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Primordial black holes (PBHs) provide an exciting prospect for accounting for dark matter. In this paper,
we consider inflationary models that incorporate realistic features from high-energy physics—including
multiple interacting scalar fields and nonminimal couplings to the spacetime Ricci scalar—that could
produce PBHs with masses in the range required to address the present-day dark matter abundance. Such
models are consistent with supersymmetric constructions, and only incorporate operators in the effective
action that would be expected from generic effective field theory considerations. The models feature
potentials with smooth large-field plateaus together with small-field features that can induce a brief phase
of ultraslow-roll evolution. Inflationary dynamics within this family of models yield predictions for
observables in close agreement with recent measurements, such as the spectral index of primordial
curvature perturbations and the ratio of power spectra for tensor to scalar perturbations. As in previous
studies of PBH formation resulting from a period of ultraslow-roll inflation, we find that at least one
dimensionless parameter must be highly fine-tuned to produce PBHs in the relevant mass range for dark
matter. Nonetheless, we find that the models described here yield accurate predictions for a significant
number of observable quantities using a smaller number of relevant free parameters.
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I. INTRODUCTION

Primordial black holes (PBHs) were first postulated
more than half a century ago [1–3], and they remain a
fascinating theoretical curiosity. In recent years, many
researchers have realized that PBHs provide an exciting
prospect for accounting for dark matter. Rather than
requiring some as-yet unknown elementary particles
beyond the Standard Model, dark matter might consist
of a large population of PBHs that formed very early in
cosmic history. See Refs. [4–6] for recent reviews.
Much activity has focused on mechanisms by which

PBHs could form from density perturbations that were
generated during early universe inflation. When overden-
sities with magnitude above some critical threshold reenter
the Hubble radius after the end of inflation, they induce
gravitational collapse into black holes. Many studies have
focused on specific inflationary models that can yield
appropriate perturbations; PBH formation following hybrid
inflation has garnered particular attention [7–12]. Others
have found clever ways to engineer desired features of a

given model so as to generate PBHs, by inserting specific
features into the potential and/or noncanonical kinetic terms
for the field(s) driving inflation. See, e.g., Refs. [13–38].
In this work we explore possibilities for the production

of PBHs within well-motivated models of inflation that
feature realistic ingredients from high-energy theory. In
particular, we consider models with several interacting
scalar fields, each of which includes a nonminimal cou-
pling to the spacetime Ricci scalar. This family of models
includes—but is more general than—well-known models
such as Higgs inflation [39] and α-attractor models
[40–42]. For example, the Higgs sector of the Standard
Model includes four scalar degrees of freedom, all of which
remain in the spectrum at high energies within renormaliz-
able gauges [43,44]. Moreover, every candidate for beyond
Standard Model physics includes even more scalar degrees
of freedom at high energies [45,46]. Likewise, nonminimal
couplings in the action of the form ξϕ2R, where ϕ is a
scalar field, R is the spacetime Ricci scalar, and ξ a
dimensionless constant, are required for renormalization
and, more generally, are induced by quantum corrections at
one-loop order even if the couplings ξ vanish at tree level
[47–56]. The couplings ξ generically increase with energy
scale under renormalization-group flow with no UV fixed
point [51,52], and hence they can be large (jξj ≫ 1) at the
energy scales relevant for inflation. Finally, although the
models we study need not make recourse to supersymmetry
(SUSY) or supergravity, we find they can be realized in
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simple supergravity setups, including in models that
simultaneously realize the observed cosmological constant.
Inflationary dynamics in the family of models we

consider generically yield predictions for observable quan-
tities, such as the spectral index of primordial curvature
perturbations and the ratio of power spectra for tensor and
scalar perturbations, in close agreement with recent mea-
surements [57–59]. Such models also generically yield
efficient postinflation reheating, typically producing a
radiation-dominated equation of state and a thermal spec-
trum of decay products within Nreh ∼Oð1Þ e-folds after the
end of inflation [60–76]. Hence such models represent an
important class in which to consider PBH production.
We find that such models provide a natural framework

within which PBHs could form. As in previous studies that
focused on the formation of PBHs from a phase of ultraslow-
roll inflation [13–24,28–30], we also find that to produce
perturbation spectra relevant for realistic PBH scenarios, at
least one dimensionless parametermust be highly fine-tuned.
Nonetheless, we find that such models can yield accurate
predictions for a significant number of observable quantities
using a smaller number of relevant free parameters. In this
paper we focus on the general mechanisms by which such
models can produce PBHs, and defer to later work a more
thorough analysis of the full parameter space.
In Sec. II we introduce the family of multifield models

on which we focus and identify generic features of their
dynamics. Section III considers the formation of PBHs
after the end of inflation, including how the production of
PBHs is affected by changes to various model parameters.
Concluding remarks follow in Sec. IV. In Appendix A, we
review important features of gauge-invariant perturbations in
multifieldmodels, while inAppendixBwe demonstrate how
this family of models can be realized within a supergravity
framework.AppendixC includes additional details about our
analytic solution for the fields’ trajectory through field space
during inflation. Throughout this paper we adopt “natural
units” (c ¼ ℏ ¼ kB ¼ 1) and work in terms of the reduced
Planck mass, Mpl ≡ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.43 × 1018 GeV.

II. MULTIFIELD MODEL AND DYNAMICS

A. Multifield formalism

We begin with a brief review of multifield dynamics for
background quantities and linearized fluctuations, follow-
ing the notation of Ref. [57]. See also Appendix A,
Refs. [77–80], and Ref. [81] for a review of gauge-invariant
perturbations in multifield models. We consider models
with N scalar fields ϕIðxμÞ with I ¼ 1; 2;…;N , and work
in (3þ 1)-spacetime dimensions. In the Jordan frame, the
action may be written

S̃ ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
fðϕIÞR̃ −

1

2
δIJg̃μν∂μϕI

∂νϕ
J − ṼðϕIÞ

�
;

ð1Þ

where fðϕIÞ denotes the fields’ nonminimal couplings
and tildes indicate quantities in the Jordan frame. After
performing a conformal transformation by rescaling
g̃μνðxÞ → gμνðxÞ ¼ Ω2ðxÞg̃μνðxÞ with conformal factor

Ω2ðxÞ ¼ 2

M2
pl

fðϕIðxÞÞ; ð2Þ

we may write the action in the Einstein frame as [82]

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R−

1

2
GIJgμν∂μϕI

∂νϕ
J −VðϕIÞ

�
; ð3Þ

where the potential in the Einstein frame is stretched by the
conformal factor,

VðϕIÞ ¼ M4
pl

4f2ðϕIÞ Ṽðϕ
IÞ: ð4Þ

The nonminimal couplings induce a curved field-space
manifold in the Einstein frame with associated field-space
metric

GIJðϕKÞ ¼ M2
pl

2fðϕKÞ
�
δIJ þ

3

fðϕKÞ f;If;J
�
; ð5Þ

where f;I ≡ ∂f=∂ϕI. For N ≥ 2 fields with nonminimal
couplings, one cannot canonically normalize all of the
fields while retaining the Einstein-Hilbert form of the
gravitational part of the action [82].
We consider perturbations around a spatially flat

Friedmann-Lemaître-Robertson-Walker (FLRW) line
element, as discussed further in Appendix A, and separate
each scalar field into a spatially homogeneous vacuum
expectation value and spatially varying fluctuations,

ϕIðxμÞ ¼ φIðtÞ þ δϕIðxμÞ: ð6Þ

The equation of motion for the spatially homogeneous
background fields then takes the form

Dt _φ
I þ 3H _φI þ GIKV;K ¼ 0; ð7Þ

where H ≡ _a=a and DtAI ¼ _φJDJAI for any field-space
vector AI, and where the covariant derivative DJ employs
the usual Levi-Civita connection associated with the metric
GIJ. Since we consider only linearized fluctuations in this
paper, we may set GIJðϕKÞ → GIJðφKÞ, so that components
of the field-space metric depend only on time. The
magnitude of the background fields’ velocity vector is
given by

j _φIj≡ _σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GIJ _φ

I _φJ
q

; ð8Þ
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in terms of which we may write the unit vector

σ̂I ≡ _φI

_σ
ð9Þ

which points along the background fields’ direction of
motion in field space. The quantity

ŝIJ ≡ GIJ − σ̂I σ̂J ð10Þ

projects onto the subspace of the field-space manifold
perpendicular to the background fields’ motion.
In terms of _σ, the equations of motion for background

quantities may be written [57]

σ̈ þ 3H _σ þ V;σ ¼ 0;

H2 ¼ 1

3M2
pl

�
1

2
_σ2 þ V

�
;

_H ¼ −
1

2M2
pl

_σ2; ð11Þ

where

V;σ ≡ σ̂IV;I: ð12Þ

The covariant turn-rate vector is defined as [57]

ωI ≡Dtσ̂
I ¼ −

1

_σ
V;KŝIK; ð13Þ

where the last expression follows upon using Eqs. (7), (10),
and (11). The usual slow-roll parameter takes the form

ϵ≡ −
_H
H2

¼ 1

2M2
pl

_σ2

H2
; ð14Þ

where the last expression follows upon using Eq. (11).
We define the end of inflation tend via ϵðtendÞ ¼ 1, which
corresponds to äðtendÞ ¼ 0, the end of accelerated
expansion.
In addition to ϵ, we consider a second slow-roll

parameter

η≡ 2ϵ −
_ϵ

2Hϵ
: ð15Þ

Using Eqs. (11) and (14) we see that, in general,

_ϵ

2Hϵ
¼ σ̈

H _σ
þ ϵ: ð16Þ

During ordinary slow-roll evolution jσ̈j ≪ j3H _σj, and the
top line of Eq. (11) becomes 3H _σ ≃ −V;σ . Under those
conditions η ∼ ϵ < 1. However, during so-called ultraslow-
roll, the potential becomes nearly flat, V;σ ≃ 0, and hence

the equation of motion for the background fields becomes
σ̈ ≃ −3H _σ. In that case, ϵ becomes exponentially smaller
than 1 and

