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We propose a model of inflation driven by the relaxation of an initially Planckian cosmological constant
due to diffusion. The model can generate a (approximately) scale invariant spectrum of (adiabatic)
primordial perturbations with the correct amplitudes and red tilt without an inflaton. The inhomogeneities
observable in the cosmic microwave background (CMB) arise from those associated with the fundamental
Planckian granularity that are imprinted into the standard model Higgs scalar fluctuations during the
inflationary phase. The process admits a semiclassical interpretation and avoids the trans-Planckian
problem of standard inflationary scenarios based on the role of vacuum fluctuations. The deviations from
scale invariance observed in the CMB are controlled by the self-coupling constant of the Higgs scalar of the
standard model of particle physics. The thermal production of primordial black holes can produce the
amount of cold dark matter required by observations. For natural initial conditions set at the Planck scale
the amplitude and tilt of the power spectrum of perturbations observed at the CMB depend only on known
parameters of the standard model such as the self-coupling of the Higgs scalar and its mass.
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I. INTRODUCTION

Planck mass square, m2
p, is the natural order of magni-

tude of the cosmological constant, yet its observed value is
about 10−120 times that theoretical expectation. Such a huge
discrepancy, referred to as the cosmological constant
problem, is perhaps the most severe hierarchy problem
of modern physics. The cosmological constant problem is
often separated into two (possibly independent) questions:
first, why is the cosmological constant so small in Planck
units, and second, why does it have that special value?
A related natural question that could connect the two is
whether dark energy (the cosmological “constant”) could
actually change during the evolution of the universe.
Namely, would it be possible to start with a large cosmo-
logical constant that dynamically evolves to its present
value? If one writes the energy momentum tensor of regular
matter and includes the dark energy component as
TTOTAL
ab ¼TabþgabΛ=ð8πGÞ, then one has that Einstein’s

equation implies that

∇bΛ ¼ −ð8πGÞ∇aTab: ð1Þ

In other words, the only possibility (compatible with
general relativity) of having Λ change is the existence of
diffusion of energy between the standard matter fields and
dark energy. One could postulate such diffusion at a purely
phenomenological level (for different proposals along
these lines see [1] and references therein). However, dark
energy being associated with the gravitational properties of
vacuum spacetime, it is appealing to search for a more

fundamental description that would presumably involve
quantum gravity.
In this paper we will argue that the hypothesis of

discreteness at the Planck scale provides a natural relax-
ation mechanism of the cosmological constant from its
natural m2

p value. As a consequence of this, the universe
undergoes a phase of exponential inflation during the initial
part of the relaxation with a Hubble rate and scalar
curvature of the order of the natural scales mp and m2

p,
respectively. The hypothesis of granularity at such scales
naturally suggests a mechanism producing inhomogene-
ities in the matter sector that eventually become observable
at the cosmic microwave background (CMB). The process
is different from the standard account where fluctuations in
the CMB originate from vacuum fluctuations in the inflaton
during inflation. The key difference is that in standard
models of inflation one assumes that the relevant matter
fields are in a suitable vacuum state (e.g., the Bunch-Davies
vacuum in the de Sitter idealizations) as possible deviations
from that special state have had time to dilute exponentially.
Such a vacuum state does not break the symmetries of the
background spacetime geometry (assumed to be smooth to
all scales in such accounts). Indeed, if we write an arbitrary
matter field χ as χ ¼ χ0 þ δχ, then hψ jδχjψi ¼ 0 (where χ0
is a constant background field that may or may not vanish).
In our account, instead, the background geometry is not
homogeneous and isotropic at short scales due to Planckian
granularity expected from quantum gravity. Such Planckian
discreteness interacts with matter fields and produces
inhomogeneities such that hψ jδχjψi ≠ 0 from their birth
at horizon crossing. In our account we assume that we can
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treat these fluctuations semiclassically from the time of
horizon crossing on. The details of the physics at shorter
scales is expected to be described by a suitable quantum
gravity theory; we only assume that the result of that
physics is the production of inhomogeneities at horizon
crossing in a way that can be approximated by a stochastic
process (the details of this will be presented in Sec. III). In
the standard inflationary accounts one needs to assume that
the analog of the Bunch-Davies vacuum holds true to scales
much shorter than the Planck scale (this is usually called the
trans-Planckian problem).
One can also note that the expectation value of the

energy momentum tensor of the matter fields hψ jTabjψi in
the suitable quantum state jψi breaks homogeneity and
isotropy in our case (because Planckian granularity leaves
imprints in the primordial state of matter jψi) while
hψ jTabjψi is perfectly homogeneous and isotropic in
standard accounts of inflation. This feature of the standard
approach raises a key question leading to tensions in the
context of the interpretation of quantum mechanics in a
closed universe: how or what produces the symmetry
breaking (of the FLRW symmetries) from the primordial
stage to the final inhomogeneous state of the CMB? Our
perspective eliminates the question as the Friedmann-
Lemaître-Robinson-Walker (FLRW) symmetries are bro-
ken by the Planck scale granularity from the onset. The
reader will find that a certain number of assumptions are
necessary to reach quantitative predictions in our model
(for an attempt at discussing some of the open issues that
remain see Appendix C). The validity of these assumptions
is, of course, central for the quantitative validity of the
predictions. However, independent of this, we believe that
our work is also valuable as a proof of concept showing the
existence of an alternative view on the origin of structure in
the universe.

A. Apologia of unimodular gravity

We would like to come back to Eq. (1) and point out that
it arises naturally in the context of unimodular gravity in a
way that, we believe, has some additional conceptual value
in view of the previous discussion. Thus let us explore it in
some detail as the perspective it suggests motivates a
feature of the model that we introduce below. The action
of unimodular gravity is

S ¼
Z

ð ffiffiffi
g

p
Rþ λ½ ffiffiffi

g
p

− vð4Þ�Þdx4 þ Sm; ð2Þ

where Sm denotes the action of matter fields,

vð4Þ ≡ vð4Þdx0 ∧ dx1 ∧ dx2 ∧ dx3 ð3Þ

is a background four-volume form, and λ is a Lagrange
multiplier imposing that the metric volume density equals
the background one. The presence of the four-volume

background structure breaks, in unimodular gravity, the
diffeomorphism symmetry of general relativity down to
volume-preserving diffeomorphisms, whose generators are
represented by the vector fields ξa with vanishing expan-
sion θ, namely

θ≡∇aξ
a ¼ 0: ð4Þ

Such infinitesimal generators of volume-preserving diffeo-
morphism are completely characterized by arbitrary two-
forms ωab via the relation ξa ¼ ϵabdc∇bωcd.
Invariance of the matter action under the so restricted

diffeomorphisms relaxes the usual constraints on the
divergence of the energy momentum tensor. Recall that
full diffeomorphism invariance of the matter action implies
energy momentum conservation (see, for instance, [2]).
Therefore, to find the new constraints on energy conserva-
tion one must set to zero the variation of the matter action
under volume-preserving diffeomorphisms under the
assumption that the matter field equations hold. Namely,
the new condition reads

0 ¼ δSm ¼
Z
M

ffiffiffiffiffiffi
−g

p
Tab∇aξbdx4

¼ −
Z
M

ffiffiffiffiffiffi
−g

p ∇aTabξ
bdx4

¼
Z
M

ffiffiffiffiffiffi
−g

p ∇cð∇aTabϵ
bcdeÞωdedx4; ð5Þ

where we integrated by parts twice and we have assumed
that fields vanish at infinity. If we define

Jb ≡ ð8πGÞ∇aTab; ð6Þ

the previous condition, which should be valid for arbitrary
ωab, implies

dJ ¼ 0; ð7Þ

or locally

Ja ¼ ∇aQ; ð8Þ

where Q is some scalar. Therefore, the background volume
structure—that partially breaks diffeomorphisms (down to
volume-preserving ones)—allows for violations of energy
momentum conservation demanding only that the energy-
momentum violation current Jb be closed. The gravita-
tional field equations that follow from the previous action
are simply the trace-free part of Einstein’s equations,
namely

Rab −
1

4
Rgab ¼ 8πG

�
Tab −

1

4
Tgab

�
; ð9Þ
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which, using the integrability condition (7) and the Bianchi
identities, can be rewritten as [3]

Rab −
1

2
Rgab þ

�
Λ0 þ

Z
l
J

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Λ

gab ¼ 8πGTab; ð10Þ

where Λ0 is a constant of integration and l is a one-
dimensional path from some reference event to the space-
time point where the equation is evaluated. Thus, if not
vanishing, the energy-violation current J is the source of a
term in Einstein’s equations satisfying the dark energy
equation of state; while if J ¼ 0, we simply recover the
field equations of general relativity with a cosmological
constant Λ0 (a property already pointed out by Einstein [4]
as indicating the possibly nonfundamental nature of the
cosmological constant). In relation to this, another very
appealing feature of unimodular gravity is that quantum
field theoretic vacuum energy does not gravitate [5,6], for
vacuum fluctuations only contribute to the trace part of Tab
not entering into the field equations (9). Finally, and highly
remarkably, aside from new physics in the dark matter
sector, unimodular gravity is completely equivalent to
general relativity [7] and passes all the known tests of
Einstein’s theory. Unimodular gravity is, therefore, a very
conservative modification of general relativity.
What is the role of the background four-volume struc-

ture? Why should one accept such weakening of the
principle of general covariance (breaking diffeomorphism
down to volume-preserving diffeomorphisms)? We are
guided on this issue by the perspective that the smooth
classical field description of general relativity and quantum
field theory is an approximation (an effective description)
of a fundamental physics expected to be discrete at the
Planck scale. Compatibility with Lorentz symmetry sug-
gests that such discreteness would have to be realized by
the existence of some sort of four-volume elementary
building blocks. These basic spacetime elements would
naturally produce a background four-volume structure in
the long wavelength effective description and justify the
use of unimodular gravity for low energies. Such a back-
ground structure would break diffeos down to volume-
preserving diffeos in an effective description where the
volume elements are not dynamically included [8]. At the
more fundamental level (i.e., in terms of the quantum
gravity physics describing the dynamics of such elementary
notions) no background structures should be preferred,
a priori, and full covariance would be reestablished.
Indications of this physical hypothesis come from differ-

ent indirect sources that we now mention.
First, let us come back to the discussion of the sym-

metries of unimodular gravity and recall that under general
diffeomorphisms the metric changes as δgab ¼ 2∇ðaξbÞ
where ∇ðaξbÞ ¼ θ

4
gab þ σab when decomposed in its

trace and trace-free parts. Unimodular gravity remains
invariant under the smaller group of volume-preserving

diffeomorphisms which are characterized infinitesimally by
vector fields ξa for which θ ¼ 0 [Eq. (4)]. Thus, the broken
diffeomorphisms in unimodular gravity are those that send
the metric gab → ð1þ θ

4
Þgab which coincide with infini-

tesimal conformal transformations gab → Ω2gab as far as
the metric is concerned. Therefore, when the field equa-
tions hold, conformal transformations and the broken
symmetries of unimodular gravity are the same in the
matter sector. Thus, one would expect unimodular gravity
to emerge as the natural effective description of gravity
in situations where scale invariance is broken by the
microscopic discreteness scale associated with quantum
gravity scale and those of the fundamental probing matter.1

This is precisely what the structure of quantum field
theory on curved spacetimes suggests in the way the UV
(potentially divergent) contributions to the renormalization
of the energy-momentum tensor break scale invariance:
consideration of the ambiguities associated with the def-
inition of the expectation value of the energy momentum
tensor in quantum field theory and their (anomalous)
breaking of scale invariance [9] can be argued to indicate
the preferred role of unimodular gravity in semiclassical
considerations.
The previous discussion based on pure symmetry con-

siderations can be made very concrete. Still, in the context
of the renormalization of the (expectation value of the)
energy momentum tensor in quantum field theory on
curved spacetimes, the existence of a well-defined regu-
larization can be shown via the Hadamard subtraction
prescription where—for the simple case of a Klein-
Gordon field ϕðxÞ—one defines hTabi by considering
the coincidence limit x → y of a suitable expression
depending on the two-point distribution

Fðx; yÞ ¼ hϕðxÞϕðyÞi −Hðx; yÞ; ð11Þ

where Hðx; yÞ is a Hadamard bidistribution constructed
such that Fðx; yÞ is smooth in the coincidence limit and
such that it satisfies the field equations in its first argument.
Obstructions to get Hðx; yÞ to satisfy the field equations in
the second argument imply—when replacing in the suitably
defined point split regularization of the energy momentum
tensor—that in the coincidence limit x → y

∇ahTabðxÞi ¼ ∇bQ; ð12Þ

for Q dependent on the local background geometry
curvature but not on the state of the quantum field.

1There is a remarkable paper by Anderson and Finkelstein [8]
where a very similar conceptual path leads to unimodular gravity
from the assumption of the existence of a fundamental scale
breaking conformal invariance, although in their analysis they do
not discuss the possibility of diffusion that is one of the key
features of our approach. We were not aware of this paper and
thank T. Jacobson for pointing it out to us.
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Thus, the simple regularization of the UV divergences
leads to the violation of energy momentum conservation of
the form compatible with the symmetries of unimodular
gravity (8).
To make the formalism compatible with the usual semi-

classical equations one performs an additional step “by
hand” [9] and defines the renormalized expectation value
hTabðxÞiren by

hTabðxÞiren ≡ hTabðxÞi −Qgab; ð13Þ

which, in the case of conformal quantum fields, introduces
an anomalous trace (see, for instance, [9,10], and [11] for a
very detailed and transparent presentation which is avail-
able in two dimensions). Our previous discussion shows
that this anomaly is more naturally interpreted as a violation
of energy-momentum conservation (6) satisfying the uni-
modular restriction (7).
Interestingly, the semiclassical gravity dynamics defined

using the trace-free Einstein’s equations of unimodular
gravity with sources given by hTabi [violating conservation
as in (12)] and the one implied by standard Einstein’s
equations with sources defined by (13) coincide. In this
sense, the trace anomaly is equivalent to a diffeomorphism
anomaly where diffeomorphisms are broken—by QFT
vacuum fluctuations—down to volume-preserving diffeo-
morphism. Quantum fields and their fluctuations around a
preferred (“vacuum”) state are sensitive, in this sense, to an
underlying four-volume structure. Finally, it is worth
pointing out that—even though there are ambiguities in
the definition of hTabi encoded in the possibility of adding
a locally conserved tensor tab constructed from the metric
variation of a Lagrangian constructed out of R2 and RabRab

[9]—the relevant “diffusion” term ∇bQ is, to our knowl-
edge, unambiguously defined in the present context. All
this strengthens the view that unimodular gravity—with the
nontrivial diffusion (8) effects that it offers—is a natural
effective description emergent from the underlying UV
structure of spacetime and matter expected to be described
by quantum gravity.2

Discreteness at the Planck scale (or, more precisely, the
existence of microscopic degrees of freedom not accounted
for in an effective field theory description) is suggested also
by the physics of black holes in the semiclassical regime
[14]. Black holes behave as thermodynamical systems in
quasithermal equilibrium with an entropy given by

