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Deviations from the blackbody spectral energy distribution of the cosmic microwave background
(CMB) are a precise probe of physical processes active both in the early Universe (such as those connected
to particle decays and inflation) and at later times (e.g., reionization and astrophysical emissions). Limited
progress has been made in the characterization of these spectral distortions after the pioneering
measurements of the FIRAS instrument on the COBE satellite in the early 1990s, which mainly targeted
the measurement of their average amplitude across the sky. Since at present no follow-up mission is
scheduled to update the FIRAS measurement, in this work we reanalyze the FIRAS data and produce a map
of μ-type spectral distortion across the sky. We provide an updated constraint on the μ distortion monopole
jhμij< 47 × 10−6 at 95% confidence level that sharpens the previous FIRAS estimate by a factor of ∼2. We
also constrain primordial non-Gaussianities of curvature perturbations on scales 10≲ k≲ 5 × 104 through
the cross-correlation of μ distortion anisotropies with CMB temperature and, for the first time, the full set of
polarization anisotropies from the Planck satellite. We obtain upper limits on fNL ≲ 3.6 × 106 and on its
running nNL ≲ 1.4 that are limited by the FIRAS sensitivity but robust against galactic and extragalactic
foreground contaminations. We revisit previous similar analyses based on data of the Planck satellite and
show that, despite their significantly lower noise, they yield similar or worse results to ours once all the
instrumental and astrophysical uncertainties are properly accounted for. Our work is the first to self-
consistently analyze data from a spectrometer and demonstrate the power of such instrument to carry out
this kind of science case with reduced systematic uncertainties.
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I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) arguably represent the cornerstone of modern
cosmology. Over the last three decades, accurate measure-
ments of the CMB temperature and polarization anisotro-
pies have provided us with a snapshot of the Universe at the
time of recombination and have yielded stringent con-
straints on the constituents, dynamics, and geometry of the
Universe [1–4]. This picture is complemented by measure-
ments of the intensity spectrum of the CMB which directly
probe the thermal history of the Universe, providing access
to additional cosmological information not encoded in the
spatial anisotropies [5–7]. In particular, departures from a
pure blackbody spectral energy distribution, the so-called
“spectral distortions” (SD), open a special window on the

physical processes active before recombination as well as at
more recent times [e.g., [8]].
SD naturally arise when thermalization is inefficient in

keeping matter and radiation in thermodynamical equilib-
rium. Examples of mechanisms that can drive the photo-
baryonic fluid out of equilibrium are dissipation of
primordial acoustic waves and energy injections in the
form of photons or other electromagnetically interacting
particles (see e.g., [9,10] and references therein for a recent
review). Based on their spectral shape, we can broadly
break down CMB SD into two classes: the μ- and y-type
distortions. At redshifts greater than zμ ≳ 2 × 106, the
creation and redistribution of photons by Compton scatter-
ing, double Compton scattering, and bremsshtrahlung
restore thermal equilibrium and erase any SD. Between
5 × 104 ≲ z≲ 2 × 106, when double Compton scattering
and bremsshtrahlung become inefficient, energy injections
result in a Bose-Einstein distribution with a nonzero
effective chemical potential μ, giving rise to μ-type
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distortions [e.g., [11,12]]. Around zμy ≲ 5 × 104 Compton
scattering becomes inefficient too and photons fall out of
kinetic equilibrium with electrons, sourcing the y-type
distortions. In reality, the transition from the μ- to the
y-era is not abrupt and as a result, residual distortions at
intermediate times which cannot be fully described by the
sum of μ- and y-types (the so-called r-type distortions)
form. Their magnitude within ΛCDM is however expected
to be smaller than the sensitivity of proposed future
missions like PIXIE [e.g., [13]]. The SD sensitivity to
different cosmic epochs not only allows us to probe
standard and exotic physics, but also the power spectrum
of primordial fluctuations over a broad range of scales,
1≲ k≲ 104 Mpc−1. While y-type distortions are generated
both in the early Universe and during the reionization and
structure formation epochs [e.g., [14–16]], μ-type distor-
tions are only produced in the prerecombination era,
making them a clean and powerful probe of the early
Universe physics. For this reason, we shall focus on the
latter type of distortions in this paper.
Observational bounds on the monopole component of

these distortions have been set by COBE/FIRAS and
are at the level of jhμij < 90 × 10−6 and jhyij< 15 ×
10−6 (95% CL) [6,17]. At lower frequencies than those
covered by FIRAS, ARCADE [5] and TRIS [7] have more
recently carried out absolute measurements of the CMB
spectrum and derived similar constraints. Several follow-
up experiments like PIXIE, PRISM, BISOU, COSMO
[18–21] have been proposed to improve absolute measure-
ments of the CMB spectrum.
Apart from the Sunyaev-Zel’dovich (SZ) distortion

sourced by galaxy clusters on arcminute scales [e.g.,
[15,22,23]], CMB SD are predicted to be isotropic signals
in the simplest cosmological scenarios. There is, however,
an intriguing possibility. If the spectrum of primordial
perturbations is non-Gaussian, then a spatial modulation of
the SD will be induced, leading to a potentially observable
anisotropic pattern of the distortions, as first discussed in
[24]. In particular, the local-type non-Gaussianities which
peak in the so-called squeezed configuration1 correlate the
small-scale primordial power spectrum, traced by the SD,
with the long-wavelength modes probed, e.g., by primary
CMB, inducing a nonzero cross-correlation between μ and
T, E-, and B-modes [e.g., [24–31]]. As such, a measure-
ment of the spatial correlation between the μ-type distortion
and primary CMB anisotropies can constrain the amplitude
of primordial non-Gaussianity (encoded by the dimension-
less parameter fNL) at very small scales with wave numbers
of about k ≃ 102–104 Mpc−1.
This information would greatly complement the view on

primordial local non-Gaussianities from Planck’s measure-
ment of T and E anisotropies bispectrum at much larger

scales (σðfNLÞ ≃ 5 at k≲ 0.15 Mpc−1 [32]), providing key
insights on the scale-dependence of the primordial non-
Gaussian signal and hence on the inflationary mechanism.
In this paper, we use archival data from the COBE/

FIRAS experiment to reconstruct a sky map of the μ-type
distortion fluctuations. We then correlate this map with the
primary CMB temperature and, for the first time, the full set
of polarization anisotropies observed by the Planck satel-
lite. The extracted SD-CMB cross-power spectra are then
translated into constraints on the amplitude of primordial
non-Gaussianity of the local-type, flocNL (we will drop the
superscript hereafter for simplicity), which are the main
one.
We point out that reconstructing the μ-type distortion

anisotropies does not necessarily require an absolute
measurement of the sky. The work of [33] was, to our
knowledge, the first one that attempted a reconstruction of
the fluctuating part of the μ distortions using a component
separation method applied to imaging data; namely, those
from the high-frequency instrument on board the Planck
satellite. However, this approach can be more affected by
contaminations from residual primary CMB and other
astrophysical foregrounds e.g., [34,35]]. In addition, we
stress that knowledge of the μ monopole is needed to break
the degeneracy between the average level of μ distortions,
hμi, and fNL (see [28,33–36] for discussions on measuring
μ fluctuations with a relatively calibrated experiment). This
possibility is only allowed by instruments such as spec-
trometers that are sensitive to the absolute sky temperature.
The paper is organized as follows. In Sec. II we briefly

introduce the main ingredients of this analysis, the COBE/
FIRAS and Planck datasets, while the analysis methodol-
ogy, from the sky modeling to the cosmological inference,
is reviewed in Sec. III. Maps of the anisotropic μ-type
distortion, its cross-correlation with primary CMB anisot-
ropies, and systematic checks are presented in Sec. IV.
We discuss constraints on primordial non-Gaussianities in
Sec. V and compare to previous measurements in Sec. VI.
Finally, we draw our conclusions in Sec. VII.

II. DATASETS

A. COBE/FIRAS

The Far Infrared Absolute Spectrophotometer (FIRAS)
instrument was a cryogenically cooled Martin-Puplett
interferometer on board the Cosmic Background Explorer
(COBE) satellite. Designed to cover the frequency range
between 30 GHz and 2910 GHz in two spectral bands,
FIRAS was able to provide accurate measurements of the
CMB spectral energy distribution, thermal emission from
interstellar dust, and various infrared cooling lines of the
interstellar gas [6]. To accomplish this, FIRAS used a
differential optical system with two inputs, one collecting
radiation from the sky and one from an internal reference
calibrator, and two outputs feeding radiation to composite

1Defined as the bispectrum configuration where two wave
numbers are much larger than the third one, k1 ≪ k2 ≃ k3.
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bolometer detectors. The required absolute calibration was
achieved through an external blackbody calibrator. The
FIRAS horn antenna accepted incoming sky radiation from
a 7° circle, resulting in an approximately top-hat beam
function.
In this work we use the calibrated FIRAS skymaps of

spectra that have had postcalibration offsets removed, a
process known as “destriping”. Specifically, we focus on
the final delivery of the FIRAS low frequency low spectral
resolution destriped sky spectra, which cover the spectral
range from 60 up to 630 GHz in frequency bins with a
width of about Δν ≈ 13 GHz. The twofold reasons for
doing so are that the CMB emission becomes almost
entirely negligible at higher frequencies while the noise
levels significantly increase. The relevant data products are
provided as maps in HEALPix pixelization2 at a resolution of
Nnside ¼ 16, corresponding to an approximate pixel size of
δθ ∼ 3.5°,3 for each observed frequency. For a detailed
discussion on the instrument, the calibration process, and
the released data products, we refer the reader to the FIRAS
Explanatory Supplement.4

B. Planck CMB maps

The Planck satellite was the third generation of space-
based missions, after COBE and WMAP, to study CMB
physics and was dedicated to image the temperature and
polarization CMB anisotropies at high angular resolution.
Launched in 2009, about 20 years after COBE, Planck
carried out a full-sky survey of the microwave sky in nine
bands across the 30 GHz to 857 GHz range, down to ∼50
angular resolution [37]. The broad spectral coverage of
Planck enabled an accurate characterization and separation
of the diffuse foregrounds. Unlike FIRAS, Planck is not
sensitive to the absolute brightness temperature of the sky.
Its calibration thus assumes the knowledge of the CMB
temperature, as measured by FIRAS, and relies on the
modulation of the CMB dipole anisotropy induced by the
motion of the spacecraft with respect to the CMB reference
frame [38,39]. The Planck maps from the 2018 release are
calibrated with a precision approaching ∼10−4 at frequen-
cies below 500 GHz and more recent analyses extended this
calibration procedure at the highest frequency channels
[40]. This accurate measurement in multiple frequency
channels allowed to separate the CMB from other astro-
physical emissions using different approaches.
In this analysis, we use four foreground-cleaned CMB

temperature and polarization anisotropies maps publicly
released by the Planck Collaboration and derived with
different component separation algorithm in both real and
harmonic domain; Commander, Needlet Internal Linear

Combination (NILC), Spectral Estimation Via Expec-
tation Maximization (SEVEM), and Spectral Matching
Independent Component Analysis (SMICA) [41]. These
maps are also provided in the HEALPix format at
Nnside ¼ 2048. We first convolve the Planck component-
separated maps with the FIRAS scanning beam (which
includes the instantaneous optical response and its variation
due to the satellite motion as described in Sec. III E) and
then downgrade them to a resolution of Nnside ¼ 16 to
produce maps at the native FIRAS resolution.