η → 3 ðultraslow�rollÞ: ð17Þ

Equation (15) then yields _ϵþ 6Hϵ ≃ 0. GivenH ≃ constant
during ultraslow-roll evolution (consistent with ϵ ≪ 1),
the kinetic energy density of the background fields
ρkin ¼ _σ2=2 ¼ M2

plH
2ϵ rapidly redshifts as ρkinðtÞ ∼

a−6ðtÞ [16,20,22–24,28–30,83–89].
The gauge-invariant Mukhanov-Sasaki variables QI are

constructed as linear combinations of metric perturbations
and the field fluctuations, as in Eq. (A2). We may project
the perturbations QI into adiabatic (Qσ) and isocurvature
(δsI) components [57,90–92],

QI ¼ σ̂IQσ þ δsI; ð18Þ

where

Qσ ≡ σ̂JQJ; δsI ≡ ŝIJQJ: ð19Þ

For two-field models, as we consider below, the isocurva-
ture perturbations are characterized by a field-space scalar
Qs defined via [93]

δsJ ¼ ϵIJσ̂IQs; ð20Þ

where ϵIJ ≡ ½detðGIJÞ�−1=2ϵ̄IJ and ϵ̄IJ is the usual antisym-
metric Levi-Civita symbol. The equations of motion for
Fourier modes of comoving k, Qσðk; tÞ and Qsðk; tÞ, are
given in Eqs. (A3) and (A4), from which it is clear that the
adiabatic and isocurvature perturbations decouple for non-
turning trajectories, for which jωIj ¼ 0. In addition, the
amplitude of isocurvature perturbations will be suppressed
asQsðk; tÞ ∼ a−3=2ðtÞ while μ2s=H2 ≫ 1, where the mass of
the isocurvature perturbations, μ2s , is given in Eq. (A7).
Hence if ω2 ≪ H2 or μ2s=H2 ≫ 1, or both, there will be
negligible transfer of power from the isocurvature to the
adiabatic modes [56–59,78–81,90–93].
The adiabatic perturbation is proportional to the gauge-

invariant curvature perturbation [57]

R ¼ H
_σ
Qσ ¼

Qσ

Mpl

ffiffiffiffiffi
2ϵ

p ; ð21Þ

where the last equality follows from Eq. (14). To avoid
confusion, we adopt the convention of Ref. [34] and denote
the curvature perturbation as R and the Ricci scalar of
the field-space manifold as Rfs. The dimensionless power
spectrum for the curvature perturbations is defined as usual,
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PRðkÞ≡ k3

2π2
jRkj2: ð22Þ

Given the form of Eqs. (21) and (22), there are at least two
distinct mechanisms by which inflationary dynamics could
yield a large spike in PRðkÞ at relevant scales k, which
could produce PBHs after inflation: either by amplifying
Qσðk; tÞ or by reducing ϵðtÞ. The former could occur by
some feature of the dynamics such as a brief tachyonic
phase for certain modes k, akin to what occurs in hybrid
inflation models at the waterfall transition [7–12], or by a
transfer of power from isocurvature to adiabatic modes
during a fast turn in field space [32,34,35,93–95]. The other
typical mechanism—by which the slow-roll parameter ϵ
falls by several orders of magnitude, 0 ≤ ϵ ≪ 1—occurs
during ultraslow-roll evolution [13–24,30], which can
occur even if there is no turning of the fields’ trajectory
in field-space. A related but distinct mechanism involves
particle production as the inflaton crosses a steplike feature
in the potential, followed by ultraslow-roll evolution to
amplify the perturbations associated with the produced
particles [28,29].
The models on which we focus here generically include

periods of ultraslow-roll evolution near the end of infla-
tion. In order for such an ultraslow-roll phase to produce a
large spike in PRðkÞ, quantum fluctuations of the fields
must not whisk the system past the region of the potential
in which V;σ ≃ 0 too quickly, or else inflation will end
before significant amplification of PRðkÞ can occur
[16–24,28–30,87,89]. Backreaction from quantum fluc-
tuations yields a variance of the kinetic energy density for
the system [29]

hðΔKÞ2i ≃ 3H4

4π2
ρkin; ð23Þ

where ρkin ¼ _σ2=2 is the background fields’ unperturbed
kinetic energy density. Classical evolution will dominate
quantum diffusion during ultraslow-roll evolution if
ρkin >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔKÞ2i

p
. Upon using Eq. (14), this criterion

becomes

ϵusr >
3

4π2

�
H
Mpl

�
2

: ð24Þ

Comparing with Eq. (A9), we see that Eq. (24) is
equivalent to PRðkÞ < 1=6 [29]. Within the regions of
parameter space that we consider in Secs. II D and III B,
the criterion of Eq. (24) is always satisfied, such that
during ultraslow-roll, classical evolution of the back-
ground fields continues to dominate over quantum dif-
fusion, allowing for a robust amplification of curvature
perturbations.
In the absence of a transfer of power from isocurvature to

adiabatic perturbations, predictions for observables relevant
to the cosmicmicrowave background radiation (CMB) revert

to the familiar and effectively single-field forms [57,58].
Explicit expressions for the spectral index nsðk�Þ, the
running of the spectral index αðk�Þ≡ ðdnsðkÞ=d ln kÞjk� ,
and the tensor-to-scalar ratio rðk�Þ may be found in
Eqs. (A10)–(A12); here k� ¼ 0.05 Mpc−1 is the comoving
CMB pivot scale. Likewise, inherently multifield features,
such as the fraction of primordial isocurvature perturba-
tions βisoðk�; tendÞ, which is defined in Eq. (A15), and
primordial non-Gaussianity fNL, defined in Eq. (A25),
generically remain small for multifield models in
which the isocurvature modes remain heavy throughout
inflation (μ2s ≫ H2) and the turn-rate remains negligible
(ω2 ≪ H2) [56–59,78–81,90–93,96–108].

B. Supersymmetric two-field models

For the remainder of this paper we consider super-
symmetric two-field models, in which supersymmetry is
spontaneously broken. These models naturally arise in both
global supersymmetry and supergravity. Although our
framework does not depend strongly on supersymmetric
motivations, the supersymmetric framework provides a
codex for translating a relatively large number of effective
field theory parameters to a much smaller set of parameters
that govern theUVcompletion in supergravity,which is valid
at least at tree level. The desired nonminimal couplings can
then be realized in amanifestly supersymmetricmanner, e.g.,
as in Refs. [109,110], in the superconformal approach to
supergravity [111], or else generated via quantum effects
once supersymmetry has been spontaneously broken. Here
we provide a brief overview.Additional details may be found
in Appendix B and Ref. [111].
As mentioned, at the energy scales relevant for inflation,

the construction yields specific arrangements among vari-
ous dimensionless coupling constants, but the field oper-
ators that appear in the action include only generic
dimension-four operators that should be included in any
self-consistent effective field theory for two interacting
scalar fields in (3þ 1)-spacetime dimensions. This sort of
supersymmetry pattern imprinted on low-energy physics
has been discussed in the context of CMB non-Gaussianity
from supersymmetric higher-spin fields [112].
We focus on inflation models that may be realized in the

global supersymmetry limit of supergravity. The model is
specified by a Kähler potential K̃ and superpotential W̃ in
the Jordan frame, given by

K̃ðΦ; Φ̄Þ ¼ −
1

2

X2
I¼1

ðΦI − Φ̄ĪÞ2 ð25Þ

and

W̃ðΦÞ ¼
ffiffiffi
2

p
μbIJΦIΦJ þ 2cIJKΦIΦJΦK; ð26Þ

with indices I; J; K ∈ f1; 2g. We select K̃ so as to provide
canonical kinetic terms for the real and imaginary
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components of the scalar fields ϖI associated with each
chiral superfield ΦI (as further discussed in Appendix B),
and insert factors of

ffiffiffi
2

p
and 2 in the superpotential W̃ to

reduce clutter in the resulting equations. The coefficients
bIJ and cIJK in W̃ are real-valued dimensionless coeffi-
cients, and repeated indices are trivially summed over. We
omit possible constant and linear contributions to W̃, since
nonrenormalization of W̃ [113,114] provides the freedom
to do so. Expanding Eq. (26), we may express W̃ as

W̃ ¼
ffiffiffi
2

p
b1μðΦ1Þ2 þ

ffiffiffi
2

p
b2μðΦ2Þ2 þ 2c1ðΦ1Þ3

þ 2c2ðΦ1Þ2Φ2 þ 2c3Φ1ðΦ2Þ2 þ 2c4ðΦ2Þ3; ð27Þ

where we have defined b1 ≡ b11, b2 ≡ b22, c1 ≡ c111,
c2 ≡ ðc112 þ c121 þ c211Þ, c3 ≡ ðc122 þ c212 þ c221Þ, and
c4 ≡ c222. We set the coupling b12 for the quadratic cross
term μΦ1Φ2 to zero for simplicity but without loss of
generality, since this choice merely amounts to a choice of
coordinates on field space.
The Kähler potential and superpotential together deter-

mine the scalar potential as

Ṽ ¼ eK̃=M
2
plðjDW̃j2 − 3M−2

pl jW̃j2Þ; ð28Þ

where DI ≡ ∂I þM−2
pl K̃;I denotes a Kähler covariant

derivative [111]. The explicit tilde on V indicates that
the chiral superfields ΦI are assumed to be nonminimally
coupled to gravity, either through a manifestly supersym-
metric setup or through quantum effects below the SUSY
breaking scale, making the expression for Ṽ in Eq. (28) the
Jordan-frame potential.

The choice of Kähler potential in Eq. (25) guarantees that
the imaginary parts of the scalar components of ΦI are
heavy during inflation,m2

ψ > H2, whereΦI ¼ ϖI þ… for

complex scalar fields ϖI , and ϖI ¼ ðϕI þ iψ IÞ= ffiffiffi
2

p
, with

ϕI and ψ I real-valued scalar fields. In the global SUSY
limit (jΦIj2=M2

pl → ∞), the scalar potential can then be
expressed as simply

Ṽðϕ; χÞ ≃
X
I

���� ∂W
∂ΦI

����
2

ΦI→ϖI
; ð29Þ

where we label the real-valued scalar components of the
chiral superfields as Φ1 ¼ ϕ=

ffiffiffi
2

p
and Φ2 ¼ χ=

ffiffiffi
2

p
. We

discuss additional details of the embedding in supergravity
in Appendix B.

