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To combine information from measurements of the redshift-space power spectrum from spectroscopic data
with angular weak lensing, galaxy clustering, and galaxy-galaxy lensing power spectra from photometric
surveys (i.e., the 3 × 2 point statistics), we must account for the covariance between the two probes. Currently
any covariance between the two types of measurements is neglected as existing photometric and spectroscopic
surveys largely probe different cosmological volumes. Thiswill cease to be the case as data arrive fromStage-IV
surveys. In this paper we derive an analytic expression for the covariance between photometric two-dimensional
angular power spectra and the three-dimensional redshift-space power spectrum for Gaussian fields under the
plane-parallel approximation. We find that the two probes are covariant on large radial scales, but because this
covariance only appears over a small fraction of the total Fourier space coverage of the two types of probes, we
forecast that it is safe to neglect this covariance when performing cosmological parameter inference.
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I. INTRODUCTION

Spectroscopic galaxy clustering measurements [1–8]
and the combination of photometric weak lensing, galaxy
clustering, and galaxy-galaxy lensing [9–13] have placed
some of the tightest cosmological constraints to date. These
probes are primary science targets for many of this decade’s
largest “Stage-IV” surveys including the following: Euclid1

[14,15], the Nancy Grace Roman Space Telescope2 [16],
the Dark Energy Spectroscopic Instrument (DESI)3 [17],
and the Vera Rubin Observatory’s Legacy Survey of Space
and Time (LSST)4 [18].
To extract information from spectroscopic measurements

of galaxy clustering in 3D at the two-point level, one
typically uses a statistic derived from the anisotropic power
spectrum, Pðkk; k⊥Þ.5 Here we distinguish between radial
and perpendicular modes, respectively, written kk and k⊥,
to account for anisotropy induced by redshift-space dis-
tortions [19] and the Alcock-Paczyński effect [20].

Meanwhile, to extract information from photometric
datasets we use projected tomographic angular power
spectra in two dimensions, fCij

LLðlÞ; Cij
GLðlÞ; Cij

GGðlÞg,6
where LL, GL, GG denote the cosmic shear, galaxy-galaxy
lensing,and photometric galaxy clustering signals, respec-
tively, while fi; jg label the tomographic redshift bins.
To place the tightest cosmological constraints from

these next generation experiments, it is imperative to
combine the cosmological information from all Stage-IV
experiments. Currently there is little sky overlap between
photometric and spectroscopic surveys and hence min-
imal covariance between the two probes. Therefore, it is
permissible to combine the photometric and spectro-
scopic parameter constraints by “multiplying the like-
lihoods” as in [12,13].
However, we can anticipate large overlaps between

Stage-IV photometric and spectroscopic surveys including
Euclid/DESI in the North, Euclid/DESI/LSST around the
equator, and Euclid/Roman/LSST in the South. Because
photometric and spectroscopic surveys will survey much
of the same cosmological volume out to z ≈ 2, we must
correctly account for the covariance between the two
measurements to avoid double counting modes.

*taylor.4264@osu.edu
1http://euclid-ec.org.
2https://www.nasa.gov/roman.
3https://www.desi.lbl.gov/.
4https://www.lsst.org/.
5The compressed Legendre multipoles Pi

lðkÞ and two-point
correlation function ξðs⊥; skÞ are common choices.

6In configuration space, one could alternatively use the projected
tomographic angular correlation functions fξij�ðθÞ; ξijt ðθÞ; ξijðθÞg.
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To combine the two measurements, one could attempt to
extract information from the spectroscopic dataset using
tomographic angular power spectra [21–24] by dividing the
spectroscopic survey window into narrow radial bins to
extract radial information and compute the resulting tomo-
graphic power spectra as suggested in [25]. However, as
shown in [26] this mixes independent radial modes, leading
to a large loss of information.
An alternative strategy in the angular power spectra case

is to apply a radially harmonic weighting [26] (or spherical-
Bessel weighting [27–29]). This approach implicitly
assumes a fiducial cosmology when constructing the radial
weight functions in much the same way that one must
choose a fiducial cosmology to measure Pðkk; k⊥Þ, and is
the reason the method is able to unmix the radial scales.
While promising, this approach has not yet been applied to
data and the spherical-Bessel approach is extremely com-
putationally expensive deep into the nonlinear regime.
Furthermore, much more infrastructure exists for measure-
ments of Pðkk; k⊥Þ or its derived statistics, e.g., the related
Legendre multipoles, Pi

lðkÞ.
Hence, we would like to use the anisotropic power

spectrum (or Legendre multipoles) to extract information
from the spectroscopic survey and angular power to extract
information from the photometric survey. This raises two
questions:

(i) What is the covariance between the three-dimensional
(3D) anisotropic power spectrum, Pðkk; k⊥Þ, and the
two-dimensional (2D) photometric angular power
spectra, fCij

LLðlÞ; Cij
GLðlÞ; Cij

GGðlÞg?
(ii) What impact does accounting for this covariance

have on the resulting cosmological parameter
constraints?

