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The kinetic Sunyaev-Zel’dovich effect is a secondary CMB temperature anisotropy that provides a
powerful probe of the radial-velocity field of matter distributed across the Universe. This velocity field is
reconstructed by combining high-resolution CMB measurements with galaxy survey data, and it provides
an unbiased tracer of matter perturbations in the linear regime. In this paper, we show how this
measurement can be used to probe primordial non-Gaussianity of the local type, particularly focusing on
the trispectrum amplitude τNL, as may arise in a simple two-field inflation model that we provide by way
of illustration. Cross-correlating the velocity-field-derived matter distribution with the biased large-scale
galaxy density field allows one to measure the scale-dependent bias factor with sample variance
cancellation. We forecast that a configuration corresponding to CMB-S4 and VRO results in a sensitivity
of σfNL ≈ 0.59 and στNL ≈ 1.5. These forecasts predict improvement factors of 10 and 195 for σfNL and στNL ,
respectively, over the sensitivity using VRO data alone, without internal sample variance cancellation.
Similarly, for a configuration corresponding to DESI and SO, we forecast a sensitivity of σfNL ≈ 3.1 and
στNL ≈ 69, with improvement factors of 2 and 5, respectively, over the use of the DESI data set in isolation.
We find that a high galaxy number density and large survey volume considerably improve our ability to
probe the amplitude of the primordial trispectrum for the multifield model considered.
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I. INTRODUCTION

Detecting and constraining characteristics of the primor-
dial Universe to understand the origin of structure is one of
the primary goals of many upcoming large-scale structure
surveys and CMB experiments [1–8]. The most widely
accepted paradigm is that of inflation [9–11], which
addresses most of the problems of the original big-bang
scenario and has a set of predictions that are compatible
with many current observations [12–15]. Although the
general predictions of the inflationary model, such as a flat
universe and largely scale-invariant set of initial fluctua-
tions, have been confirmed by recent observations, the
specific physical processes that govern this epoch are yet to
be understood.
Comparing the predictions of various inflationary mod-

els to astrophysical observations allows one to probe the
physics of the ultra-high energy scales that are otherwise
not directly accessible to experiments. Searching for
imprints of primordial non-Gaussianity in the CMB spec-
trum or on the large-scale matter distribution are possible
methods to effectively distinguish between various models
of inflation and the number of degrees of freedom gov-
erning the epoch (e.g., [16–33]).

One simple and widely studied class of such non-
Gaussianity is the local type or fNL parametrization, in
which one includes a quadratic term in the primordial
potential Φ ¼ ϕþ fNLϕ2. In this model, both linear and
quadratic terms in the potential originate from the same
Gaussian field ϕ, called the inflaton. The current best
bound is fNL ¼ −0.9� 5.1, coming from the latest Planck
satellite CMB analysis [34] with the growth factor nor-
malized to one during matter domination.
Non-Gaussianity also naturally arises in models of

inflation that involve more than one field. This could be
due to a coupling term across the two fields [35] or the
addition of a field with its own quadratic term [36]. This
can enhance the inflaton four-point function (or trispec-
trum) while not affecting the more widely considered
three-point function (or bispectrum) [37,38], making the
primordial trispectrum a valuable signature of extra degrees
of freedom in the early Universe. The amplitude of the
primordial trispectrum has also been constrained by the
Planck CMB data, with the most recent estimate being
τNL ¼ ð−5.8� 6.5Þ × 104 [34].
Given Silk damping of the temperature fluctuations,

there is not much room to significantly improve upon
the fNL measurements with CMB measurements alone.
However, there are a few proposed methods to further
constrain τNL using its signature in the trispectrum of the*nanilku1@jhu.edu
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21-cm brightness temperature [39], the halo bias [40,41],
and 3-point correlations between two-CMB-temperature
and one-μ-spectral-distortion fluctuations [42]. The
expected sensitivities for these proposals are τNL ≈ 50–100.
In the case of local non-Gaussianity, we also expect to

obtain constraints from the distribution of galaxies on large
scales, relying only on the measurement of the galaxy
power spectrum in the linear regime [43,44]. This con-
straint can be obtained using the fact that a nonzero fNL
induces a scale-dependent bias factor [36,45], providing a
unique signal that is not mimicked by changes in the other
standard cosmological parameters. However, reaching the
predicted multifield threshold of fNL ≳ 1 remains difficult
because of sample variance.
In this paper, we forecast the sensitivity of kinetic

Sunyaev-Zel’dovich (kSZ) tomography to both fNL and
τNL, assuming that the primordial non-Gaussianity is
induced by two different fields [36]. The kSZ effect is
the secondary CMB temperature anisotropy induced by
the peculiar velocity of interspersed free electrons that
scatter the CMB photons [46–50]. Cross-correlating high-
resolution CMB maps with large-scale structure surveys
will allow for the measurement of this kSZ contribution as a
function of redshift, a technique termed kSZ tomography
[51–55]. This cross-correlation can be used to reconstruct
the radial velocity field of free electrons in a 3-dimensional
volume, from which the large-scale matter distribution can
be inferred.
By comparing this kSZ-tomography-based matter per-

turbation amplitude with the amplitude of the galaxy power
spectrum, one can obtain excellent constraints on the scale-
dependent bias. Since the matter and galaxy distributions
are determined independently, the bias can be measured on
a mode-by-mode basis, thus circumventing the cosmic-
variance limit that usually arises when inferring fNL and
τNL from the galaxy distribution data set in isolation [56].
We forecast the precision with which our model of

primordial non-Gaussianity can be measured in two distinct
scenarios: one in which only a single tracer from a galaxy
survey is considered and another in which both the galaxy
survey and the kSZ-reconstructed velocity field are jointly
measured. The forecasts that include both the galaxy
distribution and velocity field are based on the kSZ
bispectrum formalism developed in Ref. [57], which
accounts for photo-z errors and the optical-depth degen-
eracy. We consider, in our forecasts, two baseline exper-
imental configurations: “baseline 1” corresponding to the
combination of the Vera Rubin Observatory (VRO) [58]
and CMB-S4 [59] and “baseline 2” corresponding to the
Dark Energy Spectroscopic Instrument (DESI) [60] and
Simons Observatory (SO) [1,2]. For these forecasts, we
closely follow the method and experimental parameter
values used in Ref. [43], in which the same experimental
configurations were used to forecast survey sensitivity to
the single-field fNL model of inflation.

Our forecasts find that for the configuration of VRO and
CMB-S4, σfNL ≈ 0.59 and στNL ≈ 1.5, which corresponds to
improvement factors of 10 and 195, respectively, over the
use of VRO data alone. Similarly, for the configuration of the
DESI and SO, we find that σfNL ≈ 3.1 and στNL ≈ 69, with
improvement factors of 2 and 5, respectively, compared to
the forecasts made using DESI data in isolation. We find that
our forecasts on the galaxy distribution data sets alone are
compatible with the single-tracer results of Ref. [44] when
differences in our survey parameters are taken into account.
Through the variation of experimental parameters, we

also determine that changes in redshift dispersion arising
from photo-z errors, as well as increases in CMB sensitivity
and CMB resolution, have a relatively minimal effect on
our ability to measure the non-Gaussianity. In contrast, we
find that a large survey volume, with well-measured large-
scale modes, and a high galaxy number density most
prominently decrease the error with which both fNL and
τNL can be measured.
Throughout this paper, we adopt the ΛCDM cosmology

as our fiducial model with the following parameters from
Planck 2018 [61]: reduced Hubble constant h ¼ 0.674;
baryon and cold-dark-matter density parameters today,
Ωb ¼ 0.049 andΩcdm ¼ 0.264, respectively; spectral index
ns ¼ 0.965; and amplitude of the primordial scalar power
spectrum As ¼ 2.2 × 10−9. In all our equations, we work
under the convention c ¼ 1.
This paper is organized as follows. In Sec. II, we

introduce our scale-dependent biasing model, derived using
the peak-background-split methodology for the multifield
model of inflation presented in Ref. [36]. We also explain
how kSZ tomography can be used for sample variance
cancellation. In Sec. III, we describe the experimental
parameters in our forecast. The forecast setup is described
in Sec. IV. Finally, the results of our analysis and our final
set of forecasts are detailed in Sec. V.