C. The Einstein-frame scalar potential

The full form of Ṽðϕ; χÞ appears in Appendix B. For our
two-field models, it is convenient to adopt polar coordi-
nates for the field-space manifold,

ϕðtÞ ¼ rðtÞ cos θðtÞ; χðtÞ ¼ rðtÞ sin θðtÞ; ð30Þ

with r ≥ 0 and 0 ≤ θ ≤ 2π. Then the Jordan-frame scalar
potential of Eq. (29) takes the form

Ṽðr; θÞ ¼ BðθÞμ2r2 þ CðθÞμr3 þDðθÞr4 ð31Þ

with

BðθÞ≡ 4b21 cos
2 θ þ 4b22 sin

2 θ;

CðθÞ≡ 12b1c1 cos3 θ þ 4ð2b1 þ b2Þc2 cos2 θ sin θ þ 4ðb1 þ 2b2Þc3 cos θ sin2 θ þ 12b2c4 sin3 θ;

DðθÞ≡ ð9c21 þ c22Þ cos4 θ þ 4c2ð3c1 þ c3Þ cos3 θ sin θ þ ð4c22 þ 6c1c3 þ 6c2c4 þ 4c23Þ cos2 θ sin2 θ
þ 4c3ðc2 þ 3c4Þ cos θ sin3 θ þ ð9c24 þ c23Þ sin4 θ: ð32Þ

As mentioned, we consider this scalar potential in con-
junction with nonminimal couplings to gravity. In a curved
spacetime, scalar fields’ self-interactions will generate
nonminimal couplings of the form [47–56]

fðϕ; χÞ ¼ 1

2
½M2

pl þ ξϕϕ
2 þ ξχχ

2�

¼ 1

2
½M2

pl þ r2ðξϕ cos2 θ þ ξχ sin2 θÞ�: ð33Þ

Hence the action for the scalar degrees of freedom of our
models takes the form of Eq. (1), with ṼðϕIÞ given by
Eq. (31) and fðϕIÞ by Eq. (33).

Upon transforming to the Einstein frame, the field-space
metric GIJ in our fr; θg coordinates has components

Grr ¼
M2

pl

2f

�
1þ 3r2

f
ðξϕcos2θ þ ξχsin2θÞ2

�
;

Grθ ¼
M2

pl

2f

�
3r3

f

�
½ðξϕcos2θ þ ξχsin2θÞ

× ð−ξϕ þ ξχÞ cos θ sin θ�;

Gθθ ¼
M2

pl

2f

�
r2 þ 3r4

f
ð−ξϕ þ ξχÞ2cos2θsin2θ

�
; ð34Þ
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with fðr; θÞ given in Eq. (33). The potential in the Einstein
frame becomes

Vðr; θÞ ¼ M4
pl

½2fðr; θÞ�2 ½BðθÞμ
2r2 þ CðθÞμr3 þDðθÞr4�;

ð35Þ

with the coefficients B, C, and D given in Eq. (32).
The form of VðϕIÞ in Eq. (35) has a similar structure

to the single-field potential studied in Ref. [13], which
included both a cubic self-interaction term and the con-
formal factor ðM2

pl þ ξϕ2Þ2 in the denominator. The poten-
tial in Eq. (35) is also a natural generalization of the
two-field models studied in Refs. [56–59], for which the
numerator included only the term proportional to DðθÞ.
Much as in those multifield studies, the Einstein-frame
potential of Eq. (35) includes local maxima and local
minima (or “ridges” and “valleys”) throughout the field
space. See Fig. 1. As we describe in Sec. II D, this structure
of the potential yields strong single-field attractor behavior
[56–59,63]; the system generically settles into a local
minimum of the potential very quickly after the start of
inflation and remains within that minimum for the duration
of inflation.
Potentials of the form in Eq. (35) have very flat plateaus

at large field values, of the type favored by recent
measurements of CMB anisotropies [115]. For models in
which ξϕ ≃ ξχ , in the limit in which the DðθÞr4 term
dominates the numerator of Vðr; θÞ and ξϕr2 ≫ M2

pl, the
potential reduces to the simple form

Vðr; θÞ ≃M4
plDðθÞ
ξ2ϕ

þO
�
M2

pl

ξϕr2

�
: ð36Þ

In the absence of strong turning among the background
fields during inflation (ω2 ≪ H2), the upper bound on the
primordial tensor-to-scalar ratio r0.05 < 0.036 at the CMB
pivot scale k� ¼ 0.05 Mpc−1 [116] constrains Hðt�Þ <
1.9 × 10−5Mpl. This constraint on Hðt�Þ becomes more
complicated for inflationary trajectories that feature strong
turning before the end of inflation [93], but is appropriate
for the scenarios we consider here. Assuming that the
CMB-relevant curvature perturbations crossed outside the
Hubble radius while the fields were still on the large-field
plateau of the potential, the constraint on Hðt�Þ corre-
sponds to the limit

DðθÞ
ξ2ϕ

≤ 1.1 × 10−9; ð37Þ

upon relating H to V during slow roll. From Eq. (32) we
see that DðθÞ ∼ 9c2max, where cmax ¼ maxfcig. Hence to
remain compatible with observations of the CMB, we
expect the couplings to fall within a range such that

jcmaxj
ξϕ

≲Oð10−5Þ: ð38Þ

As ξϕ ≃ ξχ becomes larger, the dimensionless couplings ci
can likewise become larger while still remaining compat-
ible with observations.
The Einstein-frame potential Vðr; θÞ of Eq. (35)

retains the large-field plateau as in the models studied in
Refs. [56–59]. On the other hand, the potential of Eq. (35)
includes modified small-field structure compared to the
previous models. In particular, the coefficients BðθÞ and
CðθÞ remain nonzero when at least one of the dimensionless
couplings bi ≠ 0. These changes to the small-field structure

FIG. 1. The scalar potential in the Einstein frame, in both fϕ; χg (left) and fr; θg (right) coordinates. Fields are shown in units ofMpl.
The parameters are μ ¼ Mpl, b1 ¼ b2 ¼ −1.8 × 10−4, c1 ¼ 2.5 × 10−4, c2 ¼ c3 ¼ 3.57 × 10−3, c4 ¼ 3.9 × 10−3, and ξϕ ¼ ξχ ¼ 100.
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of the potential can yield a phase of ultraslow-roll evolution
near the end of inflation, which in turn can produce PBHs.

D. Inflationary trajectories

If the dimensionless couplings that appear in
Eqs. (32)–(35) obey additional symmetries, namely

ξϕ ¼ ξχ ¼ ξ; b1 ¼ b2 ¼ b; c2 ¼ c3; ð39Þ

then we may find exact analytic solutions for the back-
ground fields’ trajectory during inflation. In particular, if
the couplings obey the relationships of Eq. (39), then
we find

V;θðr; θÞ ¼
M4

plr
3

½2fðrÞ�2 ½C
0ðθÞμþD0ðθÞr� ð40Þ

because fðr; θÞ → fðrÞ and BðθÞ → 4b2 when ξϕ ¼ ξχ and
b1 ¼ b2 ¼ b. The system will evolve along a direction in

field space θ� such that V;θðr; θ�Þ ¼ 0. As shown in
Appendix C, for the symmetric couplings of Eq. (39)
the extrema are given by

θ�� ðrÞ ¼ arccosðx�ðrÞÞ ð41Þ

with

x�ðrÞ ¼ −d1 � jd4j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ R2

p

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d24

p ; ð42Þ

where

d1 ≡ c1 þ
c2
3
; d4 ≡ c4 þ

c2
3
;

rimag ≡ bμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d24

p ; R≡ r
rimag

: ð43Þ

In the limit b → 0, x�ðrÞ → constant and hence _θ�� → 0,
consistent with the nonturning attractor trajectories iden-
tified in Refs. [56–59]. For b ≠ 0, the trajectories θ�� ðrÞ
show virtually no turning until r ≪ Mpl, near the end of
inflation (see Fig. 2). The analytic solutions θ�� ðrÞ become
complex for r < jrimagj, although the fields’ dynamical
evolution remains smooth in the vicinity of r ∼ jrimagj.
We may project the multifield potential Vðr; θÞ along

the fields’ trajectory θ�ðrÞ, which yields Vðr; θ�ðrÞÞ (see
Fig. 3). Upon including b ≠ 0, and hence C ≠ 0, the
potential evaluated along θ�ðrÞ generically develops a
feature at small field values, much as in the single-field
models studied in Refs. [13–16]. For the example shown,
the dimensionless coefficient Cðθ�Þ < 0 for the duration of
inflation, while B;Dðθ�Þ > 0 (recall that for b1 ¼ b2 ¼ b,
B ¼ 4b2 is independent of θ). Given the opposite signs of C
and B, D, the new features will emerge in Vðr; θ�ðrÞÞ for
field values r such that jCðθ�Þjμr ∼ Bμ2 þDðθ�Þr2. For the
parameters shown in Figs. 1–3, this occurs for r ≃ 0.1 μ.

FIG. 2. The angle in field space θ�ðrÞ along which the system
evolves for the same couplings as in Fig. 1. For this set of
parameters, the local minimum of the potential lies along θþ� ðrÞ,
whereas θ−� ðrÞ is a local maximum.