The objective of this paper is to answer these questions.
To do this, we start by deriving and computing an

analytic expression for the covariance between the aniso-
tropic power spectrum and the photometric power spectra
for Gaussian fields under the plane-parallel approximation
in Sec. II. Then in Sec. III, we perform a Fisher analysis to
compare parameter constraints found with and without the
inclusion of the covariance between the photometric and
spectroscopic measurements.
The main findings of this paper is that the covariance

between Pðkk; k⊥Þ and fCij
LLðlÞ; Cij

GLðlÞ; Cij
GGðlÞg is neg-

ligible and that it is safe to ignore this covariance during
parameter inference. The intuition behind this result is
discussed in Sec. III.

II. FORMALISM

In all that follows we take Ωm ¼ 0.315, Ωb ¼ 0.04,
h0 ¼ 0.67, ns ¼ 0.96, and σ8 ¼ 0.8 as the fiducial cosmol-
ogy. The matter power spectrum and cosmological distances
are computed using PyCAMB [30], and we assume the
HALOFIT model of [31] to generate the nonlinear power.

A. The anisotropic power spectrum

We decompose the redshift-space distortion (RSD)
spectrum into isotropic and anisotropic parts [21]

Pðkk; k⊥Þ ¼ Ã2
RSDðkk; k⊥ÞPðkÞ; ð1Þ

where PðkÞ is the matter power spectrum and Ã is the RSD
operator which accounts for galaxy bias and redshift-space
corrections. Here and throughout the remainder of the text,
the tilde will indicate quantities and operators in Fourier
space. As in [21], we decompose the operator

ÃRSDðkk; k⊥Þ ¼ bgð1þ βμ2ÞÃnlðkk; k⊥Þ; ð2Þ

where bgð1þ βμ2Þ is the Kaiser term [19] acting on linear
scales, μ ¼ kk=k, bg is the linear galaxy bias, β ¼ f=bg, and
Ãnl is the nonlinear redshift-space distortion operator. In this
paper we use a phenomenological Gaussian Fingers-of-God
(FoG) model to account for the nonlinear redshift-space
distortions in the spectroscopic model. In this model [32]

ÃGaussðkk; k⊥Þ ¼ exp

�
−
1

2
σ2vk2k

�
: ð3Þ

This phenomenological model is not accurate enough for
data analysis, but is sufficient for the forecasting work in
this paper.
Unless explicitly stated otherwise, we take the galaxy

bias of the photometric sample bGg ¼ 1.5, the galaxy bias
of the spectroscopic sample bsg ¼ 1.5, and σv ¼ 5 h−1Mpc
for the spectroscopic sample closely matching the value
chosen in [26] at z ¼ 0.675. For the photometric sample,
we ignore the impact of the FoG as the effective velocity
dispersion of the photometric redshift is significantly larger
rendering the photometric sample insensitive to the FoG.

B. Photometric angular power spectra
in the plane-parallel approximation

In this subsection we will closely follow the derivation
in [21] which assumes the plane-parallel approximation
so that we can relate spherical-harmonic modes, l, to
perpendicular scales, k⊥ following lþ 1=2 ¼ k⊥r0, where
r0 is the effective comoving distance to the field from Earth.
This approximation is valid at the percent level for l≳ 10
assuming the radial separation between sources is small
(see e.g., [21,22,33]).
We write the observed projected field, f, as an integral of

some underlying field, UfðxÞ, along the line-of-sight so that

fðx⊥Þ ¼
Z

rmax

0

drQfðrÞUfðxÞ; ð4Þ

where r is the comoving distance, rmax is the maximum
comoving distance in the survey, and x is the comoving
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coordinate so that r ¼ xk under the plane-parallel approxi-
mation. In Fourier space, it is convenient to write the
underlying field, ŨfðkÞ, as a product of a prefactor, Pf, and
the Fourier space matter density contrast, δðkÞ, so that

ŨfðkÞ ¼ PfδðkÞ; ð5Þ

where we take the prefactors, Pf, to be

Pf ¼

8>><
>>:

bGg ð1þ βμ2Þ; for f ¼ G;

bGs ÃGaussð1þ βμ2Þ; for f ¼ s;

1; for f ¼ L;

ð6Þ

and s, G, and L denote spectroscopic clustering, photo-
metric clustering, and lensing, respectively. Meanwhile the
kernel, QfðrÞ, is given by

QfðrÞ ¼
�
nGðrÞ; for f ¼ G;

qðrÞ; for f ¼ L;
ð7Þ

where nGðrÞ is the radial distribution function for a
tomographic galaxy clustering bin and qðrÞ is the lensing
efficiency kernel defined as

qðrÞ ¼ 3

2
Ωm

�
H0

c

�
2 r
a

Z
rmax

r
dr0nLðr0Þ

r − r0

r0
; ð8Þ

where H0 is the Hubble parameter, Ωm is the fractional
matter density parameter, c is the speed of light, a is the
scale factor, and nLðr0Þ is the probability distribution of the
effective number density of galaxies inside a tomographic
weak lensing bin.
Now Fourier transforming fðx⊥Þ, we write

f̃ðk⊥Þ ¼
Z

d2x⊥ fðx⊥Þe−ik⊥·x⊥ : ð9Þ

Substituting Eq. (4) into Eq. (9) and writing UfðxÞ as the
inverse Fourier transform of Ũfðk0Þ implies

f̃ðk⊥Þ¼
Z

d2x⊥
Z

dr

�Z
d3k0

ð2πÞ3 Ũ
fðk0Þeik0·x

�
QfðrÞe−ik⊥·x⊥ :