C. Sky masks

We use different masks to remove pixels close to the
Galactic plane where the contamination from foreground
emission is high. We adopt the so-called destriper mask of
the FIRAS data release (hereafter FDS) that removes the
sky pixels not observed by FIRAS as well as those not
included in the destriping operation, which are confined to
the Galactic center. In addition to this mask, we use the
public binary Planck Galactic masks that retain 40%, 60%,
80%, and 90% of the sky and that are derived from
thresholding the 353 GHz map after CMB subtraction.
Hereafter we will refer to these masks, which are shown in
Fig. 1 as P40, P60, P80, and P90 respectively and will
adopt P60 as our baseline mask.

III. METHODS

In this section we describe the different steps that
compose the analysis methodology. We start from the
modeling of the FIRAS data cube and foreground emis-
sions; we then discuss the sky-component fitting and
power-spectrum estimation, and finally conclude with a
description of the cosmological parameter inference
framework.

A. Data model

The calibrated FIRAS low frequency sky spectra are a
function of frequency ν and position n̂. Effectively, we can

FIG. 1. Sky masks used in this analysis. The black region
corresponds to the area masked out by the FIRAS destriper mask
while progressively paler colors show the Planck masks that
retain the 90%, 80%, 60%, and 40% of the sky.

2http://healpix.sourceforge.net.
3https://lambda.gsfc.nasa.gov/product/cobe/firas_tpp_all_get

.cfm.
4https://lambda.gsfc.nasa.gov/product/cobe/firas_exsupv4.cfm.
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think of the data as a set of pixelized maps at different
frequencies, where the value in each pixel corresponds to
the absolute sky emission in MJy/sr. We model the sky
emission Iνðn̂Þ as a superposition of several components:
(1) A blackbody at T ¼ T0 describing the CMB mo-

nopole, BνðTÞ;
(2) A CMB dipole with spectral radiance given by the

derivative of the Planck function Bν with respect
to the temperature (assuming it is the result of a
Doppler shift of the monopole induced by our
peculiar motion);

(3) Selected foreground emission components, IFGν ðn̂Þ;
(4) Additional spectral distortions, of μ- or y-type,

ISDν ðn̂Þ (in our notation hereafter SD ∈ ½μ; y�).
Altogether, and similarly to [[17] hereafter F96], the sky
model in the direction n̂ reads

Iνðn̂Þ ¼ BνðT0Þ þ ΔTðn̂Þ ∂Bν

∂T

����
T¼T0

þ IFGν ðn̂Þ þ ISDν ðn̂Þ;

ð1Þ

where IFGν ðn̂Þ describes the galactic and extragalactic
foreground emissions and ISDν ðn̂Þ the spectral distortion
spectral energy distribution (SED).
In the case of μ-type distortions, we can drop the ISDν ðn̂Þ

term and incorporate it into the generalized Planck’s law for
blackbody radiation BνðT; μÞ

BνðT0; μðn̂ÞÞ ¼
2hν3

c2
1

exþμðn̂Þ − 1
; ð2Þ

with x ¼ hν
kBT0

, μðn̂Þ being the chemical potential (at a given
sky location), and T0 the reference CMB monopole
temperature. Throughout this work we assume the best
fit value of T0 ¼ 2.7255 [42] but we tested that our results
are robust with respect to this choice. As a matter of fact,
any change in the local temperature of the CMB in a
direction n̂ results in a shift in the amplitude of the ΔT
parameter. The sum of the first two terms of Eq. (1)
represents in fact a Planck blackbody spectrum of temper-
ature T0 þ ΔT. Since we do not make any assumption on
its amplitude nor its spatial dependence, the ΔT parameter
effectively captures changes in the CMB temperature at
linear order and essentially removes residual CMB con-
taminations in our resulting SD estimate, allowing us to
marginalize over this effect in the estimate of μ. We note
that including the μ distortion as a nonlinear parameter in
the fit, contrary to F96, allows us to minimize degeneracies
between CMB and μ (see Fig. 3). In fact, considering μ as a
linear deviation around a Planck blackbody spectrum we
would have

Iμνðn̂Þ ¼ μðn̂Þ−T0

x
∂Bν

∂T
: ð3Þ

Given that in Eqs. (1) and (3) both the free parameters δT
and μ multiply a ∂Bν=∂T term, they become almost
degenerate and display a very strong correlation (over
95% according to F96).
A similar approach can be followed to separate y

distortion map, where the emission law is

ISD;yν ¼ yT0

�
x
ex þ 1

ex − 1
− 4

�
∂Bν

∂T

����
T¼T0

: ð4Þ

The y-type distortion has a shape that is similar to that of
the μ-type, but features a zero-crossing at ν ≃ 218 GHz
instead of ν ≃ 125 GHz.
Since the focus of our work is the μ-type distortion and

its potentiality to constrain primordial non-Gaussianities, in
our baseline analysis we only consider μ as additional
spectral distortion components, but in Sec. IV C we explore
how including the y-type distortion in the fit affects our
results.

B. Foreground modeling

We discuss here the different choices regarding the
parametrization of the foreground emission IFGν in total
intensity.

1. Galactic dust

Dust grains in the interstellar medium absorb UV light
from hot stars and reradiate in the submillimeter and
infrared bands, dominating the foreground emission at
frequencies ν≳ 100 GHz. We model thermal emission
from Galactic dust as a modified blackbody described
by a dust temperature Td ¼ 19.6 K and a spectral slope of
β ¼ 1.6, which is scaled at a reference frequency of
353 GHz following [43],

Idustν ðn̂Þ ¼ Adðn̂Þ
�

ν

353

�
βdðn̂Þ BνðTdÞ

B353 GHzðTdÞ
: ð5Þ

We infer the dust brightness in each pixel, Adðn̂Þ (expressed
in MJy/sr). In the following we will consider two scenarios:
one where we keep the dust spectral index fixed to its
fiducial value of 1.6, and one where we allow for spatial
variations of βd ≡ βdðn̂Þ, i.e., we fit for Ad and βd
separately in each pixel.

2. Galactic synchrotron

Relativistic cosmic-ray electrons accelerated by mag-
netic fields in our galaxy produce synchrotron radiation.
The specific spectral energy distribution depends on the
strength of the magnetic fields as well as the energy and
flux of the electrons, and typically results in a power
law spectrum. Synchrotron radiation represents the dom-
inant foreground contribution for observations of the
CMB at low frequencies. We include a synchrotron
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component modeled as a power law with βs ¼ −3.1 and
νref ¼ 23 GHz, i.e.,

Isyncν ðn̂Þ ¼ Asðn̂Þ
�

ν

23 GHz

�
βs ð6Þ

following [44]. When including synchrotron as a foreground
component, we fit for Asðn̂Þ in each individual pixel.

3. Free-free

Thermal bremsstrahlung (free-free) emission of free
electrons in star-forming regions within our Galaxy is an
important foreground to CMB observations at low and
intermediate frequencies. To remove this emission, which
is mainly concentrated in the Galactic plane, we use the
Planck Commander free-free template maps for the emis-
sion measure EMðn̂Þ and electronic temperature Teðn̂Þ
[44], and we follow the recipe of the same paper to rescale
the intensity of the emission across frequencies so that

Iffν ðn̂Þ ¼ 106Teðn̂Þð1 − e−τffðn̂;νÞÞ; ð7Þ

where the free-free optical depth is given by

τffðn̂; νÞ ¼ 0.05468Teðn̂Þ−3=2
�

ν

1 GHz

�
−2
EMðn̂Þgffðn̂; νÞ;

ð8Þ

and the Gaunt correction factor is [45]

gffðn̂; νÞ ¼ 1þ log
�
1þ e4.960þ

ffiffi
3

p
π log ½ð ν

1 GHzÞ−1ðTeðn̂Þ104 K
Þ3=2��: ð9Þ

For each sky pixel we then fit an amplitude of the emission
template Affðn̂Þ.

4. FIRAS Galactic residual

To complement the physically motivated foreground
emission models introduced above, we also consider the
Galactic residual template from F96. This Galactic spec-
trum is empirically derived under the assumption that it
correlates spatially with the average intensity from the high
frequency channels at each pixel.
All foreground components, except for the Galactic

thermal dust, are described by one free parameter only,
namely the amplitude of the foreground template in each
pixel. In our baseline analysis (hereafter referred to as
Ad þ βd model) we only include emission from Galactic
thermal dust where both the amplitude and spectral index
are allowed to spatially vary (for a total of four free
parameters per pixel) but consider alternative scenarios:
Galactic dust with a spectral index fixed to βd ¼ 1.6 (Ad
model), Galactic dust with βd ¼ 1.6 plus synchrotron
emission (Ad þ As model), Galactic dust with βd ¼ 1.6
plus free-free emission (Ad þ Aff model), and the FIRAS

model. Finally, we note that in all the scenarios we
considered in this work we neglect the molecular lines
emission as well as the cosmic infrared background (CIB)
emission produced by unresolved dusty star forming
galaxies. As far as the CIB is concerned, our baseline
model could in principle not only capture the complexity of
the dust emission across the sky but also to (at least)
partially account for the CIB emission itself. In fact, the
CIB itself can be described by a modified blackbody SED
with a different Td compared to the one of the Galactic
dust. Given that Td and βd are usually highly correlated
parameters, our data model can in principle effectively
capture the emission of two superposing modified black-
body emission (i.e., Galactic dust and CIB) in a given sky
pixel. More complex models should be able to capture this
effect more accurately [46]. Moreover, in our analysis we
do not include frequencies above 600 GHz where the CIB
becomes more important outside of the Galactic plane. For
molecular lines, the frequency range we consider covers
the CO lines from the (J ¼ 1-0) transition at 115.57 GHz to
the (J ¼ 5-4) transition at 576 GHz as well as the C-I
transitions can become important. Since these line emis-
sions are mainly concentrated in the Galactic plane, we do
not include them in the analysis. We note that since line
emission and βd are degenerate [see e.g., the discussion
in Sec 4.4. of [47]], our fitting could also help partially
removing them. Being the signature of μ distortions
relatively more important at lower frequencies, the channels
potentially contaminated by these line emission have a
lower weight in the final component separation fit due to
their higher noise, and thus we do not expect them to
become important.
We test the sensitivity of our results with respect to the

assumed foreground model in Sec. IV C.