SBH ¼ A
4l2

p
; ð14Þ

where A is the corresponding black hole horizon area. This
formula suggests the existence of microscopic degrees of
freedom at the Planck scale, lp, responsible for such huge
entropy. Arguments that take these microstates as funda-
mental and derive from them an effective description of
gravity (as an equation of state [15]) lead—not to Einstein’s
equations as it is often improperly stated, but rather—to
trace-free Einstein’s equation (9) of unimodular gravity.
As realized by Hawking in the 1970s, black holes

evaporate via the emission of thermal radiation and thus
seem to destroy the information in the initial pure state that
leads to their formation in violation of the expected unitarity
of quantum gravity. This is the famous information paradox.
It is important to point out here that the presence of micro-
scopic degrees of freedom at the Planck scale offer a natural
resolution of the paradox. Indeed, if these hidden degrees of
freedom can interact with the low energy ones appearing in
our effective field theory formulations, then quantum corre-
lations with the microscopic Planckian structure can be
established via such interactions. This is particularly relevant
in the context of black hole formation and evaporation where
low energy excitations falling into the black hole are forced
by the gravitational field to interact with the Planck scale a
finite proper time after horizon crossing as they approach the
classical singularity (as implied by the singularity theorems).
This offers a natural channel for purification of the Hawking
radiation [16] in a way that finds simple analogies in
everyday systems where information is degraded (or made
unavailable) because unitary evolution leads to decoherence
with a microscopic molecular type of degrees of freedom
(e.g., when newspaper information is lost into molecular
chaos after burning the paper). This perspective can be
explicitly tested in toy models in quantum cosmology
illustrating the mechanism (see [17,18]). For a recent dis-
cussion of this view and a related one see [19]. The point we
stress here is that such theoretical considerations are not
disconnected from the present discussion in cosmology as
they give extra strength to the hypothesis of Planckian
discreteness which will play, in our model, a central role
in the genesis of inhomogeneities observed in the CMB.
Unimodular gravity also arises naturally from quantum

gravity approaches where spacetime is emergent from
four-dimensional discrete building blocks [which are
responsible for the existence of a preferred background
four-volume (3)]. A concrete example of this is the role of
unimodular gravity as the effective description of gravity in
the causal set approach [20]. Noisy interaction with four-
volume events appears as the natural relativistic generali-
zation of spontaneous localization models [21] that modify
quantum mechanics by introducing dynamical collapse
[22,23]. This perspective was relevant in motivating the
use of unimodular gravity in [3] where observational
bounds on the free parameters of some of such models
were constrained by cosmological observations. It is
possible that these, apparently independent directions,

2The possibility of a relaxation mechanism of a positive
cosmological constant via the backreaction of infrared graviton
modes (IR effects) was put forward by Tsamis and Woodard
in [12] and further explored in the case of scalar contributions by
Brandenberger [13].
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could be connected at a more fundamental level. We will
not pursue this idea here; for further reading and applica-
tions to cosmology see [24] and references therein.
The existence of microscopic degrees of freedom that are

not captured in our smooth field theoretic approximations
conveys the idea that diffusive effects could be present
which, in unimodular gravity, can be accounted for phe-
nomenologically in terms of a nonvanishing current Jb [as
long as (7) is satisfied]. This perspective, which is the one
we follow in this work, was already taken in [25,26] where
[with the assumption that the initial cosmological constant
Λ0 in (10) is vanishing in the early universe] a cosmological
constant emerges from the noisy diffusion of energy from
the low energy matter sector into the Planckian regime
during the electroweak transition (EW). Remarkably, the
model reproduces the observed value of the cosmological
constant today without fine-tuning.3

B. Background implications: Relaxation
of the cosmological constant

Building on this, here we explore the possibility that the
perspective offered by unimodular gravity (as an effective
description emerging from fundamental discreteness) could
help address the first part of the cosmological constant
problem. We would like to investigate the cosmological
implications of having an initial cosmological constant that
starts with its natural Planckian value Λ0 ≈m2

p, and then
relaxes to zero via diffusion into the matter sector mediated
by the hypothetical granular structure at the Planck scale
associated with the emergence of the preferred four-volume
structure of unimodular gravity at low energies.
The analogy with usual dissipative systems suggests a

natural model where Λ relaxes exponentially in time. Even
if time is an elusive notion in general relativity, when it
comes to applying the theory to cosmology, the situation is
drastically different in unimodular gravity (for a more
general discussion see [27,28]). This is so thanks to the
existence of the preferred four-volume structure that singles
out a preferred (up to rescaling by a constant) notion of
time: four-volume time. Such a time variable can be put in
direct correspondence with a dimensionless notion asso-
ciated with the counting of elementary Planckian volume
elements “created” during the cosmological evolution. All
this provides a natural time notion emerging from the
hypothesis of discreteness in terms of which the relaxation
of Λ will be defined.

To make the previous statement precise we now focus
our attention to (spatially flat) FLRW cosmology (homo-
geneous and isotropic cosmology). The assumption of
spatial flatness simplifies the discussion that follows, yet
it is probably not essential. Thus the spacetime metric is
given by

ds2 ¼ −dτ2 þ a2ðτÞdx⃗2; ð15Þ

where τ is the proper time of comoving observers. The
rationale dictating that the diffusion is sourced by the four-
volumetric granularity of spacetime suggests the natural
time for the diffusion process (and associated relaxation of
Λ) to be proportional to the number of spacetime grains
encountered or created during the evolution of the universe
identified with the elapsed four-volume. More precisely,
consider an initial fiducial cell of comoving coordinate
volume l3

p expanding while the universe expands. The
four-volume of its world tube—divided by a reference
volume scale l3

U in order to get time units—is given by

tp ¼ l3
p

l3
U

Z
a3dτ: ð16Þ

To fix the scaling degeneracy of four-volume related time
notions we take lU ¼ lp, which produces the so-called
unimodular time variable t defined as

dt ¼ a3dτ; ð17Þ

which turns the metric (15) into ds2 ¼ −a−6dt2 þ a2dx⃗2.
This time choice is imposed to us in unimodular gravity by
the constraint det jgj ¼ 1 derived from the variations of the
action (2) with respect to the Lagrange multiplier λ in
natural coordinates where vð4Þ ¼ 1.
The question we explore in this paper is, what is the

natural phenomenology that follows from the assumption
that Λ decays exponentially in this (number of Planck four-
volume elements) time? Thus we postulate that

ΛðtÞ ¼ Λ0 expð−βmptÞ; ð18Þ

with β a dimensionless constant and Λ0 ∼m2
p. Note that

np ≡mpt in the previous expression can be interpreted as
the number of Planckian four-volume elements created
during the cosmological expansion out of the primordial
initial cell. Note also that the time variable as defined in
(16) is not unique as it can be modified by rescaling
lp → λlp. The phenomenology of this paper remains the
same if simultaneously we rescale β → β=λ3 in (18). This
freedom can be encoded in the choice of lU in (16). Wewill
see that the parameter β will basically control the number of
e-folds of inflation before reheating. The only requirement
wewill find, when comparing predictions of the model with

3The model links the two mysteriously small scales in
fundamental physics—the EW scale mew and the cosmological
constant—with the gravity scale mp: the small number
ðmew=mpÞ7 ≈ 10−120 emerges from the calculation as a result
of the diffusive physics involved [25,26]. The results of the
present paper reinforces the relationship between dark energy
physics and electroweak physics due to the key role that the
Higgs scalar will play in what follows.
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observations, is that β has to be sufficiently small. However,
its precise value does not affect the type of observable
features we explore in the model. A possibility of identify-
ing a fundamental mechanism fixing this freedom and,
simultaneously, rendering the value of β more natural will
be discussed in Appendix C. The ansatz (18) is certainly
speculative at the present stage of understanding quantum
gravity; however, we will see that it leads to an alternative
view on the origin of structure in the late universe. This
can be taken as a proof of concept of a different perspec-
tive whose assumptions may be weakened with future
investigations.
We will see that (18) implies, due to the nontrivial

relation between the (four-volume) time t and comoving
time τ encoded in Eq. (17), that the universe undergoes a
phase of exponential expansion in cosmic time τ lasting as
long as βmpt < 1 (a quasi–de Sitter inflationary phase).
This is explicitly seen in the dependence of Λ with a
derived in (26). For sufficiently small β this inflationary
phase can be long enough to resolve both the horizon and
the flatness problems independently of the initial condi-
tions4 for matter fields and the energy injection encoded in
Eq. (1). We will discuss this in more detail in Sec. II.

C. Perturbation implications: Inhomogeneities
sourced by Planckian granularity

The conceptual framework of unimodular gravity natu-
rally suggests the possibility for a form of diffusion
between the matter degrees of freedom and the dark energy
sector (representing an evolving cosmological constant).
The rationale behind all this is the existence of hidden
Planckian degrees of freedom which, in the effective low
energy description of unimodular gravity, are capable of
storing energy in the form of dark energy to be eventually
released into the degrees of freedom of matter [a mecha-
nism driven by quantum gravity and here assumed as a
phenomenological hypothesis to lead to the relaxation of Λ
as in (18)]. However, as this dark energy is freed by
Planckian grains of spacetime, we can envisage the
possibility that inhomogeneities would arise in the matter
sector at around the fundamental scale which, during the
inflationary period, is close (as shown in Sec. II) to the
Hubble rate. At present one cannot describe this process
from fundamental principles. Thus we will represent it by a
Brownian type of process, i.e., a stochastic process gen-
erating small perturbations of certain background fields

with a probability distribution satisfying the only require-
ment of homogeneity.
This view offers an interesting possibility for a mecha-

nism of structure formation where the nearly scale invariant
scalar density fluctuations observed in the CMB will be
shown to arise from the steady injection of energy from the
Brownian-like diffusion of fundamental Planckian granu-
larity into the perturbations at the Hubble scale during the
de Sitter phase. We will see that the semiclassical descrip-
tion of such diffusion leads to stochastic inhomogeneities
compatible with cosmological observations. Scale invari-
ance follows from the self-similarity of the diffusion
process that is granted by the exponential expansion of
the background during the de Sitter phase [due to the slow
relaxation of Λ as in (18)].
Thus the mechanism producing inhomogeneities pre-

sented here is fundamentally different from the standard
account that associates inhomogeneities with quantum
fluctuations of the inflaton. Here we propose an active
mechanism where the fundamental quantum granularity
induces semiclassical inhomogeneities in the mean field
value of the Higgs scalar. Why the Higgs scalar instead of
any other field in the standard model of particle physics
(which we assume to be valid up to close to the Planck
scale)? To answer this question, first note that inhomoge-
neities are expected to be intrinsically present at the Planck
scale according to several approaches to the fundamental
theory. However, compatibility with Lorentz invariance
implies that such hypothetical granularity cannot be seen as
an underlying latticelike structure selecting a preferred
frame [30]. Instead, discreteness at the Planck scale must
have physical manifestations when suitable massive (hence
scale invariance breaking) degrees of freedom interact with
the quantum geometry (massless fields cannot be sensitive
to granularity as their lightlike excitations cannot define a
frame, their own rest frame, with respect to which notion of
the Planck scale would be meaningful). At high enough
energies, the only scale invariant breaking degree of free-
dom in the standard model of particle physics is the Higgs
scalar, and this is the reason why the Higgs is the right
degree of freedom that can carry the imprints of granularity.
A natural order parameter of the magnitude of the strength
of this effect is naturally given by

γH ¼ mH

mp
≈ 10−17; ð19Þ

where mH is the Higgs mass.
Thus in our model the fundamental inhomogeneities

leave their imprint on the expectation value of the Higgs
scalar (assumed to have, as the cosmological constant,
Planckian initial value): as a consequence the Higgs scalar
is not in a homogeneous and isotropic vacuum state but
rather in an inhomogeneous excited semiclassical state. The
de Sitter exponential expansion during the inflationary

4The independence of initial conditions should be taken with
the same grain of salt as when one reads similar statements in the
inflationary literature. More precisely, one can only make a
statement of this sort once one assumes that the FLRW approxi-
mation is a good one to describe the observable universe. This is
clearly a severe restriction of the phase space of general relativity
as it is often emphasized by Penrose [29], and, of course, a very
important problem that we will leave aside of the present
discussion.
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phase dilutes standard forms of matter; however, this is not
the case for the zero mode of a scalar field and the
inhomogeneities produced on it (long wavelength modes
in the scalar field are frozen by the rapid expansion).
During the inflationary phase the UV Planckian inhomo-
geneities are expanded to the large cosmological scales
where they become the seeds for the formation of structure
observable in the power spectrum of perturbations on the
CMB. There is no symmetry breaking of the FLRW
symmetries, no need for quantum to classical transition,
and inhomogeneities are present from the beginning in the
microscopic quantum gravitational structure of spacetime
and matter. The decaying cosmological constant and its
inflationary effect bring these up to our scales.
In our view, at the conceptual level, the new perspective is

an improvement of the standard picture in twoways: On the
one hand, it offers a possible resolution of the so-called
trans-Planckian problem because no assumptions about the
validity of standard quantum field theory as well as
linearized gravity are necessary at length scales below the
Planck scale. However, we still have to assume that standard
semiclassical tools are accurate for length scales slightly
longer than the Planck scale where our perturbations are
born (this is suggested by studies of simplified quantum
cosmology models; see [31]). On the other hand, our
approach eliminates the conceptual difficulties [32] asso-
ciated with thinking of the perturbations as originating in
vacuum fluctuations of the inflaton in relation to the
measurement problem in quantum mechanics and applica-
tions of itsCopenhagen interpretation applied to the universe
as a whole. Of course, our perspective does not eliminate all
conceptual problems as the mechanism we invoke is deeply
rooted in a quantum gravity rationale: it urges one to try to
understand better the deep Planckian regime.
Finally, we study the possibility that primordial black

holes could be created thermally at the end of the inflationary
era during the reheating phase that in our model raises the
temperature to close to the Planck temperature. A key
assumption here is that there are stable primordial black
holes with masses close to the Planck mass. Note that even
when this is suggested by general quantum gravity consid-
erations invarious contexts, it is a very natural possibility in a
quantum gravity theory where the Planck energy is the
fundamental scale. We show that natural estimates based on
dimensional analysis lead to the correct order of magnitude
densities necessary to account for dark matter today without
fine-tuning. We explain this in detail in Sec. IV.
The paper is organized as follows. In Sec. II we describe

the dynamics of the background geometry driven by the
relaxing cosmological constant (18). In Sec. III we present
the proposed mechanism for the generation of nearly scale
invariant scalar density fluctuations. We confront the
predictions of the minimalistic model (that assumes the
validity of the standard model of particle physics all
the way to the Planck scale) with the relevant observational

data coming from the CMB. In Sec. IV we analyze the
possibility that primordial black holes (generated during the
diffusion process or via thermal fluctuations at reheating)
could account for the dark energy content of the universe.
We conclude the paper with a discussion in Sec. V.
Appendix A contains a proof of the so-called Weinberg
theorem showing the existence of adiabatic solutions of the
perturbation equations. This theorem is key in understand-
ing the link between perturbations generated during infla-
tion and the CMB observations. In our context the theorem
is a handy shortcut specially adapted to the dynamical
description of the relevant consequences of our stochastic
process for the generation of inhomogeneities equivalent to
the (more generally used) Mukhanov-Sasaki formalism in
the description of standard inflationary theory of perturba-
tions. We believe that our proof of the Weinberg theorem
(even when the same in spirit as the one found in [33] or in
his well-known textbook [34]) is more direct and could be
helpful for interested readers. In Appendix B we compare
our mechanism for the generation of inhomogeneities with
the standard paradigm. Some of the various issues opened
by our perspective are considered in Appendix C.