ð10Þ

Using the plane-parallel approximation, r ¼ xk, it follows
that

f̃ðk⊥Þ ¼
Z

∞

0

dkk
π

ŨfðkÞQ̃f�ðkkÞ; ð11Þ

where Q̃f�ðkkÞ is the conjugate of the Fourier transform of
QfðrÞ, that is,

Q̃fðkkÞ ¼
Z

rmax

0

drQfðrÞe−ikkr: ð12Þ

Now defining the perpendicular power spectrum,
Cf1f2ðk⊥; r0Þ, for projected fields f1 and f2 at comoving
distance, r0, as

hf1ðk⊥Þf2ðk0⊥Þi ¼ ð2πÞ2δðk⊥ − k0⊥ÞCf1f2ðk⊥; r0Þ; ð13Þ

it follows from Eq. (11) that the perpendicular power
spectrum is

Cf1f2ðk⊥; r0Þ ¼
1

π

Z
∞

0

dkk Q̃f1�ðkkÞQ̃f2ðkkÞPf1f2ðkk; k⊥Þ;

ð14Þ

where the anisotropic power spectrum between the under-
lying fields, Pf1f2ðkk; k⊥Þ, is given by

Pf1f2ðkk; k⊥Þ ¼ Pf1Pf2PðkÞ: ð15Þ

Then relating l to k⊥ following lþ 1=2 ¼ k⊥r0 implies
that the angular power spectrum, Cf1f2ðlÞ, is

Cf1f2ðlÞ ¼ 1

r20
C

�
k⊥ ¼ lþ 1=2

r0
; r0

�

¼ 1

πr20

Z
∞

0

dkk K̃f1f2ðkkÞPf1f2ðkk; k⊥Þ: ð16Þ

Here we have found it convenient to define the radial-mode
efficiency kernel as

K̃f1f2ðkkÞ ¼ Q̃f1�ðkkÞQ̃f2ðkkÞ: ð17Þ

Intuitively the radial mode efficiency kernel is a measure
of the angular power spectrum’s sensitivity to different
kk-modes. This will be important in later sections.

C. The Bernardeau-Nishimichi-Taruya basis

The lensing kernel, qðrÞ, is typically broad in r, but we
would expect the cross-covariance between weak lensing
and spectroscopic clustering to be larger if the lensing
kernels were narrower. Intuitively this is because narrower
kernels allow us to probe smaller radial scales. Thus to
maximize the effect of the cross-covariance, we apply the
Bernardeau-Nishimichi-Taruya (BNT) [34] transformation
to the lensing kernels. This change of basis maps the
original set of tomographic lensing kernels, fqðrÞg, to a
new set of kernels, fqBNTðrÞg, which are narrow in r. In
this new basis, the kernels become
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Qf
BNTðrÞ ¼

�
nGðrÞ; for f ¼ G;

qBNTðrÞ; for f ¼ L:
ð18Þ

The BNT basis is that natural basis to remove sensitivity to
poorly modeled baryonic physics and nonlinear structure
growth, and we refer the reader to [35–38] for more details
on the BNT transform and its applications.

D. Windows and radial efficiency kernels

Let us consider overlapping spectroscopic, photometric
galaxy clustering and weak lensing windows typical of
Stage-IV surveys. In this paper we shall assume the same
photometric survey window as in [35] which is given by

nðzÞ ¼ ðz=z̄Þ2 exp½−ðz=z̄Þ3=2�; ð19Þ

where z̄ ¼ 0.9. The galaxies in this window are then
equipartitioned into ten tomographic redshift bins before
being smoothed by a Gaussian kernel with variance
σz ¼ 0.05ð1þ zÞ. We calculate the lensing kernels and
apply the BNT transform to the resulting windows. In this
paper we take the second lowest redshift photometric
clustering tomographic bin and the third lowest redshift
BNT lensing window. This choice is made so that we probe
redshifts near the peak of the lensing kernel where we
expect the cross-covariance will be largest. Meanwhile
for the spectroscopic window, we take a top-hat function
of width Δz ¼ 0.1 centered around z ¼ 0.5. We take
r0 ¼ 1959 Mpc, corresponding to the comoving distance
at z ¼ 0.5 throughout the remainder of this work.
The resulting windows are shown in Fig. 1. The

spectroscopic window lies near the peak of both the
photometric galaxy clustering and lensing windows, so
that we may naïvely expect the anisotropic power spectrum

estimated from the spectroscopic sample to be strongly
covariant with the 3 × 2 point statistics estimated from the
photometric data.
Despite probing the same physical volume the spectro-