II. THEORY

Before explaining in detail how kSZ tomography can be
used in tandem with large-scale galaxy survey data, we first
introduce the τNL model of primordial non-Gaussianity
and derive the relevant power spectra relations via the peak
background split formalism. Further details on this model
and its derivations can be found in Ref. [36]. Furthermore,
we address the possible extension of the results in this paper
to another commonly considered, non-Gaussian model
of inflation. Finally, we then also briefly address how
the velocity field is reconstructed, given temperature-
anisotropy and galaxy-distribution data.

A. Local non-Gaussianity in peak background
split formalism

In this paper, we consider the curvaton model for the
primordial gravitational potential in which two different
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fields, the inflaton and the curvaton, contribute to the
curvature perturbation. The contribution from the inflaton
is purely Gaussian while the perturbations of the curvaton
field generate the non-Gaussianity. In this model, therefore,
the primordial potential takes the following form:

ΦðxÞ ¼ ϕðxÞ þ ψðxÞ þ fNLð1þ ΠÞ2ðψ2ðxÞ − hψ2iÞ: ð1Þ

Here, ϕ and ψ are uncorrelated Gaussian random fields
with power spectra that are proportional to each other, with
proportionality constant Π≡ Pϕ=Pψ . For this model, the
three- and four-point functions take the local form

ξð3Þϕ ðk1; k2; k3Þ ¼ fNL½P1P2 þ 5 perms:� þOðf3NLÞ; ð2Þ

ξð4Þϕ ðk1; k2; k3; k4Þ

¼ 2

�
5

6

�
2

τNL½P1P2P13 þ 23 perms:� þOðτ2NLÞ; ð3Þ

where we have defined Pi ≡ PΦðkiÞ, Pij ¼ PΦðjki þ kjjÞ,
and τNL ≡ ð6fNL=5Þ2ð1þ ΠÞ. Therefore, for Π ¼ 0, this
model reduces to the singly parametrized fNL model.
Large-scale halo bias is usually treated under the context

of the peak background split formalism [62], where one can
split the density field into a long-wavelength piece δl and a
short-wavelength piece δs as in

ρðxÞ ¼ ρ̄ð1þ δl þ δsÞ: ð4Þ

The local Lagrangian number density of halos, nðxÞ, at
position x is dependent on the local value of the long-
wavelength perturbation δl as well as the local small-scale
power σlocal8 ðxÞ. In the Gaussian case, since the small-scale
power is a constant, the Lagrangian bias is solely dependent
on the variation in the halo number density as a function of
the large-scale matter overdensity field [45,63].
When non-Gaussianity is present, the analysis under this

formalism is complicated by the fact that the large- and
small-scale density fluctuations are no longer independent.
This becomes evident in the τNL model when the long- and
short-wavelength pieces of the Gaussian potential fluctua-
tions are separated as follows:

ϕ ¼ ϕl þ ϕs; ψ ¼ ψl þ ψ s: ð5Þ

Plugging this into Eq. (1) will show that a few of the terms
contain both short- and long-wavelength pieces. Therefore,
this scenario needs more careful handling.
We start by establishing the Fourier-space relation

between the primordial potential and matter overdensity
field δðk; zÞ ¼ αðk; zÞΦðkÞ, where the form of the Poisson-
equation-based operator αðkÞ is given by [45]

αðk; zÞ ¼ 2k2TðkÞGðzÞ
3ΩmH2

0

: ð6Þ

Here, GðzÞ is the linear growth rate normalized such that
GðzÞ ¼ 1=ð1þ zÞ during matter domination, and TðkÞ is
the transfer function normalized to 1 at low k. Since this
operator is usually defined in terms of its action in Fourier
space, when applied to a real-space function such as ϕðxÞ,
we use the convention

αϕðxÞ≡
Z

d3k
ð2πÞ3 αðkÞe

ik·x

Z
d3yϕðyÞe−ik·y: ð7Þ

With this relation in hand, the contributions from both
the inflaton and the curvaton field to the long-wavelength
piece of the matter overdensity fluctuation can be written as

δlðxÞ ¼ α½ϕlðxÞ þ ψlðxÞ�; ð8Þ

where the remaining terms are either much smaller (fNLψ2
l)

or contain short-wavelength pieces. Similarly, within a
region of given large-scale overdensity δl and potential
½ϕl þ ψl�, the short-wavelength modes of the matter
overdensity field are

δs ¼ α½ϕs þ ψ sð1þ 2fNLð1þ ΠÞ2ψlÞ�; ð9Þ

where the white-noise term [fNLð1þ ΠÞ2ψ2
s], which is

spatially invariant when averaged over, has been disre-
garded, and the explicit x dependence of the terms has been
dropped for ease of notation.
Given the above split, it is evident that the mixing of the

short- and long-wavelength pieces induces a scale depend-
ence on the local small-scale power of the matter over-
density field:

σ2 ¼ α2fhϕ2
si þ hψ2

si½1þ 2fNLð1þ ΠÞ2ψl�2g
¼ σ̄2½1þ 4fNLð1þ ΠÞψl�; ð10Þ

where σ̄2 ¼ α2hψ2
sið1þ ΠÞ and we have, once again,

dropped any terms quadratic in ψl. The above expression
indicates that when there exists primordial non-
Gaussianity, the number density of halos varies not only
with the large-scale matter overdensity modes but also with
the local small-scale power. This can be accounted for in
the derivation of the Lagrangian halo bias as

δh ≡ δnh
nh

¼ bhδl þ βfð1þ ΠÞfNLψl; ð11Þ

where

bh ≡ ∂ ln nh
∂δl

and βf ≡ 2
∂ ln nh
∂ ln σ

¼ 2δcðbh − 1Þ: ð12Þ
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Given the above form, it is straightforward to calculate
the matter-halo (Pmh) and halo-halo (Phh) power spectra.
Using the fact that the inflaton and curvaton fields are
uncorrelated, and that their power spectra are proportional
to each other, one can derive

Pmhðk; zÞ ¼
�
bh þ βf

fNL
αðk; zÞ

�
Pmmðk; zÞ ð13Þ

and

Phhðk; zÞ ¼
�
b2h þ 2bhβf

fNL
αðk; zÞ þ β2f

ð5
6
Þ2τNL

α2ðk; zÞ
�
Pmmðk; zÞ;

ð14Þ

where Pmmðk; zÞ refers to the large-scale matter power
spectrum, i.e., the Fourier space variance in our large-scale
overdensity δl. From this point on, since we will primarily
be dealing with matter overdensities on linear scales, we
will label our large-scale overdensity with δm. On these
linear scales, we will continue to use a subscript of h when
referring to the halo power spectra.
The forecasts in this paper will, therefore, focus on

calculating survey sensitivity to both fNL and τNL under the
null hypothesis (fNL ¼ τNL ¼ 0), using both Pmh and Phh
as parametrized above. Although the parameter Π more
directly provides information on whether the primordial
potential is defined by two different fields, we choose not to
explore the parameter space in terms of ½fNL;Π�. This is
becauseΠ is defined as the ratio between two power spectra
and can realistically be infinite in the absence of the
curvaton field (Pψ ¼ 0).
Nevertheless, we can still attempt to probe the degrees of

freedom during inflation using the fact that the trispectrum
amplitude satisfies τNL ≥ ð6=5Þ2f2NL for multifield models.
This relation can be used to define the parameter

rNL ¼ ð5=6Þ2τNL − f2NL; ð15Þ

which can deviate away from zero in the presence of
additional degrees of freedom in the early Universe, depend-
ing on the value of Π. Hence, τNL can be thought of as a
probe of the extra degrees of freedom during inflation.