FIG. 3. (Left) The scalar potential in the Einstein frame Vðr; θþ� Þ (in units ofM4
pl) evaluated along the direction of the fields’ evolution,

θþ� ðrÞ. (Right) The dimensionless coefficients CðθÞ (purple) and DðθÞ (orange dashed) as defined in Eq. (32), evaluated along the
direction of the fields’ evolution, θþ� ðrÞ. Both plots use the same parameters as in Fig. 1.
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With fine-tuning of at least one of the couplings fb;cig,
one may arrange for the small-field feature to be a quasi-
inflection point, as in Refs. [13,17–19]. More generally, the
projected potential will develop a local minimum along the
direction θ�ðrÞwith a nearby local maximum, as in Ref. [15].
When the fields encounter this small-field feature in the
potential, the system enters a phase of ultraslow-roll evolu-
tion: the fields’ kinetic energy density ρkin ¼ _σ2=2 → 0

while H ≃ constant, and hence ϵ falls by several orders of
magnitude, given the relationship in Eq. (14).
We numerically solve the coupled equations of motion

for the background fields rðtÞ, θðtÞ and the Hubble
parameter HðtÞ using Eqs. (7) and (11). In Fig. 4 we plot
the evolution of H, r and θ for typical values of the
couplings. Figure 5 confirms that once the system settles
into a local minimum of the potential in the angular

direction [V;θðr; θ�ðrÞÞ ¼ 0], the isocurvature modes
remain heavy for the duration of inflation (μ2s ≫ H2)
and the turn-rate remains negligible (ω2 ≪ H2). When
the fields encounter the small-field feature in the potential
near r ≃ 0.1 μ, the system enters a phase of ultraslow-roll
evolution, with η → 3 and ϵ → 10−5. For each of these
plots, we show the evolution of the system as a function
of the number of e-folds N before the end of inflation:
NðtÞ≡ Ntotal −

R
t
ti
HðtÞdt, where Ntotal ≡ R tend

ti HðtÞdt and
tend is determined via ϵðtendÞ ¼ 1.
Given the relationship between PRðkÞ, H, and ϵ in

Eq. (A9), the power spectrum of curvature perturbations
will become amplified formodes k that exit theHubble radius
while the fields are in the phase of ultraslow-roll. In general,
the decrease in ϵ—and hence the increase in PRðkÞ—
depends on the ratios of various couplings. For the

FIG. 4. (Left) The evolution of the Hubble parameter HðtÞ as a function of e-folds N before the end of inflation (NðtendÞ ¼ 0). (Right)
The evolution of the fields rðtÞ (purple, in units of Mpl) and θðtÞ (orange dashed) as a function of e-folds N before the end of inflation.
Both plots use the same parameters as in Fig. 1 and initial conditions rðtiÞ ¼ 2.6Mpl, θðtiÞ ¼ π − 0.02, _rðtiÞ ¼ −10−5M2

pl,

and _θðtiÞ ¼ 4 × 10−5Mpl.

FIG. 5. (Left) The evolution of the covariant turn-rate jωIðtÞj (purple) and the mass of the isocurvature modes μsðtÞ (orange dashed) as
a function of e-folds N before the end of inflation [NðtendÞ ¼ 0�. (Right) The slow-roll parameters η (purple) and ϵ (orange dashed) as
functions of e-folds N before the end of inflation. While the system undergoes ultraslow-roll evolution, η → 3 and ϵ → 10−5, consistent
with Eq. (17). Both plots use the same parameters and initial conditions as in Fig. 4.

GELLER, QIN, MCDONOUGH, and KAISER PHYS. REV. D 106, 063535 (2022)

063535-8



parameters shown in Figs. 3–5, the local maximum of the
potential near r ≃ 0.1 μ is marginally greater than the value
of the potential at the nearby local minimum, so the system
spends onlyΔN ∼ 2.5 e-folds in the ultraslow-roll phase. As
shown in Fig. 6, by fine-tuning one of the dimensionless
couplings, we may adjust the relative heights of the local
maximum and local minimum along θ�ðrÞ, thereby prolong-
ing the duration over which the fields persist in the ultraslow-
roll phase and increasing the peak value of PRðkÞ. Even
the tallest peak of PRðkÞ shown in Fig. 6 satisfies
PRðkÞ ≲ 10−2 < 1=6, and hence the criterion of Eq. (24)
is always satisfied. In other words, even while the system
undergoes ultraslow-roll evolution, the classical evolution
of the background fields dominates quantum diffusion for
the parameters considered here.
The dynamics of the fields in the models we consider

here are distinct from those recently studied in α-attractor
models [34,35]. In particular, we only consider positive
values of the nonminimal couplings in this paper, so that
the conformal transformation associated with the factor
Ω2ðxÞ in Eq. (2) remains nonsingular. For ξI > 0, the
induced field-space manifold in the Einstein frame has
positive curvature, Rfs > 0, the magnitude of which falls
in the limit ξϕr2 ≫ M2

pl. [An explicit expression for Rfs

for these models may be found in Eq. (115) of Ref. [57].]
Hence curved field-space effects make fairly modest
contributions to the fields’ dynamics during the early stages
of inflation [57–59,63].
In α-attractor models, on the other hand, the curvature

of the field-space manifold is negative and constant,
Rfs ¼ −4=ð3αÞ, with dimensionless constant α > 0. For
α ∼Oð1Þ, the fields’ evolution will be affected by the
nontrivial field-space manifold throughout the duration of

inflation. Hence in α-attractor models, the fields may “ride
the ridge” remaining on or near a local maximum of the
potential for much of the duration of inflation [34], whereas
in the family of models we consider here, the fields
generically settle into a local minimum of the potential
after a brief, initial transient. For the case of ξI > 0,
the fields can only “ride the ridge” of the potential for
N ≳Oð1Þ e-folds if the fields’ initial conditions are
exponentially fine-tuned [57–59,63]. The fact that the
fields generically settle into a local minimum of the
potential in these models ensures that the isocurvature
modes remain heavy throughout inflation and that the
covariant turn-rate remains negligible.

E. Scaling relationships

As shown in Fig. 6, the evolution of perturbations is
sensitive to the small-field feature in the Einstein-frame
potential, which in turn depends upon ratios among the
dimensionless couplings bi and ci. We explore some of
those relationships in this section. We first note from
Eqs. (32) and (35) that the mass scale μ only appears in
VðϕIÞ multiplied by the bi. Without loss of generality, we
therefore fix μ ¼ Mpl and adjust the magnitude of the scalar
fields’ tree-level masses by changing bi.
The shape of the peak in the power spectrum PRðkÞ

depends on the hierarchy between the value of the potential
Vðr; θ�ðrÞÞ along the large-field plateau and in the vicinity
of the small-field feature. This hierarchy, in turn, depends
on the ratio of various coupling constants. For example, if
the couplings satisfy the symmetries of Eq. (39), we may
hold ξ and b fixed and vary the ratio c1=c4. If c1 ≪ c4, then
V will develop a significant hierarchy between large and
small field values, and the system will approach the small-
field feature with correspondingly greater kinetic energy,
much as analyzed in Ref. [15] for similar single-field
models. For c1 ≪ c4, even if the value of V at the local
minimum is significantly lower than the value at the nearby
local maximum, the system can nonetheless “escape” to the
global minimum of V without lingering arbitrarily long
near the small-field feature of the potential. In these
scenarios, the corresponding peak in PRðkÞ is tall and
narrow. In this paper we set aside the question of whether
the fields could tunnel through the local barrier more
quickly than they would simply flow beyond the local
maximum classically.
As the ratio c1=c4 becomes less extreme, the small-field

feature in the potential more closely resembles a quasi-
inflection point, akin to those studied in Ref. [13]. In this
case, the fields approach the small-field feature with less
kinetic energy and linger longer in the ultraslow-roll phase.
The resulting feature in PRðkÞ is more rounded and wide
(see Fig. 7).
When the couplings obey the symmetries of Eq. (39), the

Einstein-frame potential displays a formal scaling property
in the limit ξ ≫ 1. In particular, we may set

FIG. 6. Fine-tuning one of the dimensionless couplings can
increase the duration of the ultraslow-roll phase. For longer
periods of ultraslow-roll, the slow-roll parameter ϵ falls to smaller
values and the peak in the power spectrum PRðkÞ rises. All three
curves shown here use the same parameters and initial conditions
as in Figs. 1–5, with increasing fine-tuning of c2 ¼ c3. The
horizontal dotted line shows the COBE normalization PRðk�Þ ¼
2.1 × 10−9 for the CMB pivot-scale k� ¼ 0.05 Mpc−1.
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b ¼ yb̂; ci ¼ yĉi ð44Þ

where y > 0 is some constant. Note that the nonminimal
coupling ξ is not rescaled by y. Then if we fix

b̂
ffiffiffi
ξ

p
¼ constant;

ξ

y
¼ constant; ð45Þ

the potential Vðr; θ�ðrÞÞ is unchanged when plotted as a
function of r̂≡ r=

ffiffiffi
ξ

p
. This self-similarity, in turn, yields

identical power spectra (see Fig. 8).
Our model does not require the symmetries among

coupling constants identified in Eq. (39); in general one

may consider ξϕ ≠ ξχ, b1 ≠ b2, and/or c2 ≠ c3. Relaxing
the symmetries of Eq. (39) affects the shape of the
potential, especially in the vicinity of the small-field
feature, which in turn can affect the fields’ dynamics.
We defer an exploration of this expanded parameter space
to future work.

III. PBH FORMATION

PBHs can form soon after the end of inflation from
large peaks in the power spectrum PRðkÞ on length scales
much shorter than those probed by the CMB. Such large
perturbations cross outside the Hubble radius near the end
of inflation, remain effectively frozen in amplitude while
their wavelength is longer than the Hubble radius, and later
reenter the Hubble radius after the end of inflation, where-
upon they can induce gravitational collapse.

A. Critical collapse

Upon reentering the Hubble radius after inflation, local
overdensities

δðxÞ≡ ρðxÞ − ρ̄

ρ̄
ð46Þ

will induce gravitational collapse if they are of sufficient
amplitude. Here ρ̄ ¼ ρtotal is the energy density averaged
over a Hubble volume. The collapse process is a critical
phenomenon akin to other kinds of phase transitions. In
particular, the masses of black holes that form at time tc
follow the distribution [117–131]

MðδavgÞ ¼ KMHðtcÞðδavg − δcÞν ð47Þ

for overdensities δavg above some threshold δc ∼Oð10−1Þ,
where δavg is the spatial average of δðxÞ over a region of

FIG. 7. The potential Vðr; θ�ðrÞÞ (left) and the power spectrum PRðkÞ (right) for μ ¼ Mpl, ξϕ ¼ ξχ ¼ 100, and b1 ¼ b2 ¼
−1.8 × 10−4, with varying ratio c1=c4. In each case we keep c2 ∼ c4 and fine-tune c2 to a comparable degree. As the hierarchy in
Vðr; θ�ðrÞÞ between the large-field plateau and the small-field feature decreases, the peak in the power spectrum shifts from tall and
narrow to short and wide. The curves shown here correspond to fc1; c2; c4g ¼ f1.5 × 10−4; 4.3738 × 10−3; 4.5 × 10−3g (maroon dot-
dashed), f2.5 × 10−4; 3.5709 × 10−3; 3.9 × 10−3g (orange), and f4.1 × 10−4; 3.0879 × 10−3; 3.2 × 10−3g (gold dashed).