II. BACKGROUND DYNAMICS

In this sectionwe study the dynamics of the homogeneous
and isotropic FLRW geometry (15) and homogeneous and
isotropic matter components evolving on it. The primordial
cosmological constant (or dark energy component) relaxes
according to (18) and, we assume, the energy released feeds
[as implied by Eq. (1)] a radiation component—represented
by a homogeneous and isotropic perfect fluid with equation
of state ρ ¼ 3P—whose initial value is ρ0. This radiation
fluid represents themassless degrees of freedom in thematter
sector which [according to the standard model at high values
of the Higgs scalar vacuum expectation value (VEV)] are
basically only photons and gravitons. Equation (1) will take
the form of a continuity equation with nontrivial interactions
between the radiation anddark energy fluid components. The
naturalness of initial conditions at the Planckian regime
suggests ρ0 ∼m4

p. In addition, we have the Higgs scalar field
that is assumed to start off in a semiclassical state with
expectation valueϕ0ð0Þ ∼mp. However, the Higgs in such a
high energy initial state decays into particles of the standard
model producing further interaction terms in the continuity
equation (now between the Higgs energy-momentum tensor
and the radiation). We will see that these interactions are
weak in the regime of interest and that a semiclassical
description is available. Thus, in spite of the apparent
complexity of the situation one can actually use analytic
methods to get a quantitative picture of the relevant features
of the dynamics of the background fields which fits well the
numerical simulations (whose results we report in Fig. 1).
We show in this section that, initially, the dynamics is

dominated by the decaying cosmological constant—in a
way that is independent of the other matter components and
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their initial conditions—producing an inflationary era of
the de Sitter type that can last a large number of e-folds as
in standard inflationary models [35]. The e-folds of
inflation are controlled by the parameter β. CMB obser-
vations require this number to be larger than a minimum
value, but they do not constrain it otherwise. Thus the free
parameter β is degenerate in this sense.

A. Quasi–de Sitter phase from the relaxing Λ
We assume that the matter content of the universe is well

represented by a perfect fluid,

Tab ¼ ρuaub þ Pðgab þ uaubÞ; ð20Þ
where ua is the four-velocity of comoving observers and ρ
and P are the energy density and pressure in the comoving
frame. In terms of four-volume (unimodular) time t [see
Eq. (17)] the Friemann equation becomes

a4ða0Þ2 ¼ 8πG
3

ρþ ΛðtÞ
3

; ð21Þ

where 0 denotes derivatives with respect to unimodular time
t; ΛðtÞ ¼ Λ0e−βmpt is the decaying cosmological constant
depending on the free parameter β; and from now on we
normalize the scale factor so that að0Þ ¼ 1. The
Raychaudhuri equation is

a2
d
dt

ða3a0Þ ¼ −
4πG
3

ðρþ 3PÞ þ ΛðtÞ
3

; ð22Þ

and the continuity equation derived from (1) is

ρ0rad þ 3
a0

a
ðρrad þ PradÞ ¼ −

Λ0ðtÞ
8πG

: ð23Þ

Note that Eq. (23) encodes the diffusion of energy between
the dark sector and the energy density of matter.5 The only
assumption in the previous equation is that the diffusion
process does not disrupt the homogeneity and isotropy6 of
the background matter and geometry configurations to
leading order (perturbations will be considered but they
will be small in comparison with average densities).

FIG. 1. Numerical solution of (24) with β ¼ 10−80. We plot the cosmological constant Λ (inserted panel in linear scale) and the
radiation energy density ρrad (in log scale) in terms of the number of e-folds logðaÞ. Λ behaves effectively as a constant until about when
condition (27) is satisfied and abruptly decays to zero thereafter. The radiation density decays exponentially from its initial Planckian
value until the energy injection from the relaxation of Λ starts winning over the expansion. By the end of inflation radiation density
grows back (reheating) to about Planckian density again [the reheating temperature is estimated in Eq. (39)].

5Our model can be seen as a special case of the so-called
interacting dark energy models some of which have been shown
to present instabilities under perturbations [36]. It is important to
point out that the type of model we consider is free of such
pathological behavior (for details see [37]).

6Thermal equilibrium for the radiation is not necessarily valid
in our context. Even when this is true during a certain regime of
the high energy/density primordial universe, thermal equilibrium
might be hard to maintain as we approach Planck scales (if we
take seriously the extrapolation of particle physics to those
scales). The reason is that the condition for thermal equilibrium
Γ > H on the interaction rate Γ (where Γ≡ nσ where n ∼ T3 is
the number density and σ the cross section for interactions)
cannot continue to hold close to Tp ¼ mp because σ ∼ 1=T2 for
high energy processes and thus Γ ∼ T. As T ∝ ρ1=4rad drops
dramatically if the initial ρ0 is in thermal equilibrium (see Fig. 1),
while H remains close to the Planck scale H ≈mp > T, all
species decouple in the inflationary past and the radiation
injection via the decaying Λ cannot achieve thermal equilibrium
until later when ρrad eventually grows larger than H4.
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As stated before, we assume that the relevant channel into
which Λ decays is massless fields so that ρrad ¼ 3Prad (this
justifies the subindex “rad” in our notation, ρ and P
denoting the total energy density and pressure that will
have contributions coming from the Higgs scalar).
In such a case Eqs. (21) and (22) can be combined to

obtain

a00 þ 4
a02

a
¼ 2

3a5
ΛðtÞ; ð24Þ

which directly relates the dynamical behavior of ΛðtÞ and
the scale factor. If the initial cosmological constant (18)
starts at its natural Planckian value Λð0Þ ¼ Λ0 ∼m2

p, the
initial conditions for the matter density are not important.
Indeed, the dynamics of the initial phase of the cosmic
evolution is basically insensitive to the value of ρð0Þ in the
range 0 ≤ ρð0Þ ≤ m4

p (this is a standard aspect of the
usually emphasized robustness of inflation: matter density
decays exponentially during the de Sitter phase and
becomes rapidly irrelevant for the background evolution).
As we show below, our model shares this property with
standard inflation as long as β is sufficiently small.
Notice that the Hubble rate in terms of four-volume time

is

H ≡ _a
a
¼ a3a0

a
¼ 1

3

da3

dt
; ð25Þ

where the symbol · denotes derivatives with respect to
comoving time τ.
During the initial phase of expansion defined by the

condition βmpt < 1 the universe behaves approximately as
a de Sitter universe with Hubble rateH¼H0≈

ffiffiffiffiffiffiffiffiffiffiffi
Λ0=3

p
∼mp

(there are small corrections to the Hubble rate due to the
rest of matter fields that are not important here; we will
come back to them in what follows). During that initial
phase we can integrate the previous equation [with the
initial condition að0Þ ¼ 1] and find that a3 ≈ 3H0tþ 1.
Equivalently, during such a period Eq. (18) can be
rewritten as

ΛðaÞ ≈ Λ0 exp

�
−

mp

3H0

βða3 − 1Þ
�
; ð26Þ

which yields an extremely flat curve—seen in Fig. 1—for

βa3 < 3
H0

mp
; ð27Þ

with a sharp descent for βa3 ≈ 3H0=mp (assuming β ≪ 1).
This implies that for sufficiently small β the background
evolution will be very similar to that of standard infla-
tionary cosmology. For instance, one can get the infla-
tionary phase to last for about 60 e-folds (order of

magnitude of what is needed; see Sec. II D), N ≡
logðaendÞ ∼ 60 if β is

β ≈
3H0

mp
10−80: ð28Þ

These estimates are confirmed by the numerical solution of
the previous equations illustrated in Fig. 1.

B. Higgs dynamics during the de Sitter phase

In the model that we are presenting the background
dynamics is dominated by the relaxing cosmological
constant. In such a framework there is no need for the
inflaton field of standard inflationary scenarios.
Nevertheless, a (single) scalar field degree of freedom is
still necessary for the mechanism of structure formation
proposed here to work in its simplest form: this allows for
the use of certain conservation laws for super-Hubble
modes allowing us to predict the amplitude of perturbations
at the CMB from the initial condition during inflation (this
is sometimes referred to as the Weinberg theorem [34]
whose proof we revisit in Appendix A). In addition—as
the source of the structure will be the hypothetical funda-
mental Planckian granularity, and, as mentioned in the
Introduction—the degree of freedom interacting with such
fundamental inhomogeneities at the Planck scale must be
scale-invariance-breaking in nature. Therefore, the Higgs
field is the natural carrier of the inhomogeneities as, on the
one hand, it is the single scalar degree of freedom in the
standard model of particle physics, and, on the other hand,
it is the mediator of the breaking of scale invariance. Even
when it is quite possible that a different realization of our
scenario might exist, we will concentrate here on such a
minimalistic model where only the physics of the standard
model enters into consideration as far as the description of
matter is concerned. It is also important to point out that the
necessity of a scalar field degree of freedom is rooted only
in its role in the mechanism of structure formation
(described in detail in the following section) as the
Higgs here plays no important role in the dynamics of
the background. For that reason, our model should not be
confused with models of Higgs inflation [38–40].
However, the dynamics of the Higgs during the infla-

tionary era will be central in the model so we review it in
detail here. The Higgs field equation in the FLRW back-
ground is

ϕ̈0 þ 3H0
_ϕ0 þ ΓPlanck

_ϕ0 þ
dVðϕ0Þ
dϕ

¼ 0; ð29Þ

where the term ΓPlanck
_ϕ0 is a friction term associated with

the energy loss caused by the production of the inhomo-
geneities mechanism that we will introduce in Sec. III.
There we will see that ΓPlanck ≪ H0, and thus this term can
safely be neglected from the previous equation when
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analyzing the dynamics of the zero mode of the Higgs.7 We
assume that ϕ0 is in the usual “terminal velocity” configu-
ration where 3H0

_ϕ0 ¼ −∂ϕV½ϕ0�which, from V ≈ ðλ=2Þϕ4

(where λ is the self-coupling constant of the Higgs),
implies8

_ϕ0 ≈ −2λ
ϕ3
0

3H0

: ð30Þ

Here we are using that ΓPlanck=H0 ≪ 1 ([s mentioned, this
assumption will be shown to be valid later when we derive
Eq. (94)]. We will assume that the Higgs starts with a large
expectation value

ϕ0ð0Þ ≈mp: ð31Þ

From (30) we get j _ϕ0j ≪ H2
0 as long as jλj ≪ 1. The

requirement that the universe is dominated by the
cosmological constant, namely jV½ϕ0�j ¼ ðjλj=2Þϕ4

0 ≪
Λm2

p=ð8πÞ ¼ H2
0m

2
p=ð8πÞ is automatically satisfied if

jλj ≪ 1. For these reasons, one can neglect the effects of
the potential in the dynamics of the background geometry
in the de Sitter phase studied in Sec. II A. Finally, in the
terminal velocity regime we have [from the time derivative
of (30)] that

ϕ̈0 ≈
12

9
λ2H3

0; ð32Þ

which will be neglected as a higher λ correction in the
perturbation theory calculations that follow. The picture in
Fig. 1 will have to be modified when ΛðtÞ ≈ V½ϕ0�=m2

p.
This happens after the end of inflation, and thus away from

the region where the seed of structure formation is
produced as discussed in Sec. III.
From (30) one finds solutions

ϕ0ðτÞ ¼
mpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
3

m2
p

H0
λτ

q or ϕ0ðaÞ ¼
mpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
3

m2
p

H2
0

λ logðaÞ
r :

ð33Þ

Note that during the first e-folds, say N ¼ logðaÞ ∼ 11
(which approximately correspond to the period during
which the fluctuations visible in the CMB are produced
in our model), and for λ ≈ −10−2 (which is the correct
order of magnitude value in the standard model close to
the Planckian scale [42]) the Higgs changes slowly for
H0 ≈mp as assumed, namely

Δϕ0

ϕ0

≲ 10−1: ð34Þ

C. Radiation generated by the decaying Λ
The analysis of the background dynamics, given in

Sec. II A, relies on neglecting the effect of the radiation
emitted as Λ decays in matter field modes. In addition,
there is the question of how the initial conditions for
radiation affect the conclusion of Sec. II A. Here we show
that none of these neglected aspects have an important
influence and that results of the previous simplified analysis
remain correct to the level of approximation considered.
The physical reason is that the cosmological constant term
dominates the Friedmann equation due to its slow decay in
a while the radiation dilutes as a−4 as the energy injection
(23) for β ≪ 1 is negligible at first. Eventually, energy
injection becomes comparable with the dilution rate and
radiation density ρrad starts growing again. One can under-
stand these features—which were first exhibited by the
numerical solution of the equations as plotted in Fig. 1—
semianalytically giving a closer look at Eq. (23), which for
diffusion into radiation becomes

dρrad
da

þ 4

a
ρrad ¼ −

Λ0ðtÞ
8πGa0

: ð35Þ

Using that H ¼ ffiffiffiffiffiffiffiffiffi
Λ=3

p ¼ a2a0 ≈H0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Λ0=3

p
and also

_a ≈H0a—recall Eq. (25)—we get

dρrad
da

þ 4

a
ρrad ≈

3βa2

8π
m4

p; ð36Þ

where we have used Eq. (30) and the fact that
ϕ0 ≈ ϕ0ð0Þ ≈H0 ∼mp. Integrating (36) we obtain

ρrad ≈
ρ0
a4

þ 3βa3

56π
m4

p: ð37Þ

7Strictly speaking, another term Γϕ
_ϕ0 encoding a standard

form of diffusion representing the particles generated via the
interactions of the Higgs with the rest of the fields in the standard
model should be added to Eq. (29). The quantity Γϕ is determined
by the known interactions of the standard model (which we are
assuming here to make sense all the way to close to the Planck
scale). It follows from the interaction structure of the standard
model that the decay rate Γϕ must be quadratic in the relevant
couplings times some energy scale. Taking this energy scale to be
in the natural scale, i.e., H0, we get Γϕ ≈ αH0 for some
dimensionless constant [41]. It can be argued that α ≪ 1, and
thus this term is negligible in our case.

8One can explore this numerically and for initial “velocities”
away from (30) there is a transition time where (as expected) the
terminal velocity approximation is not valid. However, even
when starting from the (large) natural Planckian value dictated by
dimensional analysis _ϕ0 ≈ −m2

p, the scale factor enters into the
terminal velocity regime after a few e-folds when the Higgs scalar
starts rolling back toward the Planck scale. We are assuming that
the Higgs quartic term dominates the potential for values
mH ≪ ϕ0 ≲H0 ≈mp. We also treat the Higgs as a single scalar
field (for presentation simplicity) ignoring in our equations its
suð2Þ internal indices. Our expressions make sense in a polar
decomposition ϕA ¼ ϕvA with vA ∈ suð2Þ and vAvA ¼ 1.
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Therefore, our first approximation (23) turns out to be fine.
Thus, we simply ignore that last constant contribution to
the radiation density in the previous equation in order to
simplify the presentation. However, a similar constant
density contribution coming from diffusion will play a
key role in the discussion of Sec. IV. Notice that the
minimum in the radiation density observed in Fig. 1 can be
estimated from the condition dρrad=da ¼ 0 and gives

a7min ≈
224πρ0
9βm4

p
; ρmin ≈

7ρ0
3a4min

; ð38Þ

with amin ≈ e27 and logðρmin=m4
pÞ ≈ −107 for the parame-

ters in Fig. 1.With a bit of abuse of the approximationwe can
estimate the radiation at the end of the inflationary period
when βa3end ¼ 3H0=mp, as implied by (26). One gets

ρend ≈
9m4

p

56π
≡ T4

end: ð39Þ

We see that the previous semianalytic argument reproduces
well the qualitative features of the numerical solution in
Fig. 1. Notice that the final “reheating temperature”≈ρ1=4end is
independent of the initial conditions and of the order of
Planck temperature.