scopic probes and photometric probes are sensitive to very
different kk-scales. This can be seen in Fig. 2, where we
plot the radial-mode efficiency kernels, K̃f1f2ðkkÞ, defined
in Eq. (17) for different field combinations. In particular,
we notice that K̃f1f2ðkkÞ ≈ 0 for all kk ≳ 0.01 hMpc−1

which implies that the 3 × 2 point observables are only
sensitive to the largest radial scales. Intuitively this is
because the photometric redshift error “washes out” sensi-
tivity to small-scale radial modes.
More generally the photometric and spectroscopic

probes have little overlap in the full ðkk; k⊥Þ-space as
illustrated in Fig. 3. Typical RSD analyses are limited to
kk ≳ 0.01 (see e.g., [39,40]) while as shown in Fig. 2,
photometric two-point statistics are predominantly sensi-
tive to large radial scales. Meanwhile photometric analyses
typically extend much deeper into the high-k⊥ regime.
The small overlap of RSD and the 3 × 2 point statistics
in Fourier space qualitatively suggests that the cross-
covariance between the two types of probes will have a
small impact on parameter constraints.
We will quantify this statement in the following sections

and should expect this result for all photometric windows
that are broad in z. To see why, it is useful to consider a
top-hat window with comoving width Δr. In this case, the
radial-mode efficiency kernel is [26]

FIG. 1. The spectroscopic galaxy clustering, photometric gal-
axy clustering, and BNT-transformed weak lensing windows
considered in this work. These are labeled by the respective
field labels s, G, and L. Since the three fields probe the same
cosmological volume, we may expect the 3 × 2 point statistics
estimated from the photometric data to be covariant with the
anisotropic power spectrum estimated from the photometric data.

FIG. 2. Radial-mode efficiency kernels [see Eq. (17)] for all
three combinations of the photometric clustering and lensing
fields. For Pðkk; k⊥Þ, the largest radial mode (smallest kk)
considered in this work is indicated by the dashed line, and
scales probed by Pðkk; k⊥Þ are shaded in gray. For all fields,
K̃f1f2ðkkÞ ≈ 0 for all kk ≳ 0.01 which implies that the photo-
metric 3 × 2 point statistics are only sensitive to the largest
angular scales. These modes are sample-variance limited, and the
overwhelming majority of the information from spectroscopic
Pðkk; k⊥Þ is found at much smaller radial scales suggesting that
the covariance between photometric and spectroscopic two-point
statistics will have a small impact on parameter constraints.
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K̃f1f2ðkkÞ ¼ sinc2
�
kkΔr
2

�
; ð20Þ

where sincðxÞ ¼ sinðxÞ=x, so that the maximum kk-scale
probed by the window is inversely proportional to the width
of the bin, Δr (see Fig. 2 in [26]). This means that the
covariance may become important if the photometric tomo-
graphic bins are substantially narrower in Δr than the bins
considered here. We will consider this case in Sec. III C.

E. The 2D and 3D autocovariances for Gaussian fields
in the plane-parallel approximation

In this section we write the analytic expressions for
covariances of the photometric and spectroscopic two-point
statistics before deriving the cross-covariance between
photometric and spectroscopic estimators in the next section.
For Gaussian fields, the covariance of tomographic

angular power spectra is found using Wick’s theorem
(see e.g., the Appendix of [42]). It is given by

Cov½Cf1f2ðlÞ; Cf3f4ðl0Þ�

¼ δll0

ð2lþ 1ÞΔlfsky
ðCf1f3ðlÞCf2f4ðlÞ

þ Cf1f4ðlÞCf2f3ðlÞÞ; ð21Þ

where the angular power spectra include the shot-noise
contribution which is given by

Nf1f2ðlÞ ¼

8>><
>>:

1
NG ; for f1 ¼ f2 ¼ G;

σ2ϵ
NLM

ij
BNTδ

jkMki
BNT; for f1 ¼ f2 ¼ L;

0; otherwise;

ð22Þ

where MBNT is the BNT transformation matrix (see
e.g., [36] for more details) and we sum over repeated
indices, NG is the effective number of photometric cluster-
ing galaxies, NL is the effective number of galaxies in the
weak lensing sample, and we take the intrinsic ellipticity
dispersion, σϵ ¼ 0.3, throughout.
The covariance of the anisotropic power spectrum is also

found using Wick’s theorem. It is given by

Cov½Pssðkk; k⊥Þ; Pssðk0k; k0⊥Þ�

¼ 2

Nk

�
Pssðkk; k⊥Þ þ

1

Ns

�
2

δðk − k0Þ; ð23Þ

where Ns is the number of spectroscopic galaxies, Nk is the
number of modes in the survey volume given by

Nk ¼ 2k⊥Δk⊥Δkk
�

2π

V1=3
s

�
−3
; ð24Þ

where we have ignored the mode coupling from the survey
mask and the volume of the spectroscopic survey, Vs, is

Vs ¼ 4π

Z
rmax

0

dr r2nsðrÞ; ð25Þ

where the spectroscopic window, nsðrÞ, is normalized
against its maximum value.