B. Redshift space distortions

Redshift maps of galaxies distributed in a given survey
volume are distorted by their peculiar velocities along the
line of sight. When the bias relation is linear, the redshift-
distorted halo overdensity is the sum of the biased matter
overdensity in real space and a correction from the peculiar
velocity of galaxies [64],

δh;RSDðxÞ ¼ b1δmðxÞ þ
∂

∂x

�
uðxÞ · x̂
aH

�
; ð16Þ

where u refers to the peculiar velocity of the galaxies and
x refers to the position of the observed galaxy. To simplify
the conversion to Fourier space, we use the late-time,
linearized, continuity-equation-based relation between the
peculiar-velocity field and matter-overdensity field,

uðk; zÞ ¼ aHf
ik
k2

δmðk; zÞ: ð17Þ

Here, f refers to the linear growth rate d ln G=d ln a. With
the above relation in hand, the Fourier transform of the
redshift space linear bias relation simplifies to

δh;RSDðkÞ ¼ ½bh þ fμ2k�δmðkÞ ð18Þ

where μk is defined to be êz · k̂, the cosine of the angle
between the line of sight and the wave vector k̂.
It is straightforward to extend this derivation to the bias

relation in Fourier space, for the τNL model of primordial
non-Gaussianity. The updated form of the halo overdensity
is simply

δh;RSDðkÞ ¼ ½bh þ fμ2k�δmðkÞ þ βfð1þΠÞfNLψlðkÞ; ð19Þ

where the same correction term is added to the original
form introduced in Eq. (11). The power spectra can
therefore be updated, under the effects of RSD, by
replacing every instance of bh in our previously derived
halo power spectra models with bh;RSD ¼ ½bh þ fμ2k�.

C. Extension to the gNL model

In this work, we primarily focus on τNL- and fNL-type
non-Gaussianities that have a clear correspondence
predicted in the case of single-field slow-roll inflation.
However, the forecasts in this paper can be extended to
another possible model, parametrized by gNL, in which the
primordial potential takes the following form:

ΦðxÞ ¼ ϕðxÞ þ gNL½ϕ3ðxÞ − 3hϕ2iϕðxÞ�: ð20Þ

For this single-field model, using the peak-background-
split formalism from above, one can show that

Pmhðk; zÞ ¼
�
bh;RSD þ βg

gNL
αðk; zÞ

�
Pmmðk; zÞ; ð21Þ

Phhðk; zÞ ¼
�
bh;RSD þ βg

gNL
αðk; zÞ

�
2

Pmmðk; zÞ ð22Þ

where βg ¼ 3∂ ln nh=∂fNL. Since the barrier crossing
prediction for βg does not agree well with N-body simu-
lations, previous forecasts on this model have used sim-
ulation-based fit functions for βg that are independent of
fNL under the null hypothesis (see, for example, Ref. [44]).
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When compared with the single-field fNL cosmology
[where τNL ¼ ð6=5fNLÞ2], one can see that the contribution
of gNL to the halo bias is the same as the contribution from
fNL ¼ ðβf=βgÞgNL. Therefore, when only a single popu-
lation of tracers is being considered to calculate Phhðk; zÞ,
the two parameters are indistinguishable. Since the fore-
casts in this paper are calculated using the cross-correlation
of a single galaxy tracer with kSZ tomography, under the
null hypothesis one can use these forecasts to obtain
constraints on gNL by expressing σgNL ¼ ðβf=βgÞσfNL [44].

D. The kSZ effect

The temperature fluctuation attributed to the kSZ in the n̂
direction in the sky is given by the integral [57]

Tðn̂Þ ¼ −TCMBσT

Z
dχ

ð1þ zÞ e
−τðχÞneðn̂; χÞn̂ · v; ð23Þ

where TCMB is the average temperature of the CMB today,
σT is the Thomson scattering cross section, and τ is
the optical depth to the scattering electron with velocity
v at comoving distance χ, and redshift z. The fluctuation
is also dependent on the electron number density
neðn̂; χÞ ¼ n̄eðχÞð1þ δeÞ.
To use this anisotropy data and derive redshift dependent

information, one must cross-correlate the kSZ data set with
a tracer of large-scale structure. Reference [57] shows that
most of the varied approaches to this technique are
equivalent to using a bispectrum of the form hδδTi to
reconstruct the radial-velocity field. In the next few sections
we summarize how this bispectrum is used to derive the
expected form of the signal and noise. For a more detailed
derivation of the results, see Ref. [57].

1. Bispectrum-based estimator

According to Ref. [57], the statistic that carries the kSZ
tomography signal is a 3-point function defined as

hδXðkÞδXðk0ÞTðlÞi ¼ Bðk; k0;lÞð2πÞ3δ3
�
kþ k0 þ l

χ�

�
;

ð24Þ

where δX refers to the overdensity of the tracer under
consideration, and all terms marked with a � refer to
quantities evaluated at redshift z�. It can be shown that the
kSZ is dominant in the squeezed limit [57], in which the
bispectrum takes the form

BðkL; kS;l; kLrÞ ¼ −
K�kLr
χ2�

PXvðkLÞ
kL

PXeðkSÞ; ð25Þ

where kL refers to the long-wavelength mode, kLr is its
component along the line of sight, kS refers to the
short-wavelength mode, and PXv and PXe refer to the

cross-spectra of the tracer overdensity field with the
velocity field and the electron density perturbations,
respectively. In the above equation we have also defined

K� ≡ −TCMBσTn̄e;0e−τðχ�Þð1þ z�Þ2; ð26Þ

where n̄e;0 is the mean electron density today.