FIG. 8. The power spectrum PRðkÞ for three values of the
nonminimal coupling constant ξϕ ¼ ξχ ¼ ξ, when we exploit
the scaling relationships of Eqs. (44) and (45). For each curve
we set μ ¼ Mpl, ĉ1 ¼ 2.5 × 10−4, ĉ2 ¼ 3.5709 × 10−3, and
ĉ4 ¼ 3.9 × 10−3. For ξ ¼ 100 (orange) we set y ¼ 1 and
b̂ ¼ −1.8 × 10−4, and then appropriate values of y and b̂ for
ξ ¼ 50 (pink dot-dashed) and ξ ¼ 300 (brown dashed) follow
from Eq. (45).
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radius R < H−1, K is a dimensionlessOð1Þ constant, and ν
is a universal critical exponent (ν ≃ 0.36 for collapse during
a radiation-dominated era). The Hubble massMHðtcÞ is the
mass enclosed within a Hubble sphere at time tc,

MHðtcÞ≡ 4π

3
ρtotalðtcÞH−3

c

¼ 4π
M2

pl

Hc
; ð48Þ

where Hc≡HðtcÞ. The second line of Eq. (48) follows
upon using the Friedmann equation, H2 ¼ ρtotal=ð3M2

plÞ.
Although the relationship between the threshold δc and
the curvature perturbation R is, in general, nonlinear and
depends on the spatial profile of the overdensities [126–131],
the threshold criterion δavg ≥ δc for the production of PBHs
is typically equivalent to the threshold [126]

PRðkpbhÞ ≥ 10−3; ð49Þ

wherePR is defined in Eq. (22). The scale kpbh ¼ aðtcÞHc is
the comoving wave number of perturbations that reenter the
Hubble radius at time tc and induce collapse.
The mass spectrum of PBHs that form via critical collapse

includes a long tail for masses M < M̄ [125,126,129],
though it is sharply peaked at an average value M̄ that is
remarkably close to Bernard Carr’s original estimate [132],

M̄ ¼ γMHðtcÞ; ð50Þ

with dimensionless constant γ ≃ 0.2. For PBHs that form
during the radiation-dominated phase, aðtÞ ∼ t1=2 and hence
HðtÞ ¼ 1=ð2tÞ, so from Eqs. (48) and (50) we have

M̄ ≃ 8.1 × 1037 g

�
tc
1 s

�
ð51Þ

upon using γ ¼ 0.2. PBHs with average masses within the
range 1017 g ≤ M̄ ≤ 1022 g could account for the entire
dark-matter fraction in the observable universe today while
evading various observational constraints [4–6]; this corre-
sponds to PBH formation times of 10−21 s ≤ tc ≤ 10−16 s.
We may relate the time tc to the earlier time tpbh, during

inflation, when perturbations with wave number kpbh first
crossed outside the Hubble radius. If the first Hubble-
crossing time tpbh occurs ΔN e-folds before the end of
inflation, then

kpbh ¼ aðtpbhÞHðtpbhÞ ¼ aðtendÞe−ΔNHðtpbhÞ; ð52Þ

where tend denotes the end of inflation. As in Appendix A,
we parametrize the postinflation reheating phase as a brief
period of matter-dominated expansion (weff ≃ 0) which
lasts Nreh e-folds between the times tend and trd; beginning

at time trd, the universe expands with a radiation-dominated
equation of state [133,134]. Then the scale factor aðtcÞ at
the time that the perturbations of comoving wave number
kpbh reenter the Hubble radius will be

aðtcÞ ¼ aðtendÞeNreh

�
tc
trd

�
1=2

ð53Þ

and the Hubble parameter will be HðtcÞ ¼ 1=ð2tcÞ.
Between tend and trd the energy-density redshifts as
ρðtrdÞ ¼ ρðtendÞe−3Nreh , so we may write

1

trd
¼ 2HðtendÞe−3Nreh=2: ð54Þ

From Eqs. (53) and (54), we find

kpbh ¼ aðtcÞHðtcÞ

¼ 1ffiffiffiffiffiffi
2tc

p aðtendÞH1=2ðtendÞeNreh=4: ð55Þ

Equating the expressions for kpbh in Eqs. (52) and (55),
we may solve for ΔN,

ΔN ¼ 1

2
log

�
2H2ðtpbhÞ
HðtendÞ

e−Nreh=4tc

�
: ð56Þ

For the parameters that we have been considering, which
yield a substantial hierarchy between the values of the
potential along the large-field plateau and near the small-
field feature, HðtpbhÞ ≃HðtendÞ ≃ 10−5.4Mpl; see the left
panel of Fig. 4. Previous studies of postinflation reheating
in closely related models have consistently found efficient
reheating, with Nreh ≲ 3 across a wide range of parameter
space [63–65,71,72]; the incorporation of trilinear cou-
plings, such as the terms proportional to the coefficient C
in the effective potential of Eq. (35), generically increases
the efficiency of reheating [135,136]. Upon taking
0 ≤ Nreh ≤ 3, we therefore find

18≲ ΔN ≲ 25 ð57Þ

across the range of PBH formation times of interest,
10−21 s ≤ tc ≤ 10−16 s.

B. PBHs from ultraslow-roll evolution in these models

As analyzed in Refs. [23,24], a rapid rise in PRðkÞ at
short wavelengths k ∼ kpbh, which could induce PBHs after
inflation, necessarily has an impact on the long-wavelength
power spectrum in the vicinity of the CMB pivot-scale k�;
see also Ref. [137]. Hence, there is a delicate balance
required to secure predictions for observables in the vicinity
of the CMB pivot scale k� that remain consistent with the
latest measurements [115,116,138] while also arranging for
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PRðkpbhÞ ≥ 10−3. In particular, the presence of small-field
features in the potential, which can yield a large peak in
PRðkÞ near k ∼ kpbh, tends to modestly deform the potential
along the large-field plateau, relevant forPRðk�Þ. The value
of the spectral index nsðk�Þ is typically lower than in related
models for which little or no peak appears in PRðkÞ at
small scales.
To compare with the latest observations, we must

evaluate the number of e-folds before the end of inflation,
N�, when the CMB pivot scale k� ¼ 0.05 Mpc−1 first
crossed outside the Hubble radius. Equation (A26) shows
that N� depends weakly on the duration of reheating. Given
efficient reheating in these models [63–65,71,72], we take
Nreh ∼ 0; then Eq. (A26) yields N� ≃ 58 for the parameters
of interest.
The models we consider here generically induce a

small but nonzero running of the spectral index, αðk�Þ≡
ðdnsðkÞ=d ln kÞjk� ∼Oð10−3Þ. If one includes possible

running αðk�Þ ≠ 0 in the analysis of the latest Planck data,
then the best-fit value for the spectral index is given by
nsðk�Þ ¼ 0.9625� 0.0048, with αðk�Þ ¼ 0.002� 0.010,
each at 68% confidence level [115]. Meanwhile, the most
recent combined Planck-BICEP/Keck observations con-
strain the tensor-to-scalar ratio at k� ¼ 0.05 Mpc−1 to be
r0.05 < 0.036 [116]. As shown in Fig. 9, for a particular
choice of parameters our two-field model yields predictions
consistent with the latest observationswhile also producing a
peak in the power spectrum that first crosses the critical
thresholdPRðkpbhÞ ≥ 10−3 atΔN ¼ 16.3 e-folds before the
end of inflation.
The timing of the peak in PRðkÞ for the set of parameters

shown in Fig. 9 was calculated neglecting non-Gaussian
features of the probability distribution function for large-
amplitude curvature perturbations, which arise from sto-
chastic effects such as quantum diffusion and backreaction.
When such effects are incorporated self-consistently,

FIG. 9. Observable quantities from our two-field model with one fine-tuned parameter. For each plot, N denotes the number of e-folds
before the end of inflation [NðtendÞ ¼ 0]. For the parameters chosen, the CMB pivot scale k� ¼ 0.05 Mpc−1 crossed outside the Hubble
radiusN� ≃ 58 e-folds before the end of inflation, and PRðkÞ first exceeded the threshold for PBH productionΔN ¼ 16.3 e-folds before
the end of inflation. (Top left) The power spectrum PRðkÞ (purple) and the slow-roll parameter ϵ (orange dashed). The horizontal dotted
line shows the COBE normalization PRðk�Þ ¼ 2.1 × 10−9, and the horizontal dashed blue line shows the threshold for PBH formation
PRðkÞ ¼ 10−3. (Top right) The spectral index nsðk�Þ (purple), Planck 2018 best-fit value (dotted), and 2σ error-bar contours [115].
(Bottom left). The running of the spectral index αðk�Þ ¼ ðdnsðkÞ=d ln kÞjk� (purple), Planck 2018 best-fit value (dotted), and 2σ error-
bar contours when the Planck analysis allows for αðk�Þ ≠ 0 [115]. (Bottom right) The tensor-to-scalar ratio rðk�Þ (purple) and the 2020
Planck-BICEP/Keck upper bound (dotted) [116]. The system was evolved numerically with the same parameters and initial conditions
as in Figs. 1–5, but with c2 ¼ c3 ¼ 3.570913 × 10−3 rather than c2 ¼ c3 ¼ 3.57 × 10−3.
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the probability distribution function typically features
more power in the tails of the distribution than a simple
Gaussian—meaning that large fluctuations remain rare, but
much less rare than standard calculations (of the sort we
incorporate here) would suggest [20,22,127,137,139–143].
Although it remains a topic for further research, we expect
that such non-Gaussian effects would likely shift ΔN by
Oð1Þ e-folds, which would bring ΔN more squarely within
the range of Eq. (57) of interest for dark matter abundances.
Even while neglecting these non-Gaussian effects, we

find that the results shown in Fig. 9 require a substantial
fine-tuning of one of the dimensionless coupling constants:
c2 ¼ 3.570913 × 10−3, rather than the more “reasonable”
value c2 ¼ 3.57 × 10−3 that was used for the plots in
Figs. 1–5. Such substantial fine-tuning is typical among
models that produce PBHs from a phase of ultraslow-roll
evolution [13–24,28–30].
Although the need for fine-tuning in such models is not

new, we note nevertheless that the multifield models con-
sidered here are relatively efficient. We require such models
to yield accurate predictions for eight distinct quantities; our
two-field model does so using six relevant free parameters.
The observable quantities to match include the spatial
curvature contribution to the total energy density ΩK, the
spectral indexnsðk�Þ, the running of the spectral indexαðk�Þ,
the tensor-to-scalar ratio rðk�Þ, the isocurvature fraction
at the end of inflation βisoðk�; tendÞ, the non-Gaussianity
parameter fNL, the peak amplitude of the power spectrum at
short scales PRðkpbhÞ, and the time ΔN when the peak in
PRðkpbhÞ first crosses the critical threshold.
The multifield models we explore here display strong