F. The 2D and 3D cross-covariance for Gaussian
fields in the plane-parallel approximation

Now we find an expression for the cross-covariance
between the angular power spectra of fields, f1 and f2, and
the anisotropic power spectrum of the spectroscopic clus-
tering field, s. We define band powers in k⊥ and l such that
Δlþ 1=2 ¼ Δk⊥r0 so that photometric and spectroscopic
band powers probe the same perpendicular modes in the
plane-parallel approximation. Then using Eq. (16), which
relates angular power spectra to Pðkk; k⊥Þ, we can write the
cross-covariance as

Cov½Pssðkk; k⊥Þ; Cf1f2ðlÞ�

¼ δðk0⊥ − lþ1=2
r Þ

πr2

Z
∞

0

dk0k K̃
f1f2ðk0kÞ

× Cov½Pssðkk; k⊥Þ; Pf1f2ðk0k; k0⊥Þ�: ð26Þ

The problem of finding the covariance is thus reduced to
finding Cov½Pssðkk; k⊥Þ; Pf1f2ðk0k; k0⊥Þ�. This can be found
usingWick’s theorem, (see e.g., the Appendix of [42]) from
which it follows that7

FIG. 3. Fourier space sensitivity of the photometric (blue) and
spectroscopic (red) two-point statics (see also Fig. 5 in [41])
centered about the origin. Qualitatively the covariance of the two
types of probes is only nonzero in the overlapping region of
ðk⊥; kkÞ-space. This region represents only a small fraction of the
total Fourier space coverage of the two probes so that one would
expect the cross-covariance to have a small impact on parameter
constraints. This is quantified in the remaining sections.

7It is useful to notice the similarity with Eq. (23). It is also to
note the similarity with which the field indices are paired as in
Eq. (21), which is a consequence of Wick’s theorem.
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Cov½Pssðkk; k⊥Þ; Pf1f2ðk0k; k0⊥Þ�

¼ 2

Nsf1f2
k

Psf1ðkk; k⊥ÞPsf2ðkk; k⊥Þδðk − k0Þ; ð27Þ

where Nsf1f2
k is the number of modes probed by both the

photometric fields, ff1; f2g, and the spectroscopic field, s.
For convenience we write Nsf1f2

k in terms of the number of
modes in the spectroscopic window, so that

Nsf1f2
k ¼ Vsf1f2

Vs
Nk; ð28Þ

where Vs is the volume of the spectroscopic window given
in Eq. (25) and Vsf1f2 is the volume probed by all three
fields and is given by

Vsf1f2 ¼ 4π

Z
dr r2minrfQsðrÞ; Qf1ðrÞ; Qf2ðrÞg: ð29Þ

In the above expression, the windowsQiðrÞ, are normalized
against their maximum values. Then from Eqs. (26)
and (27) we find that the cross-covariance is

Cov½Pssðkk;k⊥Þ;Cf1f2ðlÞ�

¼
δðk⊥−lþ1=2

r0
Þ

πr20

Δkk
Nsf1f2

k

K̃f1f2ðkkÞPsf1ðkk;k⊥Þ;Psf2ðkk;k⊥Þ:

ð30Þ

This is the key analytic result of this paper.8 The Δkk
appears in the above expression because in practice the
integral in Eq. (26) is replaced with a sum when evaluating
the power spectrum on a finite grid in radial band
powers, Δkk.
It is important to notice that cross-covariance is propor-

tional to the radial-mode efficiency kernel K̃f1f2ðkkÞ. We
have already seen that K̃f1f2ðkkÞ ≈ 0 for kk ≳ 0.01 hMpc−1

(see Fig. 2) so that we should only expect the 3 × 2 point
statistics to be covariant with Pðkk; k⊥Þ on the largest radial
scales (small kk).
The top panel of Fig. 4 shows the correlation matrix

between the photometric angular power spectra and the
anisotropic power spectrum on a 10 × 10 log-spaced
square grid in ðkk; k⊥Þ-space so that k ∈ ½0.01 hMpc−1;
0.2 hMpc−1�; i.e., both kk and k⊥ lie in the range
½0.007 hMpc−1; 0.14 hMpc−1�. We match the band
powers of the photometric observable to probe the same
scales in k⊥ so that l ∈ ½9; 185�. We use these as our
fiducial scale cuts for the remainder of this work. It should

be noted that inside this range of scales assuming a
Gaussian field to compute the covariance should be an
accurate approximation (see e.g., [43] for the photometric
case and [44] for the spectroscopic case).
Further we have assumed 108 galaxies per tomographic

bin in the photometric case, 106 galaxies in the spectro-
scopic window,9 and fsky ¼ 0.3 in line with forecasts for
Stage-IV surveys. We have summarized our survey setup
in Table 1.
In Fig. 4, the matrix is arranged so that kk and k⊥ (and

hence l) increase in blocks from left to right and from top
to bottom, while k⊥ increases in blocks of fixed kk. The
matrix is nearly diagonal as expected due to the statistical
independence of different k (and l) modes in the absence of
a mask. The bottom panel shows a close-up of the cross-
correlation between the spectroscopic and photometric
two-point statistics. We have validated that the covariance
is semipositive definite by confirming that the eigenvalues