2. Velocity reconstruction

As shown in Ref. [57], a quadratic estimator for the long-
wavelength velocity modes can be constructed by summing
over the pairs [δXðkSÞTðlÞ] of short-wavelength modes in
the galaxy and CMBmaps. This method is equivalent to the
optimal kSZ bispectrum estimator [57].
Given the form of BðkL; kS;l; kLrÞ in Eq. (25), the

signal-to-noise ratio (SNR) of the kSZ bispectrum in the
squeezed limit is

S
N

¼ V
Z

d3kL
ð2πÞ3

k2Lr
k2L

PgvðkLÞ2
Ptot
gg ðkLÞNvrðkLÞ

; ð27Þ

where Nvr is the noise associated with radial velocity
reconstruction. This noise is modeled as

NvrðkL; μLÞ ¼
2πχ2�
K2�

�Z
dkS

kSPgeðkSÞ2
Ptot
gg ðkSÞCtot

l¼kSχ�

�
−1
: ð28Þ

In the above two equations, we have explicitly used a
subscript of g to label our tracer X. Therefore, PggðkS; μSÞ
refers to the small-scale galaxy-galaxy auto-power spec-
trum, and PgeðkS; μSÞ is the small-scale galaxy-electron
power spectrum. Finally, μL refers to the angle of the
large-scale mode with respect to the line of sight, i.e.,
μL ¼ k̂L · n̂. However, it is important to note that μS and μL
are not independent of each other. The value of μS is
completely determined by kL, μL, and kS since the line-of-
sight components of the Fourier modes, kL and kS, are
equal to each other. The total noise in our velocity
reconstruction Nvv is then Nvv ¼ μ−2L Nvr .
Here and below, a subscript “g” will be used to denote

small-scale galaxy power spectra that appear in kSZ
tomography, in contrast to the subscript h that has so far
been used to label large-scale halo power spectra. While on
large scales we will assume that a single galaxy occupies
each halo, small-scale galaxy power spectra will be
calculated within the halo model including the halo
occupation distribution (HOD) [65,66]. The modeling
assumptions and parameter values used to construct the
small-scale spectra under this model can be found in
Appendix.
In our model of the velocity reconstruction noise, we also

include the effect of photo-z errors via a Gaussian kernel of
the form
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W2ðk; μÞ ¼ e−k
2μ2σ2ðzÞ=H2ðzÞ; ð29Þ

where σðzÞ is the redshift scattering of the galaxy survey
under consideration. This induces a μS ¼ k̂S · n̂ depend-
ence on the small-scale galaxy-galaxy and galaxy-electron
spectra. Further details on the noise in the kSZ velocity
reconstruction due to photo-z errors can be found
in Ref. [57].
Finally, based on the linear relation between matter

overdensities and peculiar velocities [Eq. (17)], the noise
in the reconstructed density perturbation field is

Nrec
mmðkL; μÞ ¼

k2L
ðfaHÞ2�

NvvðkL; μÞ: ð30Þ

It is important to note that the noise is proportional to the
magnitude k2L. This implies that the reconstruction noise
is lowest on the largest scales, which corresponds to the
regime where cosmic variance is a dominant noise source.
Therefore, it is on these scales that we would expect this
independent probe of large-scale structure to significantly
contribute to sample variance cancellation.

III. EXPERIMENT SPECIFICATIONS

The primary set of forecasts presented in this paper
consider two next-generation large-scale structure experi-
ments, DESI and VRO. VRO is an example of a high
number density galaxy survey with photometric redshifts.
In contrast, DESI is a low number density survey with
precise, spectroscopic redshifts. Our forecasts assume a
cross-correlation of these data sets with kSZ data from
CMB-S4, as well as data from a configuration similar to
that of SO, to test and display the effects of sample variance
cancellation.

A. Large-scale structure experiments

For our forecasts on VRO, we use the specifications for
the LSST gold sample as prescribed in the LSST science
book [58]. The galaxy number density for this data set, per
arcmin2, is given by

nðzÞ ¼ n0
1

2z0

�
z
z0

�
2

expð−z=z0Þ; ð31Þ

with z0 ¼ 0.3 and n0 ¼ 40 arcmin2. At z ¼ 1, this corre-
sponds to a galaxy number density of approximately
ngal ¼ 10−2 Mpc−3. The photometric redshift error for this
survey is

σz ¼ 0.03ð1þ zÞ; ð32Þ

which corresponds to a redshift dispersion of 0.06 at z ¼ 1.
Finally, the bias for this sample is also specified to be

bðzÞ ¼ 0.95=GðzÞ; ð33Þ

with the growth factor normalized such that Gðz ¼ 0Þ ¼ 1.
This corresponds to a bias of 1.6 at a redshift of 1. For
DESI, we make a single forecast assuming a galaxy number
density of ngal ¼ 10−4 Mpc−3 with a Gaussian halo bias of
1.6 at redshift 1, in accordance with the specifications
provided in the DESI white paper [60].
To ensure that the small-scale power spectra generated

based on the HOD model are consistent with the specifi-
cations of the experiments under consideration, we use
the following prescription. In the HOD model, the galaxy
sample is specified by imposing a particular threshold
stellar mass mthresh⋆ of observable galaxies. Since the
remaining parameters defining the galaxy distribution for
Pgg and Pge are dependent on this parameter, we match the
value of mthresh⋆ so that the total predicted galaxy number
density matches the number density expected for a given
experiment. The details on these power spectra’s depend-
encies on ngal and mthresh⋆ can be found in Appendix.

B. CMB experiments

Most of our forecasts are based on the planned CMB-S4
experiment specifications. Although the exact instrument
specifications are still pending, we assume an effective
beam with a full width at half maximum (FWHM) of
1.5 arcmin and a sensitivity of 1.0 μK-arcmin, which is one
of many possible configurations. The effects of atmos-
pheric noise are not included since they are expected to be
subdominant to the instrument and kSZ contributions at
the relevant high multipoles of l > 3000. The final set of
contributions to the CMB spectrum that enters Eq. (28) can
be written as

Ctot
l ¼ CTT

l þ CkSZ-late-time
l þ Nl: ð34Þ

Here, CTT
l is the lensed CMB temperature power spectrum,

CkSZ-late-time
l is the low redshift contribution to kSZ, and

finally Nl is the instrumental noise power spectrum of the
CMB map, which is modeled as

NðlÞ ¼ s2 exp

�
lðlþ 1Þθ2FWHM

8 ln 2

�
; ð35Þ

where s labels the sensitivity of the instrument and θFWHM
is the resolution. We also make a forecast for a configu-
ration with noise and beam comparable to SO. To make this
estimate we use a beam with a resolution of 1.5 arcmin and
an effective white noise level of 5.0 μK-arcmin, matching
the setup in Ref. [43].

IV. FORECAST SETUP

In this section, we briefly describe the construction of the
information matrix and the relevant systematics, focusing
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on the methodology used for forecasts on the cross-
correlated data sets. We then establish the models and
parameter space over which the information matrix is
constructed.
For our forecast, the measured modes are the large-scale

modes of ½vðkÞ; δhðkÞ� where fvðkÞg are the kSZ velocity
reconstruction modes and fδhðkÞg are large-scale halo
overdensity modes. The halo-overdensity modes are
obtained from the survey data set assuming that each halo
is occupied by exactly one galaxy. Therefore, the signal and
noise matrices are

Sðk; μ; zÞ ¼
�
Pvv Pvh

Pvh Phh

�
; ð36Þ

Nðk; μ; zÞ ¼
�
Nvv 0

0 Nhh

�
: ð37Þ

The covariance matrix of our measured signal is the sum of
the above two matrices,

Cðk; μ; zÞ ¼ Sðk; μ; zÞ þNðk; μ; zÞ: ð38Þ

The information matrix at redshift bin z� is, therefore,

Fab¼
V
2

Z
d3k
ð2πÞ3Tr½CðkÞ;aCðkÞ

−1CðkÞ;bCðkÞ−1�

¼V
2

Z
k2dkdμ
ð2πÞ2 Tr½CðkÞ;aCðkÞ−1CðkÞ;bCðkÞ−1�; ð39Þ

where we have accounted for the fact that the covariance-
matrix elements are only dependent on k and μ, with
the latter being induced by the kSZ-based velocity
reconstruction and the inclusion of photo-z errors. We
assume that the integral can be performed from a lower
limit kmin ≡ π=V1=3, restricted by the survey volume V, to
an upper limit kmax ≈ 10−1 Mpc−1.
The final models for Phhðk; μ; zÞ and Pvhðk; μ; zÞ, as they

appear in the covariance matrix, are

PvhðkÞ ¼
bvfaH

k

�
bh;RSD þ βf

fNL
αðkÞ

�
PmmðkÞ; ð40Þ

PhhðkÞ ¼
�
b2h;RSD þ 2bh;RSDβf

fNL
αðkÞ þ β2f

ð5
6
Þ2τNL
α2ðkÞ

�
PmmðkÞ;

ð41Þ

where bh;RSD ¼ ½bh þ fμ2�, and the explicit dependence of
some terms on z and μ have been dropped for ease of
notation. These models are a direct result of the derivations
in Sec. II.