C. FIRAS covariance

A key ingredient to carry out cosmological parameter
inference from FIRAS data is the sky spectra covariance
matrix which describes the correlation structure of obser-
vations between different frequencies and sky pixels. As
discussed extensively in the FIRAS explanatory supple-
ment [48],5 there are six main sources of uncertainties:
detector noise (C vectors, using the FIRAS naming),
bolometer parameter gain uncertainties (JCJ), emissivity
gain uncertainties (PEP), internal calibrator temperature
errors (PUP), absolute temperature errors (PTP), and
destriper errors β (which include map offsets uncertainties).
Note that some of these quantities only vary across pixels,
such as β, while others only differ between frequencies
(PEP, JCJ, PUP, and PTP).
Denoting an element of the FIRAS data cube Îνðn̂Þ≡ Îνp,

we assemble the FIRAS covariance matrix as

5Available in electronic form at https://lambda.gsfc.nasa.gov/
product/cobe/firas_exsupv4.html.
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Cνpν0p0 ¼ CovðÎFIRASνp ; ÎFIRASν0p0 Þ
¼ Cνν0 ðδpp0

=Np þ βpkβp0k þ 0.042Þ ð10Þ
þ SpνSp

0ν0 ðJνJν0 þ GνGνδνν
0 Þ ð11Þ

þ PνPν0 ðU2δpp
0
=Np þ T2Þ: ð12Þ

In the equation above, Np is the map pixel weight, βpk is the
β matrix described in Sec. 7.2.2 of the FIRAS explanatory
supplement and we sum βpkβpk0 over all kth orthogonalized
stripes used in the data destriping. The Spν vectors represent
the absolute sky brightness not including the CMB monop-
ole and Jν is the JCJ gain term described in Sec. 7.3.2 of
the FIRAS explanatory supplement while the Gν terms
describe the PEP gain errors. We use the FIRAS data
measurement themselves Îνp from which we subtract the
CMB monopole adopting a temperature of T0 ¼ 2.7255.
We assume Pν ¼ ∂Bνð2.728KÞ=∂T and U, i.e., the internal
calibrator temperature uncertainty, is 180 μK as suggested
in Sec. 7.4.5 of the FIRAS explanatory supplement. As for
the PEP and JCJ terms, we take the PTP terms from the
publicly available calibration uncertainty file available on
LAMBDA so that T ¼ 0.002 K. In Fig. 2, we show a
breakdown of the different uncertainty terms as function of
frequency ν, noting that the main sources of error over the
range of frequencies considered here are the absolute
temperature errors and detector noise.

D. Map inference

With a data model and an estimate of the measurement
uncertainties at hand, we can now reconstruct the spatial

fluctuations of the effective chemical potential μðn̂Þ as well
as the other parameters θ that describe the data model.
In the following we will assume that the FIRAS

noise covariance is approximately uncorrelated between
pixels while still retaining the full frequency-frequency
structure. We investigate the validity of this assumption
and its impact on the angular power spectrum estimation
level in Sec. III E. Assuming pixels are uncorrelated
greatly simplifies the analysis since it allows us to
perform the parameter inference at the individual pixel
level. To this end, we use Bayes’ theorem and write the
posterior distribution for the model parameters in each
pixel as ∝ lnLðÎνjθÞpðθÞ, where the likelihood function
is given by6

−2 ln LðÎνjθÞ ¼
X
νν0

ΔT
ν ðθÞC−1

νν0Δν0 ðθÞ; ð13Þ

with ΔνðθÞ denoting the residuals between the observed
FIRAS spectra and the model spectrum ΔνðθÞ ¼ Îν −
IνðθÞ, and C−1

νν0 being the inverse of the covariance matrix
defined in Eq. (12) for p ¼ p0. We use emcee, an affine-
invariant Markov Chain Monte Carlo (MCMC) sampler
[49], to explore the posterior distribution and use N ¼
100 walkers for 1000 steps to reach the convergence of
the chains (assessed by checking their autocorrelation
time). This approach allows us to estimate the full non-
Gaussian posterior, the level of degeneracy between
different parameters, and to directly marginalize over
the impact of foregrounds. In our analysis we do not
impose priors on the sampled parameters except for the
spectral slope of the Galactic thermal dust, for which we
set a uniform prior over βd ∈ ½0; 3�. Performing the fit at
the individual pixel level also allows to better capture
the spatial variations of the foreground emission com-
pared to approaches operating directly on the monopole
of single frequency bands, that are often harder to
model [50].
In Fig. 3 we show a representative set of credibility

contours in the fΔT; Ad; βd; μg parameter space from our
baseline data model (Galactic dust with free spectral index)
for three different pixels. We can note an anticorrelation
between the amplitude and spectral index of the Galactic
dust and a positive correlation between μ and the CMB
temperature. The extent of the two-dimensional contours
reflects the level of noise in a given pixel. The one-
dimensional μ posteriors marginalized over the remaining
parameters generally follow a Gaussian distribution.
The result of this process is a set of μ values for each

pixel in an HEALPix map at Nside ¼ 16, along with an
estimate of their uncertainty calculated as the standard
deviation of the μ posterior.

FIG. 2. Noise budget of the FIRAS low frequency low spectral
resolution destriped sky spectra. The dotted black line shows the
CMB blackbody emission rescaled by a factor 0.001 for
visualization purposes. For the JCJ and PEP errors described
in Eq. (11) which depend on the sky pixel, we display their
average value computed across all the observed pixels.

6Omitting the pixel dependence and up to a normalizing
constant.
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E. Power spectrum and uncertainties estimation

After reconstructing the μ distortion anisotropy map
from the FIRAS data cube, the next step consists in
extracting its angular cross power spectra with maps of
primary CMB anisotropies from Planck.
A great deal of the information encoded in the SD-CMB

cross spectra resides in the lowest multipoles [24,28],
therefore it is crucial to build an analysis pipeline that
optimally recovers the information on the largest angular
scales. For this reason, and given the fact that weworkwith a
dataset a at coarse HEALPix resolution, we use a pixel-based
quadratic maximum likelihood (QML) power spectrum
estimator xQML [51], an extension of the original method
introduced in [52] to cross power spectra. Such methods are
computationally more expensive compared to traditional
pseudo-Cl methods but we find that they produce measure-
ment of the cross-correlation power spectra with roughly
twice smaller error bars for the multipoles most relevant for
our analysis. The application of a QML power spectrum
estimator requires the knowledge of the covariance of the
maps as well as the details of the optical response of the
instrument. Below we detail the analysis choices we made.

1. FIRAS beam transfer function and deconvolution

We compute the FIRAS beam response by performing an
Hankel transform of the publicly available FIRAS instanta-
neous beam radial profile. In addition to this smoothing, it
is important to take into account the instrument scan motion

during the integration of a FIRAS interferogram. The
telescope motion causes the maps to be additionally
smoothed in the ecliptic scan direction. We account for
this effect by deconvolving an effective transfer function
estimated from simulations as described in [53,54]. In this
approach, high resolution realizations of CMB maps are
first smoothed with the instantaneous FIRAS beam and
then smoothed in real space applying a 2.4° boxcar average
in the ecliptic direction. The transfer function is then
computed by comparing the power spectrum of these maps
with the one of the theoretical model used to generate the
input CMB maps. We multiply the pixel window function
of the HEALPix maps by this transfer function to obtain the
total transfer function of the maps that we apply to both the
CMB and μ harmonic coefficients when computing auto
and cross-power spectra with xQML.

2. Covariance matrix of CMB maps

The noise of the Planck component-separated CMB
maps can be modeled in its full complexity using the
publicly available FFP10 simulations which include not
only the detector noise in the time-ordered data (TOD),
including its correlated 1=f part, but also realistic simu-
lations of instrumental effects for all Planck frequency
channels. These simulated TOD are then processed with the
same algorithms as for the flight data, including component
separation. We use the data available at NERSC super-
computing center that include 300 realizations of noise and
residuals systematic effects for all the component-separated
CMB maps and for different data splits (full- and half-
mission). After accounting for the Planck beam smoothing,
we apply the same harmonic domain transfer function that
we apply to the data to all 300 realizations for all splits, and
downgrade each realization to Nside ¼ 16 HEALPix resolu-
tion. Given that only 300 noise realizations are available,
estimating a full dense pixel-pixel noise covariance matrix
for the full-mission dataset is nontrivial. The reason is that
the number of matrix elements to be estimated is much
larger than 300, making the estimate of the inverse of the
covariance matrix poorly conditioned. We therefore con-
sider only a diagonal covariance matrix where the diagonal
is given by the variance of the 300 noise realizations for all
the T, Q, and U Stokes parameters. While an optimal
analysis of the low multipole CMB signal would require an
estimate of the off-diagonal terms, for cross-correlations
between independent datasets we expect these correlations
to be of marginal importance. We also verify that the
diagonal term of the QU block of the noise covariance is
negligible and we therefore discard it in our analysis. We
perform the same operation on the half-mission splits in
order to produce a noise model to be employed for null tests
analysis and consistency checks. The signal covariance is
instead computed on the fly while estimating the power
spectrum. To this end, we adopt the fiducial lensed CMB
power spectrum of the cosmology from the FFP10

FIG. 3. Constraints on the baseline data model parameters from
FIRAS sky spectra. Different colors show results for three
different pixels. The darker and lighter shaded regions represent
the 1σ and 2σ contours respectively. Typically, our fitting also
reduces the correlation between μ and ΔT from the 95% level
observed in previous analyses.
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simulations. This assumes a Planck 2018 cosmology with a
tensor-to-scalar ratio r ¼ 0 with the CMB dipole and
monopole removed. We stress that an accurate analysis,
in particular of CMB polarization, requires the use of the
realistic FFP10 simulations since naive estimates of the
noise levels relying on the assumption of a Gaussian noise
drawn from the noise covariance matrix of the frequency
maps largely underestimate the uncertainties on the scales
considered in this work.

3. Covariance matrix of μ map

When estimating the μmap, we assume that all pixels are
uncorrelated between each other and, under this assump-
tion, for each pixel we obtain an estimate of the error on the
inferred μ value in the pth pixel, σμp, from the standard
deviation of the MCMC posterior. However, the covariance
definition in Eq. (10) shows a nondiagonal structure in pixel
space, thus the estimate of the μ signal in each pixel should
show adegree of correlation between pixels similar to the one
of the FIRAS data themselves. Therefore, we assumed the μ
map is composed by noise only andwe adopted twomethods
to compute its noise covariance matrix:

(i) We assume the μmap covariance to retain a diagonal
structure Cμ

pp0 ¼ σμpδpp0 . We refer to this approxi-
mation as diagonal covariance in the following.