D. Estimate of the lifetime of Λ after the inflationary
era and number of e-folds

The numerical evolution shows that soon after we reach
the end of inflation the universe becomes quickly domi-
nated by radiation with an initial radiation density that is
estimated from (37). The end of inflation is characterized
here by the condition

βa3end ≈ 3
H0

mp
; ð40Þ

which follows from Eq. (26). The Friedmann equation (21)
in the radiation dominated domain becomes

a4a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πρend
3m2

p

s
a2end: ð41Þ

Integrating and multiplying by βmp we get

1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3m4

p

8πρend

s
βa3end

��
a

aend

�
5

− 1

�
¼ βmpΔt: ð42Þ

Neglecting the −1 inside the parentheses, using (40) to
eliminate the β dependence, replacing for ρend using (39),
and assuming that a=aend ≈ Tend=T, we obtain the follow-
ing expression for the dependence ofΛ on temperature after
inflation:

Λ ¼ Λ0 exp ð−βmpΔtÞ

≈ Λ0 exp

�
−

ffiffiffiffiffi
21

p

5

�
9

56π

�5
4

�
H0

mp

�5
2

�
mp

T

�
5
�
; ð43Þ

which implies that the cosmological constant becomes
negligible in comparison to the present value Λtoday ¼
10−120m2

p extremely quickly by the time when the temper-
ature of the universe is still close to Planckian. The
important point here is that this is well before the
electroweak transition temperature Tew ≈ 10−17mp so that
the essentially vanishing cosmological constant can grow
again via the mechanism presented in [25,26] to the present
observed value.
The parameter β chosen in Fig. 1 corresponds to an

illustrative value. Here we analyze in more detail obser-
vational constraints on this value. An important feature of
our model is the generation of inhomogeneities in an
approximately scale invariant fashion as observed on the
CMB during the quasi–de Sitter phase. The scale of these
fluctuations range from Lmin¼10−2Mpc to Lmax¼103Mpc
today. Even when the mechanism for structure formation
will be different from the inflaton “vacuum fluctuations” of
the standard paradigm, the de Sitter regime of inflation will
still play a key role. In particular, one needs the scales of
fluctuations visible today to correspond to the Hubble scale
H ≈H0 ∼mp at the time of inflation. This demands a
minimum number of e-folds from the beginning of inflation
to today,

N start→today
min ¼ logðH0LmaxÞ ¼ log

�
H0

mp

�
þ logðmpLmaxÞ

¼ log

�
H0

mp

�
þ 138: ð44Þ

On the other hand, the number of e-folds since the end of
inflation Nend→today

min is

N end→today
min ¼ logðTendT−1

0 Þ ≈ 1

4
log

�
9H2

0

56m2
pπ

�
þ 74; ð45Þ

from which we get the necessary minimum number of
inflationary e-folds

N start→end
min ≈

1

2
log

�
H0

mp

�
þ 65: ð46Þ

III. STRUCTURE FORMATION

As described in previous sections, the cosmological
constant decays spontaneously due to diffusion into radi-
ation degrees of freedom exponentially in unimodular time
as a result of quantum gravity instability associated with the
fundamental granularity. We have shown that this produces
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a quasi–de Sitter dynamical evolution for the universe. We
have also assumed that the Higgs potential starts in a
homogeneous configuration with a natural expectation
value ϕ0 ∼mp and have shown how ϕ0 is expected to
evolve. Even when negligible in such a dynamics (as it will
be shown later) we included a friction term controlled by
ΓPlanck in (29). This term is produced, we argue, by the
interaction of the Higgs scalar with the physics at the
fundamental scale: the Planckian granularity. This inter-
action of the homogeneous Higgs ϕ0 and the inhomo-
geneous granular structure at the Planck scale—mediated
by the scale invariance breaking of the Higgs—will
generate (or excite) inhomogeneities in ϕ that are born
at the Planck scale via a stochastic process described in
detail in Sec. III A.
Without knowing the dynamics of the deep quantum

gravity regime it is hard to construct a fundamental account
for the interaction between the granular Planckian structure
and the matter fields involved. Nevertheless, guided by
dimensional analysis and expected features of quantum
gravity when considering its compatibility with low energy
Lorentz invariance, we will construct a model with very few
free parameters. This program has certainly an important
degree of speculation. However, there are known instances
in physics where general conceptual reasoning together
with dimensional analysis can lead to meaningful insights
about a physics that might be, at first, hard to describe in
fundamental terms. This is the perspective we adopt in this
section.
During the initial de Sitter phase the scalar curvature is

close to Planckian so that the scale of discreteness could
naturally catalyze the emergence of inhomogeneities. As
argued here, and in [25], the discreteness scale should play
a role in those field theoretical degrees of freedom that are
not scale invariant. These are the degrees of freedom that,
from a relational perspective, carry a “ruler” or “reference
frame” with respect to which the fundamental quantum
gravity scale lp can become meaningful. In this sense it is
natural to accept that as a result of such interaction
inhomogeneities should be created in the Higgs scalar
(which is the degree of freedom that introduces the
breaking of scale invariance in the standard model).
The energy flow involved in this can be parametrized
(phenomenologically) as an Ohmian diffusion term in the
equation of motion of ϕ0. As this effect is assumed to have
a quantum geometry origin, and as the only relevant
geometric scale around is the Hubble rate, dimensional
analysis suggests the diffusion to be characterized by a
dimensionless coefficient γ is a dimensionless coefficient as
follows [note that the energy density change per unit time
encoded in the left-hand side (lhs) is measured in ðenergyÞ5
units]:

ΓPlanck
_ϕ2
0 ¼ γH5; ð47Þ

where the previous is the diffusion term in (29) and we
assume γ ≪ 1 (this assumption will be confirmed by the
analysis that follows). Such a friction term induces an
additional steady contribution to the divergence of the
Higgs energy momentum tensor component which will be
absorbed by the generated inhomogeneities (quantitatively
this will be described by suitable continuity equations
written below). We will see below that such a steady
injection of energy into the fluctuations (via the mechanism
evoked in this paragraph but made mathematically precise
below) produces a spectrum of scalar perturbations in the
Higgs that is adiabatic and approximately scale invariant.
We will also show that—using the Weinberg theorem to
analyze the effect of these at CMB times—the magnitude of
the parameter γ needs to be fixed to γ ≈ 10−16 which is,
remarkably, of the same order of magnitude as the
dimensionless number γH ≈ 10−17 characterizing the break-
ing of scale invariance by the Higgs; recall (19).
Note that from the semiclassical perspective of quantum

field theory on curved spacetimes we must also note that
there are no ambiguities in the notion of particles for
conformal invariant quantum fields as the FLRW back-
ground is conformally flat. As a result there is no real
particle creation for such modes if thought of as test fields
on the cosmological conformally flat background [10].9 For
degrees of freedom breaking scale invariance the situation
is the same as long as we concentrate on scales well within
the Hubble radius. However, the notion of particles (and
their numbers) becomes ambiguous as soon as we consider
modes with super Hubble wavelength. The mechanism of
excitation of inhomogeneities discussed above is producing
particles at around the scale where the notion of particles
becomes ambiguous. By this we are not saying that a
complete semiclassical description is at all possible (as any
fundamental explanation of the role of discreteness would
need to appeal to quantum gravity). Nevertheless, we are

9The natural state for conformally invariant fields in the de Sitter
phase is the Bunch-Davies vacuum (any deviations from it are
exponentially diluted during inflation). This state coincides with
theGibbons-Hawking state that is perceived as a thermal statewith
temperature Tgh ¼ H0=ð2πÞ by any freely falling observer [43].
However, such a thermal bath should be regarded as the analog of
the Unruh particles in flat spacetime. They are there but have an
elusive physical reality as can clearly be seem by considering the
examples of a spacetime that is initially flat, then de Sitter
spacetime in an intermediate region, and finally flat again. If
one starts with the Poincaré vacuum state, then the statewill evolve
into something well approximated by the Bunch-Davies vacuum
in the intermediate phase (with Gibbons-Hawking temperature
Tgh). However, the state will emerge in the final state as the
Poincaré vacuum again. No real particles are created by the
de Sitter phase. Therefore, such “thermal excitations” due to
the presence of the de Sitter horizon in the initial phase of evolution
in our model cannot be responsible for the real fluctuations that we
need to find in the future stage where the universe has gone out of
the de Sitter phase and the horizon has becomevirtually infinite (as
in Minkowski).
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arguing here that the excitation of inhomogeneities that we
postulate is taking place close to the scale where the
semiclassical account allows for something peculiar to
happen.
The peculiar physical aspect that we are evoking is rooted

in the UV structure of our physical description of matter and
geometry. In this respect it is important to recall the
discussion of the renormalization of the energy momentum
tensor in quantum field theory on curved spacetimes, and the
fact that UV contributions lead to an (anomalous from the
pure quantum field theory perspective) violation of energy
momentum conservation [Eq. (12)]. We will see that in the
case of the Higgs scalar such an anomaly could be
interpreted as the source of the term ΓPlanck

_ϕ0 in (29) (or
its possible semiclassical description).Wewill come back to
this in the discussion section once the implications of the
present perspective are spelled out.

A. Phenomenological analysis

Let us start from the study of the dynamical equation for
the scalar field inhomogeneities. In standard treatments
these perturbations are quantized and assumed to be in
some (preferred) vacuum state (say the Bunch-Davies
vacuum). The inhomogeneities that we see today in the
CMB are assumed to arise from the quantum fluctuations
that somehow become classical by the time that they leave
their imprint on the visible sky. Although such a perspec-
tive is largely adopted in the community, there are no
complete consensus on its internal consistency. We have
already mentioned the well-known trans-Planckian tension.
On another front it has been noted that it suffers from
intrinsic interpretational problems associated with the
measurement problem in quantum mechanics of a close
system (see [32] for a discussion of these issues and further
references).
Motivation for our model is fueled in part by these

conceptual tensions which we try to alleviate by proposing
an alternative. Notice that in contrast to the standard
account, inhomogeneities in the model that we propose
here arise from an actual physical interaction that actively
produces inhomogeneities on the background Higgs value
ϕ0. Even when these fluctuations and the background field
configurations are intrinsically quantum, we will represent
them by semiclassical states whose expectation values
are assumed to be well approximated by classical field
equations.
Consequently, we define perturbations of the zero mode

δϕk with wave number k for which the following field
equation holds:

δϕ̈k þ 3H0δ _ϕk þ
k2

a2
δϕk þ

d2Vðϕ0Þ
dϕ2

δϕk ¼ 0: ð48Þ

The last term in (48) is smaller that the third term when
k ¼ aH0 (i.e., at horizon crossing), and it is in general

suppressed by the Higgs self-coupling so we will treat its
influence in perturbation theory below. This follows from

d2Vðϕ0Þ
dϕ2

¼ 6λϕ2
0 ≪ H2

0; ð49Þ

which would automatically hold for ϕ0 ∼H0 as λ ≪ 1 in
this large field regime. Given these assumptions, and
according to (48), super-Hubble modes (for which
k ≪ aH0) satisfy (to zeroth order in λ)

δϕ̈kþ3H0δ _ϕk≈0 or equivalently
dða3 _δϕkÞ

dt
≈0; ð50Þ

which implies

δϕkðτÞ ¼ qk
e−3H0τ

3H0

þ δϕk or equivalently

δϕkðτÞ ¼ δϕk þ Oða−3Þ; δ _ϕk ¼ Oða−3Þ; ð51Þ

for some qk. Superhorizon modes freeze out, and their time
derivative δ _ϕk decays exponentially in comoving time or as
a−3 in terms of the scale factor.10

1. Energy fluctuations and the power spectrum

The effect of the Planckian granularity will be modeled
by a Brownian diffusion process that injects energy in the
Higgs scalar by leaving an imprint of the fundamental
scale as inhomogeneities in the background value. More
precisely, we consider a stochastic process generating
density fluctuations by excitation of the Higgs scalar
modes at the Planck scale which is assumed to coincide
with the curvature scale H0 ≈mp. As in the description of
the Brownian motion, the process stochasticity is an
assumption that allows for a statistical effective description
of the effect of a large number of underlying independent
microscopic degrees of freedom whose individual dynam-
ics can be understood only in terms of a (more funda-
mental) quantum gravity analysis.
The characterization of the stochastic process requires

the analysis of the energy cost of generating the inhomo-
geneities in the Higgs. For that purpose let us first write the
Higgs scalar as ϕðxÞ ¼ ϕ0 þ δϕðxÞ so that the first order
perturbation of the energy density (up to second order) is

10If we keep the contribution of the potential in Eq. (48), then
one gets instead that

δ _ϕkð∞Þ
δϕkð∞Þ ¼ −

3

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8

3
λ

r �
≈ −2λ: ð52Þ

The fact that λ is negative (Higgs instability) introduces a growing
mode that appears as ≈ expð−4λH0τÞ. However, for λ ≈ −10−2
this growth is sufficiently slow to grant the validity of perturba-
tion theory until the end of inflation H0τ ≈ 60.
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δρ≡ δT00ððxμÞÞ ¼
1

2
δ _ϕ2 þ 1

2a2
δ∇⃗ϕ2 þ δVðϕÞ

≈ _ϕ0δ _ϕðxμÞ þ
dVðϕ0Þ
dϕ

δϕðxμÞ þ 1

2
δ _ϕðxμÞ2

þ 1

2a2
ð∇⃗δϕðxμÞÞ2 þ 1

2

d2Vðϕ0Þ
dϕ2

δϕðxμÞ2: ð53Þ

At this point, it is important to point out two important
features of the previous expression. First, the perturbation
of the energy momentum tensor in Eq. (53) is obtained by
assuming that the Higgs is a test field (i.e., metric
perturbations are excluded here). Second, we have
expanded up to second order in perturbation while in the
usual cosmological perturbation theory one only needs to
go up to first order. We will see below that in all dynamical
considerations involving gravity we will restrict to linear
perturbations. Very importantly, during the de Sitter phase,
scalar metric perturbations turn out to be trivial [see
Eq. (85) below], which implies that (at least during that
period) the test field energy momentum tensor and the full
linearized energy momentum tensor actually coincide. This
is not the case for the second order perturbations. However,
the latter will be used only as an interpretational devise that
offers the means to talk about energy flows involved in the
creation of the perturbations by the stochastic process that
describes the interaction between the discreteness scale and
the Higgs scale.11

We assume that δϕðxμÞ is a stochastic variable with a
probability distribution such that the associated linear
momentum vanishes, namely

⟪δϕðxμÞ⟫ ¼ 0; ð54Þ

where from now on ⟪⟫ denote ensemble averages that are
to be distinguished from quantum expectation values hi. It
follows that

⟪δT00ðxμÞ⟫ ≈
1

2
⟪δ _ϕðxμÞ2⟫þ 1

2a2
⟪ð∇⃗δϕðxμÞÞ2⟫

þ 1

2

d2Vðϕ0Þ
dϕ2

⟪δϕðxμÞ2⟫; ð55Þ

where the approximate sign comes from the fact that we
have truncated the expansion of VðϕÞ to second order in
δϕðxμÞ. The previous equation implies that the (ensemble)
average energy contribution to the field perturbations in the

stochastic process is controlled by the second order terms in
the expansion (to leading order). We can relate the second
moments of the probability distribution to the power
spectrum of perturbations if we decompose the field in
Fourier components

δϕðt; x⃗Þ ¼ 1

ð2πÞ32
Z

dk3δϕk⃗ðtÞ expðik⃗ · x⃗Þ; ð56Þ

with reality conditions

δϕk⃗ ¼ δϕ−k⃗: ð57Þ

The standard definition of the two-point correlation func-
tion (see, for instance, [44,45]) is defined by

ξϕðr⃗Þ≡⟪δϕðx⃗Þδϕðx⃗þ r⃗Þ⟫

¼ 1

ð2πÞ3
Z

dk3dq3⟪δϕk⃗δϕq⃗⟫expðiðk⃗þ q⃗Þ · x⃗Þ; ð58Þ

where the second line has been expressed in terms of
Fourier modes. As the stochastic process creating the
perturbations must respect the symmetries of the back-
ground in the statistical sense, the two-point function must
be homogeneous (independent of x⃗) and isotropic. In terms
of Fourier modes this implies that

⟪δϕk⃗δϕq⃗⟫ ¼ PδϕðkÞδð3Þðk⃗þ q⃗Þ; ð59Þ

where PδϕðkÞ is the power spectrum of the perturbations δϕ.
The previous equation implies the key relationship between
the power spectrum and the expectation value of the square
of the perturbation at the same point δϕðx⃗Þ, namely

⟪δϕðx⃗Þδϕðx⃗Þ⟫ ¼ 1

ð2πÞ3
Z

dk3PδϕðkÞ: ð60Þ

This relation allows one, as we shall show below, to express
the ensemble average of the energy momentum tensor of
the perturbations in terms of their power spectra.