To model the final signal term Pvvðk; zÞ, we use the
relation between the velocity and matter power spectra
introduced in Eq. (17),

Pvvðk; zÞ ¼
�
bvfaH

k

�
2

Pmmðk; zÞ: ð42Þ

Here, we have introduced the optical-depth degeneracy
parameter bv. This parameter, with an expected value
of 1.0, is introduced to account for the fact that kSZ data
allow for the measurement of the product of the Pge and
Pgv, which means that a constant factor of scale could be
exchanged between the two while keeping the signal
unchanged.
In summary, the measurement covariance matrix

Cðk; μ; zÞ is constructed based on the above three models
for Phhðk; μ; zÞ, Pvhðk; μ; zÞ, and Pvvðk; zÞ. This is used to
construct a 4 × 4 information matrix over the parameter
space spanned by ½bh; bv; fNL; τNL� with the fiducial values
set to [1.6, 1.0, 0.0, 0.0], respectively. We invert this matrix
and marginalize over the parameters bh and bv to obtain
error estimates for fNL and τNL. We also experiment with
marginalizing over cosmological parameters but find that
these do not significantly change our error estimates.
It is important to note that the value of Π, under

the curvaton model constraint τNL ¼ ð6fNL=5Þ2ð1þ ΠÞ,
is not well defined for the assumed null hypothesis,
fNL ¼ τNL ¼ 0. Therefore, in our forecasts, we assume
that the models presented in Eq. (42) represent one
possible parametrization of non-Gaussian power spectra
under a multifield model of inflation. That is, we vary
the parameters τNL and fNL independently, around their
fiducial values, to construct our information matrix and
make our forecasts. These estimates are propagated to
quote a constraint for the parameter rNL introduced
in Eq. (15).
The noise spectrum for the velocity reconstruction

term Nvv is given by μ−2L Nvr, where the form of Nvr
was introduced in Eq. (30). For halos, we assume that the
noise is given primarily by the galaxy shot noise along with
photo-z errors. Photo-z errors can be implemented for halos
by a convolution of the halo density field with a Gaussian
kernel in the radial direction, the form of which was
introduced in Eq. (29). The halo noise power spectrum
is then

Nhhðk; μÞ ¼
1

W2ðk; μÞngal
; ð43Þ

where we have directly used the galaxy number density ngal
based on our assumption that the galaxy distribution has a
one-to-one correspondence with the distribution of halos,
on large scales.
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V. FORECAST RESULTS

In this section we provide forecasts for different exper-
imental configurations. In the first part we analyze two
different baseline configurations and provide estimates
based on our assumed specifications on the galaxy survey
and CMB measurement instrumentation. We then consider
one of these baselines and vary each of the experimental
parameters, in isolation, to display the effects of these
variations on our ability to constrain fNL and τNL.

A. Baseline forecasts

To establish the parameter dependencies of our forecast,
we first display the results from our information matrix
analysis for the two sets of baseline experiments described
in Sec. III. Their instrumental specifications have been
summarized in Table I. Baseline 1 specifications were
chosen to resemble the experimental configuration of VRO
and CMB-S4. Similarly, baseline 2 corresponds to the
combination of DESI and an SO-like CMB experiment.
Our forecasts on the aforementioned baseline configu-

rations have been summarized in Table II. This table also
includes constraints on the parameter rNL, around a fiducial
value of 0, corresponding to the assumed null hypothesis.
The corresponding error ellipses for fNL and τNL are
displayed in Fig. 1. To simplify our calculations, we
assume a cubic geometry for the survey volume and for
our kSZ formalism. Therefore, these forecasts do not
include the effects of the time evolution of power spectra
and biases on the light cone. For a complementary kSZ
formalism using maps on the light cone, see, e.g.,
Refs. [67–69].
For the baseline 1 experiments, the improvement factor

in our ability to measure fNL and τNL, arising from the
cross-correlation with kSZ data, is 10 and 195, respectively.
For baseline 2, the improvement is 2 and 5 for the two
parameters, respectively. In both cases, the improvement
factor in the correlation coefficient between the two

parameters is much higher. This is explained by the fact
that the cross-correlation of the two data sets allows for the
inclusion of the PvhðkÞ signal, which offers an independent
constraint for fNL.

B. Experiment parameter variations

In order to assess which experimental limitations have
the greatest impact on measurements of primordial non-
Gaussianity, we isolate the effects of certain experimental
parameters on our ability to constrain fNL and τNL by
varying each parameter in isolation. For the following
forecasts, we assume the baseline 1 configuration, the
specifics of which are provided in Table II.
To highlight the scales that contribute most to the

signal, we plot both σfNL and στNL as a function of the
smallest measurable Fourier mode for our galaxy survey.
This corresponds to varying the largest recoverable k
mode from the survey volume V, directly impacting the
value of kmin as it appears in Eq. (39). These plots
are displayed in Fig. 2. In both cases, the effects of
sample variance cancellation become evident below
k ≈ 2 × 10−2 Mpc−1. This behavior can be explained
by comparing the model for PvvðkÞ [Eq. (42)] to the
assumed model for Nvv [derived from Eq. (28)]. These
models indicate that the signal-to-noise ratio of our
velocity reconstruction is inversely proportional to k2.
Therefore, on small scales, we are only dependent on the
signal from PhhðkÞ to constrain both fNL and τNL, causing
the errors to coincide across the estimates from the single
(galaxy) data set and the cross-correlated (galaxy-kSZ)
data sets. In contrast, the higher SNR on larger scales
allows us to constrain the non-Gaussian parameters using
the models for both PmhðkÞ and PhhðkÞ. Therefore, on
these larger scales, the effects of sample variance can-
cellation are on full display.
To explore, more carefully, the information contained

in the signal across both cases on large scales, we also

TABLE I. Baseline configurations for the cross-correlated
CMB and LSS experiments. Values for baseline 1 match the
specifications of the VRO survey and CMB-S4. The values for
baseline 2 are similar to those expected for DESI and SO. The
survey volumes were kept the same across the two forecasts to
emphasize the dependence of the forecasts on galaxy density and
photo-z errors.