(ii) We assume the dominant off-diagonal component of
the FIRAS pixel-pixel correlation matrix to be
inherited by the μ map. Defining the matrix P from
Eq. (11) as

Ppp0 ≡ δpp
0
=Np þ βpkβp0k þ 0.042; ð14Þ

we normalize P to obtain a correlation matrix P̃ that
we show inFig. 4 for reference.We then convert P̃ into
a dense pixel-pixel covariance matrix for the μ map
Cμ

pp0 using the error estimate from the MCMC as

Cμ
pp0 ¼ Ppp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diagðPÞpdiagðPÞp0
q ·

ffiffiffiffiffiffiffiffiffiffiffi
σμpσ

μ
p0

q
: ð15Þ

For each different μmap derived with a different component
separation method, we compute the corresponding covari-
ance matrix and use that in the power spectrum estimation
step. These two methods describe the noise properties of the
maps with different accuracy in different regimes. For
FIRAS, no data split that can be used to validate the noise
covariance matrix through, e.g., a jackknife approach or a
nullmap is available.As such,wevalidate the noisemodel by
debiasing the autospectrum of the μ maps and checking its
consistency with the null hypothesis. For this purpose, we
generate random realizations of the μmap starting from each
different covariance model and multiplying the Cholesky
decomposition ofCμ by a stream ofGaussian pseudorandom
numbers with zeromean and unit variance.We then compute

the noise bias as themean of the simulations and the error bar
as the standard deviation of the same set. The results of this
test for different galactic masks are shown in Fig. 5. As we
can see, the diagonal μ covariance does not describe the data
at large angular scales where we observe a large excess of
power that is however greatly reduced if the full covariance
model is adopted. The opposite applies when considering
angular scales l≳ 10, where the full covariance model does
not deliver an angular power spectrum consistent with zero.
In both cases, the χ2 test yields a low value of the PTEs and a
single covariancemodel is not capable to describe the data on
all angular scales. As such, in the following we decide to
adopt a hybrid approach for the power spectrum estimation
and computed cross spectra using the full covariance matrix
for μ for multipoles l< 10, while the diagonal covariance is
adopted forl ≥ 10. The cut at l ¼ 10was defined as it is the
lowest multipole for which the χ2 test for consistency with
the null hypothesis forCμμ

l leads to a PTE higher than 5% for
the diagonal covariance model. At large angular scales, the
same χ2 test always leads to a PTE lower than 5%. However,
the χ2 value for the full covariance model is ten times lower
than the one obtained for the diagonal-covariance approxi-
mation and is driven by the high value of l ≤ 4, pointing to a
more accurate description of the data. We will see that this
approximation and hybrid approach to power-spectrum
estimation of the data is accurate enough to describe the
cross-correlation power spectra between μ and the CMB.
Finally, we note that an excess of power at large scales might
be due to foreground residuals. We test this hypothesis by
checking the stability of our estimate as a function of sky
fraction used for Cμμ

l estimation. As we can see in Fig. 5,
using a mask covering progressively smaller sky fractions
gives to an increased power, which is inconsistent with the

FIG. 4. FIRAS pixel-pixel correlation matrix. The pixels are
ordered in the ring scheme of HEALPix pixelization, i.e., pixel 0
correspond approximately to the north Galactic pole and the last
one to the South Galactic pole. The median correlation coefficient
across all measured pixel is about 10% but increase to 20% for
pixels far from the Galactic plane.
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expectation of the excess of power being due to foreground
contamination as we would expect it to decrease with
decreasing sky fraction. As such we conclude that inaccu-
rate noise bias effects dominate the estimate of Cμμ

l .

This conclusion is supported also by the fact that if we take
the cross spectra between μ maps obtained with different
component separation methods, the noise is only partially
correlated between the two maps as the data model that is
fitted to the data is different. As such, it is partially free from
residual noise bias. In the bottom panel of Fig. 5 we show
the bandpowers obtained by cross-correlating the μ maps
obtained with the baseline and the Ad þ Aff model adopting
our hybrid power spectrum estimation approach, and com-
pare them with the debiased autospectra. As we will discuss
further below, Aff does not detect any significant foreground
power and as such, the reduced amplitude of the power in the
first few multipoles is caused by a lower residual noise bias
rather than by an improved foreground subtraction.

F. CμT
l ;CμE

l ;CμB
l estimation

When correlating the μ map with CMB temperature and
polarization maps, we adopt the hybrid approach to
evaluate the largest scales outlined in the previous section.
In doing so, we also marginalize over spurious monopole
and dipole coupling induced by the galactic masking by
summing a component proportional to the l ¼ 1 Legendre
polynomial [i.e., P1 ∝ cosðθijÞ, where θij is the scalar
product between the direction of the ith and jth pixels of
the map] and having an amplitude of 1 K2. We estimate the
error bars on the band powers through Monte Carlo (MC)
realizations of the CMB and μ distortion signal. For the
CMB signal, we draw random realizations of the T, Q, U
Stokes parameters from the theoretical power spectrum of
the FFP10 simulations and add the FFP10 official noise
realization released by the Planck Collaboration. We
correlate each of these CMBmaps with random realizations
of the μ map drawn from either the full or diagonal μ
covariance and take the multipoles where each of these
approximations to the μ covariance becomes accurate.
We use these sets of simulations to verify that the value
of the measured CμT

l , CμE
l , and CμB

l are consistent with
the distribution of the multipoles obtained in the MC
simulations.

G. Cosmological inference fNL
The final step of the analysis pipeline is the cosmological

inference. Specifically, we are interested in converting
the reconstructed SD-CMB cross-power spectra into con-
straints on the amplitude of the local-type primordial non-
Gaussianities, fNL. Assuming that the cross spectra band
powers are Gaussianly distributed, we can write

− 2 ln LðfNLjĈμX
l Þ

¼
X
ll0

½ĈμX
l − fNLC

μX
l �Σ−1

ll0 ½ĈμX
l0 − fNLC

μX
l0 �; ð16Þ

where ĈμX
l can either be the measured μT, μE, or μB

spectra, CμX
l are the corresponding theoretical templates

FIG. 5. Top: Noise-debiased autospectrum of our μ baseline
map on large angular scales for different Galactic masks and
different approximation to the pixel-pixel covariance of the μ
map. The diagonal covariance does not describe the data
accurately enough while the full covariance model provides a
more accurate description of the data. Middle: Same as above for
angular scales l > 10. In this regime the full covariance model
for the μ map is inaccurate and only the diagonal approximation
leads to a noise-debiased Cμμ

l consistent with the null hypothesis.
Bottom: Same as top panel for μ maps obtained with different
component separation methods. Different μ maps have different
noise properties and their cross-correlation reduces the residual
noise bias in the autospectrum. We show an example of this in
solid blue.
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calculated for fNL ¼ 1, and Σ−1
ll0 is the inverse of the band

power-band power covariance matrix that we estimated
from simulations and includes the effect of correlations
between multipoles and correlation between the probes. We
verified that the Gaussianity assumption, usually inaccurate
for CMB analysis [55], holds for the low, noise-dominated
multipoles considered in our work computing the distri-
bution of each of the estimated bandpowers from our
simulated dataset and checking their consistency with a
Gaussian distribution through a Kolmogorov-Smirnov test.
For all the multipoles we indeed obtain p-values above 5%.
We account for the finite number of simulations used to
estimate the bandpower covariance matrix by debiasing
Σ−1
ll0 following the prescription from [56]. The calculation

of the theoretical template spectra is detailed in Sec. V.
From Eq. (16), we can either obtain the maximum-

likelihood estimate of fNL and its associated 1σ
uncertainty as

f̂NL ¼ ĈμX
l Σ−1

ll0C
μX
l

CμX
l Σ−1

ll0C
μX
l0

σðf̂NLÞ ¼
1

CμX
l Σ−1

ll0C
μX
l0

; ð17Þ

where we recall that the templates are calculated for
fNL ¼ 1, or directly sample the posterior assuming an
unbound uniform prior on fNL. In this work, we present
results based on both approaches. Furthermore, we can
jointly analyze the μT and μE power spectra by con-
catenating both the templates and extracted spectra into
two vectors, Cl ¼ ½CμT

l ðfNL ¼ 1Þ; CμE
l ðfNL ¼ 1Þ�T and

Ĉl ¼ ½ĈμT
l ; ĈμE

l �T .

IV. MEASUREMENTS

A. Spectral anisotropies, CMB, and foreground maps

We start by showing in Fig. 6 the full-sky maps of
our baseline data model parameters inferred from the
FIRAS data.
In the top left panel we plot the CMB anisotropy map,

ΔT, associated with the component in the data cube that
emits as Iν ∝ ∂Bν=∂T. The map has units of thermody-
namic temperature KCMB and is dominated by spatial
variations due to the distinct kinematic dipole as expected.
The top right panel shows instead the recovered map of the
μ-type distortion fluctuations, which is one of the main

FIG. 6. Maps of the CMB dipole (top left), anisotropic μ-type distortion (top right), amplitude and spectral index (at 353 GHz) of the
Galactic dust (bottom left and right respectively) inferred from FIRAS low frequency low spectral resolution destriped sky spectra.
Pixels grayed out are removed by the FIRAS destriper mask.
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results of this paper. As can be seen, the map exhibits large-
scale fluctuations due to the spatially varying noise proper-
ties, while the distribution of the pixel values is centered
around zero (see the lower right panel of Fig. 7). Finally, the
two bottom panels show the maps that describe our baseline
foreground model, the amplitude and spectral index of the
Galactic thermal dust evaluated at a reference frequency of
353 GHz. The amplitude map Ad, in units of MJy/sr, is
recovered at a high S=N and faithfully traces the emission
from the Galaxy. The spectral index map is instead noisier,
also showing the large-scale noise fluctuations as in the μ
map case. The color scale of the βd map is chosen in a way
to show deviations from the reference value of βd ¼ 1.6
[57]. We recall that in this work we only use the low
frequency data from FIRAS since we are mainly interested
in marginalizing over foreground contamination rather than
providing their full characterization. For this specific task,
the high frequency data would provide additional informa-
tion. The corresponding uncertainties on the recovered
maps are shown in the Appendix.
In Fig. 7, we show a scatter plot of the pixel values for

each of the six different map pairs that can be constructed
from the parameters in our baseline data model. For this
check we apply our nominal fiducial P60 mask before
creating the scatter plot. The inferred pixel values are
largely uncorrelated between different maps, as quantified
by the Spearman’s rank-correlation coefficient.
The products of our analysis allow us to provide new