single-field attractor behavior, with negligible turning
throughout the duration of inflation, ω2 ≪ H2. Such
attractor behavior means that the evolution of the
system—and hence predictions for observables—is sensi-
tive to changes in one initial condition, rðtiÞ, rather than the
other 2N − 1 initial conditions required inN -field models.
[For example, predictions for observables in the two-field
case are independent of _rðtiÞ, θðtiÞ, and _θðtiÞ, unless those
initial conditions are exponentially fine-tuned [56–59,63].]
Once rðtiÞ is set large enough to yield sufficient inflation
(with Ntotal ≥ 65 e-folds), these models generically satisfy
observational constraints on ΩK . Meanwhile, as empha-
sized above, the single-field attractor behavior generically
suppresses such typical multifield phenomena as
βisoðk�; tendÞ and fNL, thereby easily keeping predictions
consistent with observational bounds. In particular, con-
sistent with the discussion leading to Eq. (A18), we find
βisoðk�; tendÞ < e−3N� ∼Oð10−76Þ for the parameters used
in Fig. 9, compared to the current Planck bound
βisoðk�; tendÞ ≤ 0.026 [115]. Likewise, from the discussion
leading to Eq. (A25), we find fequilNL ðk�Þ ¼ −0.019 for the
parameters used in Fig. 9, consistent with the latest
measurement from Planck: fequilNL ðk�Þ ¼ −26� 47 [138].

The results shown in Fig. 9, which incorporate the
symmetries among coupling constants of Eq. (39), thus
reveal close agreement between predictions for fΩK; βiso;
fNL; nsðk�Þ;αðk�Þ; rðk�Þ;PRðkpbhÞ;ΔNg from a two-field
model with six relevant free parameters: frðtiÞ; ξ; b;
c1; c2; c4g.

IV. DISCUSSION

In this paper we have demonstrated that inflationary
models that incorporate well-motivated features from high-
energy physics can produce primordial black holes (PBHs)
soon after the end of inflation, of interest for present-day
dark matter abundances. In particular, we have investigated
models with multiple interacting scalar fields, each with a
nonminimal coupling to the spacetime Ricci curvature
scalar. Our multifield models are inspired by supersym-
metric constructions (with an explicit supergravity con-
struction provided in Appendix B) and incorporate only
generic operators in the action that would be expected in
any self-consistent effective field theory treatment at high
energies.
Despite being multifield by construction, the inflationary

dynamics in these models rapidly relax to effectively single-
field evolution along a smooth large-field plateau in the
effective potential (much as in closely related models [56–
59]), thereby yielding predictions for primordial observables
in close agreement with the latest measurements of the CMB
radiation. Models within this family also yield efficient
reheating following the end of inflation [60–76]. In addition,
the potentials we study here include small-field features
that can induce a brief phase of ultraslow-roll evolution
prior to the end of inflation, which yield sharp spikes in
the power spectrum of curvature perturbations on length-
scales exponentially shorter than the CMB pivot scale
k� ¼ 0.05 Mpc−1. Upon reentering the Hubble radius after
the end of inflation, these amplified short-scale perturbations
induce gravitational collapse to PBHs.
As in previous studies of PBH formation following an

ultraslow-roll phase during inflation [13–24,28–30], we
find that in order to generate PBHs near the mass range that
could account for the present-day dark matter abundance
we must fine-tune one dimensionless coupling constant to
several significant digits. Nonetheless, by incorporating
only one fine-tuned constant, these models yield accurate
predictions for eight distinct quantities—including the
spectral index nsðk�Þ and its running αðk�Þ, the tensor-
to-scalar ratio rðk�Þ, the isocurvature fraction βisoðk�; tendÞ
and primordial non-Gaussianity fNL, among others—using
fewer than eight free parameters.
In future work we plan to examine the dynamics of

these models across their full parameter space, including
cases in which we relax the strict symmetry among the
coupling constants of Eq. (39). Some of these models may
give rise to stochastic gravitational waves signals, which
in principle could be observable with next-generation
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experiments [144] such as LISA [145,146], the Einstein
Telescope (ET) [147], and DECIGO [148,149]. This is an
area of further research.
For each of the parameter sets we examined in this paper,

quantum diffusion effects remained subdominant. However,
we have found that the system’s dynamics are quite sensitive
to small changes in various parameters. We therefore plan to
investigate regions of parameter space in which quantum
effects become dominant. In such cases, the system would
only be able to reach the global minimum of the potential via
quantum tunneling. For these cases, it will be important to
compare the tunneling rate to the rate of classical evolution
through the ultraslow-roll phase.
Furthermore, along the lines of recent investigations

into phenomena such as the critical Higgs self-coupling
[150,151], we also intend to investigate the applicability to
our class of models of self-organized criticality. In par-
ticular, we are interested in the possibility that parameter
sets such as those considered in Figs. 1–5 are nearby to
critical points in parameter space which act as attractors.
Other possibilities to investigate include effects on

observable features of these models that arise from terms
that we have thus far neglected, such as a direct quadratic
coupling b12μΦ1Φ2 among the chiral superfields in the
superpotential W̃ of Eq. (26) or the addition of additional
interacting fields beyond only two. (After all, the minimal
supersymmetric Standard Model includes seven chiral
superfields, each with an associated complex-valued scalar
field [152,153].) In addition, we plan to investigate impli-
cations for the predicted mass distribution of PBHs
produced in these models from non-Gaussianities in the
probability distribution function for large-amplitude cur-
vature perturbations. Such modifications to the probability
distribution could arise from quantum-stochastic effects
during the phase of ultraslow-roll evolution.
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APPENDIX A: PERTUBATIONS
IN MULTIFIELD MODELS

We consider scalar perturbations around a spatially
flat Friedmann-Lemaître-Robertson-Walker (FLRW) line
element,

ds2 ¼ −ð1þ 2AÞdt2 þ 2aðtÞð∂iBÞdtdxi
þ a2ðtÞ½ð1 − 2ψÞδij þ 2∂i∂jE�dxidxj: ðA1Þ

Gauge freedom means that only two of the four metric
functions A, B, ψ , and E in Eq. (A1) are independent. The
field fluctuations δϕI introduced in Eq. (6) are also gauge
dependent. We construct the gauge-invariant Mukhanov-
Sasaki variables as linear combinations of field fluctuations
and metric perturbations [57,81,92],

QI ≡ δϕI þ _φI

H
ψ ; ðA2Þ

and project the perturbations QI into adiabatic (Qσ) and
isocurvature (Qs) components as in Eqs. (18)–(20). The
equations of motion for modes Qσðk; tÞ and Qsðk; tÞ then
take the form [57]

Q̈σ þ 3H _Qσ þ
�
k2

a2
þMσσ − ω2 −

1

M2
pla

3

d
dt

�
a3 _σ2

H

��
Qσ

¼ 2
d
dt

ðωQsÞ − 2

�
V;σ

_σ
þ

_H
H

�
ðωQsÞ ðA3Þ

and

Q̈s þ 3H _Qs þ
�
k2

a2
þ μ2s

�
Qs ¼ 4M2

pl
ω

_σ

k2

a2
Ψ; ðA4Þ

where ω≡ ϵIJσ̂IωJ ¼ �jωIj is the scalar turn rate
[93,154]. The gauge-invariant Bardeen potential Ψ≡ ψ þ
a2Hð _E − Ba−1Þmay be related toQσ andQs via the 00 and
0i components of the Einstein field equations [57]; the form
of Eq. (A4) is particularly convenient for understanding
the behavior of the isocurvature modes Qsðk; tÞ in the
long-wavelength limit, k ≪ aH. The mass matrix for the
perturbations is given by

MI
J ≡ GIKðDJDKVÞ −RI

LMJ _φ
L _φM ðA5Þ

with the projections

Mσσ ≡ σ̂I σ̂
JMI

J; Mss ≡ ŝIJMI
J ðA6Þ

and the mass of the isocurvature perturbations is

μ2s ≡Mss þ 3ω2: ðA7Þ

In Eq. (A5), RI
LMJ is the Riemann tensor for the field-

space manifold.
When the isocurvature modes remain heavy (μ2s ≫ H2)

and/or the turn-rate remains negligible (ω2 ≪ H2), the
predictions for CMB observables revert to covariant ver-
sions of the familiar single-field forms [57,58]. In particu-
lar, if the adiabatic perturbations remain light during
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inflation and we initialize the gauge-invariant perturbations
in the usual Bunch-Davies vacuum state, then at Hubble
crossing, solutions of Eq. (A3) will have amplitude [90–92]

jQσðk�; t�Þj ¼
Hðt�Þffiffiffiffiffiffiffi
2k3�

p ðA8Þ

up to an irrelevant phase, where t� is the time when k� ¼
aðt�ÞHðt�Þ during inflation. Then Eqs. (21) and (22) yield

PRðk�Þ ¼
H2ðt�Þ

8π2M2
plϵðt�Þ

: ðA9Þ

The spectral index nsðk�Þ at some pivot scale k� is given
by [57]

nsðk�Þ≡ 1þ
�
d lnPRðkÞ

d ln k

�����
k�

≃ 1 − 6ϵðt�Þ þ 2ηðt�Þ

ðA10Þ

to first order in slow-roll parameters, where ϵðtÞ and ηðtÞ
are defined in Eqs. (14) and (15). The expression for nsðk�Þ
in Eq. (A10) is easiest to derive by using the usual slow-roll
relation ðdx=d ln kÞjk� ≃ _x=Hðt�Þ at Hubble crossing [92].
Likewise, the running of the spectral index is given by

αðk�Þ≡
�
dnsðkÞ
d ln k

�����
k�

≃
�
_nsðkÞ
H

�����
k�

: ðA11Þ

The tensor-to-scalar ratio is given by [58,81,92]

rðk�Þ ¼ 16ϵðt�Þ: ðA12Þ

For multifield models, we may compare the power
spectra of curvature and isocurvature perturbations. If we
adopt the conventional normalization [57,81,90,92]