Baseline 1 Baseline 2

Redshift z 1.0 1.0
Survey volume V 100 Gpc3 100 Gpc3

Halo bias bh 1.6 1.6
Galaxy density ngal 10−2 Mpc−3 2 × 10−4 Mpc−3

Photo-z error σz 0.06 � � �
CMB resolution θFWHM 1.5 arcmin 1.5 arcmin
CMB sensitivity s 1 μK-arcmin 5 μK-arcmin

TABLE II. Information-matrix-based estimates on the errors
across the two parameters, fNL and τNL. The results of error
propagation to rNL are also included. To arrive at these estimates,
a mean value of 0 was chosen for both fNL and τNL, while the
halo bias was defined for each experiment as shown in Table I.

Baseline 1 Baseline 2

fNL error σgalfNL
5.8 6.0

σkSZþgal
fNL

5.9 × 10−1 3.1

τNL error σgalτNL
2.9 × 102 3.6 × 102

σkSZþgal
τNL

1.5 6.9 × 101

rNL error σgalrNL
2.0 × 102 2.5 × 102

σkSZþgal
rNL

1.0 4.8 × 101
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display the dependence of σfNL and στNL on kmin when there
is no contamination in our signal coming from shot noise,
photo-z errors, and CMB instrument noise. These plots are
displayed in Fig. 3.
At large values of k, we no longer see the “Galaxy” curve

coinciding with the “Galaxy+kSZ” results. This is a
consequence of the much lower velocity reconstruction
noise in the absence of shot noise. However, it is clear that
an extension of the curves to smaller scales would reveal
behavior similar to the curves in Fig. 2, as a result of cosmic
variance. The behavior on larger scales is a lot more
noteworthy for this setup. In the case of σfNL , we see an
inflection point at k ≈ 3 × 10−3 Mpc−1, after which the
slope of the curve gets closer to zero. In contrast, when
the galaxy survey data are combined with velocity
reconstruction data, the forecast on σfNL decreases steadily
below k ≈ 10−3 Mpc−1. This indicates that the large-scale
modes contain a significant amount of data that allow us to

better constrain fNL with the cross-correlated data sets. In
contrast, the “Galaxy” estimate of στNL never experiences
the inflection point seen in the corresponding σfNL curve,
within the range of kmin plotted. However, the benefit of
cross-correlating the data sets is still evident in the relatively
steeper decrease in στNL on larger scales. It is also important
to note that when the two data sets are combined, the error in
τNL decreases more steeply than the error in fNL; i.e., on the
largest scales στNL reaches a minimum of ∼10−3 whereas
σfNL is only improved to ∼10−2.
The difference in the behavior of σfNL and στNL as a

function of scale kmin can be understood by analyzing the
non-Gaussian model for PhhðkÞ [Eq. (42)]. The contribu-
tion of τNL to this signal comes from a term that is
dependent on αðkÞ−2, or equivalently on k−4 [where
αðkÞ is defined in Eq. (6)]. In contrast, the contribution
of fNL to this signal comes from a term that scales as k−2.
We conclude that, because the PhhðkÞ signal is dominated

FIG. 1. Forecasted error ellipses on fNL and τNL at 68% and 95% confidence intervals, after marginalizing over bh and bv. Left: results
when only galaxy survey data are considered. Right: results when velocity reconstruction data are added to the analysis. Each color
corresponds to one of the baselines defined in Table I.

FIG. 2. Left: σfNL as a function of kmin for baseline 1. Right: στNL as a function of kmin for baseline 1. The lower bound for k, on the left
of the plots, is defined by the survey volume V. When the two data sets are cross-correlated, the error in fNL and τNL drastically
decreases below k ≈ 2 × 10−2 Mpc−1 (in comparison to the “Galaxy” case), owing to the low noise in velocity reconstruction on large
scales.
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by the τNL contribution, τNL is constrained much better than
fNL on larger scales. Furthermore, this difference is most
evident in the “Galaxy+kSZ” case because an improved
constraint on fNL more directly translates to an improved
constraint on τNL due to the inclusion of the Pmh signal.
It is precisely this dependence on the large scales that

explains the behavior of the forecasts under varying galaxy
number density ngal. The dependence of σfNL and στNL on
varying values of ngal has been plotted in Fig. 4. The solid
lines correspond to results derived based on the exper-
imental configuration corresponding to baseline 1 in
Table I, including shot noise and photo-z errors. The
dashed lines represent results derived from the same setup,
with only the survey volume V updated to 180 Gpc3. For
clarity, the fiducial value of bh was held constant.
When considering only the galaxy survey data, the

results displayed on the left in Fig. 4 show that although
the estimates improve slightly with decreasing shot noise,

the cosmic variance limit is quickly reached for both our
estimates of fNL and τNL, irrespective of the assumed
survey volume. This is because using galaxy survey data
alone forces us to constrain both fNL and τNL using the
model for PhhðkÞ in isolation. Furthermore, as seen in
Fig. 3, the slope in the σfNL error is closer to zero with the
inclusion of low k modes. Therefore, although the lower
shot noise (higher ngal) allows us to probe larger and larger
scales, the ability to constrain the non-Gaussian parameters
eventually plateaus, as is seen in our results.
However, when the galaxy survey data are cross-

correlated with the kSZ data, the lowered shot noise has
a much more pronounced impact on both σfNL and στNL
(right of Fig. 4). In fact, the effect of the higher ngal on στNL
is much steeper, with the results indicating that at high
enough galaxy number density, one can constrain τNL better
than fNL. This is because a higher number density allows
for the use of more signal from large-scale k modes. When

FIG. 3. Left: σfNL as a function of kmin for baseline 1. Right: στNL as a function of kmin for baseline 1. For both the above sets of data we
assume that the halo shot noise is zero and there are no photo-z errors. The lower bound for k, at the left end of the plots, is defined by the
survey volume V. The behavior in this unrealistic case matches the results in Fig. 2, where once again we see a sharp decrease in the error
in fNL and τNL when the two data sets are cross-correlated due to high SNR in the velocity reconstruction on larger scales.

FIG. 4. Left: σfNL and στNL as a function of ngal, assuming that the galaxy data are used in isolation. Right: σfNL and στNL as a function
of ngal, assuming that the galaxy data are cross-correlated with the kSZ data set. The solid (dashed) lines correspond to baseline 1 with a
survey volume of 100 Gpc3 (180 Gpc3). Galaxy density not only defines the shape of the small-scale power spectra but also the amount
of shot noise in galaxy survey data. The sharp decrease in both σfNL and στNL for the cross-correlated data set (right) is due to the fact that
a high galaxy number density allows one to probe larger scales due to the lowered galaxy shot noise.
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cross-correlating the two data sets, the inclusion of these
modes allows for a steady improvement in the ability to
measure fNL in the absence of noise, as shown in Fig. 3.
This improved constraint on fNL translates into a better
measurement of τNL. This, combined with the difference in
the contribution of each of these terms to the Phh signal,
allows for a tighter constraint on τNL than fNL when larger
scales can be included as a result of lower shot noise.
The threshold value of ngal required to measure τNL with

a higher sensitivity than fNL is dependent on the survey
volume. The results from the two different survey volumes,
presented on the right of Fig. 4, indicate that the two
uncertainty curves for fNL and τNL intersect at lower values
of ngal for larger survey volumes, as expected. While a
survey with V ¼ 100 Gpc3 (under the baseline 1 configu-
ration) can only achieve στNL ≲σfNL with ngal≈10−1Mpc−3,
increasing the survey volume to V ¼ 180 Gpc3 allows
for the sensitivities to intersect at a more achievable
ngal ≈ 3 × 10−2 Mpc−3.
To establish the dependence of these errors on CMB