FIG. 4. Top: The correlation matrix of fCðlÞg and Pðkk; k⊥Þ.
Pðkk; k⊥Þ is binned on a 10 × 10 log-spaced square grid in
ðkk; k⊥Þ-space so that k ∈ ½0.01 hMpc−1; 0.1 hMpc−1�. The grid
in ðkk; k⊥Þ is then flattened into the spectroscopic part of the data
vector and the correlation matrix is arranged so that kk, k⊥, and l
increase in blocks from left to right and from top to bottom, while
k⊥ increases in blocks of fixed kk. Bottom: A close-up version of
the top panel showing only the cross-correlation between photo-
metric and spectroscopic probes. As expected the covariance is
virtually nonexistent on all but the largest kk-scales which is only
a small fraction of the total Fourier space coverage of the two
probes (see Fig. 3).

8We have carefully accounted for the symmetry of Pðkk; k⊥Þ
about kk ¼ 0 which introduces a factor of 1=2.

9To avoid double counting galaxies, we further assume that no
galaxies are in both the photometric and the spectroscopic
samples.
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are positive. Several eigenvalues are negative due to
numerical noise, but these are all at least 20 orders of
magnitude smaller than the largest eigenvalue.
As expected the covariance is virtually nonexistent on

all but the largest kk-scales where the correlation matrix
elements are as large as ∼0.45. We do not expect this to
have a large impact because this represents a small fraction
of the total Fourier space coverage of the two types of
probes (see Fig. 3). To quantify the impact of neglecting the
cross-covariance, we perform a Fisher analysis described in
the next section.

III. FISHER ANALYSIS

A. Fisher formalism

Given a set of model parameters, fθαg, if we assume the
data vector follows a Gaussian likelihood and that it is
linear in the model parameters, then a good estimate of the
marginal error on θα is

σðθαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þαα

q
; ð31Þ

where F is the Fisher matrix which is given by

Fαβ ¼ T;αC−1TT
;β: ð32Þ

Here, α denotes the partial derivative of the theory vector
with respect to parameter θα.
In this analysis we take

T ¼ ðPssðkk; k⊥Þ; CLLðlÞ; CGLðlÞ; CGGðlÞÞ; ð33Þ

and the covariance, C, to be

C ¼
�

Cov½Pss; Pss� Cov½Pss; Cf1f2 �
Cov½Pss; Cf1f2 � Cov½Cf1f2 ; Cf3f4 �

�
; ð34Þ

where the expressions for the submatrices (e.g.,
Cov½Pss; Cf1f2 �) can be found in the preceding section.

If we neglect the covariance between the photometric and
spectroscopic probes, the covariance matrix becomes

C� ¼
�
Cov½Pss; Pss� 0

0 Cov½Cf1f2 ; Cf3f4 �

�
: ð35Þ

We now ask whether it is a valid approximation to
set C ¼ C�.

B. Fiducial Fisher analysis results

Taking our fiducial analysis setup summarized in
Table 1, we perform two Fisher analyses constraining
the parameters ðf; σ8; bGg ; bsg; σvÞ. In the first analysis we
account for the full covariance between the photometric
and spectroscopic parts of the data vector, while in the
second we take C ¼ C�.
The resulting parameter forecasts are shown in Fig. 5.

The red contours include the contributions from the cross-
covariance between the photometric and spectroscopic
probes, while the blue contours do not. We find that
excluding the cross-covariance results in a less than 1%
change in the measurement error for all parameters. Again
this is because even though there is covariance on the
largest radial scales (see Fig. 4), this represents a small
fraction of the total Fourier space coverage of the two
probes. In other words, the magnitude of the covariance
matrix for low-kk is large.
In the following subsections, we consider two cases

where cross-covariance could be relevant.

C. Impact of scale cuts and photometric uncertainty

In the fiducial example, the covariance of the photo-
metric and spectroscopic two-point observables is negli-
gible because the two probes are sensitive to different
kk-scales (see Fig. 2). But there are three circumstances in
which this covariance may become important.
The first instance is the case where we choose to impose

more conservative k-cuts on the anisotropic power spec-
trum, Pðkk; k⊥Þ. We may wish to do this when testing a
theory of modified gravity where the power spectrum is not

TABLE I. Analysis setup used for the fiducial Fisher analysis. In Sec. III C we modify this fiducial setup to
explore situations where one might expect the cross-covariance to have a larger impact.