2. Energy momentum conservation (continuity equations)

In this section we study the equation of state of the Higgs
perturbations when averaged in the ensemble representing
the probability distribution of the stochastic process, whose
general properties were introduced in the previous section.
This equation of state will play a role in the continuity
equations for the perturbations which will allow us to
interpret the energetics of the generation of inhomogeneities.
To write the equation of state we need to consider the

ensemble expectation value of the energy momentum
tensor. Repeating the exercise that led to (55), but now
for all the components of the energy momentum tensor, we
obtain

11This is analogous to the discussion of energy flow in
Hawking black hole radiation where backreaction is neglected
and the field degrees of freedom are considered those of a test
field. However, reliable physical information is captured by such
a notion allowing for the clear understanding of the physical
consequence of particle creation ranging from negative energy
flows across the horizon to the violations of the classical area law,
and the energy loss via evaporation at infinity.
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⟪Tab⟫ ¼ −
Λm2

p

8π
gab þ ⟪∇aðϕ0 þ δϕÞ∇bðϕ0 þ δϕÞ − 1

2
gabð∇cðϕ0 þ δϕÞ∇cðϕ0 þ δϕÞ þ 2Vððϕ0 þ δϕÞÞÞ⟫

¼ Tð0Þ
ab þ ⟪∇aδϕ∇bδϕ⟫ −

1

2
gab

�
⟪∇αδϕ∇αδϕ⟫þ d2Vðϕ0Þ

dϕ2
⟪δϕ2⟫

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

⟪δTab⟫

; ð61Þ

where we have expanded to second order in the perturba-
tion and the first order terms are gone due to (54).
The second order terms are (as the zeroth order ones)
of the perfect fluid form, ⟪Tab⟫ ¼ ρhuaub þ Phhab,
where ua and hab are the comoving four-velocity and
spatial metric of the background, respectively. This
follows from the assumption that the stochastic process
generating the perturbations is isotropic and homo-
geneous. It follows that

ρh ¼
_ϕ2
0

2
þ Vðϕ0Þ þ ⟪δρð2Þ⟫;

Ph ¼
_ϕ2
0

2
− Vðϕ0Þ þ ⟪δPð2Þ⟫; ð62Þ

where Ph and ρh denote the pressure and density con-
tributions of the Higgs scalar, and the supra index (2) on
the right-hand side expresses the fact that these terms
come from quadratic contributions in the field perturba-
tions. In order to get the explicit form of ⟪δρð2Þ⟫ and
⟪δPð2Þ⟫ we observe that

⟪∇aδϕ∇bδϕ⟫¼⟪δ _ϕ2⟫uaubþ
1

3a2
⟪∇⃗δϕ ·∇⃗δϕ⟫hab; ð63Þ

from which, when replacing back into (61), we get

⟪δTab⟫ ¼ ⟪∇aδϕ∇bδϕ⟫

−
1

2
gab

�
⟪∇αδϕ∇αδϕ⟫þ d2Vðϕ0Þ

dϕ2
⟪δϕ2⟫

�

¼
⟪δ _ϕ2⟫þ 1

a2 ⟪ð∇⃗δϕÞ2⟫þ d2Vðϕ0Þ
dϕ2 ⟪δϕ2⟫

2
uaub

þ
⟪δ _ϕ2⟫ − 1

3a2 ⟪ð∇⃗δϕÞ2⟫ − d2Vðϕ0Þ
dϕ2 ⟪δϕ2⟫

2
hab;

ð64Þ

thus, using (62), we obtain

⟪δρð2Þ⟫ ¼
⟪δ _ϕ2⟫þ 1

a2 ⟪ð∇⃗δϕÞ2⟫þ d2Vðϕ0Þ
dϕ2 ⟪δϕ2⟫

2

≈
1

2a2
⟪ð∇⃗δϕÞ2⟫þ 1

2

d2Vðϕ0Þ
dϕ2

⟪δϕ2⟫;

⟪δPð2Þ⟫ ¼
⟪δ _ϕ2⟫ − 1

3a2 ⟪ð∇⃗δϕÞ2⟫ − d2Vðϕ0Þ
dϕ2 ⟪δϕ2⟫

2

≈ −
1

6a2
⟪ð∇⃗δϕÞ2⟫ −

1

2

d2Vðϕ0Þ
dϕ2

⟪δϕ2⟫; ð65Þ

where we neglected the δ _ϕ, as justified by (51) in the
k ≪ aH0 regime (which is the regime where all these
equations will be used).
The previous equations allow for expressing the energy

cost that it would take to create inhomogeneities in the
Higgs scalar. Thus, these equations are a key in describing
our stochastic mechanism generating the perturbations.
Concretely, one needs to concentrate on the associated
continuity equations that encode the energy transfer into
inhomogeneities mediated by the stochastic process. One
can think of the Higgs perturbation contribution to the
continuity equations as the derivative of workWpert done by
the Brownian diffusion on the Higgs with respect to the
suitable time parameter. Using the scale factor as such a
parameter we get

dWpert:ðPδϕÞ
da

≡ 1

_a
ð⟪δ_ρð2Þ⟫þ 3H0ð⟪δρð2Þ⟫þ ⟪δPð2Þ⟫ÞÞ

¼ d⟪δρð2Þ⟫
da

þ 3

a
ð⟪δρð2Þ⟫þ ⟪δPð2Þ⟫Þ; ð66Þ

where we explicitly write the dependence ofWpert:ðPδϕÞ on
the power spectrum of inhomogeneities Pδϕ as the work
depends on squares of the Higgs fluctuations δϕ whose
ensemble average is encoded, according to Eq. (60), in the
power spectrum. The stochastic process will be defined
below in more precise terms. However, at this stage we can
anticipate that the central equation will be a balance
equation of the form

dWpert:ðPδϕÞ
da

¼ stochastic source; ð67Þ

and thus the remaining tusk is to define the right-hand side
of the previous equality. The reason we call this a balance
equation is that the logic behind the mechanism we propose
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in what follows is similar to the one that leads to Einstein’s
detail balance equations (an instance of the so-called
fluctuation dissipation theorem) in the simple context of
Brownian motion. This analogy is developed further in the
following footnote.12

Replacing (65) and (66) the previous equation becomes

dWpert:

da
≡ d⟪δρð2Þ⟫

da
þ 2

a
⟪δρð2Þ⟫ −

1

a
d2Vðϕ0Þ
dϕ2

⟪δϕ2⟫

¼ stochastic source: ð73Þ

Now we are ready to define the right-hand side of the
previous equation more precisely. The assumption is that
the zero mode ϕ0, while rolling down the potential and
evolving in the spacetime geometry, interacts with the
granularity scale and diffuses energy to the modes with
(physical) wave number k=a ≈mp via the discreteness
scale. We assume that this work is extracted from the zero
mode ϕ0 while evolving in the Higgs potential in a
stochastically Ohmian way so that its dynamical equa-
tion (29) gets a friction term ΓPlanck

_ϕ0.
13 Such a friction

term produces an energy lost in the zero mode characterized
by Eq. (47). Therefore, our proposal is to identify this
energy loss with the right-hand side of (67), namely
stochastic source≡ γH5, and write

_Wpert: ¼ γH5: ð77Þ

This completes the conservation of energy picture in our
scenario, and we can write the full version of the continuity
equations involving background as well as perturbations up
to second order in perturbations. Concretely, using the
definition (73), and including the radiation generated by the
decaying of the cosmological constant and the Higgs decay
in other particles of the standard model, the continuity
equation (1) becomes

12Consider a free particle moving in a viscous medium. The
equation of motion is given by the Langevin equation

ẍþ γ _x ¼ δxðtÞ; ð68Þ
where δxðtÞ is a stochastic noise source representing the
fluctuations of x due to the action of the microscopic elements
in the environment. This stochastic variable (which is the analog
of the inhomogeneities δϕ in our cosmological context) has a
noise dynamics dictated by a probability distribution such that

⟪δxðtÞ⟫ ¼ 0; ⟪δxðtÞδxðt0Þ⟫ ¼ Pδxδðt; t0Þ; ð69Þ
which are the analogs of Eqs. (54) and (60), respectively. The
Langevin equation has a simple solution in the large time
asymptotics given by

xðtÞ ¼
Z

t

0

e−γt
00
Z

t00

0

eγt
0
δxðt0Þdt0 dt00 þ x0; ð70Þ

from which we get

_xðtÞ ¼ e−γt
Z

t

0

eγt
0
δxðt0Þdt0: ð71Þ

Consider now the kinetic energy of the particle E ¼ m_x2=2, in the
long time asymptotic regime conservation of energy requires
⟪ _E⟫ ¼ 0. This condition can be written using the Langevin
equation as

⟪ _EðtÞ⟫ ¼ m⟪_xðtÞẍðtÞ⟫ ¼ m⟪_xðtÞðδxðtÞ − γ _xðtÞÞ⟫
¼ m⟪_xðtÞδxðtÞ⟫ − 2γ⟪EðtÞ⟫

¼ me−γt
Z

t

0

eγt
0
⟪δxðt0ÞδxðtÞ⟫dt0 − 2γ⟪EðtÞ⟫

⇒ mPδx ¼ 2γ⟪EðtÞ⟫; ð72Þ
where we used (69) in the last line. The result is Einstein’s detail
balance equation relating the expectation value of the energy of
the particle (which does not vanish due to the action of the
Brownian collisions of the microscopic constituents of the
environment), the friction coefficient γ (encoding dissipation
in the Langevin equation), and the power “spectrum” Pδx of the
fluctuations δxðtÞ. This last equation is the analog of our
equation (67) (whose precise form is derived further down in
the paper), the left-hand side is in our case a functional of the
power spectrum, and the right-hand side encodes the energy
fluctuations produced by the Planckian granularity [precisely
defined in Eq. (77)]. In the Brownian motion case one invokes
thermal collisions of the environment on the particle and
writes ⟪E⟫ ¼ kT. In our case we propose that the action of
granularity on field fluctuations have the analog effect [see
discussion leading to (77)]. A key difference with this simple
example is that instead of having a single degree of freedom we
have an infinite tower of modes that are being excited as they
cross the horizon. This produces a continuous feeding of energy
at different modes as the background expands and hence a
continuous injection of energy characterized by the formal
equation (67) which will become (77) in its concrete realization.
The argument leading to (77) is given in the main text.

13As a simple particular situation illustrating the rationale
behind this modification consider a Klein-Gordon scalar field as
an example. The field equation ∇a∇aϕ −m2ϕ2 ¼ 0 is explicitly
given by

1ffiffiffiffiffijgjp ∂μð
ffiffiffiffiffi
jgj

p
gμν∂νϕÞ −m2ϕ2 ¼ 0: ð74Þ

Thus we see from the previous equation that if the background is
fluctuating, then the equation will get a “Brownian” modification
as follows:

∇a∇aϕ −m2ϕ2 ¼ ξa∇aϕ; ð75Þ
where ξa is the contribution from the background fluctuations

ξν ≡ −Δ
�

1ffiffiffiffiffijgjp ∂μð
ffiffiffiffiffi
jgj

p
gμνÞ

�
: ð76Þ

In the FLRW context the only nonvanishing component of ξa

allowed by the symmetry is ξ0 ¼ 3ΔH—that we called
ξ0 ¼ ΓPlanck—and is the only possible nontrivial component
from which the analog of Eq. (29) follows.

LAUTARO AMADEI and ALEJANDRO PEREZ PHYS. REV. D 106, 063528 (2022)

063528-16



dðρΛ þ ρrad þ ρh þ ⟪δρð2Þ⟫Þ
dτ

þ 3HðρΛ þ ρrad þ ρh

þ ⟪δρð2Þ⟫þ PΛ þ ρrad þ Ph þ ⟪δPð2Þ⟫Þ ¼ 0;

_Λm2
p

8π
þ ð_ρrad þ 4HρradÞ þ _Wpert:

þ _ϕ0ðϕ̈0 þ V 0ðϕ0Þ þ 3H _ϕ0Þ ¼ 0;

_Λm2
p

8π
þ ð_ρrad þ 4HρradÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ _Wpert: − γH5

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{¼0

¼ 0; ð78Þ

where in going from the second to the last line we used
the Higgs background equation (29) and we rearranged the
terms corresponding to the continuity equation for the
perturbations replacing in addition (47). The idea encoded
in the previous equation is that the relaxation of the
cosmological constant heats up radiation (which in the
initial de Sitter phase dilutes exponentially and hence has a
negligible effect on the background dynamics) while the
Brownian stochastic interaction of the Higgs rolling down
the potential produces fluctuations according to the balance
equation (77) which as discussed in footnote 12 is an
analog of Einstein’s detail balance condition.
The coefficient of friction γ will be determined later from

an Einstein-like detailed balance condition that links the
dissipation encoded in γ with the amplitude of the observed
power spectrum of fluctuations observed in the CMB.14 To
leading order, such a steady injection of energy in the
inhomogeneities is at the heart of the scale invariant nature

of the power spectrum of density perturbations produced by
this means. This is what we do in the next section.

3. The power spectrum from diffusion

Equation (60) shows that the stochastic ensemble expect-
ation value of the product of scalar field fluctuations at a
single point is directly related to the power spectrum of
the fluctuations. This provides a simple relation between
the expectation value of the energy momentum tensor
and the power spectrum of the scalar field perturbations.
For instance, using (65), an algebraic manipulation analo-
gous to the one leading to (59) implies

⟪δρð2Þ⟫≡ ⟪δT00⟫

¼ 1

2π2

Z
dkk2

�
1

2
Pδ _ϕ þ

�
k2

2a2
þ 1

2

d2Vðϕ0Þ
dϕ2

�
Pδϕ

�

≈
1

2π2

Z
dkk2

�
k2

2a2
þ 1

2

d2Vðϕ0Þ
dϕ2

�
Pδϕ; ð80Þ

where Pδ _ϕ is defined via the analog of Eq. (59) but for the
fluctuations ⟪δ _ϕk⃗δ

_ϕq⃗⟫, we assume that the stochastic
process is isotropic (so that dk3 → 4πk2dk), and we
neglected Pδ _ϕ ¼ Oða−6Þ due to (51). According to our
previous discussion, we assume that the perturbations are
created when the modes have physical wavelengths of the
order of the Planck scale. In terms of the wave number this
happens when k ∼ amp, and we assume that modes are
simply cut off for large wave numbers, namely PδϕðkÞ ¼ 0

for k > amp. Thus, including this input in the integration
boundaries of (80) we obtain

⟪δρð2Þ⟫≡⟪δT00⟫

≈
1

2π2

Z
amp

μ
dkk2

�
k2

2a2
þ1

2

d2Vðϕ0Þ
dϕ2

�
PδϕðkÞ; ð81Þ

where μ is an infrared cutoff that will not have any effect in
the equations describing the regime of interest. Changing
time variables from τ to aðτÞ, Eq. (77) becomes

dWpert:

da
≡d⟪δρð2Þ⟫

da
þ 2

a
⟪δρð2Þ⟫−

1

a
d2Vðϕ0Þ
dϕ2

⟪δϕ2⟫¼ γ
H4

a
:

ð82Þ

To leading order in λ, the previous equation tells us that the
amount of energy that we are extracting from the Higgs
zero mode to produce inhomogeneities is done in a way that
is not sensitive to the size of the universe. More precisely
dWpert: ¼ W0ðda=aÞ with W0 ¼ γH4 as a self-similar
process (invariant under rescaling a → αa) to leading order
in λ [recall (33)]. This is, of course, consistent with the
assumption that led, via dimensional analysis, to Eq. (47).