S ≡ Qs

Mpl

ffiffiffiffiffi
2ϵ

p ; ðA13Þ

then the dimensionless isocurvature power spectrum may
be written

PSðkÞ≡ k3

2π2
jSkj2: ðA14Þ

The isocurvature fraction βisoðk�; tÞ is defined as

βisoðk�; tÞ≡ PSðk�; tÞ
½PRðk�; tÞ þ PSðk�; tÞ�

: ðA15Þ

For inflationary trajectories along which the isocurvature
modes remain heavy,μ2s ≫ H2 (as inFig. 5), the amplitude of

isocurvature perturbations falls as Qsðk�; tÞ ≃Qsðk�; t�Þ×
½aðt�Þ=aðtÞ�3=2 for times t > t�. If jQsðk�; t�Þj ¼ Hðt�Þ=ffiffiffiffiffiffiffi
2k3�

p
, akin to Eq. (A8), then the amplitude of the mode

Sðk�; tÞ will evolve for times t > t� as

jSðk�; tÞj ≃
Hðt�Þe−3ðN�−NðtÞÞ=2

2Mpl

ffiffiffiffiffiffiffiffiffiffiffiffi
k3�ϵðtÞ

p ; ðA16Þ

where NðtÞ ≤ N� is the number of e-folds before the end of
inflation. Then

PSðk�; tÞ ≃
H2ðt�Þ

8π2M2
plϵðtÞ

e−3ðN�−NðtÞÞ: ðA17Þ

Meanwhile, forω2 ≪ H2, the amplitude of themodeRðk�; tÞ
remains frozen for t > t�, so PRðk�; tÞ ¼ PRðk�; t�Þ, with
magnitude given in Eq. (A9). In that case, PSðk�; tÞ ≪
PRðk�; tÞ for t > t�, and we find

βisoðk�; tÞ ≃
ϵðt�Þ
ϵðtÞ e−3ðN�−NðtÞÞ: ðA18Þ

For μ2s ≫ H2 and ω2 ≪ H2, the isocurvature fraction is
therefore exponentially suppressed by the end of inflation,
βisoðk�; tendÞ ≃ ϵðt�Þe−3N� ≪ 1 [59,79,90–92,96].
Similarly, for heavy isocurvature modes (μ2s ≫ H2) and

weak turning (ω2 ≪ H2), the non-Gaussianity also behaves
much as in single-field models. In particular, for multifield
models with curved field-space manifolds, the dimension-
less coefficient fNL may be written [57,78,98,104,106]

fNL ¼ −
5

6

N;AN;BDADBN
ðN;IN;IÞ2

−
5

6

N;AN;BN;CAABCðk1; k2; k3Þ
ðN;IN;IÞ2P k2i

; ðA19Þ

where N ¼ ln aðtendÞ − ln aðt�Þ is the number of e-folds
before the end of inflation when the mode with comoving
wave number k� first crossed outside the Hubble radius.
The term AABCðkiÞ vanishes for flat field-space manifolds,
GIJ ¼ δIJ; for the curved field-space manifold we consider
here, most contributions to AABC vanish identically for
equilateral configurations (k1 ¼ k2 ¼ k3 ¼ k�), and (for
arbitrary shape functions) the terms proportional to AABC

remain subdominant to the contributions arising from the
first term in Eq. (A19) [57]. In addition, if the isocurvature
modes remain heavy during inflation, then the dominant
contribution to the bispectrum arises from variations of N
due to fluctuations along the fields’ direction of motion. In
that case, Eq. (A19) reduces to
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fNL ≃ −
5

6

σ̂Aσ̂BDADBN
ðσ̂IDINÞ2 : ðA20Þ

Recall that _φIDIAJ ¼ DtAJ is the covariant directional
derivative of vector AJ in the field space. Hence for the term
in the denominator of Eq. (A20), we may write

σ̂IDIN ¼ 1

_σ
DtN ¼ −

H
_σ
: ðA21Þ

For the numerator of Eq. (A20), we may write

σ̂Aσ̂BDADBN ¼ σ̂ADAσ̂
BDBN −

1

_σ
ωBDBN; ðA22Þ

upon using the definition of the turn-rate vector ωI in
Eq. (13). We note that

DBN ¼ −
H
_φB ¼ −

Hσ̂B
_σ

; ðA23Þ

and hence the term proportional to ωB in Eq. (A22)
vanishes, given the orthogonality of ωB and σ̂B. Again
using _φIDIAJ ¼ DtAJ, we then have

σ̂ADAσ̂
BDBN ¼

�
H2

_σ2

��
−

_H
H2

þ σ̈

H _σ

�

¼
�
H2

_σ2

�
ð2ϵ − ηÞ; ðA24Þ

upon using the definitions of ϵ in Eq. (14), η in
Eq. (15), and the relationship in Eq. (16). Combining
Eqs. (A21)–(A24), we then find for Eq. (A20)

fNL ≃
5

6
ðη − 2ϵÞ þO

�
ω2

H2

�
þO

�
H2

μ2s

�
: ðA25Þ

For ordinary slow-roll evolution within a single-field
attractor, we therefore find that the coefficients for equi-
lateral, orthogonal, and local configurations of the bispec-
trum will each generically remain small, jfNLj ≲Oð10−2Þ.
During ultraslow-roll, when η → 3, the non-Gaussianity
will rise to be Oð1Þ [56–58,78–81,97–108].
The comoving CMB pivot scale k� ¼ 0.05 Mpc−1 first

crossed outside the Hubble radius N� ≡ Nðk�Þ e-folds
before the end of inflation [155,156]

N� ¼ 67 − ln

�
k�

a0H0

�
þ 1

4
ln

�
V2ðt�Þ

M4
plρðtendÞ

�

þ 1 − 3weff

12ð1þ weffÞ
ln
�
ρðtrdÞ
ρðtendÞ

�

≃ 62þ 1

4
ln

�
V2ðt�Þ

3M6
plH

2ðtendÞ
�
−
Nreh

4
; ðA26Þ

where the subscript 0 denotes present-day values, t� is the
time when k� ¼ aðt�ÞHðt�Þ during inflation, tend is the time
at which inflation ends, and trd is the time when the
universe first attains a radiation-dominated equation of state
after the end of inflation. In the second line, we assume that
the reheating epoch persists for Nreh e-folds after the end of
inflation, during which the universe expands with a matter-
dominated equation of state weff ≃ 0 [133,134].

APPENDIX B: REALIZATION IN
SUPERGRAVITY

For a textbook review of supergravity, we refer the reader
to Ref. [111]. For a concise review, we refer the reader to
the appendices of Ref. [157].
The potential in Eq. (31) is realized within the frame-

work ofN ¼ 1 supergravity in d ¼ 4 dimensions. We take
two chiral superfields ΦI , with I ¼ f1; 2g, with field
content

ΦIðx; θÞ ¼ ϖI þ
ffiffiffi
2

p
θηI þ θθFI; ðB1Þ

where each ϖI (for I ∈ f1; 2g) is a complex scalar field,
each ηI is a two-component Weyl spinor, θ is the fermionic
coordinate on superspace, and FI are nondynamical aux-
iliary fields; Φ̄Ī denotes the corresponding antichiral super-
fields. Each complex scalar fieldϖI can be written in terms
of its real and imaginary parts as

ϖI ¼ 1ffiffiffi
2

p ðϕI þ iψ IÞ: ðB2Þ

Our model is specified in the Jordan frame by a super-
potential W̃ðΦIÞ and Kähler potential K̃ðΦI; Φ̄ĪÞ. The
kinetic terms of the scalar components are given by

Lkinetic ¼ −G̃IJ̄ g̃
μν
∂μϖ

I
∂νϖ̄

J̄ ; ðB3Þ

with field-space metric

G̃IJ̄ ¼
∂

∂ΦI

∂

∂Φ̄J̄
K̃ðΦJ; Φ̄J̄ÞΦI→ϖI ;Φ̄Ī→ϖ̄Ī : ðB4Þ

The scalar potential in the Jordan frame is given by

Ṽ ¼ feK̃=M2
pl ½jDW̃j2 − 3M−2

pl jW̃j2�gΦI→ϖI ;Φ̄Ī→ϖ̄ Ī ; ðB5Þ

where DI ≡ ∂I þM−2
pl K̃;I .

We select the Kähler potential to be

K̃ ¼ −
1

2

X2
I¼1

ðΦI − Φ̄ĪÞ2 ðB6Þ

and work with the generic superpotential
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W̃ ¼
ffiffiffi
2

p
μbIJΦIΦJ þ 2cIJKΦIΦJΦK; ðB7Þ

where μ is a mass scale. Given Eqs. (B4) and (B6), the
field-space metric in the Jordan frame is flat,

G̃IJ̄ ¼ δIJ̄: ðB8Þ
For K̃ given in Eq. (B6), we find K̃ →

P
Iðψ IÞ2 upon

projecting fΦI; Φ̄Īg → fϖI; ϖ̄ Īg; hence the imaginary

components ψ I of each scalar field ϖI become
heavy, due to the exponential dependence of Ṽ on the
Kähler potential. In particular, it is straightforward to
show that m2

ψ ≃ 10H2 (in the Einstein frame), which
allows us to integrate out the imaginary components
ψ I during inflation. The resulting scalar potential for
the real components ϖ1 ≡ ϕ=

ffiffiffi
2

p
and ϖ2 ≡ χ=

ffiffiffi
2

p
is

given by

Ṽðϕ; χÞ ¼ 4b21μ
2ϕ2 −

3b21μ
2ϕ4

2M2
pl

−
3b1b2μ2χ2ϕ2

M2
pl

þ 12b1c1μϕ3 −
3b1c1μϕ5

M2
pl

þ 8b1c2μχϕ2 −
3b1c2μχϕ4

M2
pl

þ 4b1c3μχ2ϕ −
3b1c3μχ2ϕ3

M2
pl

−
3b1c4μχ3ϕ2

M2
pl

þ 4b22μ
2χ2 −

3b22μ
2χ4

2M2
pl

−
3b2c1μχ2ϕ3

M2
pl

þ 4b2c2μχϕ2

−
3b2c2μχ3ϕ2

M2
pl

þ 8b2c3μχ2ϕ −
3b2c3μχ4ϕ

M2
pl

þ 12b2c4μχ3 −
3b2c4μχ5

M2
pl

−
3c21ϕ

6

2M2
pl

þ 9c21ϕ
4 −

3c1c2χϕ5

M2
pl

þ 12c1c2χϕ3 −
3c1c3χ2ϕ4

M2
pl

þ 6c1c3χ2ϕ2 −
3c1c4χ3ϕ3

M2
pl

−
3c22χ

2ϕ4

2M2
pl

þ 4c22χ
2ϕ2 þ c22ϕ

4 −
3c2c3χ3ϕ3

M2
pl

þ 4c2c3χϕ3 þ 4c2c3χ3ϕ −
3c2c4χ4ϕ2

M2
pl

þ 6c2c4χ2ϕ2 −
3c23χ

4ϕ2

2M2
pl

þ c23χ
4 þ 4c23χ

2ϕ2 −
3c3c4χ5ϕ

M2
pl

þ 12c3c4χ3ϕ −
3c24χ

6

2M2
pl

þ 9c24χ
4; ðB9Þ

where, as noted below Eq. (27), we define b1≡b11, b2≡b22, c1≡c111, c2≡ðc112þc121þc211Þ, c3≡ðc122þc212þc221Þ,
and c4 ≡ c222. If one considers inflationary models with ξ ≫ 1, the perturbation modes accessible to
observation correspond to those that exited the Hubble radius when ϕ; χ ≪ Mpl. Taking the ϕ; χ ≪ Mpl limit,
Eq. (B9) simplifies to