estimates of the μ distortion monopole, of the CMB

temperature monopole T0, and of the monopole of the
dust emission together with its spectral index. We perform
an inverse-covariance weighted average of the map pixels
and show the results of these estimates in Table I for
different Galactic masks. Our improved foreground mod-
eling allows us to use a larger sky fraction compared to the
original FIRAS analysis7 and sharpen the upper limit on the
monopole provided by the original FIRAS analysis hμi ¼
ð−10� 40Þ × 10−6 [17] by roughly a factor of 2 for our
fiducial analysis mask jhμij≲ 47 × 10−6. Constraints on
models predicting energy injections from particle decays or
other sources in the μ distortion era should be revised
accordingly [e.g., [58,59]]. We obtain stable results using
more aggressive Galactic masks. Adopting the same fore-
ground model of the FIRAS analysis and removing a
similar sky fraction, we recover an upper limit consistent
with their original estimate of hμi≲ 90 × 10−6.
The ΔT template provides information on anisotropic

variations of the CMB temperature. The dominating
anisotropy is the dipole induced by the motion of the
Solar system and the FIRAS satellite with respect to
the CMB reference frame. We fit a dipolar emission to
the map using the healpy dedicated routines on the same
fiducial mask of F96 and find an amplitude of the dipole
Adipole ¼ 3326 μK along a direction in Galactic coordinates
ðl; bÞ ¼ ð264.13°; 49.21°Þ. These values are consistent
within ∼1.5σ with the original estimate of the FIRAS
team of ðl; bÞFIRAS ¼ ð264.14°� 0.15°; 48.26°� 0.15°Þ
and AFIRAS

dipole ¼ 3369� 40 μK in F96 except for the b
coordinate of the dipole. The discrepancy is due to the
residual correlation between μ and ΔT parameter. We can
restore a complete agreement in the direction of the dipole
using more aggressive Galactic masks ðl; bÞFIRAS or if we
do not fit for the μ distortion on the same mask. In this case
we obtain Adipole ¼ 3332 μK, ðl; bÞ ¼ ð264.30°; 48.08°Þ.
The average of the ΔT template can be added to the pivot
value of T0 ¼ 2.725 we used in our data model to estimate
the value T̂0 of T0 on the sky. By doing so, we obtain
T̂0 ¼ 2.723 for our fiducial-component separation method.
The value is stable with respect to the mask choice and

FIG. 7. Scatter plot matrix of the map pixel values after
applying the Planck fsky ¼ 0.6 Galactic mask. Plots on the
diagonal show a Gaussian kernel density estimate of the pixel
value distributions in each map. The numbers in the boxes show
the Spearman’s rank correlation coefficient between the two
variables under consideration.

TABLE I. Statistics of the μ distortion monopole (95% con-
fidence level upper limits, mean and error on the mean) in units
of 10−6. We report the values obtained for different choices of
Galactic masks.

½×10−6� FDS PL90 PL80 PL60 PL40

jhμij < 95% C.L. <45 <47 <51 <47 <53
hμi −16.2 −18.2 −21.7 −15.5 −15.6
σhμi 14.2 14.3 14.5 15.9 18.6

797% of the FDS mask compared to the fiducial one of F96
that retained 90% of the sky removing pixels at jbj < 5°.
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consistent with the ≈5 mK temperature reduction com-
pared to the FIRAS original estimates in e.g., F96 T0 ¼
2.728� 0.004 including statistical and systematics uncer-
tainties as well as the estimates of F96 T0 ¼ 2.717� 0.007
fitting the data to the CMB dipole SED. The shift in our
value is expected due to the calibration systematics
correction applied to the FIRAS reprocessed data in
HEALPix pixelization.8 We also compare the monopole of
our dust map with the one obtained by rescaling the
Commander dust intensity from the reference 545 GHz
to our pivot frequency of 353 GHz using the map of the
spectral index and Td fitted for the low resolution
Commander maps and the emission law of Eq. (5). We
find a consistent value of 0.29 MJy=sr for both those maps
if the Planck P90 mask is applied before averaging the
pixels. Since our pivot frequency is different than the one
chosen by Commander, a direct comparison of the mean
spectral index is not straightforward. We obtain a mean dust
spectral index across the map hβdi ¼ 1.22� 0.02. To
further validate our component separated products, we
compute the cross-correlation coefficient between them
and foreground templates released by Planck. Specifically,
we make use of the dust A545

d and βd templates derived
using the Commander and GNILC algorithms for the 2015
release of Planck data. We also correlate the Commander
templates for free-free and synchrotron emission against
our As and Aff maps. For the sake of simplicity, we use a
pseudo-Cl power spectrum estimator as implemented in
the public code NaMASTER9 [60,61] to compute the spectra
required to evaluate the cross-correlation coefficient
between two X and Y fields, ρl ¼ CXY

l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CXX
l CYY

l

p
. The

results for our baseline Ad þ βd foreground model are
shown in Fig. 8, where we use a FDS mask and adopt the
analytical Gaussian error bars on the cross-correlation
coefficient [62]. Our dust amplitude products show a
remarkable degree of correlation (≳90%) with the
Planck dust products. The differences observed for βd
are mainly confined to the largest multipoles and are driven
by differences in separation in the Galactic plane. The
cross-correlation coefficient increases to ∼90% at large
scales if we exclude the Galactic plane by applying a P90
mask in addition to the FDS mask when computing the
cross-correlation coefficient. The CIB does not seem to
contaminate our dust templates. The low frequency fore-
grounds such as free-free and synchrotron are conversely
not well constrained by our component separation since the
FIRAS data lack a low frequency lever arm to effectively
anchor those emissions, with 60 GHz being the lowest
available frequency. The cross-correlation coefficient is
therefore consistent with the null line for both of these
components. This validates our baseline choice to not
include those in the reference cleaning method.

B. Power spectra

In Fig. 9 we show the second main result of this analysis,
the extracted angular cross-power spectra between the
FIRAS μ anisotropy map from FIRAS and the SMICA
component-separated CMB temperature and E=B-mode
polarization maps from Planck (red points). These spectra
have been extracted for our baseline foreground model
(Galactic thermal dust with free amplitude and spectral
index) over about 60% of the sky using a QML approach
(see Sec. III E for a detailed discussion of the method).
The dark and light blue shaded regions in Fig. 9 show
the ð14th; 86thÞ and ð5th; 95thÞ percentiles of the distribu-
tions of the SD-CMB cross spectra measured in the FFP10
simulations, respectively. The μT and μE cross-power
spectra recovered from FIRAS and Planck data are
both consistent with zero. Under the null hypothesis that
the μ and CMB maps are uncorrelated, we can evaluate

FIG. 8. Cross-correlation coefficient between foreground maps
extracted by our baseline component separation analysis and
different Planck foreground templates. Our foreground maps for
the dust intensity and spectral index are highly correlated with the
Planck data products across all angular scales considered in this
work. Discrepancies at the largest scales in βd are alleviated when
excluding the brightest regions of the Galactic plane (removed
with a P90 mask). The low frequency foreground components
(shown in the bottom panel) are conversely mainly unconstrained
and their cross-correlation coefficient is consistent with 0. Points
of different templates have been shifted in l for visualization
purposes.

8https://lambda.gsfc.nasa.gov/product/cobe/firas_tpp_info.html.
9https://github.com/LSSTDESC/NaMaster.
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χ2null ¼
P

ll0 C
μX
l Σ−1

ll0C
μX
l0 and calculate the probability to

exceed (PTE) by counting the number of simulations that
have a χ2null larger than that of the data. We find PTE values
of 30% and 67% for μT and μE, respectively: therefore, we
cannot rule out the no correlation hypothesis. The distri-
bution of χ2null for both cases are shown in the inset plots
of Fig. 9.
Correlation between μ distortions and B-mode of CMB

polarization are potentially a unique probe of tensor non-
Gaussianities on scales inaccessible by CMB bispectra.
However, any tensor or mixed scalar-tensor bispectra of
primordial perturbations that are isotropic are expected to
leave either vanishing or strongly suppressed signatures in
the observed diagonal hμl1Bl1i correlation that are con-

strained by CμB
l [29]. Nonetheless we report the amplitude

of CμB
l from FIRAS and Planck data in Fig. 9. A similar

calculation to the one done for CμT
l and CμE

l yields a PTE
of about 6%, consistent with a nondetection assumption.

Such null test can be used to constrain parity-violating
mechanisms and statistical anisotropies. However, such
constraints can be set more naturally in terms of amplitude
of the bipolar-spherical harmonics coefficients CμB

l1l2
[63]

that capture off-diagonal elements of the μB correlation.
A detailed analysis of such correlations together as their
implications for non-Gaussian primordial scalar and tensor
bispectra is left for future work. In general we note that the
use of independent datasets such as FIRAS and Planck to
constrain μB and μE correlations has the advantage to
reduce the impact of large-scale systematics that affect the
Planck data [40,64].
To further validate the analysis, in the three lower panels

in Fig. 9 we show the corresponding null spectra con-
structed by correlating the FIRAS μ map with the half-
mission T, E, B jackknife maps from Planck. In this case
too, the spectra are statistically consistent with the null line,
yielding PTEs of 56%, 42%, and 7% for μT, μE, and μB,
respectively. This test also validates the noise model since

FIG. 9. Top: Cross-power spectrum between the anisotropic μ-distortion map from FIRAS and the component-separated CMB
temperature (left panel) and E-mode (right panel) maps from Planck. This plot shows the baseline results based on the SMICA Planck
maps, a Galactic mask with fsky ¼ 0.6, and the Galactic dust with free amplitude and spectral index as foreground model. In each panel,
the red points indicate the data while the darker and lighter shaded regions represent the 1 and 2σ scatter in simulations that do not
include any anisotropic μ. The insets compare instead the χ2 statistic from simulations (blue histogram) to the value found in data (red
vertical line), showing that the extracted spectra are consistent with the null line. Bottom: Same as above for the cross-correlation
between μ map and the half-mission jackknife map. Data points are shown in black.
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the error bars of the null spectra do not contain any CMB
cosmic variance.

C. Robustness tests

In this section we perform different systematic tests to
validate and assess the robustness of our cross-correlation
measurements.