instrumental noise [Eq. (35)], we also calculate the values
of σfNL and στNL under varying values of sensitivity s and
resolution θFWHM, independently. In both these calculations
we assume the baseline 1 configuration for all other
parameters. In our results we find that varying the sensi-
tivity from 0.25 μK-arcmin to 14 μK-arcmin approxi-
mately increases our error in fNL by 3.1x and τNL by
6.3x. In contrast, the dependence of the errors on the CMB
telescope resolution is more pronounced. When the reso-
lution is varied from 0.5–10 arcmin, σfNL steadily increases
by a factor of 9.8. Similarly, the forecasted error in the
estimation of τNL increases steeply by a factor of 100 for the
same variation in CMB telescope resolution.
Finally, the values of σfNL and στNL are also calculated for

varying values of photo-z error σz. The value of σz is varied
from 0.0 to 1.0, which approximately results in an increase
in σfNL by a factor of 3.2 and an increase in στNL by a factor
of 2.5. This minimal effect of varying σz is explained by the
scale dependence of the fNL and τNL terms that makes the
constraints most dependent on the largest scales measured.

VI. CONCLUSIONS

The kSZ tomography is a powerful probe of the large-
scale matter distribution that will be accessible with the
next-generation CMB and large-scale structure surveys.
Cross-correlating this data set with galaxy distribution data
from upcoming large-scale structure surveys, such as the
VRO survey and DESI, leads to sample variance cancella-
tion in the measurement of galaxy bias and other quantities.
In this paper, we have calculated the sensitivity with which
both fNL and τNL can be measured using this method of
cross-correlation. We also display the improvement coming
from the addition of the kSZ data set and identify the

experimental factors that most prominently contribute to
better sensitivity in our measurements.
The statistical power of this method is most evident at

large scales (k < 10−2 Mpc−1), arising from the low noise
in the velocity reconstruction from kSZ data. For a cross-
correlation between VRO survey data and CMB-S4,
we find that one can reach σfNL ≈ 0.59 and στNL ≈ 1.5
and improvement factors of 10 and 195, respectively, in
comparison to estimates that use VRO data alone, without
internal sample variance cancellation. Similarly, for the
combination of DESI and a SO-like survey, we calculate
σfNL ≈ 3.1 and στNL ≈ 69, with corresponding improvement
factors of 2 and 5, respectively. This forecast includes
marginalization over all relevant parameters and realistic
photo-z errors as well as redshift space distortions. In our
analysis of the experimental parameters which most heavily
influence our sensitivity to measuring the scale-dependent
bias, we find that the best results are achieved when
the galaxy survey data are obtained from a large survey
volume, with well-measured large-scale modes, in combi-
nation with a high galaxy number density count.
Furthermore, we expect that binning the galaxy survey
data by mass, population, or redshift, to achieve internal
sample variance cancellation, will further improve sensi-
tivity to both τNL and fNL, following the analysis in [43,44].
In our work we have used a simplified 3-dimensional

box geometry to illustrate the properties of the method
and highlight the potential to measure signatures of non-
Gaussianity using kSZ tomography data. We assume a
fixed, functional form for βf [Eq. (12)] to explicitly display
forecasts on fNL and τNL alone. However, the dependence
of βf on bh may require further simulation-based analysis
for a non-Gaussian universe (see Ref. [70]). Although there
are other modeling assumptions intrinsic to our calculation
of velocity reconstruction noise, such as the assumed
distribution of electron gas within halos, we expect a
marginalization over these model parameters to have a
minimal impact on our sensitivity to fNL and τNL. In these
forecasts we also account for optical depth degeneracy via an
added parameter in our information matrix; however, we
expect that the measurements of electron profiles from fast-
radio burst searches [71], as well as cross-correlation
between radial and transverse velocities (the latter recon-
structed from so-called “moving-lens” tomography [72–74])
can potentially mitigate this bias in the near future. Although
the inclusion of GR effects could lead to degeneracies with
the existing fNL and τNL parameters (explored for the fNL
case in Refs. [75,76]), we expect the effects of these
degeneracies to be minimized by redshift binning or the
consideration of multiple populations of halos.
We find that our forecasts compare well with other

attempts at constraining local non-Gaussianity under sam-
ple variance cancellation, using different tools for cross-
correlation. Our constraints on both fNL and τNL are
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slightly better than (within a factor of ∼2 and ∼3,
respectively) the forecasts presented in Ref. [44], where
sample variance cancellation was achieved by considering
multiple populations of halos, assuming a LSST-type
survey. Moreover, cross-correlation of reconstructed
CMB lensing potential and galaxy clustering can also
probe local types of non-Gaussianities, as shown in
Ref. [77]. Their forecast on fNL, considering the survey
combination of LSST and CMB-S4, with redshift binning,
is comparable to the value presented in this paper. However,
such forecasts would be sensitive to lensing reconstruction
biases, which are likely more detrimental [78] than similar
biases in kSZ tomography [69]. Including the CMB-lensing
or moving-lens tomography [72–74], for additional sample
variance cancellation from transverse modes, could lead to
some improvement, the analysis of which is left to future
work. Ultimately, our forecasts in this paper indicate that
kSZ tomography is a prominent tool for cross-correlation
physics, allowing for impressive constraints on the PNG
parameters in the curvaton scenario.
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APPENDIX: HALO MODEL

For the forecasts in this paper, we use the halo model to
calculate the nonlinear power spectra involving electron
and galaxy fields. These power spectra are used to calculate
the noise in our velocity reconstruction from the measured
kSZ anisotropies. In this section, we present a short
overview of this modeling methodology and present our
modeling assumptions.
The halo model is dependent on the fundamental

assumption that all the dark and baryonic matter is bound
in halos of varying masses and density profiles. The
correlation function for the matter-density or galaxy-
density fluctuations then receives two contributions, one
which accounts for the clustering of distinct halos (“two-
halo” term) and another which accounts for the clustering
within each individual halo (“one-halo” term). A review of
this model can be found in Ref. [79].

1. Dark matter

Although the nonlinear power spectrum of dark matter
clustering is not directly used in the velocity reconstruction
estimates, we make assumptions on the clustering of these

halos that define the form of the electron and galaxy power
spectra. The specifics are described below.
Given the linear matter power spectrum PmmðkÞ and the

cosmological matter density ρm (at the redshift under
consideration), the rms variance of mass within a sphere
of radius R that contains massm ¼ 4πρmR3=3 is defined as

σ2ðm; zÞ ¼ 1

2π2

Z
∞

0

dk k2 Pmmðk; zÞW2ðkRÞ: ðA1Þ

Here, R ¼ RðmÞ, and WðkRÞ is the window function in
Fourier space:

WðkRÞ ¼ 3½sinðkRÞ − kR cosðkRÞ�
ðkRÞ3 : ðA2Þ

This is then used to define the halo mass function,

nðm; zÞ ¼ fðσ; zÞ ρm
m2

d ln½σðm; zÞ−1�
d lnðmÞ ; ðA3Þ

wherem is the halo mass. This quantity denotes the number
density of halos per mass interval, at a specific redshift z.
For our calculations, we assume the Tinker collapse
fraction [80]:

fðσ; zÞ ¼ A

��
σ

b

�
−a

þ 1

�
e−c=σ

2

; ðA4Þ

with A ¼ 0.186, a ¼ 1.47, b ¼ 2.57, and c ¼ 1.19. The
linear halo bias, consistent with the above collapse fraction,
is assumed to be [81]

bhðνÞ ¼ 1þ 1ffiffiffi
a

p
δc

� ffiffiffi
a

p ðaν2Þ þ ffiffiffi
a

p
bðaν2Þ1−c

−
ðaν2Þc

ðaν2Þc þ bð1 − cÞð1 − c=2Þ
�
; ðA5Þ

where, in this model, a ¼ 0.707, b ¼ 0.5, c ¼ 0.6, and we
have defined νðm; zÞ ¼ δc=σðm; zÞ. Note that these sets of
equations satisfy the consistency relation:

Z
∞

−∞
d ln mm2nðm; zÞ

�
m
ρm

�
bhðm; zÞ ¼ 1: ðA6Þ

2. Galaxies

The distribution of galaxies inside each halo is modeled
according to the HOD [82]. Under this model, we assume
separate distributions for central and satellite galaxies, the
forms of which are determined in [65].
The number of central galaxies in a halo is either 0 or 1.