14Before calculating the power spectrum generated from the
“detailed balance” Eq. (77) we would like to comment on the fact
that first order perturbations do not contribute to the ensemble
average that led to our continuity equation (78). What we have
used [as first stated in (54)] is that first order contributions to
Tμν—while nonvanishing in a particular realization of the
stochastic process (representing the particular state of our
universe)—average to zero when considering an ensemble of
realizations (ensemble of universes). But how can that be relevant
for our own particular universe that is one among the members of
the ensemble? The answer invokes an analogy with the ergodic
hypothesis: the condition ⟪δϕðxÞ⟫ ¼ 0 is to be interpreted on a
single realization (via this ergodicity assumption) as implying
that, at a given time, the space averageR

R δϕðx⃗; tÞdx3
VR

¼ 0 ð79Þ

for a sufficiently large region R (here VR is the comoving volume
of the region). In this way, the local contribution of fluctuations to
Tμν is not vanishing in a given realization. Nevertheless, they
average to zero in such the mean field sense. Similar interpreta-
tional questions arise for the ensemble average of the quadratic
contributions to Tμν when translated to our (single realization)
universe. However, these are familiar issues common to conven-
tional situations (see, for instance, [44]).
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Using Eqs. (81) and (33) one can substitute the ansatz
PδϕðkÞ ¼ P0=k3ð1þ OðλÞÞ into (82) and check that it
produces a solution of the detailed balance condition to
leading order in λ. Thus, in the present model the Harrison-
Zeldovich spectrum of inhomogeneities in the scalar field
can simply be related to a self-similar injection of energy
during the quasi-inflationary eraH≈ const without the need
to invoke the uncertainty principle and (most importantly)
the preexistence of vacuum fluctuations as described by the
extrapolation of quantum field theory to trans-Planckian
scales.15 The solution is

PδϕðkÞ ¼
P0

k3
; ð83Þ

with

P0 ¼ 4π2γ
H3

0

mp
ð1 − 6λÞ ≈ 4π2γ

H3
0

mp
; ð84Þ

where the next to leading order correction is not relevant
when comparing with observations because it does not
depend on k; hence, we drop it for simplicity. However, we
will see in the following section that the λ corrections will
affect scale invariance when one instead analyzes the
effects of these perturbations in the gravitational field
(which are the ones directly related to the observed
fluctuations in the CMB). In fact, the red tilt of the

CMB power spectrum is linked (in this model) to the
self-interaction strength of the Higgs field λ.

4. The Weinberg theorem and the power spectrum
of density fluctuations at the CMB

The following equations concern long wavelength
modes k < aH0 [those added up in (81)]. Weinberg proved
a beautiful and very powerful statement concerning such
modes based on the universality of free fall. This result is
known as Weinberg’s theorem [34], the proof of which is
revisited and simplified in Appendix A. One has in
particular that the gravitational potential for these super
Hubble modes is given by [see (A28)]

Φk ¼ Ψk ¼ Rk

�
−1þHðτÞ

aðτÞ
Z

τ

T
aðτ0Þdτ0

�
≈ 0; ð85Þ

where Rk are time independent and the right-hand side
approximation is valid during the de Sitter phase. This
implies that scalar perturbations do not generate scalar
metric perturbations during the inflationary era (they
decouple gravitationally to leading-order-perturbation-
theory in λ when one has an almost exact De Sitter phase).
This justifies the omission (for presentation simplicity) of
the scalar metric perturbations in the expression of the linear
expansion to the energy momentum tensor (53). The form
of the scalar density fluctuations including the gravitational
potential are given below in (90).
Weinberg’s theorem also implies the existence of adia-

batic scalar density perturbations as solutions of linearized
gravity for which

δρð1Þk

_ρ0
¼ −

Rk

aðτÞ
Z

τ

T
aðτ0Þdτ0 ≈ −

Rk

H0

; ð86Þ

where these are adiabatic in that the previous relation for
each species contributing to the perturbations individually
[see (A30)]. The previous two equations correspond to
Eqs. (5.4.4) and (5.4.5) in [34] and will be discussed and
recovered in Appendix A. In the present context they allow
us to compute Rk for super-Hubble scales k < aH0 as

Rk ¼ −H0

δρð1Þk

_ρ0
: ð87Þ

We have that [recall (62)]

ρ0 ¼
Λm2

p

8π
þ

_ϕ2
0

2
þ Vðϕ0Þ þ ρrad: ð88Þ

Assuming that Λ≈ const during the de Sitter phase, and
using the field equations (29) and the equation of state of
the radiation component, the time derivative of ρ0 gives

15Even when the reader can easily check that the solution is a
scale invariant PδϕðkÞ perhaps it is helpful for intuition to provide
the following extra details. The key point is the fact that the a-
derivative in (81) produces two contributions, namely

d⟪δρð2Þ⟫
da

¼ termcomingfromthea�derivativeofthe

integrandinð81Þþ termcomingfromthe

a�dependenceoftheboundaryoftheintegration

inð81Þ.

The first term on the right of the previous equation cancels with
the terms 2

a⟪δρ
ð2Þ⟫ − 1

a
d2Vðϕ0Þ
dϕ2 ⟪δϕ2⟫ in Eq. (82). The reason is

that once created the fluctuations δϕ evolve according the
semiclassical field equations and these are such that energy is
conserved. Therefore, the left hand side of Eq. (82) contains only
the boundary term contribution from (81) (the energy injection of
the stochastic process happens at the moment the modes are
created at the physical scale k ¼ amp) and is therefore (to first
order in λ):

termcomingfromthea�dependenceof theboundaryof the

integration in ð81Þ ¼ k2
�

k2

2a2
þ 3λϕ2

0

�
PδϕðkÞ

���
k¼amp

¼ γ
H4

0

a
.

The previous equation implies PδϕðkÞ ¼ P0=k3.
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_ρ0 ¼ _ϕ0ϕ̈0 þ
dVðϕ0Þ
dϕ0

_ϕ0 − 4H0ρrad

¼ − _ϕ0

�
3H0

_ϕ0 þ
dVðϕ0Þ
dϕ

þ ΓPlanck
_ϕ0

�

þ dVðϕ0Þ
dϕ0

_ϕ0 − 4H0ρrad

≈ −H0½3 _ϕ2
0 þ 4ρrad�

≈ −
4

3H0

λ2ϕ6
0; ð89Þ

where in the last line we use that ΓPlanck ≪ H0 (to be
confirmed below) and that ρrad ≪ λϕ4

0 (this requirement can
be met if one is in the initial range of de Sitter evolution
where radiation is exponentially diluted; see Fig. 1). From
the general expression of the energy-momentum tensor we
get (including the metric perturbation term)

δρð1Þk ¼ _ϕ0δ _ϕkðxμÞ þ V 0ðϕ0ÞδϕkðxμÞ −Ψk
_ϕ2
0

¼ V 0ðϕ0Þ
�
−
δ _ϕðxμÞ
3H0

þ δϕðxμÞ
�
−Ψk

_ϕ2
0

≈ 2λϕ3
0δϕkðxμÞ; ð90Þ

where we neglect the δ _ϕk term as it quickly dies off for
super-Hubble modes according to (50) and we used that the
long wavelength adiabatic scalar metric perturbations
vanish in the de Sitter phase according to (85).
Replacing (90) and (89) in (87) we get

Rk ¼
3H2

0

2λϕ3
0

δϕk ¼
3

2λϵ3ϕH0

�
1þ 2λ log

�
k
H0

��
δϕk; ð91Þ

where we have used the expression on the right of (33) and
used that the modes k are generated at horizon crossing
when a ¼ k=H0. Squaring the previous relationship and
computing its ensemble average in our stochastic process
one obtains, from the definition (59), an equation linking
the power spectrum PR of the Rk and that of the scalar
perturbations. Explicitly, using (84), we get

PR ¼ 9

4λ2H2
0

P0

k3

�
1þ 4λ log

�
k
k0

�
− 4λ log

�
H0

k0

��

¼ 9π2γ

k3λ2

�
1þ 4λ log

�
k
k0

�
− 4λ log

�
H0

k0

��
: ð92Þ

If we take H0=k0 ¼ 1 which boils down to normalizing
a ¼ 1 at the moment the most IR mode in the CMB leaves
the horizon, we arrive at the final expression for the power
spectrum of scalar perturbations (for H0 ≈mp) and we get

PR ≈
9π2γ

k3λ2

�
1þ 4λ log

�
k
k0

��
: ð93Þ

Using the customary notation where PR ≡ N2=k3, com-
parison with CMB observations (see, for instance, [34])
fixes the normalization factor N2 to

N2 ≈
9π2γ

λ2
≈ 1.9 × 10−10: ð94Þ

Using that λ ≈ −10−2 at our energy scale one needs to fix
γ ≈ 10−16 which is remarkably close to the estimate γH
given in (19) based on the natural measure of deviation
from conformal invariance put forward in the Introduction
expected to control the Brownian diffusion mechanism.
Deviations from scale invariance are encoded in the spectral
index of scalar perturbations ns. They are controlled by the
Higgs self-coupling as it follows from (93). The result to
first order in λ is

ns − 1≡ d logðk3PRÞ
d log k

≈ 4λþ O

�
λ2 log

�
kmax

k0

��
: ð95Þ

Observations constrain it to

1 − ns ¼ 0.04� 0.004; ð96Þ

which implies λ ≈ −10−2 which is compatible with the
standard model expected value of λ ¼ −ð1.3� 0.7Þ × 10−2

at these high field values—see [42]. Notice that in our
framework the spectral index is itself k dependent. Notice
that the linear approximation used remains consistent in
spite of the logðkmax=k0Þ in the error term as for λ ¼ −10−2
and kmax ¼ 105k0 one has λ2 logðkmax=k0Þ ≈ 10−3 which is
smaller than the present observational error in 1 − ns [46].
In the same paper the deviations from a constant spectral
index are reported to be given by

dns
d log k

¼ −0.0045� 0.0067: ð97Þ

One can repeat the previous analysis starting from Eq. (81)
and keeping terms up to order λ2. With this improved
approximation it is possible to compute the previous
quantity, and the result is

dns
d log k

¼ −0.0005þOðλ3Þ: ð98Þ

The previous is a prediction of our scheme, potentially
verifiable in the future if observational data reduce the error
by about 10%.
Finally, notice that only the first and second moments of

the probability distribution of our stochastic process have
entered our analysis [Eqs. (54) and (60)]. It would be
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interesting to study the possible implications of higher
nontrivial moments (for instance, starting with the
assumption of nonvanishing third moments) and the asso-
ciated deviations from Gaussianity. This is out of the scope
of the present work but probably worthy of more dedicated
consideration.

5. Tensor modes

So far we focused on the description of a mechanism for
the generation of inhomogeneities in scalar modes only.
The question of whether tensor modes are also produced is
a very important one in view of future constraints on the
scalar-to-tensor ratio r from CMB observations. In our
model fundamental discreteness is the underlying mecha-
nism for the active generation of the inhomogeneities. As
argued in the Introduction (see also [25,26] for further
discussion) such discreteness should primarily affect
degrees of freedom breaking scale invariance. In the present
case, with the assumption of the validity of the standard
model, the breaking of scale invariance is mediated by the
Higgs scalar mass. Gravitons being massless should not
interact with the Planckian discrete structure according to
the dimensional analysis arguments behind the construction
of our model. More precisely, as it is well known, an
infinitesimal conformal transformation δgab ¼ δωgab—
here regarded as a field variation—leads to the trace part
of Einstein’s equations ðR − 8πGTÞ ¼ 0. This relates the
trace part of the Einstein field equations with the conformal
invariant breaking interactions, which are those that medi-
ate the stochastic production of inhomogeneities in our
model. Thus the Planckian granularity—imposed by the
consistency with the low energy Lorentz invariance [26,30]
—cannot generate tensor modes whose sources are
encoded in the tensor traceless components of the energy
momentum tensor. Therefore, the expected value of the
tensor-to-scalar ratio is predicted by our model to be highly
suppressed, i.e., r ≈ 0. It would certainly be interesting to
have a more quantitative estimate of r, but this might
require better understanding of the quantum geometry
dynamics close to the fundamental scale as the effect
sought is a subleading one (gravitons being massless in
the low energy description). We leave this for future
investigations.

IV. PLANCKIAN BLACK HOLE REMNANTS
AS DARK MATTER

The fundamental nature of dark matter remains an open
question. Here we would like to stress that, if the reheating
temperature at the end of inflation gets close to the Planck
temperature, a model of dark matter where it is made of
quantum gravity Planck mass particles (as described from
our low energy perspective) that interact only gravitation-
ally is very natural.

Little is known about the fundamental theory of quantum
gravity besides the fact that it has to reproduce general
relativity with massless gravitons at low energies. As
emphasized in the Introduction several approaches to
quantum gravity propose that the smooth geometry of
general relativity would be emergent from an underlying
fundamental discrete structure at the Planck scale. In these
approaches the fundamental energy scalemp plays a central
role. A point we would like to stress here is that, in addition
to motivating the mechanism for the generation of structure
studied in this paper, such perspective naturally leads to the
possibility that defectlike objects in the discrete fabric
spacetime could survive the continuum limit. If so, it seems
likely that these would behave as particles with a mass with
the natural mass scale mp and would interact only gravi-
tationally. Such defects could be thermally excited if
Planckian temperatures were achieved during reheating.
It is unclear how to picture such particles from our low
energy perspective, for the lack of a better name we could
think of them as Planckian stable primordial black holes.
The instability of tiny black holes due to Hawking radiation
is often evoked to rule out such dark matter candidates.
However, lacking a full quantum gravity theory, it is clear
that little is certain about the properties of black holes (or
such Planckian defects) of that scale. It is even unclear in
what sense such objects qualify as black holes when the
very notion of geometry is expected not to be available so
close to the fundamental scale. The only thing that is
certain, in fact, is that absolutely all the assumptions behind
Hawking’s calculation simply fail: thus the simple invo-
cation of Hawking radiation is not a serious argument to
rule out their hypothetical role in cosmology.
The possibility that dark matter is made of primordial

Planckian black hole remnants (or more humbly, Planck
mass purely gravitationally interacting particles) has been
evoked in the literature before [47–50]. Here we show that
the dark matter energy density required by observations can
indeed emerge naturally in a Planck scale reheating
scenario as the one produced by our model. Such a type
of dark matter will basically behave as a dust fluid
interacting with the rest of matter only gravitationally. It
would be extremely hard to detect via other manifestations.
Their presence would remain hard to notice locally as the
Planckian size of these particles will make their gravita-
tional cross section in interactions with the usual matter
extremely small (however, this form of dark matter might
be directly detectable via its gravitational interaction [51]).
At the end of the inflationary era reheating raises the

temperature to close to the Planck temperature, and Planck
mass remnants could be created via thermal fluctuations if
thermal equilibrium density is achieved. For this to happen
one needs the remnant interaction rate Γpbh > H, where the
interaction rate is given by Γ ¼ nσv with n the number
density, σ the interaction cross section, and v the velocity.
For remnants of mass mpbh the interaction cross section is
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σpbh ≈m2
pbh=m

4
p while their number density n while in

thermal equilibrium goes as n ≈ T3. Using that in the
radiation dominated era H ≈ ðT=mpÞT, we conclude that
remnants decouple from thermal equilibrium when

T ≲ m2
p

m2
pbh

mp ≡ TD: ð99Þ

If thermal equilibrium can hold up to TD ≲ Tend, then the
thermal remnant abundance of dark matter today can be
estimated to be about [see Eq. (4.38) in [44]]

ρthermal
pbh ðTDÞ

m4
p

≈
�
mpbh

mp

�
4
�
T today

TD

�
3
�

TD

mpbh

�3
2

e−
mpbh
TD : ð100Þ

One can easily check that it is possible to obtain a remnant
density compatible with dark energy density today—which
would correspond to evaluating the previous line to about
10−120—with a mpbh slightly larger than but of the order of
mp. This shows that the framework provided by our model
could also fit dark energy genesis from the production of
stable PBHs via thermal fluctuations at the end of the de
Sitter phase without extreme fine-tuning where the neces-
sary suppression is brought by the standard Gibbs factor.
After completion of this work we discovered that very
similar arguments are put forward in [52].