1. Stability against foreground models

We check the stability of our cross-power spectra
measurements with respect to different component sepa-
ration methods both in the CMB and the μ-distortion side.
We show the summary of our results in Fig. 10. On the
CMB side, we compare the changes in the CμT

l ; CμE
l ; CμB

l
power spectra obtained using different component sepa-
rated maps provided by the Planck Collaboration (see
Sec. II B) relative to the statistical uncertainty determined
in our baseline analysis with the SMICA map. Shifts in the
CμT
l values are minor and well below 0.3σ. The cross-power

spectra involving polarization show larger variations that
remain below 2σ for most of the multipoles. We check
that these shifts are expected given the noise level of the
Planck maps. For this purpose, we generate a set of MC

simulations where, for a specific component separation
method, we add a CMB realization (common to all the
component separation methods) to each noise realization of
the FFP10 suite for that specific method. We then cross-
correlate them with a realization of the μ map generated
from its pixel-pixel covariance, both using the full and
diagonal approximations. This allows us to have a con-
sistent estimate of the power spectrum using the hybrid
approach used to analyze the real data. From this set of
simulations, we compute the covariance of the differences
of the bandpowers between CMB component separation
methods that we then use to compute the χ2 statistics for
each of the MC realizations. We then compare the χ2 value
obtained from the shifts in band powers measured on data
with the χ2 distribution obtained from simulations and find
that the observed fluctuations between data using different
CMB component separation methods are consistent with
shifts induced by the noise (PTE > 5%).
We repeat a similar analysis to test whether the SD-CMB

spectra obtained using different foreground cleaning
assumptions in the construction of the μ map lead to
statistically consistent results when correlated with the
SMICA map. For this purpose we generate a MC simu-
lation set sharing the same CMB for each foreground

FIG. 10. Top: Changes in the cross-correlation power spectrum between μ distortions and CMB anisotropies of the Planck SMICA
maps for different component separation methods relative to the statistical uncertainty of our baseline analysis. For the majority of the
multipoles the fluctuations are within 1σ. Bottom: Changes in the cross-correlation power spectra used in this work when the reference
SMICA maps are swapped with different Planck CMBmaps obtained adopting different component separation algorithms. Fluctuations
in CμT

l are marginal but some multipoles display fluctuations above 3σ compared to our baseline case for CμE
l ; CμB

l . However, these are
consistent with noise-induced fluctuations.
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cleaning model of Sec. III B and independent realizations
of the μ map, since we consider the noise to be mostly
uncorrelated between different component separation
methods as discussed in Sec. III E 3. We find that for the
Ad þ Aff model, which displays deviations up to 3σ for CμE

l

and CμB
l when compared to our baseline analysis, the PTE

for the spectra are consistent at the level of 75% and 73%
respectively. This test shows that all the methods clean

with good consistency the major foreground at this fre-
quency and angular scales, i.e., the Galactic dust, and
that residuals of the cleaning do not matter much for the
cross-correlation. Different methods however do show
differences in the final constraints on fNL and in the overall
monopole since the residual noise and signal are different.
The baseline model Ad þ βd delivers the most stable results
against changes in the sky mask or CMB map used in the
analysis as shown in Tables II and III, which is why we use
this as our baseline analysis.

2. Analysis choices

We check the stability of our analysis choice with respect
to several assumptions made in the analysis and in the
construction of our reference data model of Eq. (1). In
particular we change the value T ¼ T0 where we evaluate
the gradient of the blackbody spectrum to the original value
used by FIRAS T0 ¼ 2.728; in addition we also try to
simultaneously fit for the y and μ distortion. Changing the
value of T0 mainly influences the value of the fitted CMB
anisotropy map ΔT but does not lead to any appreciable
change in the value of the cross-correlation power spectra
nor in the monopole. Averaging the new ΔT maps and
summing it to the new value gives consistent results with
the estimate we provide in Sec. IV.
Another plausible concern is the fact that we neglect

the possible interplay of y and μ distortions as we fit for
μ only. A cross-correlation between μ and y distortions
could itself be used to constrain non-Gaussianities on
different scales and configurations [65]. We do not expect
y-type distortions, whose leading term comes from
astrophysical objects, to heavily contaminate the mea-
surements at large angular scales in the cross-correlation
power spectra. Its anisotropies are in fact mainly sourced
by the emission of single massive objects and thus their
power spectrum grows at higher multipoles [66]. As a
sanity check, we rerun our analysis pipeline when both μ
and y distortions are allowed to be present. We find the
two parameters to be significantly anticorrelated (by more
than 80% on average), suggesting the lack of con-
straining power of the dataset on both the distortion
types simultaneously. We correlate the resulting μ map
with the T anisotropy of Planck, which is the one
potentially contaminated by the tSZ emission, and find
no shift in the CμT

l bandpowers compared to our baseline
setup. Finally, we check the stability of our results with
respect to the analysis mask. Our monopole constraint are
robust to the choice of the mask. We find the CμT

l and
CμE
l power spectra are still consistent with zero with a

reduced statistical uncertainty, however our final cosmo-
logical constraint are consistent with the result we present
in Sec. V due to a slight shift in the central value that
might hint for the presence of mismodeled noise or minor
foreground residuals.

TABLE II. μ distortion monopole upper limits for different
choices of foreground separation methods and Galactic masks.
We outline in bold values for which the monopole is detected at
more than 2σ significance. Since it only happens Galactic masks
that include a good fraction of the Galactic plane, this hints for a
clear foreground contamination. The last column reports the
standard deviation of the values of the upper limits obtained for
different masks which we considered as an estimate of systematic
uncertainty on the constraint.

jhμij < 95% C.L. ½×10−6� PL90 PL80 PL60 PL40 σsyst

Ad þ βd <47 <51 <47 <53 2.5
Ad, fixed βd <74 <50 <105 <179 48
Ad þ As <252 <200 <162 <102 54
Ad þ Aff <174 <120 <96 <118 47
FIRAS residual <72 <57 <89 <147 34

TABLE III. 95% upper limits on jfNLj × 106 from the cross-
power spectra between anisotropic μ and CMB temperature and
E-mode polarization anisotropies. Results are shown for different
foreground models and component separation algorithms. The
baseline results are highlighted in bold.

SMICA COMMANDER NILC SEVEM

Ad þ βd
μT <5.66 <5.06 <6.53 <5.19
μE <5.78 <8.35 <6.95 <7.09
μT þ μE <3.57 <3.61 <4.18 <3.84

Ad
μT <5.82 <9.58 <9.57 <8.38
μE <5.37 <6.85 <5.08 <5.50
μT þ μE <3.46 <5.21 <7.15 <5.26

FIRAS
μT <11.49 <10.55 <7.72 <8.27
μE <7.67 <6.96 <5.63 <5.54
μT þ μE <7.66 <5.45 <5.09 <4.53

Ad þ As
μT <6.56 <6.01 <7.84 <8.61
μE <11.39 <8.98 <12.57 <9.36
μT þ μE <5.86 <4.17 <5.61 <7.05

Ad þ Aff
μT <8.19 <7.36 <9.51 <11.63
μE <9.88 <10.04 <10.03 <8.71
μT þ μE <6.53 <7.10 <7.77 <7.62
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3. Foreground deprojection

We test for the presence of residual foreground emission in
the μmap by deprojecting external templates of Galactic and
extragalactic foregrounds. If we assume that the μ map is
contaminated by different foreground emissions described
by a set of templates fi of amplitude αifg, we can write

μ ¼ μþ
X
i

αifgf
i: ð18Þ

Assuming the templates are uncorrelated,we can estimate the

amplitude of the single template as αifg ¼ CμfðiÞ
l =Cfifi

l and
derive the foreground-free power spectrumof theμmap from
the measured power spectrum Ĉμμ

l as

Cμμ
l ¼ Ĉμμ

l

�
1 −

X
i

ðρμfil Þ2
�
; ð19Þ

where ρμf
ðiÞ

l is the cross-correlation coefficient between the

foreground template and the μmap and ĈfðiÞfðiÞ
l the measured

power spectrum of the template. We can extend the formal-
ism to cross spectrawith a CMBmapXwherewe assumewe
have contaminations described by the same template with a
different amplitude βifg such that

X ¼ X þ
X
i

βifgf
i X ∈ ½T;Q;U�; ð20Þ

so that the foreground deprojected cross-correlation power
spectrum reads

CμX
l ¼ ĈμX

l −
X
i

Ĉμfi

l ĈXfi

l

Ĉfifi

l

X ∈ ½T; E; B�: ð21Þ

We perform this template deprojection for different types of
foregroundusingPlanck-based templates thatwere degraded
to the FIRAS resolution and smoothed with the FIRAS
effective beam.As for the data pipeline,we compute the cross
spectra using the xQML power spectrum estimation pipeline.
For the Galactic foregrounds we use the Commander 2015
dust, synchrotron, free-free andCO(2-1) line templateswhile
for the extragalactic emissions we use both Compton-ymaps
provided by the Planck Collaboration, that are based on
different component separation methods, and the GNILC
CIB emission templates at 353 GHz. In all cases we do not
find significant shifts in the bandpowers,which fluctuatewell
within the statistical error bars after foreground deprojection.

V. fNL CONSTRAINTS

In this section we translate the extracted SD-CMB cross-
power spectra presented in Sec. IV into constraints on the

amplitude of the local-type primordial non-Gaussianities at
small scales.
Let us first review the theoretical modeling of the cross-

correlation signal between μ fluctuations and primary
CMB temperature and polarization anisotropies. To high-
light the connection of the SD-CMB cross spectra to
primordial non-Gaussianities, we closely follow the earlier
works of [24,28,30,31] and define the so-called local-form
bispectrum as

Bðk1; k2; k3Þ ¼ −
6

5
flocNL½Pζðk1ÞPζðk2Þ þ 2 perm�; ð22Þ

where PζðkÞ is the primordial spectrum of curvature
perturbation, PζðkÞ ∝ kns−4. This bispectrum peaks in the
so-called squeezed triangle configuration (kL ≡ k1 ≪ k2 ≈
k3 ≡ ks)

10 and is interesting to study for a twofold reason.
First, because measuring a statistically significant deviation
of fNL from zero would disfavour single-field inflation
models [e.g., [67,68]] and second, because this shape of
bispectrum is less prone to contaminations from late-time
effects, such as the lensing-integrated Sachs-Wolfe effect
bispectrum, which effectively makes it a robust probe of the
early Universe [e.g., [69]].
The spherical harmonic coefficients of the primary CMB

and μ-type distortion fluctuations are linked to the primor-
dial curvature perturbation ζðkÞ through

aXlm ¼ 4πil
Z

d3k
ð2πÞ3 T

X
l ðkÞYm�

l ðk̂ÞζðkÞ ð23Þ

aμlm ¼ 4πð−iÞl
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3 d

3k3δð3Þðk1 þ k2 þ k3Þ

× Ym�
l ðk̂3Þjlðk3rlsÞfμðk1; k2; k3Þζðk1Þζðk2Þ; ð24Þ

where X ¼ fT; Eg denotes either temperature or E-mode
polarization, T X

l and fμ are the radiation and μ-mode
transfer functions respectively, jlðxÞ is the spherical Bessel
function, and rls ≈ 14 Gpc is the comoving distance to the
last-scattering surface. We calculate the radiation transfer
function using CAMB [70] and remind the reader that the μ
window function picks up signal from the primordial scalar
power spectrum in the 50≲ k≲ 12000 Mpc−1 range [fol-
lowing e.g., [65]].
Then, it is straightforward to calculate the SD-CMB

cross-spectrum (in the squeezed limit) as

10For which we obtain Bðk1; k2; k3Þ → Bðks; ks; kLÞ ≈
− 12

5
fNLPζðksÞPζðkLÞ.
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CμX
l ≈ −4π