Parameter Value

Fraction of sky covered (fsky) 0.3
Number of lens source galaxies ðNLÞ 108

Number of photometric clustering galaxies ðNGÞ 108

Number of spectroscopic clustering galaxies ðNsÞ 106

σϵ 0.3
Survey windows See Fig. 1
Redshift uncertainty ðσzÞ 0.05ð1þ zÞ
Spectroscopic scale cuts ðhMpc−1Þ kk=⊥ ∈ ½0.007; 0.14� ⇒ ðkmin; kmaxÞ ¼ ð0.01; 0.2Þ
Photometric scale cuts l ∈ ½9; 185�
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known deep into the nonlinear regime. After imposing
more conservative cuts, the covariant scales provide a larger
percentage of the signal and hence any covariance on these
scales may be relevant. We test whether this is the case by
repeating the Fisher analysis of the prior section, this time
choosing the conservative scale cuts k ∈ ½0.01 hMpc−1;
0.05 hMpc−1�. Again we find that neglecting the cross-
covariance results in a less than 1% change on the
forecasted parameter measurement errors.
The second instance is the case where we probe k⊥ deeper

into the nonlinear regime than kk. This is a realistic scenario
as nonlinear redshift-space distortion modeling uncertainty
means we must take a more conservative radial scale cut
compared to the perpendicular direction. To determine
whether the cross-covariance is relevant in this scenario we
repeat our fiducial Fisher analysis, but this timewe extend the
rangeof perpendicular scales to include k⊥∈ ½0.007 hMpc−1;
0.5 hMpc−1�, so that l ∈ ½9; 656�. As before, we keep
kk ∈ ½0.007 hMpc−1; 0.14 hMpc−1�. We find that neglect-
ing the cross-covariance still results in a less than 1% change
in the measurement error of all parameters.

Finally, the cross-covariance may become more impor-
tant if the photometric tomographic bins in an analysis are
narrower than those in our fiducial analysis. This is because
the maximum kk-scale probed by the angular power spectra
are to a good approximation inversely proportional to
the width of the photometric tomographic bin, Δr (see
Sec. II D). To test whether this is the case, we repeat the
fiducial analysis, choosing the same photometric survey
window as in Eq. (19) but this time we divide the survey
window into 20 tomographic bins in the range z ∈ ½0.; 2.5�
and set the smoothing parameter σz ¼ 0, i.e., an extreme
example where there is no photometric redshift uncertainty.
The bin width of the resulting tomographic windows is
Δz ¼ 0.125. Repeating the fiducial analysis with these
windows, we find that neglecting the cross-covariance still
results in a less than 4% change in the forecasted errors of
all parameters.

IV. CONCLUSION

Stage-IV photometric and spectroscopic surveys will
probe the same underlying cosmological volume. Hence in

FIG. 5. The 68% and 95% confidence regions for the fiducial Fisher analysis (see Sec. III B). Blue contours are generated using the full
cross-covariance between spectroscopic and photometric probes while the red contours are generated after setting the cross-covariance
to zero. The two forecasts are in almost exact agreement, indicating that the cross-covariance has a negligible effect on parameter
constraints.
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the future, we may need to account for the cross-covariance
between the two probes when performing cosmological
parameter inference. In light of this, we have derived an
expression for the covariance between the 3 × 2 point
photometric angular power spectra and the spectroscopic
anisotropic power spectrum under the plane-parallel
approximation in the Gaussian field limit.
Assuming a Gaussian fingers-of-God model, we have

found that the two signals are covariant on large radial
scales with correlation matrix elements as large as ∼0.45.
However, this represents a small fraction of the total Fourier
space coverage of the two probes. By performing two
Fisher analyses, we have found that the impact of the cross-
covariance is indeed negligible and results in a less than 1%
change in the measurement error of cosmological param-
eters. We have also confirmed that this result is robust to the
choice of scale cut and substantially narrower tomographic
bins than anticipated for Stage-IV surveys.
Our results extend to different choices of estimators. We

have applied the BNT transformation to the lensing kernels,
but the standard lensing kernels are even broader and hence
even less sensitive to small kk-scales. It follows that
neglecting the cross-covariance in the standard analysis
has an even smaller impact on parameter constraints. We do
not consider other derived estimators such as the tomo-
graphic angular correlation function, ξijðθÞ, in the photo-
metric case and Legendre multipoles in the spectroscopic

case. However, we expect these estimators to be sensitive
to the same kk-scales as the underlying anisotropic power
spectrum, or angular power spectra. Therefore, we can
neglect the covariance between any combination of photo-
metric and spectroscopic two-point statistics.
We stress that the results presented in this work are

limited to the parameters that affect large scale structure
growth in the late universe and may not apply to measure-
ments of the nonlocal primordial non-Gaussianity param-
eter, fNL, which is sensitive to the largest scales (see
e.g., [45]). We have also not tested the impact of the cross-
covariance when extracting information from the BAO
feature. These extensions are left to a future work.

ACKNOWLEDGMENTS

The authors thank Alkistis Pourtsidou and Eric Huff for
useful discussions, Anurag Deshpande for providing the
plotting routine used to generate the Fisher contours, and the
anonymous referee whose comments improved the paper.
P. L. T. acknowledges support for this work from a NASA
Postdoctoral Program Fellowship. K.M. was supported in
part by NASA ROSES 21-ATP21-0050. Part of this research
was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National
Aeronautics and Space Administration.We acknowledge use
of the open source software [46–48].

[1] B. A. Reid et al., Mon. Not. R. Astron. Soc. 426, 2719
(2012).

[2] E. Macaulay, I. K. Wehus, and H. K. Eriksen, Phys. Rev.
Lett. 111, 161301 (2013).