V. DISCUSSION

We have proposed a model where the cosmological
constant Λ0 starts off with its natural Planckian value and
later relaxes via diffusion into the matter degrees of
freedom while driving an inflationary era. We assumed
that the cosmological constant decays exponentially in
unimodular time which leads to the necessary number of
e-folds if the parameter β is sufficiently small. However,
all the observational predictions of the model are inde-
pendent of the precise value of β as long as it is
sufficiently small. The validity of our analysis requires
only that the cosmological constant remains Planckian for
a minimum number of e-folds (Sec. II D). The standard
model of particle physics is assumed to be valid all the
way to close to the Planck scale, and the Higgs scalar is
also assumed to start with a large semiclassical value ϕ0

close to the Planck scale. The initial conditions of the
other matter components do not affect the dynamics in any
important manner as long as the radiation density is not
ultra-Planckian (as in standard inflation [35], the cosmo-
logical constant dominates and the expansion dilutes away
any memory of these initial conditions). The relaxation
mechanism is associated with the hypothesis of discrete-
ness of quantum gravity at the Planck scale. This suggests
a natural time variable proportional to the number of
Planckian four-volume elements created by the dynamical
evolution and in terms of which the relaxation is

exponential. We argue that the same underlying discrete-
ness at about the Hubble scale H0 should stimulate the
generation of inhomogeneities in the Higgs amplitude at
that very scale, and show that a stochastic model where the
steady injection of energy at the Hubble scale produces
(to leading order in the Higgs self-coupling λ) a scale
invariant spectrum of density perturbations with an
amplitude that is compatible in order of magnitude with
CMB observations.
More precisely, once the initial values of the Higgs

background and the cosmological constant are fixed to the
natural scalemp the model is controlled by two parameters:
the parameter β which defines the decay rate of the
cosmological constant in unimodular time, and the para-
meter γ parametrizing the Ohmian friction term—stemming
from the interaction with discreteness exciting inhomoge-
neities—in the field equations for the zero model of the
Higgs. As mentioned above, the parameter β needs only to
be sufficiently small in order to achieve a sufficient number
of e-folds that makes the model compatible with observa-
tions (fixing the β amount to fixing the number of e-folds of
inflation). The parameter γ is a dimensionless coupling
representing noisy interaction of the Higgs with the
granular structure at the Planck scale which in turn is
expected to be possible thanks to the breaking of scale
invariance of the Higgs scalar. The natural order parameter
for such breaking is γH ≡mH=mp. It is a remarkable fact
that agreement with the observation of the perturbations at
the CMB necessitates a γ ≈ 10−16 which coincides (in order
of magnitude) with γH.
Deviations from scale invariance are brought by the

evolution of the Higgs on the Higgs potential and depend
on λ. Remarkably, standard model physics (encoded in Λ)
produces a red tilt of the spectrum that is in agreement with
the data extracted from the CMB observations: the spectral
nS coincides with observations for λ ≈ −10−2 which is
compatible with the expected value of λ at high energies in
the standard model. Moreover, the model predicts a
variation of the spectral index with the scale that is inside
the limits obtained from the analysis of the latest data [46].
This corresponds to a proper prediction of our analysis
which could be tested in the future if observational errors
are reduced by an order of magnitude.
Given the above-mentioned initial conditions, Planckian

temperature reheating is a robust (β-independent) predic-
tion of our model. We observe that such a feature could
naturally account for the present abundance of dark matter
via the thermal production of Planck mass defects if such
stable particles are part of the spectrum of quantum gravity.
As in the case of the so-called weakly interacting massive
particles (WIMPs) miracle, we notice that the decoupling
temperature and mass of such hypothetical purely gravi-
tationally interacting particles (natural objects from the
perspective of quantum gravity) fall in the right range to
represent a possible dark matter candidate.
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We are aware of the strong assumptions in our model
which stretches well established physics into the uncertain
and unknown territory of quantum gravity. The speculative
nature of such an enterprise is certainly very risky. Our
model links naturally some of the key cosmological
observations with aspects of that new physics of quantum
gravity that we strive to better understand. This by itself
seems to justify our adventures. We hope that these initial
ideas could lead to helpful insights in the future.
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APPENDIX A: REVISITING
THE WEINBERG THEOREM

This is a short review of some basic facts of cosmo-
logical perturbation theory and the proof of the Weinberg
conservation theorem. We follow the notation of [34]. The
proof presented here is, we believe, more direct than the
one in the textbook; we include it here for completeness. In
perturbation theory, the metric is split in the usual way as

gμν ¼ gð0Þμν þ hμν; ðA1Þ

where gð0Þμν is the unperturbed, K ¼ 0 metric, and hμν is a
perturbation; namely

ds20 ¼ −dτ2 þ aðτÞ2δijdxidxj: ðA2Þ

The metric perturbation hμν can be decomposed as

h00 ¼ −E;

hi0 ¼ a

�
∂F
∂xi

þ Gi

�
;

hij ¼ a2
�
Aδij þ

∂
2B

∂xi∂xj
þ ∂Ci

∂xj
þ ∂Cj

∂xi
þDij

�
; ðA3Þ

where ðA; B; E; FÞ, ðGi; CiÞ, and Dij are scalar, vector, and
tensor degrees of freedom, respectively, satisfying the
conditions

∂Ci

∂xi
¼ ∂Gi

∂xi
¼ 0;

∂Dij

∂xi
¼ 0; Dii ¼ 0: ðA4Þ

In the same way we consider first order perturbations to the
energy momentum tensor

δTij ¼ phij þ a2½δijδpþ ∂i∂jπ
S þ ∂iπ

V
j þ ∂jπ

V
i þ πTij�;

δTi0 ¼ phi0 − ðρþ pÞð∂iδuþ δuVi Þ;
δT00 ¼ −ρh00 þ δρ; ðA5Þ

where ρ and p denote the zero order values (the background
values), and δρ, δp, δu, δuVi , π

V
i , and πTij are perturbations

of the density, the pressure, the fluid flow vector field, and
the stresses, respectively. They satisfy the usual conditions

∂iπ
V
i ¼ ∂iδuVi ¼ 0; ∂iπ

T
ij ¼ 0; πTii ¼ 0: ðA6Þ

Because of the symmetries of the background it is possible
to write the linearized field equations as a set of decoupled
equations for scalar, vector, and tensor modes. For the
argument leading to Weinberg’s conservation laws we will
only need the equations for scalar and tensor modes.

1. Scalar modes

The equations governing the scalar modes are

−4πGa2½δρ − δp −∇2πS� ¼ 1

2
a _a _Eþð2_a2 þ aäÞE

þ 1

2
∇2A −

1

2
a2Ä − 3a _a _A

−
1

2
a _a∇2 _Bþ _a∇2F; ðA7Þ

∂j∂k½16πGa2πS þEþA− a2B̈− 3a _a _Bþ2a _Fþ 4_aF� ¼ 0;

ðA8Þ

8πGaðρþ pÞ∂jδu ¼ − _a∂jEþ a∂j _A; ðA9Þ

−4πGðδρþ 3δpþ∇2πSÞ ¼ −
1

2a2
∇2E −

3_a
2a

_E −
1

a
∇2 _F

−
_a
a2

∇2F þ 3

2
Äþ 3_a

a
_A

−
3ä
a
Eþ 1

2
∇2B̈þ _a

a
∇2 _B;

ðA10Þ

with the energy-momentum conservation equations
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∂j

�
δpþ∇2πSþ∂0½ðρþpÞδu�þ3_a

a
ðρþpÞδuþ1

2
ðρþpÞE

�
¼0; ðA11Þ

δ_ρþ 3_a
a
ðδρþ δpÞ

þ∇2

�
−a−1ðρþ pÞF þ a−2ðρþ pÞδuþ _a

a
πS
�

þ 1

2
ðρþ pÞ∂0½3Aþ∇2B� ¼ 0: ðA12Þ

2. Tensor modes

For tensor modes we have only one equation,

−16πGa2πTij ¼ ∇2Dij − a2D̈ij − 3a _a _Dij: ðA13Þ

3. Gauge transformations

A gauge transformation generated by an arbitrary vector
field εμðxÞ,

xμ → xμ þ εμðxÞ; ðA14Þ

induces a transformation on the metric perturbation
given by

Δhij ¼ −
∂εi
∂xj

−
∂εj
∂xi

þ 2a _aδijε0;

Δhi0 ¼ −_εi −
∂ε0
∂xi

þ 2
_a
a
εi;

Δh00 ¼ −2_ε0: ðA15Þ

One can decompose the spatial part of the vector field εμ

into a scalar part εS and a divergenceless vector εVi :

εi ¼ ∂iε
S þ εVi ; ∂iε

V
i ¼ 0: ðA16Þ

Then the quantities defined in (A3) transform as

ΔA¼ 2_a
a
ε0; ΔB¼−

2

a2
εS;

ΔCi ¼−
1

a2
εVi ; ΔDij ¼ 0; ΔE¼ 2_ε0;

ΔF¼ 1

a

�
−ε0− _εSþ 2_a

a
εS
�
; ΔGi ¼

1

a

�
−_εVi þ

2_a
a
εVi

�
:

ðA17Þ

4. The theorem

To begin, let us concentrate on the scalar mode equations
only. The Newtonian gauge is defined by setting
F ¼ B ¼ 0. However, we will keep the F contributions
as we will actually move away from the condition F ¼ 0 in

what follows. However, we will change F in a way that
alters the scalar equations as written in the Newtonian
gauge in a mild way (this is the key of the proof). One
renames fields according to

E≡ 2Φ; A≡ −2Ψ: ðA18Þ

The scalar field equations in the Newtonian gauge become
(when πs ¼ 0)

−4πGa2ðδρ − δpÞ ¼ a _a _Φþð4_a2 þ 2aäÞΦ −∇2ðΨ − _aFÞ
þ a2Ψ̈þ 6a _a _Ψ; ðA19Þ

−8∂i∂j½Φ −Ψþ a _F þ 2_aF� ¼ 0; ðA20Þ

4πGaðρþ pÞ∂iδu ¼ − _a∂iΦ − a∂i _Ψ; ðA21Þ

4πGðδρþ 3δpÞ ¼ 1

a2
∇2ðΦþ a _F þ _aFÞ þ 3_a

a
_Φ

þ 3Ψ̈þ 6_a
a

_Ψþ 6ä
a
Φ: ðA22Þ

We first do a gauge transformation ϵμ ¼ ðϵ0ðxμÞ; 0; 0; 0Þ on
the background geometry (i.e., we have hμν ¼ 0 to begin
with). This gauge transformation—a simple time repara-
metrization—maintains the Newtonian-gauge condition
B ¼ 0 while it breaks the other Newtonian-gauge condition
by sending F ¼ 0 → F ¼ −ϵ0=a. Thus, the gauge trans-
formation yields the following values to the (pure gauge)
scalar perturbations:

F ¼ −
ϵ0
a
; Φ ¼ _ϵ0;

Ψ ¼ −
_a
a
ϵ0; B ¼ 0: ðA23Þ

This implies that Φþ a _F þ _aF ¼ 0 and Ψ − _aF ¼ 0.
The previous gauge transformation takes us away from

the Newtonian gauge for which F should remain equal to
zero. However, the perturbation equations can be rewritten
in the Newtonian gauge form by means of an additional
transformation which (this time) is not a gauge trans-
formation. This is how from a pure gauge mode, defined by
(A23), a new physical perturbation—solution of the lin-
earized equations—emerges. To do this we first demand
that the combination [appearing in (A20)]

a _F þ 2_aF ¼ R ðA24Þ

for some constantR. The constantR can now be absorbed
in a redefinition of the potential

Ψ ¼ −
_a
a
ϵ0 → Ψ ¼ −

_a
a
ϵ0 −R; ðA25Þ
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so that Eq. (A20) returns to its (F ¼ 0) Newtonian-gauge
form.16 While all the other equations are in principle
affected by the previous shift via their dependence on Ψ,
a more precise analysis shows that this is not the case. On
the one hand, Eqs. (A21) and (A22) remain unchanged as
they depend only on the time derivative of Ψ. On the other
hand, Eq. (A19) remains unchanged because the term
∇2ðΨ − _aFÞ—the only one that does not involve time
derivatives of Ψ—initially vanishing is sent to −∇2R
which is still vanishing as R is a constant. Therefore,
the shift of Ψ by the constant R, together with condition
(A24), does not change the form of the Newtonian gauge
perturbation equations.
Note that, as mentioned above, the shift of Ψ introduced

in (A26) is not a gauge transformation. Now we will see
that the condition (A24) completely determines the physi-
cal solution of the Newtonian-gauge perturbation equations
found via the present procedure. To do that we write
(A24)—using (A23)—as a condition on ϵ0, namely

a
d
dτ

�
ϵ0
a

�
þ 2

_a
a
ϵ0 ¼ −R: ðA26Þ

The solution of (A26) is given by

ϵ0ðτÞ ¼ −R
R
τ
T aðτ0Þdτ0
aðτÞ ; ðA27Þ

where an integration constant is hidden in the choice of
initial time T. Remarkably, by replacing ϵ0 in the expres-
sions for Ψ and Φ we obtain for free their equality imposed
by Eq. (A20) for general modes in the absence of stresses
(πS ¼ 0), namely

Φ ¼ Ψ ¼ −R
�
1 −H

R
τ
T aðτ0Þdτ0
aðτÞ

�
: ðA28Þ

More precisely, we did not need to impose the physicality
constraint Φ −Ψ ¼ 0 imposed in [34]. Here, it just follows
from the consistency of the initial gauge transformation
plus the shift in the definition of Ψ. For δu one has

δu0 ¼ −ϵ0 ¼ R

R
τ
T aðτ0Þdτ0
aðτÞ ; ðA29Þ

and for the matter perturbations we get

δρα ¼ _ρ0αϵ0 ¼ −_ρ0αR

R
τ
T aðτ0Þdτ0
aðτÞ ðA30Þ

for any species α. Indeed, for any scalar quantity the
solution would look the same. One calls such a type of
perturbations adiabatic.
The adiabatic property follows from the fact that the

changes have been found via a special gauge transforma-
tion ϵ0. (In fact, it can be interpreted as an infinitesimal time
reparametrization for scalars, and hence it affects all in the
same universal way. This is, of course, a form of the
equivalence principle at play.) We modified the fields in
two steps: first, the previous gauge transformation, and
second, the shift by a constant ofΨ [which restricts the time
dependence of the gauge parameter ϵ0ðτÞ]. Because the
Newtonian gauge perturbation equations are invariant
under the previous action, Eqs. (A28) and (A29) define
a nontrivial17 solution of the cosmological perturbation
equations that is homogeneous. As such it must be a good
approximation to solutions for modes with wavelengths
much larger than H−1.
Finally, it is simple to check that a constant traceless

tensor Dij is a zero mode solution for tensor modes (A13).

