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Early dark energy (EDE) relies on scalar field dynamics to resolve the Hubble tension, by boosting the
pre-recombination length scales and thereby raising the CMB-inferred value of the Hubble constant into
agreement with late universe probes. However, the collateral effect of scalar field microphysics on the linear
perturbation spectra appears to preclude a fully satisfactory solution. H0 is not raised without the inclusion
of a late universe prior, and the “S8 tension,” a discrepancy between early- and late-universe measurements
of the structure growth parameter, is exacerbated. What if EDE is not a scalar field? Here, we investigate
whether different microphysics, encoded in the constitutive relationships between pressure and energy
density fluctuations, can relieve these tensions. We show that EDE with an anisotropic sound speed can
soften both theH0 and S8 tensions while still providing a quality fit to CMB data. Future observations from
the CMB-S4 experiment may be able to distinguish the underlying microphysics at the 4σ level, and
thereby test whether a scalar field or some richer physics is at work.
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I. INTRODUCTION

The Λ-cold dark matter (ΛCDM) model has become the
standard model of cosmology due to its success at
describing a vast range of cosmological measurements,
from the cosmic microwave background (CMB) [1], to
large-scale structure (LSS) [2,3], to the expansion history of
the Universe [4]. However, the increased precision of
cosmological probes has led to tensions arising between
these measurements. Most notably, early universe infer-
ences of the present-day cosmic expansion rate using the
CMB are consistently and significantly lower than late-
(or local-) universe measurements of H0. This so-called
“Hubble tension” can be seen most clearly between the
SH0ES measurement of H0 ¼ 73.04� 1.04 km=s=Mpc
[5] and the Planck inference of H0 ¼ 67.4�
0.5 km=s=Mpc [1], which differ by more than 5σ.
Albeit, some late-time measurements are in agreement
with both the CMB inferred values of H0 and other late-
time measurements, within uncertainties [6–8]. But as it
stands, the Hubble tension does not seem to be able to be
explained away by systematics in any experiment [9–12].
This discrepancy between model-independent, local mea-
surements and ΛCDM-based, early inferences of H0

suggests that there may be new physics beyond the
ΛCDMmodel at play, particularly in the pre-recombination
era [13–19]. The many attempts to resolve the Hubble
tension fall in two broad categories: late-universe solutions
which alter local-universe determinations of H0, and early

universe solutions which change pre-recombination phys-
ics to alter the CMB inference of H0 (see [20,21] and
references therein).
Early dark energy (EDE) has proven to be one of the

most promising classes of early universe solutions, with
many models significantly reducing the H0 tension, while
yielding a comparable fit to the observational data com-
pared to ΛCDM [22–38]. A leading example is standard
EDE, consisting of a scalar field that briefly bumps up the
expansion rate between equality and recombination.
However, the perturbative dynamics of the canonical

scalar field used in these models appear to preclude a fully
satisfactory solution. Planck data alone does not favor EDE
as a cosmological model. It is only with the inclusion of
a late-universe prior on H0 that EDE is favored in non-
negligible amounts. This is avoided in analyses with
alternative CMB datasets, yet more work needs to be done
to determine if these differing constraints are physical, or
due to experimental systematics [35,36,39]. More impor-
tantly, EDE models tend to exacerbate the discrepancy
between early- and late-universe measurements of the
structure growth parameter, known as the “S8 tension”
[40–48]. A possible interpretation of this continuing
tension is that new physics is required, but it may not
be a canonical scalar field.
Previous studies have investigated the implications of

varying the sound speed in EDE-like models from its
canonical scalar field value with favorable results [24,34].
In this work, we pursue a description of EDE as a
phenomenological fluid component, whose background
evolution is matched to a family of viable EDE models.*vivian.i.sabla.gr@dartmouth.edu
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The perturbative dynamics of this EDE fluid are specified
by a gauge-invariant sound speed, relating pressure and
density perturbations, and a gauge-invariant anisotropic
stress, modeled either via an equation of state inspired
by proposed dark sector stress models [49,50], or via an
equation of motion formalism inspired by generalized dark
matter models [51]. We refer to the constitutive relations
necessary to define this perturbative sector as the micro-
physics of EDE. We explore what types of perturbative
evolution is necessary to strengthen and improve on current
EDE solutions to the Hubble tension, without specifying a
particular physical model.
For canonical EDE scalar fields, the microphysics is