They are always located exactly at the halo’s center. The
mean number of centrals in a halo of massm is fixed by the
amount of stellar mass in each halo and is given by
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N̄cðmÞ ¼ 1

2
−
1

2
erf

�
log10ðmthresh⋆ Þ − log10ðm�ðmÞÞffiffiffi

2
p

σlog m�

�
: ðA7Þ

Here,m�ðmÞ is the stellar mass in each halo of massm, and
it is modeled according to the form provided in Eq. (13) of
Ref. [65]. The galaxy sample is defined by imposing a
threshold stellar mass mthresh⋆ of observable galaxies. This
model assumes a log normal distribution for stellar mass in
a fixed halo of massm, with a constant redshift independent
scatter σlogm�. For our calculations we set the value of this
scatter to 0.2.

The mean number of satellite galaxies in a halo of mass
m is given by

N̄sðmÞ ¼ N̄cðmÞ
�

m
msat

�
αsat

exp

�
−mcut

m

�
: ðA8Þ

The free parameters in this model, msat, αsat, and mcut,
depend on the choice of mthresh⋆ . Their dependence on the
threshold stellar mass is consistent with the “SIGMOD1”
model in Ref. [65] at redshift z ¼ 1.
The total galaxy-galaxy power spectrum is the sum of the

one-halo and two-halo contributions, which are defined as

P1h
gg ðk; zÞ ¼

Z
∞

−∞
d ln m

mnðm; zÞ
n2gal

½2hNcðmÞNsðmÞiucðkÞusðkjm; zÞ þ hNsðmÞðNsðmÞ − 1Þiusðkjm; zÞ2�;

P2h
gg ðk; zÞ ¼ Pmmðk; zÞ

�Z
∞

−∞
d ln mmnðm; zÞbhðm; zÞ N̄cðmÞucðkÞ þ N̄sðmÞusðkjm; zÞ

ngal

�
2

; ðA9Þ

where ngal is the mean number of galaxies in the simulated
survey. It is dependent on the chosen value of mthresh⋆ and is
defined as

ngal ¼
Z

∞

−∞
d ln mmnðm; zÞ½N̄sðmÞ þ N̄cðmÞ�: ðA10Þ

Furthermore, ucðkÞ and usðkjm; zÞ represent the Fourier
space distribution profiles of centrals and satellite galaxies,
respectively. Since we assume that the centrals are at exact
halo centers, we set uc ¼ 1. We assume that the satellite
galaxies follow a NFW profile:

ρðrjm; zÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

; ðA11Þ

where the scale radius rs is related to the virial radius rvir
via the concentration parameter c ¼ rvir=rs. The mass and

redshift dependence in this distribution arises from the
assumed model for the concentration parameter:

cðm; zÞ ¼ A

�
m

2 × 1012 h−1 M⊙

�
α

ð1þ zÞβ; ðA12Þ

where A ¼ 7.85, α ¼ −0.081, and β ¼ −0.71 [57].
Finally, the expectation values hNcðmÞNsðmÞi and

hNsðmÞðNsðmÞ − 1Þi, appearing in Eq. (A9), are defined
to be N̄sðmÞ and N̄sðmÞ2=N̄cðmÞ, respectively, assuming
NcðmÞ and NsðmÞ are maximally correlated.

3. Electrons

The electron distribution is modeled under the
assumption that all the electron gas is bound within dark
matter halos. Given this assumption, the auto-power
spectrum of the electron gas is the sum of a one-halo
and a two-halo contribution, each of which is defined as

P1h
eeðk; zÞ ¼

Z
∞

−∞
d ln mmnðm; zÞ

�
m
ρm

�
2

jueðkjm; zÞj2;

P2h
eeðk; zÞ ¼ Pmmðk; zÞ

�Z
∞

−∞
d ln mmnðm; zÞ

�
m
ρm

�
bhðm; zÞueðkjm; zÞ

�
2

: ðA13Þ

Here, ueðkjm; zÞ refers to the Fourier-space distribution
profile of the electron gas, which we assume to be a
function of halo mass m and redshift z only. We use the
AGN model-based fit function for the real-space mass
distribution of the electron gas [83],

ρgas ¼
Ωb

Ωm
ρcðzÞρ̄0

�
x
xc

�
γ
�
1þ

�
x
xc

�
α
�
−β−γ

α

; ðA14Þ

where we have dropped the explicit dependence of some of
the above parameters on mass and redshift for ease of
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notation. In the above model from Ref. [83], x ¼
r=R200ðm; zÞ where R200 is the radius at which the dark
matter halo reaches a density of 200ρcðzÞ. Furthermore, we
have γ ¼ −0.2 and xc ¼ 0.5. The remaining parameters
ρ̄0ðm; zÞ; αðm; zÞ, and βðm; zÞ are fitted with a power law in
halo mass and redshift:

A ¼ Ax
0

�
m

1014 M⊙

�
αxmð1þ zÞαxz ; ðA15Þ

where the parameters for the AGN model used in this paper
have been taken from Table 2 of Ref. [83].
Given the auto-power spectra defined in Eqs. (A9)

and (A13), the cross-spectra can be calculated as defined
in Appendix B of Ref. [57]. One example set of spectra,
constructed based on an mthresh⋆ value that generates a
galaxy number density similar to that of VRO [58], has
been shown in Fig. 5.

4. kSZ model

The late-time kSZ contribution to the CMB power
spectrum [labeled CkSZ-late-time

l in Eq. (34)] is also modeled

based on the above power spectra. The kSZ angular power
spectrum at large values of l, where its contribution to the
CMB spectrum is the largest, is dominated by the power
spectrum of the transverse momentum field Pq⊥ðkÞ and is
given by [84]

CkSZ
l ¼ ðσTn̄e;0Þ2

2

Z
dχ
χ2a4

e−2τPq⊥
�
k ¼ l

χ
; χ

�
: ðA16Þ

We calculate the power spectrum of the transverse momen-
tum field based on the form provided in [85],

Pq⊥ðk; zÞ ¼ ðfHaÞ2
Z

∞

−∞

d3k0

ð2πÞ3 Peeðjk − k0j; zÞ

×
kðk − 2k0μ0Þð1 − μ02Þ
k02ðk2 þ k02 − 2kk0μ0Þ : ðA17Þ

A plot of the computed CkSZ
l used in the forecasts has been

presented in Fig. 6.
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