APPENDIX B: THE DIFFERENCE WITH
THE STANDARD PARADIGM WHERE

INHOMOGENEITIES ARISE
FROM VACUUM FLUCTUATIONS

Here we discuss in more detail the difference of our
model with the more standard (by now textbook) accounts
where the vacuum fluctuations in the quantum state of the
inflaton are the source of inhomogeneities. After all even
when there is no inflaton field driving inflation, our model
still has a scalar field degree of freedom which if set
(asymptotically in the far past) in the Bunch-Davies
vacuum would have vacuum fluctuations analogous to that
of the inflaton (indeed, this is the idea in models of Higgs
inflation).
Some of the conceptual difficulties in interpreting such a

paradigm has been discussed in [34]. Here we will simply
state that, in the absence of a theory of quantum gravity, the
naturally available tool is that of semiclassical gravity
where one replaces Eintein’s equations by

Rab −
1

2
Rgab ¼ 8πGhψ jTabjψi; ðB1Þ

for some quantum state jψi of the matter living on a
classical geometry. One sees this approach would immedi-
ately lead (in the standard account) to no gravitational

16The Weinberg solution of the perturbation equations con-
structed here requires that the quantity R is a strict constant.
However, the physical relevance of the existence of such a
solution resides in the fact that it will have to approximate well
suitable solutions for the Fourier modes of scalar perturbations in
the super Hubble regime where space dependencies can be
neglected.

17Very importantly, this transformation is not a gauge trans-
formation because of the constant shift in Ψ. This is why gauge
invariant observables will have nontrivial values in this solution.
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effects of vacuum fluctuations. More precisely, as cosmo-
logical perturbation theory is based on linearized gravity
around the FLRW background, hψ jδTabjψi ¼ 0. For that
reason one cannot interpret the standard account in terms of
semiclassical gravity (which is not necessarily a problem)
and needs to consider the simultaneous quantization of
matter and geometry in the framework of perturbation
theory. However, difficulties arise when trying to account
for the actual density fluctuations observed at the CMB
from primordial vacuum fluctuations of matter fields and
geometry because this requires, on the one hand, the
interpretation of quantum theory in the particularly thorny
context of the universe as a whole with an additional
assumption that quantum fluctuations turn into “real”
classical fluctuations.
The first key difference introduced by our model is that

in our case fluctuations are generated in the state of the
Higgs itself via the interaction of the (assumed) Planckian
granularity and the scalar degrees of freedom. These
fluctuations are semiclassical from the very beginning
representing the imprint of the violation of the FLRW
symmetries at the Planck scale. In our case the fluctuations
are present in the semiclassical state of the Higgs jψi in the
sense that hψ jδϕabjψi ≠ 0 from the onset and consequently

hψ jδTabjψi ≠ 0: ðB2Þ

Thus, our model admits a semiclassical account corre-
sponding to the linearized version of (B1). The state of the
Higgs (via its interactions with the Planckian granularity)
breaks the FLRW symmetry in contrast with the Bunch-
Davies vacuum. In our case, inhomogeneities are inherent
in the Planckian substratum and simply transmitted to the
scalar degree of freedom during inflation. This completely
eliminates the conceptual difficulties of the standard
account and provides an alternative story that is consistent
and has the appealing feature of linking inhomogeneities in
the CMB with the Planckian fundamental discreteness
predicted by several approaches to quantum gravity.
In our model the perturbations of the Higgs are born at

horizon crossing, and hence the state differs from theBunch-
Davies vacuum state: the “order parameter” revealing this
difference is the expectation value hψ jδϕabjψi which van-
ishes in the Bunch-Davies vacuum but not in the present
case. In the standard formulation the state of the inflaton is
assumed to be given by the Bunch-Davies vacuum which is
defined asymptotically in the far past introducing in this
fashion the so-called trans-Planckian problem where initial
conditions for the modes are given when their wavelengths
are shorter than the Planck length. In our case the properties
of the semiclassical state are defined at horizon crossing as
discussed in Sec. III. Trans-Planckian modes play no role in
our model.
A clear way to sharply distinguish our state from the

Bunch-Davis vacuum is the following: If, as in the standard

paradigm, one would assume that evolution would be
accurately dictated by the rules of quantum field theory
on a curved classical spacetime (de Sitter spacetime) for
trans-Planckian modes—a thought exercise which is physi-
cally inappropriate in our situation as one would be
ignoring the quantum gravity effects which produce the
semiclassical excitations in our state—the back-in-time
evolution of our state would become singular in the
asymptotic past. This is due to the fact that the semiclassical
excitations produced by the granularity would be infinitely
blueshifted by the de Sitter expansion toward the past and
the state will deviate more and more from the (Bunch-
Davies) vacuum. This is a simple way to illustrate the
difference between the quantum state of the Higgs in our
model from the choice made in the standard formulations.
Of course, the singular behavior to the past of our state is
not a problem as it arises in the present exercise only when
we ignore the mechanism of excitation and use the rules of
quantum field theory beyond their regime of applicability.

APPENDIX C: SPECULATIONS ABOUT SOME
OF THE OPEN QUESTIONS

In this section we mention and discuss a few points that
deserve further attention. We raise several questions here
and propose possible tentative solutions. These open issues
represent possible lines for future improvement of the ideas
in this paper that we hope could be developed in the future.

1. On the decay of the cosmological constant
after the EW transition

Among the few free dimensionless parameters entering
our model there is β which needs to be extremely small
(<10−80) to produce a sufficiently long period of inflation:
the free parameter β can be thought of as the free choice of
the number of e-folds that take place in the scenario
proposed during the inflationary period. Thus the question
of why β is small is equivalent to the requirement encoded
in equations such as (46). Note that such conditions are
inequalities (inflation must be sufficiently long), and thus β
does not enter any of the quantitative predictions of our
proposal when considering observable imprints at the
CMB. Phrasing this in terms of β notes that its smallness
is not, by itself, necessarily problematic in an effective
description of a phenomenon that is emergent from the
collective behavior of tiny microscopic building blocks
whose precise physics is not taken into account. Lacking
such a fundamental description, one can try to find some
possible guidance in dimensional analysis. For instance,
recall that there was still a rescaling ambiguity in the
definition of the unimodular time that actually rules the
cosmological constant relaxation. Such possible rescaling
of the time variable tp—introduced in (16)—was encoded
in the choice of a length scale lU ≫ lp. Notice that this is
quite reasonable as, in addition to the Planck scale, there is
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another natural scale in the application of the cosmological
principle to the region of interest of the universe: an IR
scale lU representing the extent of the “patch” of the
universe that is well approximated by the ansatz geometry
(15) with homogeneous and isotropic background fields
living on it.
In terms of the time variable tp defined by (16) with such

an IR scale, the relaxation is controlled by the “bare” value
β0 given by

β ¼ β0

�
lp

lU

�
3

: ðC1Þ

Such reparametrization does not resolve the fine-tuning
problem and only shifts the issue of the smallness of β into
that of the largeness of lU. However, it offers a new
perspective pointing at the possibility of a physical mecha-
nism where the size of the FLRW patch lU would stabilize
the cosmological constant in essence by reducing diffusion.
Such perspective suggests a long range quantum coherence
mechanism (such as for the collective behavior in Bose-
Einstein condensates in relation to superfluidity) and offers
a prospect for future analysis.
If such would be the role of lU, this would also help to

resolve another question that necessarily arises when con-
sidering the instability of the cosmological constant pos-
sibly at play at the present (later stage) of the universe. That
is, why is it that the present cosmological constant has not
decayed yet by a similar relaxation? One advertised feature
of our model is that it proposes a new and different view on
the question of why the cosmological constant can start at
about its natural value and become basically zero quickly
after the end of inflation. The remaining issue is how it can
grow back to the value that is compatible with present
observations. In [25,26] a model was proposed (motivated
by the same theoretical ideas as in this work) where the
cosmological constant of the correct order of magnitude is
generated due to diffusion during the electroweak transition.
If the two proposals are to be consistent with each other,
then one would need a mechanism granting that the
relaxation of the newly generated cosmological constant
does not completely annihilate it by the present time. We
notice that the phenomenological proposal (C1), character-
izing the long scale coherence, could possibly reconcile the
two from the fact that the new IR (stabilizing) scale lew

U ¼
aewlU has expanded by the time of the electroweak
transition. Therefore, even if the same relaxation mecha-
nism would be at play after the EW transition, it could be
sufficiently slow for the cosmological constant to persist
basically unchanged until the present if lU is sufficiently
large to begin with. This follows from the fact that the
change in unimodular time Δt from the EW transition to
today appears as Δt ≈H−1

todaya
3
today (recall a0 ¼ 1 at the

Planck initial time). Hence, a cosmological constant created
at the electroweak time will last until today if

β0

�
lp

lU

�
3
�
atoday
aew

�
3 mp

Htoday
< 1; ðC2Þ

i.e., we would be in a new inflationary regime for the
new relaxing Λ. Taking β0 ≈ 1, the previous condition
would require the initial coherence IR distance to be
lU ≥ 1035lp ¼ 1 m. This appears as a huge initial region
for our original bubble inflating to the present universe; at
the same time we know and it has been often emphasized on
various grounds that our universe requires extremely
special initial conditions to accommodate its most basic
features [29].
Even when the previous is perhaps the simplest specula-

tion available with the details that our model offers, there
could be other reasons for the relaxation process to change
after the electroweak scale, rooted in some unknown quan-
tum gravity mechanism that is no longer operational at such
low energies. Such physics could be related to the role of the
Higgs scalar in the whole picture. We notice that when the
cosmological constant has relaxed to zero during the infla-
tionary epoch, the Higgs scalar settles to its VðϕÞ ¼ 0
configuration, which certainly changes the coupling of this
fieldwith four-volume in the effective action (having inmind
that the interaction between fundamental four-volume ele-
ments and matter could be the root of the diffusion mecha-
nism that is central in our scenario). Other ideas explaining a
possible phase transition that wouldmake the relaxation stop
after the electroweak scale are under investigation.

2. The instability of the Higgs potential
and quantum gravity

In the present model the universe starts in a special state
where the cosmological constant is of the order m2

p and the
Higgs field is around the Hubble rate which itself is of the
order ofmp. At such high values of ϕ0 the quartic coupling
λ is negative and—as we have seen in Sec. III A 4—this is
exactly what is needed to explain the red tilt of the power
spectrum of scalar perturbations. However, this also implies
that the Higgs field finds itself exactly in the instability
region and is rolling toward higher values on the way to the
Planck scale and beyond.
Note, however, that the runaway behavior is slow during

the inflationary phase as the Hubble friction is very
important due to the effect of a large cosmological constant
[recall Eq. (34)]. When inflation ends, the Hubble rate starts
decaying and the instability becomes an issue. However,
such a conclusion applies only if one assumes that the
standard model holds true beyond the Planck scale, which
is, of course, unreasonable. Deviations from the standard
model should eventually become important as the Higgs
field approaches mp, and—even when it is hard to know
what exactly that new physics would be in such a regime
(notice that even the standard QFT formulation on a curved
background is expected to fail there)—it seems possible
that such new physics could prevent the Higgs from rolling
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to arbitrary high values. There are various models in the
literature that try to render such a conclusion more concrete
(all sharing the limitation of the necessary reliable inputs
from a quantum gravity theory). For instance, a non-
minimal coupling of the Higgs with the geometry—which
are necessary in models of Higgs inflation (see [53] for a
review)—is shown to help stabilize the Higgs up to about
the Planck scale [54]. Other models predict stability at
around the Planck scale [55] by making assumptions on
possible new physics. As an example, a repulsive barrier at
the Planck scale can arise via ϕ6 and ϕ8 corrections of the
Higgs potential motivated by grand-unified scenarios atmp

[56]. Such a repulsive barrier at the Planck scale would only
stop the Higgs scalar from rolling to arbitrary high trans-
Planckian scales. However, this by itself would not explain
how the Higgs would eventually exit from that Planckian
state and evolve toward the electroweak minimum that
produces the phenomenology of the standard model in
accordance with the world we see around us. This problem
resonates in some respects with the “graceful exit” problem
in models of Higgs inflation [38,39]. Yet it is also different
as, on the one hand, in our model inflation is not driven by
the Higgs, and, on the other hand, the diffusion of energy
from the decaying cosmological constant raises the temper-
ature of radiation back to close to the Planck temperature at
the end of the inflationary era [recall Fig. 1 and the
discussion in Sec. II B, Eq. (39)]. When the temperature
reaches Planckian values, at the onset of the radiation
domination (recall Fig. 1), the Higgs could thermalize
decaying to the EW vacuum away from the instability scale
(such a possibility is explored in related scenarios in
[54,57]). We are aware that a clear account of this is
lacking in our scenario, for the usual reason that this part of
the story concerns physics at the Planck scale.

3. On the validity of the semiclassical analysis

The mechanism of generation of structure in our model is
based on the interaction of the Planckian granularity of

quantum gravity with the low energy degrees of freedom
encoded in the Higgs scalar field of the standard model.
The analysis has been performed using the classical field
equations for the scalar field evolving in a classical back-
ground. This is what one can do at the moment given the
limitations of present quantum gravity theories to provide
reliable calculation tools in such an extreme regime. The
validity of semiclassical methods is an assumption of our
analysis. Nevertheless, one must keep in mind that this
limitation is shared by (and is possibly more severe) in
standard approaches where strong assumptions about trans-
Planckian physics are customarily made. Note that in
contrast there is no trans-Planckian issue here. In our
model, perturbations are born at the length scale H−1

0

which is about the Planck length lp. This is closer to the
regime where the semiclassical treatment might become a
reliable approximation.
On a similar ground there is another issue that is common

tovarious approaches, and it is also shared by ours. This issue
is sourced in the use of stochastic methods in conjunction
with Einstein’s equations and the difference between sto-
chastic averages (satisfying some form of the continuity
equation compatible with the Bianchi identities or with the
integrability conditions of unimodular gravity in our case)
and the fact that individual realizations are not subjected in
any clear fashion to such constraints. This implies that a
single element of our stochastic ensemble does not follow the
field equations of general relativity. This problem is often
overlooked but it is present even in the standard paradigm of
structure formation in inflation where quantum vacuum
fluctuations are interpreted as classical stochastic fluctua-
tions of an ensemble of realizations. In our model the
behavior of the individual realization that represents our
universe follows a dynamics that should be describable via a
more fundamental theory. Our mean field description is only
effective and the possible conflict with the structure of
Einstein’s equations at the level of an individual element
of the ensemble is to be resolved by quantum gravity.
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