fixed: the evolution of the perturbations follow that of a
single, uncoupled fluid with no anisotropic shear, and a
relationship between the density and pressure giving a
gauge-invariant sound speed of c2ϕ ¼ 1. By exploring
deviations from this framework, specifically with the
addition of anisotropic shear, we implicitly explore the
viability of nonscalar field EDE. Examples of theoretical
models that yield anisotropic stress include free-streaming
neutrinos [52] as well as more exotic cases such as
topological defects, cosmic lattice models such as elastic
dark energy, and coherent vector fields [50,53–59].
However, these models are not specifically known to
predict the full range of properties (equation of state
history, parallel and perpendicular sound speeds) that are
investigated in this paper. Instead, we have constructed
phenomenological models with generalized properties
beyond the specific examples. This approach is similar
in spirit to generalized dark matter [51] and elastic dark
energy [49,50] constructions.
We find that EDE with an added anisotropic stress can

simultaneously soften both the H0 and S8 tensions when
compared to a scalar field EDE model, implying that EDE
need not be the result of a scalar field. Current data cannot
definitively discriminate among these possibilities, but
future measurements may be more decisive.
This paper is organized as follows. In Sec. II we outline

our phenomenological fluid parametrization of EDE. We
describe the background solution to the Hubble tension as
well as the different microphysics variations that we
analyze. In Sec. III, we present the cosmological data used
to test the viability of the different microphysics scenarios.
Results are given in Sec. IV, and we conclude our
discussion in Sec. V with our main findings. Additional
details about the models considered and extended results
can be found in the Appendices.

II. PHENOMENOLOGICAL FLUID MODEL (PFM)

We work in a scenario consisting of the standard cosmo-
logicalmodelwith cold darkmatter (CDM), and dark energy
in the form of a cosmological constant. We introduce an
EDE component in the form of a phenomenological fluid
with perturbative dynamics that differ from a canonical

scalar field. In this section we describe the background
fluid dynamics and introduce the constitutive relations
necessary to consistently describe the microphysics.

A. Background dynamics

Our proposed scenario mimics the background evolution
of standard EDE by specifying a time-varying equation of
state

wϕðaÞ ¼ −1þ 2

1þ ðat=aÞn
; ð1Þ

which evolves from wϕ ¼ −1 to wϕ ¼ 1 at a time given by
the transition scale factor at, as shown in Fig. 1. The
sharpness of this transition is controlled by the parameter
n with higher n corresponding to a faster and sharper
transition in the equation of state. This transition in wϕ

resembles the thaw of a scalar field from the Hubble
friction, causing the energy density in our phenomenologi-
cal fluid to spike in a similar fashion, as shown in Fig. 2.
We control the amount of energy added by this fluid
component by setting the energy density of EDE in the
present day ρϕ;0. In turn, the evolution of the energy density
in the phenomenological fluid is given by

ρϕðaÞ ¼ ρϕ;0a−6
�

1þ ant
1þ ðat=aÞn

�
6=n

: ð2Þ

Equations (1) and (2) give us a background model for EDE
as a phenomenological fluid, constituting a 3-parameter
extension to ΛCDM.
Our EDE fluid model differs from the effective fluid

approximation of EDE presented in Ref. [23] mainly
through the definition of the equation of state.
Reference [23] defines

FIG. 1. The evolution of the equation of state wϕ, the adiabatic
sound speed c2a, and the dynamical sound speed cϕðaÞ for
different values of acϕ as a function of scale factor for a model
with n ¼ 6 and at ¼ acϕ ¼ 3.1 × 10−4. The vertical black dotted
line delineates the transition scale factor at.
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wϕðaÞ ¼
1þ wn

1þ ðac=aÞ3ð1þwnÞ − 1; ð3Þ

where wn ¼ ðnstd − 1Þ=ðnstd þ 1Þ. Here the “std” subscript
indicates Ref. [23] variables as distinct from our param-
eters. In Ref. [23], the equation of state transitions from a
value of wϕ ¼ −1 to wn at a time specified by a transition
scale factor ac. Hence, the parameter nstd effectively
controls the rate at which the energy density in the field
dilutes after becoming dynamical. In contrast, the final
equation of state in our phenomenological EDE fluid is
fixed to wϕ ¼ 1, with the energy density diluting as a−6,
and our parameter n controls the sharpness of the transition
from the starting value of wϕ. For constraints on the final
equation of state see Refs. [23,34]. We choose the para-
metrization given in Eq. (1) to more generally model a
component whose energy density “gets out of the way” fast
enough to not have adverse effects at the background level,
allowing us to focus on the perturbative changes discussed
in Sec. II B. However, these two parametrizations are
equivalent for the cases of nstd ¼ ∞ and n ¼ 6. At the
background level, with n ¼ 6, at ¼ 3.1 × 10−4, and
logð1010Ω0Þ ¼ −3.95, where Ω0 ¼ ρϕ;0=ρcrit;0, this model
faithfully reproduces the standard EDE best-fit nstd ¼ ∞
model of Ref. [23].
EDE as a solution to the Hubble tension is grounded in

the theoretical description of the CMB angular power
spectrum. The CMB is sensitive to H0 via the angular
size of the first acoustic peak, which can be modeled as
θs ¼ rsðz�Þ=DAðz�Þ, where rsðz�Þ is the comoving sound
horizon at decoupling, andDAðz�Þ is the comoving angular
diameter distance to the surface of last scattering. The

sound horizon, which depends on pre-recombination back-
ground energy densities, scales as H−1=2