Ṽðϕ; χÞ ¼ 4b21μ
2ϕ2 þ 12b1c1μϕ3 þ 8b1c2μχϕ2 þ 4b1c3μχ2ϕþ 4b22μ

2χ2 þ 4b2c2μχϕ2 þ 8b2c3μχ2ϕ

þ 12b2c4μχ3 þ 9c21ϕ
4 þ 12c1c2χϕ3 þ 6c1c3χ2ϕ2 þ 4c22χ

2ϕ2 þ c22ϕ
4 þ 4c2c3χϕ3 þ 4c2c3χ3ϕ

þ 6c2c4χ2ϕ2 þ c23χ
4 þ 4c23χ

2ϕ2 þ 12c3c4χ3ϕþ 9c24χ
4 þOðϕ5=Mpl; χ5=MplÞ: ðB10Þ

We note that the benchmark value of ξ in Higgs inflation
is Oð104Þ [39], and further note that our model can
accommodate ξ over many orders of magnitude, via the
rescaling of Eq. (45). Finally, translating to polar coor-
dinates, we arrive at Eq. (31).
These models can easily be unified with the current

epoch of cosmic acceleration and the observed cosmologi-
cal constant. This is done by introducing an additional
superfield S which satisfies a nilpotency constraint,

Sðx; θÞ2 ¼ 0: ðB11Þ

This condition projects out the scalar component of S from
the bosonic sector of the theory. The cosmological appli-
cations of the nilpotent superfields were developed in,
e.g., Refs. [158–160]. The simplest model is given by

W ¼ MS; K ¼ SS̄; ðB12Þ
leading to a scalar potential which is simply a cosmological
constant

V ¼ M2: ðB13Þ
Inflation and dark energy can be realized in this context
either by promoting M to a function of fields, or else

PRIMORDIAL BLACK HOLES FROM MULTIFIELD INFLATION … PHYS. REV. D 106, 063535 (2022)

063535-17



through field-dependent corrections to the Kähler potential
such as [159],

δK ¼ fðΦ; Φ̄ÞSS̄: ðB14Þ

In both cases the scalar potential is simply,

V ¼ GSS̄
∂SW∂S̄W̄: ðB15Þ

We may easily combine the nilpotent superfield models
with the inflation models proposed in this paper. For
example, we may consider,

W̃ ¼ MSþ W̃inflðΦIÞ;
K̃ ¼ SS̄þ K̃inflðΦI; Φ̄ĪÞ; ðB16Þ

where W̃infl and K̃infl refer to the Jordan-frame W and K of
our multifield inflation model. The resulting (Jordan-frame)
scalar potential is given by

Ṽ ¼ M2 þ Ṽ inflðϕ; χÞ; ðB17Þ

where Ṽ infl is the Jordan frame inflationary potential of
our two-field model. This approach allows for additional
spectator fields during inflation, simply by promotingM to
a function of fields, or by corrections to K̃ [159].
Finally, nonminimal couplings of the superfields ΦI to

gravity, in a manifestly supersymmetric form, can be
accomplished following the procedure of Ref. [161],
slightly generalized from one inflaton to two.

APPENDIX C: ANALYTIC SOLUTION FOR THE
BACKGROUND FIELDS’ TRAJECTORY

As noted in Sec. II D, if the dimensionless couplings
obey the symmetries of Eq. (39), then we may solve
analytically for the background fields’ trajectory during

inflation. We identify local minima of the potential in the
angular direction by calculating

V;θðr; θÞ ¼
M4

pl

½2fðrÞ�2 ½C
0ðθÞμr3 þD0ðθÞr4�

¼ FðrÞGðr; θÞ; ðC1Þ

where FðrÞ is some function independent of θ, and

Gðr; θÞ≡ C0ðθÞμþD0ðθÞr: ðC2Þ

The system will evolve along local minima θ� such that
V;θðr; θ�Þ ¼ 0, which corresponds to Gðr; θ�Þ ¼ 0. Given
the definitions of CðθÞ and DðθÞ in Eq. (32), the terms that
appear in Gðr; θÞ may be written

C0ðθÞ¼−18bc1 sinð2θÞ
�
cosθ−

�
c4
c1

�
sinθ

�
þ12bc2g1ðθÞ;

D0ðθÞ¼−18c21 sinð2θÞ
�
cos2θ−

�
c4
c1

�
2

sin2θ

�
þ4c2g2ðθÞ;

ðC3Þ

with

g1ðθÞ≡ cos3 θþ sinð2θÞðcosθ− sinθÞ− sin3 θ;

g2ðθÞ≡ ð3c1þc2Þcos4 θ

þ3

2
ðc1þc2þc4Þsinð2θÞðcos2 θ− sin2 θÞ

−9ðc1−c4Þcos2 θsin2 θ− ð3c4þc2Þsin4 θ: ðC4Þ

Closed-form solutions to the equationGðr; θ�Þ ¼ 0may then
be found by using the substitution θ�ðrÞ ¼ arccosðxðrÞÞ,
resulting in the expression for x�ðrÞ given in Eq. (42).

[1] Ya. B. Zel’dovich and I. D. Novikov, The hypothesis of
cores retarded during expansion and the hot cosmological
model, Sov. Astron. 10, 602 (1967), https://ui.adsabs
.harvard.edu/abs/1967SvA....10..602Z/abstract.

[2] Stephen Hawking, Gravitationally collapsed objects
of very low mass, Mon. Not. R. Astron. Soc. 152, 75
(1971).

[3] B. J. Carr and S.W. Hawking, Black holes in the
early Universe, Mon. Not. R. Astron. Soc. 168, 399
(1974).

[4] Bernard Carr and Florian Kühnel, Primordial black holes
as dark matter: Recent developments, Annu. Rev. Nucl.
Part. Sci. 70, 355 (2020).

[5] Anne M. Green and Bradley J. Kavanagh, Primordial black
holes as a dark matter candidate, J. Phys. G 48, 043001
(2021).

[6] Pablo Villanueva-Domingo, Olga Mena, and Sergio
Palomares-Ruiz, A brief review on primordial black
holes as dark matter, Front. Astron. Space Sci. 8, 87
(2021).

[7] Juan Garcia-Bellido, Andrei D. Linde, and David Wands,
Density perturbations and black hole formation in hybrid
inflation, Phys. Rev. D 54, 6040 (1996).

[8] David H. Lyth, Contribution of the hybrid inflation water-
fall to the primordial curvature perturbation, J. Cosmol.
Astropart. Phys. 07 (2011) 035.

GELLER, QIN, MCDONOUGH, and KAISER PHYS. REV. D 106, 063535 (2022)

063535-18

https://ui.adsabs.harvard.edu/abs/1967SvA....10..602Z/abstract
https://ui.adsabs.harvard.edu/abs/1967SvA....10..602Z/abstract
https://ui.adsabs.harvard.edu/abs/1967SvA....10..602Z/abstract
https://ui.adsabs.harvard.edu/abs/1967SvA....10..602Z/abstract
https://ui.adsabs.harvard.edu/abs/1967SvA....10..602Z/abstract
https://ui.adsabs.harvard.edu/abs/1967SvA....10..602Z/abstract
https://ui.adsabs.harvard.edu/abs/1967SvA....10..602Z/abstract
https://ui.adsabs.harvard.edu/abs/1967SvA....10..602Z/abstract
https://ui.adsabs.harvard.edu/abs/1967SvA....10..602Z/abstract
https://ui.adsabs.harvard.edu/abs/1967SvA....10..602Z/abstract
https://doi.org/10.1093/mnras/152.1.75
https://doi.org/10.1093/mnras/152.1.75
https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1146/annurev-nucl-050520-125911
https://doi.org/10.1146/annurev-nucl-050520-125911
https://doi.org/10.1088/1361-6471/abc534
https://doi.org/10.1088/1361-6471/abc534
https://doi.org/10.3389/fspas.2021.681084
https://doi.org/10.3389/fspas.2021.681084
https://doi.org/10.1103/PhysRevD.54.6040
https://doi.org/10.1088/1475-7516/2011/07/035
https://doi.org/10.1088/1475-7516/2011/07/035


[9] Edgar Bugaev and Peter Klimai, Formation of primordial
black holes from non-Gaussian perturbations produced in a
waterfall transition, Phys. Rev. D 85, 103504 (2012).

[10] Illan F. Halpern, Mark P. Hertzberg, Matthew A. Joss, and
Evangelos I. Sfakianakis, A density spike on astrophysical
scales from an N-field waterfall transition, Phys. Lett. B
748, 132 (2015).
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[128] Albert Escrivà, Cristiano Germani, and Ravi K. Sheth,
Universal threshold for primordial black hole formation,
Phys. Rev. D 101, 044022 (2020).

[129] V. De Luca, G. Franciolini, and A. Riotto, On the
primordial black hole mass function for broad spectra,
Phys. Lett. B 807, 135550 (2020).

[130] Ilia Musco, Valerio De Luca, Gabriele Franciolini, and
Antonio Riotto, Threshold for primordial black holes. II. A
simple analytic prescription, Phys. Rev. D 103, 063538
(2021).
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