
a2w2

2

�
−
4w1

w2

;

q3 ¼
2w3

1

3w2
2

−
a
3

d
dt

�
2w3

1ð3 _ϕ2θðϕÞ − 2M2
plÞ

aw3
2

�
:

Using the in-in formula, one can obtain the three-point correlation function from the cubic action of the curvature
perturbations. The analytical expression is shown in Eq. (18), in which Bi

Rðk1; k2; k3Þ have the forms

B1
Rðk1; k2; k3Þ ¼ −4

Z
te

ti

dt a3 C1ðR�
k1
ðtÞ _R�

k2ðtÞ _R�
k3ðtÞ þ permÞ; ðA10Þ

B2
Rðk1; k2; k3Þ ¼ 4

Z
te

ti

dt a C2½ðk1 · k2 þ k1 · k3 þ k2 · k3ÞR�
k1
ðtÞR�

k2
ðtÞR�

k3
ðtÞ�; ðA11Þ

B3
Rðk1; k2; k3Þ ¼ −12

Z
te

ti

dt a3 C3 _R
�
k1ðtÞ _R�

k2ðtÞ _R�
k3ðtÞ; ðA12Þ

B4
Rðk1; k2; k3Þ ¼ −2

Z
te

ti

dt a3 C4Q
��

k1 · k2
k22

þ k1 · k3
k23

�
R�

k1
ðtÞ _R�

k2ðtÞ _R�
k3ðtÞ þ perm

�
; ðA13Þ

B5
Rðk1; k2; k3Þ ¼ −4

Z
te

ti

dt a3 C5 Q2

�
k21k2 · k3
k22k

2
3

R�
k1
ðtÞ _R�

k2ðtÞ _R�
k3ðtÞ þ perm

�
; ðA14Þ

B6
Rðk1; k2; k3Þ ¼ 4

Z
te

ti

dt a C6½k21R�
k1
ðtÞ _R�k2ðtÞ _R�k3ðtÞ þ perm�; ðA15Þ

B7
Rðk1; k2; k3Þ ¼ −4

Z
te

ti

dt C7=a½ðk21k2 · k3 þ k22k1 · k3 þ k23k1 · k2ÞR�
k1
ðtÞR�

k2
ðtÞR�

k3
ðtÞ�; ðA16Þ

B8
Rðk1; k2; k3Þ ¼ 2

Z
te

ti

dt C7=a½ðk22k2 · k3 þ k23k3 · k2 þ k21k1 · k2 þ k21k1 · k3þk22k2 · k1 þ k23k3 · k1ÞR�
k1
ðtÞR�

k2
ðtÞR�

k3
ðtÞ�;

ðA17Þ

B9
R ðk1; k2; k3Þ ¼ 2

Z
te

ti

dt a C8 Q
��

k21k2 · k3
k23

þ k22k1 · k3
k23

�
R�

k1
ðtÞR�

k2
ðtÞ _R�

k3ðtÞ þ perm

�
; ðA18Þ

B10
R ðk1; k2; k3Þ ¼ −2

Z
te

ti

dt a C8Q
��

k22k2 · k3
k23

þ k21k1 · k3
k23

�
R�

k1
ðtÞR�

k2
ðtÞ _R�

k3ðtÞ þ perm

�
: ðA19Þ
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