12

5

Z
k2dk
2π2

T X
l ðkÞjl0 ðkrlsÞPζðkÞ

×
Z

q21dq1
2π2

fμðq1; q1; kÞPζðq1Þ: ð25Þ

Note that the second integral in the equation above is
approximately equivalent to the definition of the mono-
pole of the μ distortion, which we set to its ΛCDM
expectation, hμi ¼ 2.3 × 10−8 [71,72]. From Eq. (25),
we can see that the SD-CMB cross-power spectra linearly
depend on the product of the fNL parameter and hμi, i.e.,
haμlmaXlmi ∝ fNLhμi. Therefore, a larger value of hμi would
translate to a tighter constraint on fNL.
We now have all the tools needed to carry out the

cosmological inference. First, we set the amplitude of
the primordial scalar perturbation power spectrum to As ¼
2 × 10−9 and its spectral index to ns ¼ 0.965, and calculate
the μT and μE template spectra using the theoretical frame-
work outlined above. We then compare the SD-CMB cross
spectra measured in our baseline setup over the whole
l-range (2 ≤ l ≤ 47) to the theoretical curves following
the analysis scheme discussed in Sec. III G. The results are
presented in Fig. 11.
In the top panel, we show the one-dimensional fNL

posteriors obtained by sampling the Gaussian likelihood in
Eq. (16) assuming an unbounded uniform prior on fNL.
The temperature-only analysis (blue curve) yields a 95%
upper limit on the absolute value of jfNLj of 5.7 × 106,
the E-mode polarization spectra (yellow curve) reveals
jfNLj< 5.8 × 106, and their joint analysis suggests jfNLj<
3.6 × 106. The constraints on fNL from SD-CMB cross
spectra are robust against changes in the component-
separation algorithm used to clean the Planck CMB
temperature and polarization maps. In Table III we sum-
marize the results based on the alternative cleaning methods
which are at the level of few ×106, similar to those from
SMICA algorithm. If we instead want to be agnostic
about the value of the μ monopole, and thus set model-
independent constraints, we can directly infer upper limits
on the fNLhμi product. The corresponding 2σ constraints
from μT, μE, and their joint analysis yield fNLhμi< 0.13,
<0.15, and <0.08 respectively. We remind that for high
values of fNL, the expressions we used for CμT

l , CμE
l

become inaccurate as they are based on perturbative
expansions in primordial fluctuations. Improving the theo-
retical modeling of these signals is beyond the scope of thus
work but we justify their use given the high-noise regime of
our measurements and the consistency with 0 of all the
measured spectra. To complement the analysis, in the lower
panel of Fig. 11 we compare the maximum-likelihood
values of fML

NL found for the data (vertical lines) to those
obtained from the FFP10 simulation cross spectra (histo-
grams). Two things are worth noting. First, the maximum-
likelihood values are in agreement with the central values
from the Bayesian analysis reported in the top panel.

Second, for each of the μT, μE, and μT þ μE cases
separately, the best-fit value from the data is consistent
with the distribution of fNL from the simulations that do not
contain any primordial local-type non-Gaussian signal.

FIG. 11. Top: Posteriors on fNL from μT (blue), μE (yellow),
and their joint analysis (red). The gray lines show the constraints
on fNL from our reprocessing of the [33] data. In particular, the
solid one only reflects the effects of the proper band power
uncertainties estimation, while the dashed line also accounts for
the statistical and systematic uncertainties related to the CIB
offset residuals. The numbers in the legend show the correspond-
ing 2σ upper limits on the absolute value of fNL (the number in
parenthesis corresponds to the pessimistic constraint from the
KS15 reanalysis). Bottom: Maximum-likelihood fNL values
recovered from the data (vertical lines) and from Planck
FFP10 simulations (histograms). The color coding is the same
as the top panel.
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Finally, in Fig. 12 we show the 2σ upper limits on jfNLj
for our baseline case as function of the minimum and
maximum multipole included in the likelihood analysis
(left and right panel respectively). As we can see, most of
the constraining power comes from the first l≲ 20 multi-
poles, as the upper limit curves flatten out for larger
multipoles. For example, reducing the minimum multipole
from lmin ¼ 2 to 10 degrades the 2σ upper limit on jfNLj by
about a factor 6 for both μT and μE, and roughly 3.6 for
their combined analysis.
The upper limits on fNL found in this section are

significantly weaker than those derived from the analysis
of the CMB bispectra measured by Planck, jfNLj≲ 5 [32],
or those obtained from Galaxy surveys using clustering
power spectrum or 3D bispectrum, jfNLj≲ 20 [e.g.,
[73–75] ]. However, we emphasize that SD-CMB correla-
tions are sensitive to fNL at wave numbers kμ ≈ 740 Mpc−1

which are much smaller than those usually probed by CMB
temperature and polarization bispectra or large-scale struc-
ture. This allows us to place constraints on the scale
dependence of non-Gaussianities that can arise in many
models of the early Universe such as single-field models
having varying sound speed self-interactions, as well as
models requiring extra dimensions such as DBI inflation
[e.g., [76–80] ]. These classes of models could evade the
CMB constraints but have potentially observable features
in the large-scale structures [25,81]. Considering a simple
phenomenological model of the running of primordial
non-Gaussianities, fNLðkÞ ≃ fNLðk0Þðk=k0ÞnNL with k0 ≈
0.05 Mpc−1 and fNLðk0Þ ≈ 5, our limit on jfNLðkμÞj ≲ 3 ×
106 translates to nNL ≲ 1.4.

VI. COMPARISON WITH PREVIOUS RESULTS

FIRAS is still a unique dataset to constrain the μ
distortion monopole. Being effectively insensitive to the

absolute signal level, modern imagers like Planck often rely
on the knowledge of the CMB monopole measured by
FIRAS and on the annual modulation of the CMB dipole
anisotropy (solar dipole) induced by the motion of the
spacecraft (orbital dipole), which is known very well, to
achieve an accurate intercalibration of the frequency
channels [82,83]. At present, the precision of this technique
approaches 10−4 [40], not far from the precision of the T0

measurement [42]. Recent works suggested that much
better precision needs to be achieved to reach the detection
limit of expected cosmological signal of the μ distortion
[36]. Nonetheless, some attempts have been made to extract
maps of the μ distortion anisotropies from the Planck data
[[33], hereafter KS15] with dedicated parametric compo-
nent separation algorithm called LIL [84]. The data of
the KS15 analysis are publicly available11 and have been
used to constrain fNL ≲ 3.3 × 105 and τNL < 2.5 × 1011 at
95% confidence level.12 In order to perform an accurate
comparison with our results, we reanalyzed the KS15 data
using their fiducial power spectrum estimation pipeline
retaining fsky ¼ 0.62, comparable to our baseline setup.
We discovered several issues with their original results, that
we summarize below, and derive new fNL constraints from
the same dataset.

A. Power-spectrum and error-bar estimation

In order to avoid noise correlation leading to a noise bias
in the cross-correlation, KS15 created two sets of μ maps
from the half-ring splits and used the publicly available

FIG. 12. 2σ upper limits on jfNLj as function of the minimum multipole lmin when fixing lmax ¼ 46 (left panel) and as function of the
maximum multipole when setting lmin ¼ 2. These curves are reported for our baseline analysis. In each panel, the blue, yellow, and red
lines show the constraints from μT, μE, and their joint analysis respectively.

11https://theory.tifr.res.in/∼khatri/muresults/.
12We note that these limits differ from those quoted in the

abstract of KS15 because we inserted the exact measured values
of the CμT

l and Cμμ
l reported in their Eqs. (4.5) and (4.3) in their

final formulas of Eqs. (5.32) and (5.33).
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code polSPICE [85,86] to compute CμT
l and Cμμ

l where the
CMB leg is given by the official Planck CMB SMICA map
of the 2015 release. Given their fiducial analysis mask and
maps, we are able to recover their quoted μT cross-
correlation amplitude if we correlate the KS15 μ map
obtained with the second half-ring split μð2Þ with the Planck
DR2 SMICA map from the first half-ring split TSMICA;ð1Þ.
We report our findings in Table IV. The half-ring maps
cross spectra method ensure the absence of any noise bias
in the resulting power spectra as the datasets are fully
independent. Since all the band powers at scales l > 26
largely deviate from zero, the authors discarded them and
used only the first bin in multipoles which includes angular
scales l ∈ ½2; 26� to get cosmological constraints. We note
that a full analysis of the dataset should use the cross-
spectrum computed with the half-ring split 1 for the μ map
and the half-ring split 2 for the T map. This is however
slightly inconsistent with zero at about 2σ level and would
degrade the upper limit of fNL by pushing the measured
band power high. The fiducial analysis in KS15 adopted the
analytical error bar output of the polSPICE code, which
assumes uncorrelated Gaussian noise and includes the
Gaussian sample variance accounting analytically for the
effect of the mask. However, it is unclear whether those
approximations are valid for the covariance of component-
separated data, in particular for their largest angular scales
where the impact of non-Gaussian correlated 1=f noise in
the data is larger and, in general because the expected
distribution of the Cl deviates from the Gaussian approxi-
mation for the power spectrum estimation methods they
employed [87,88]. We therefore adopt an alternative
jackknifing approach to compute the error bars on the
measurement. We first identify NJK ¼ 192 patches, corre-
sponding to the pixel area of an HEALPix map of Nside ¼ 4
resolution, and then remove one of them before computing
the CμT

l or Cμμ
l power spectra from the remaining NJK − 1

patches. We repeat the process until every patch has been
discarded once from the measurement and then compute
the covariance of the measurement from all the measured

Cl-s [89]. We find that the covariance computed for all
the combination of the splits exceed significantly the
analytical error bars, by as much as 30% for first power
spectrum bin in CμT

l and on average by a factor 50% across
the whole range of multiples considered in KS15.
Conversely, the error bars for the Cμμ

l power spectrum,
computed in KS15 as the cross-correlation of the μð1Þ and
μð2Þ maps is consistent with the analytical estimate in the
first multipole bin but should be inflated by roughly by
factor of 5 on average for the smallest angular scales.

B. Foreground contamination

We test for residual foreground contaminations in the
maps using the deprojection techniques introduced in
Sec. IV C 3 and adopting the same set of Galactic and
extragalactic foreground templates. We first compute the
cross-correlation coefficient of both the Planck SMICA
DR2 map used in the KS15 analysis and their μ map with
all the templates. We show that the main foreground
residuals in the map are represented by Galactic dust,
tSZ and, less importantly but non-negligibly, CIB, for
which we detect a 60%, 40%, and 30% correlation
respectively. The magnitude of the correlation is stable
with respect to the choice of different dust (e.g.,
COMMANDER or GNILC based) or tSZ templates
(NILC or MILCA). For the SMICA DR2 map, the
correlation coefficient we observe with the same set of
templates is well below the 5% on all relevant scales. As
such, the deprojection applied to the CμT

l power spectrum
does not bring any statistically significant shift in the first
bandpower in particular, and it does not bring the measured
power spectra to be consistent with 0. The sharp oscillatory
features suggest that the maps are dominated by primary
CMB leakage and the tSZ deprojection seems to enhance
those features at small angular scale, pointing to a non-
negligible residual in the μ map. This is somehow expected
since the data model of KS15 does not include y. As such
the resulting μmap is ∼30% correlated with the y templates
in the first bin, while the SMICA map is anticorrelated with
y at the 5% level on all angular scales. When correlating the
KS15 μ map with the tSZ-deprojected SMICA map of the
Planck DR3 release, which is designed to be tSZ-free, we
find consistent results with the analysis discussed above
(see Table IV), supporting the hypothesis of the spectra
being dominated by CMB leakage.