[3] F. Beutler et al. (BOSS Collaboration), Mon. Not. R.
Astron. Soc. 443, 1065 (2014).

[4] H. Gil-Marín et al., Mon. Not. R. Astron. Soc. 460, 4188
(2016).

[5] F. Simpson, C. Blake, J. A. Peacock, I. Baldry, J. Bland-
Hawthorn, A. Heavens, C. Heymans, J. Loveday, and P.
Norberg, Phys. Rev. D 93, 023525 (2016).

[6] C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S.
Croom, T. Davis, M. J. Drinkwater, K. Forster, D. Gilbank
et al., Mon. Not. R. Astron. Soc. 415, 2876 (2011).

[7] S. Alam et al. (eBOSS Collaboration), Phys. Rev. D 103,
083533 (2021).

[8] L. Guzzo et al., Nature (London) 451, 541 (2008).
[9] M. Asgari et al. (KiDS Collaboration), Astron. Astrophys.

645, A104 (2021).
[10] C. Hikage et al. (HSC Collaboration), Publ. Astron. Soc.

Jpn. 71, 43 (2019).
[11] M. A. Troxel et al. (DES Collaboration), Phys. Rev. D 98,

043528 (2018).

[12] T. M. C. Abbott et al. (DES Collaboration), Phys. Rev. D
105, 023520 (2022).

[13] C. Heymans et al., Astron. Astrophys. 646, A140 (2021).
[14] A. Blanchard et al. (Euclid Collaboration), Astron. As-

trophys. 642, A191 (2020).
[15] R. Laureijs et al. (EUCLID Collaboration), arXiv:1110

.3193.
[16] D. Spergel, N. Gehrels, C. Baltay, D. Bennett, J.

Breckinridge, M. Donahue, A. Dressler, B. Gaudi, T.
Greene, O. Guyon et al., arXiv:1503.03757.

[17] A. Aghamousa et al. (DESI Collaboration), arXiv:1611
.00036.

[18] R. Mandelbaum et al. (LSST Dark Energy Science Col-
laboration), arXiv:1809.01669.

[19] N. Kaiser, Mon. Not. R. Astron. Soc. 227, 1 (1987).
[20] C. Alcock and B. Paczyński, Nature (London) 281, 358

(1979).
[21] H. S. Grasshorn Gebhardt and D. Jeong, Phys. Rev. D 102,

083521 (2020).
[22] M. Jalilvand, B. Ghosh, E. Majerotto, B. Bose, R. Durrer,

and M. Kunz, Phys. Rev. D 101, 043530 (2020).
[23] S. Joudaki et al., Mon. Not. R. Astron. Soc. 474, 4894

(2018).

COVARIANCE OF PHOTOMETRIC AND SPECTROSCOPIC TWO- … PHYS. REV. D 106, 063536 (2022)

063536-9

https://doi.org/10.1111/j.1365-2966.2012.21779.x
https://doi.org/10.1111/j.1365-2966.2012.21779.x
https://doi.org/10.1103/PhysRevLett.111.161301
https://doi.org/10.1103/PhysRevLett.111.161301
https://doi.org/10.1093/mnras/stu1051
https://doi.org/10.1093/mnras/stu1051
https://doi.org/10.1093/mnras/stw1096
https://doi.org/10.1093/mnras/stw1096
https://doi.org/10.1103/PhysRevD.93.023525
https://doi.org/10.1111/j.1365-2966.2011.18903.x
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1038/nature06555
https://doi.org/10.1051/0004-6361/202039070
https://doi.org/10.1051/0004-6361/202039070
https://doi.org/10.1093/pasj/psz010
https://doi.org/10.1093/pasj/psz010
https://doi.org/10.1103/PhysRevD.98.043528
https://doi.org/10.1103/PhysRevD.98.043528
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1051/0004-6361/202039063
https://doi.org/10.1051/0004-6361/202038071
https://doi.org/10.1051/0004-6361/202038071
https://arXiv.org/abs/1110.3193
https://arXiv.org/abs/1110.3193
https://arXiv.org/abs/1503.03757
https://arXiv.org/abs/1611.00036
https://arXiv.org/abs/1611.00036
https://arXiv.org/abs/1809.01669
https://doi.org/10.1093/mnras/227.1.1
https://doi.org/10.1038/281358a0
https://doi.org/10.1038/281358a0
https://doi.org/10.1103/PhysRevD.102.083521
https://doi.org/10.1103/PhysRevD.102.083521
https://doi.org/10.1103/PhysRevD.101.043530
https://doi.org/10.1093/mnras/stx2820
https://doi.org/10.1093/mnras/stx2820


[24] A. Loureiro et al., Mon. Not. R. Astron. Soc. 485, 326
(2019).

[25] S. Camera, J. Fonseca, R. Maartens, and M. G. Santos, Mon.
Not. R. Astron. Soc. 481, 1251 (2018).

[26] P. L. Taylor, K. Markovič, A. Pourtsidou, and E. Huff,
Phys. Rev. D 105, 084007 (2022).

[27] H. S. G. Gebhardt and O. Doré, Phys. Rev. D 104, 123548
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