C. Map offsets and CIB monopole uncertainties

The skymonopole is not constrained by Planck data. The
correlated noise component in the raw time-ordered data is
in fact modeled by a sequence of baseline offsets of a
specific length in time tuned to optimize the noise removal
and minimize the computational cost of the map-making
step [38,39,90]. Therefore, the monopole cannot be dis-
tinguished from a global noise offset and the final map

TABLE IV. Values of DμT
l ¼ lðlþ 1ÞCμT

l =2π obtained rean-
alyzing the KS15 μ distortion maps using their same fiducial
mask and power spectrum pipeline. The superscript denotes
which data split has been used for each μ and CMB field
respectively. The error bars are based on the jackknife estimate
described in Sec. VI A and exceed by ∼30% those of KS15. We
report the value obtained by cross-correlating different data splits
and different component-separated CMB maps. We use the same
units of KS15 to facilitate a direct comparison.

½×10−12K� SMICA DR2 SMICA DR3noSZ

μTfull 4.1� 3.3 4.6� 3.5
μTð1;2Þ 5.4� 3.6 5.9� 3.6

μTð2;1Þ 2.7� 3.5 3.0� 3.5
μTcombined 4.0� 2.6 4.4� 2.5
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monopoles can assume arbitrary amplitudes. For the Planck
LFI instrument, these are estimated during the calibration
step and removed from the final map, while for the HFI
channels used in KS15, these are fixed to reproduce the
value of the dust and CIB monopole. While the first set of
offset values is estimated from the data through correlation
with maps of the HI column density [91], the latter are
inserted according to the expected CIB monopole model of
[92]. The uncertainties on the offsets depend on the specific
astrophysical dataset used to constrain them and can be
large [see [54], hereafter O19, and references therein]. The
recent analysis of the FIRAS team in O19 provided new
estimates of the CIB monopole at the Planck HFI frequen-
cies (100, 143, 217, 353, 545, 857 GHz). These are the first
data-driven values for frequencies below 200 GHz and are
sometimes in tension with the model used by Planck for the
217 GHz and 353 GHz channels (we report all relevant
values in Table V). Despite the component separation
algorithm of KS15 should remove the nominal monopole
injected in the maps, we try to quantify how these
uncertainties can affect their final result and its uncertainty.
For this, we consider a single-pixel toy model where we fit
for a μ distortion in a sky model that includes a CMB
temperature anisotropy of 200 μK and Galactic dust using
only the 100 GHz, 143 GHz, 217 GHz, and 353 GHz as in
KS15. In the MC simulations, at each frequency we add a
random realization of the average Planck noise adopting
the numbers in Table 12 from [38] before performing the
fit. In this case we recover an unbiased estimate of μ. We
then proceed to perform a similar test where we add to all
simulated frequencies not only the instrumental noise but
also a systematic error that represents the uncertainty in the
map offset after CIB monopole subtraction. For each
frequency, we draw this error from a Gaussian distribution
with standard deviation equal to the error of the measure-
ments of O19 and a mean either equal to 0 or equal to the
difference between the CIB monopole values adopted by
Planck and those of O19. These cases cover two different
hypotheses; the first accounts only from a data-driven
estimate of the statistical uncertainty in the estimate of
the CIB offsets residuals, while the second considers also a
systematic mean residual in the maps.
In both cases, the overall error on the recovered μ

(estimated as the standard deviation of the samples)
increases compared to the case with no systematic errors.

When we introduce a nonzero mean residual offset, the
recovered distribution of the μ pixels becomes incon-
sistent with zero at ∼1.5σ. The recovered CMB also
appear slightly biased at a similar statistical significance.
We repeat the analysis by injecting the systematic errors
one frequency at a time and find that the major source of
the bias and uncertainty are the monopole errors at
143 GHz and 353 GHz. This shows that the limited
frequency coverage used in KS15 makes their analysis
very sensitive to the CIB monopole uncertainties and
their statistical error bars underestimate the overall
uncertainty in the measurement. The ratio between the
error bars on μ obtained including the CIB monopole
uncertainties (that we conservatively take as the 68%
upper limit of the recovered μ distribution) and the error
bars derived including only the instrumental noise gives
us an estimate of the factor that the measured error bars
on CμT

l should be inflated by to account for these effects
in the final fNL estimate. This is equal to ∼3 but can get
to ∼5 for the case where we consider a systematic mean
CIB monopole residual in all frequency bands. We also
note that the high sensitivity to the CIB monopoles and
related potential biases induced by their misestimation
appears only when we fit for the μ distortion in the
frequency range we are considering. In fact, we do not
observe any significant bias in the recovered CMB even
when systematic errors are injected if we do not include
μ in the data model. Alternative component separation
methods working in harmonic domain might be less
sensitive to these issues although they might still have an
impact through coupling with the analysis mask.

D. Final fNL constraints

With the new band power estimates provided in Sec. VI A
we perform a full likelihood analysis of the single power
spectrum bin using the pipeline of Sec. V. This includes the
full information on the band powers and accounts for the
scale dependent shape of CμT

l and power spectrum binning
effects that were neglected in the original KS15 analysis.
Including only the statistical uncertainties, we find compa-
rable constraints towhat we obtainwith FIRASat the level of
jfNLj< 3 × 106 (see the solid gray line in Fig. 11), showing
that the original results were underestimated by about an
order of magnitude. However, if the uncertainties connected
with the removal of the Planck HFI maps offsets are
accounted for, the constraints significantly degrade and
are not competitive with our measurement. Specifically, if
we only consider the statistical uncertainty in the estimate of
the CIB offset residuals and inflate the error bar on CμT

l by a
factor ∼3, the inferred constraint on fNL becomes
jfNLj< 5.5 × 106. If we instead also include the systematic
mean CIB residual in all frequency bands, and inflate ΔCμT

l
by about 5×, the 2σ upper limit loosens to jfNLj< 8.6 × 106

(dashed gray line in Fig. 11).

TABLE V. Estimates of the CIB monopoles based on [92] used
to set the zero-level maps of the Planck HFI channels and their
new data-driven estimates of [54].

ν [GHz] O19 [MJy=sr] Planck [MJy=sr]

100 0.007� 0.014 0.003� 0.003
143 0.010� 0.019 0.0079� 0.0079
217 0.060� 0.023 0.033� 0.013
353 0.149� 0.017 0.13� 0.026
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VII. CONCLUSIONS

In this paper, we performed the first attempt to self-
consistently measure both the monopole and the aniso-
tropic part of the μ-type spectral distortion of the
CMB. These provide invaluable information on the
thermal history of the Universe, on physics beyond
the standard model, and on highly squeezed primordial
non-Gaussianities on scales k ≫ 0.05 Mpc−1 that are not
constrained by CMB observations both for scalar, tensor,
and mixed bispectra of primordial perturbations.
For this purpose, we used the FIRAS spectrometer legacy

data to reconstruct an all-sky map of the μ distortion. Being
FIRAS sensitive to the absolute sky brightness, we managed
to reduce the previous constraint on the monopole of μ
distortion by a factor of 2 thanks to a more robust foreground
cleaning. We correlated the μ map with CMB temperature
and, for the first time, E and B-mode polarization anisotro-
pies measured by the Planck satellite on large angular scales
2 ≤ l ≤ 46. The measured unbinned CμT

l and CμE
l cross

spectra have been translated to constraints on the amplitude
of local-type primordial non-Gaussianity fNL at scales 102 ≲
k≲ 104 Mpc−1 and to an upper limit on itsnNL. Our baseline
analysis suggests jfNLj< 3.6 × 106 from the combined
analysis of CμT

l and CμE
l , and nNL ≲ 1.4 if we assume that

hμi is only sourced by the dissipation of acousticwaves in the
primordial plasma. CμB

l , for which we provide the first
constraint, was found to be consistent with zero, implying
no strong violation of the statistical isotropy of tensor
perturbation. We postpone a full analysis and cosmological
interpretation of the μB cross-correlation to future work.
We have run an extensive suite of systematic checks to

assess the robustness of our results against foreground
contaminations and analysis choices. We found that all our
results are stable and all the induced shifts are within
fluctuations expected from statistical errors. Thanks to their
extended spectral coverage and sensitivity to the absolute
sky brightness, we show that spectrometers data are very
robust against systematic effects. In fact, we reanalyzed
previous measurements of CμT

l based on data from Planck
and found that they are dominated by effects due to an
imperfect component separation due to a reduced frequency
coverage and by astrophysical uncertainties. Once all these
effects are all taken into account those measurements
deliver a constraint comparable to ours or worse. Going
forward, spectrometers that will be able to measure the μ
distortion monopole accurately are the only way to break
the degeneracy with fNL for the interpretation of CμT

l and
CμE
l in a model independent way. To this end, extending the

frequency coverage of spectrometers to ν ≤ 60 will be
crucial as the signatures of μ distortions are stronger.
We make our maps and results publicly available to the

community to explore additional theoretical models.

As this paper was finalized, we became aware of similar
work in [93] using the full set of Planck channels between
30 GHz and 857 GHz. Their fNL constraint consistently
benefits from an improved component separation that
reduces foreground contaminations at small scales and
allows them to use multipoles l≲ 1000 compared to
the previous Planck analysis by [33]. In addition to
providing the first measurements of CμB

l and an improved
μ distortion monopole constraint, our work is comple-
mentary to [93] as it extends the measurements to larger
angular scales. We note that the fNL constraints they
obtained when considering only angular scales that over-
lap with this work (which still contribute to ≈30% of their
sensitivity) are likely optimistic due to a simplistic treat-
ment of the correlation and non-Gaussianity of the noise
after component separation, as well as multipole bin-bin
correlations in the likelihood. A comparison between the
theoretical curves adopted in their analysis and the ones
used in this work would also be informative. We expect
these effects to push the Planck based constraint from
large scale closer to ours.
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APPENDIX: UNCERTAINTIES ON THE
RECONSTRUCTED MAPS

In Fig. 13 we show the estimated uncertainties on the
reconstructed maps in our baseline analysis; ΔT, μ, Ad,
and βd. These uncertainties are calculated as the standard
deviation of the posterior, obtained through MCMC sam-
pling, in each pixel.
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