0 , whereas DAðz�Þ,
which is dependent on post-recombination energy den-
sities, scales asH−1

0 . We may decrease the size of the sound
horizon by adding new components to the energy density,
and thereby expect an increase in the value of H0 inferred
from the CMB.
The above-described procedure is based solely on the

background cosmological model. However, linear pertur-
bations of all components of the cosmic fluid play a
significant role in the creation of the CMB angular power
spectrum.

B. Perturbative microphysics

Standard, scalar field EDE is relativistic and does not
cluster, which is manifest in the behavior of the density and
velocity perturbations. As a result, EDE perturbations lead
to an enhancement in power of the first acoustic peak of the
CMB when compared to Planck data, which is compen-
sated for by an increase in the dark matter density ωcdm, and
a subsequent increase in the spectral index ns. These
changes lead to a larger S8, increasing the S8 tension,
and restricting the amount of EDE allowed by the data. In
fact, standard EDE never fully resolves the H0 tension. In
this work, we frame our EDE model as a phenomenological
fluid and examine how changes to the microphysics affect
the clustering response, and ultimately the proposed sol-
ution to the H0 tension.
For a generalized fluid component, the standard descrip-

tion of linearized perturbations requires the specification
of four variables: energy density, pressure, momentum
density, and anisotropic stress. Traditionally, the pressure
perturbation δpϕ is set via c2s ¼ δpϕ=δρϕ, where c2s is the
effective sound speed, normally set equal to unity, and δρϕ
is the density perturbation. However, this formulation is
gauge dependent and lacks generality, so to be as exhaus-
tive as possible we consider a gauge-invariant formulation
of the pressure perturbation

δpϕ¼ c2ϕδρϕþ3Hðc2ϕ−c2aÞðρϕþpϕÞθϕ=k2; ð4Þ

where we work in Fourier space, θϕ is the velocity
divergence, and c2ϕ is now the effective sound speed of
our fluid, which is a free parameter in this generalized fluid
formulation. The adiabatic sound speed c2a takes on a
simple form in our phenomenological model

c2a≡
p0
ϕ

ρ0ϕ
¼wϕ−

w0
ϕ

3Hð1þwϕÞ
¼wϕ−

n
6
ð1−wϕÞ; ð5Þ

where primes denotes derivatives with respect to conformal
time 0 ¼ ∂=∂τ. In our scenarios, wϕ starts near −1 at early
times. Consequently, the adiabatic sound speed starts out
negative before evolving towards c2a ¼ 1 on the same time
scale as the transition in the equation of state, as shown in

FIG. 2. The evolution of fϕ ¼ ρtot;ϕ=ρtot;ΛCDM − 1 as a func-
tion of scale factor. The black solid line shows our baseline model
with n ¼ 6, logð1010Ω0Þ ¼ −3.95, and at ¼ 3.1 × 10−4. The
blue dashed line shows the baseline model with n ¼ 2. The
orange dashed line shows the baseline model with
at ¼ 5.1 × 10−4. The dotted green line shows the baseline with
logð1010Ω0Þ ¼ −3.75. The gray dot-dashed line shows the best-
fit nstd ¼ 3 oscillating scalar field model of EDE from Ref. [24]
for comparison.
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Fig. 1 for a case with n ¼ 6. The higher the value of n, the
more negative the starting value of c2a.
The conservation of the stress-energy tensor yields two

equations of motion for the density contrast of the fluid
δϕ ¼ δρϕ=ρϕ and the velocity divergence,

δ0ϕ ¼ −3Hðc2ϕ − wϕÞδϕ − ð1þ wϕÞ
h0

2

− ½k2 þ 9H2ðc2ϕ − c2aÞ�ð1þ wϕÞθϕ=k2; ð6Þ

θ0ϕ ¼ −Hð1 − 3c2ϕÞθϕ þ
c2ϕ

1þ wϕ
k2δϕ − k2σϕ; ð7Þ

where H ¼ a0=a is the conformal Hubble parameter, σϕ is
the anisotropic stress, h is the synchronous gauge metric
potential (see [60]), and we have explicitly used our
definition of the gauge-invariant pressure perturbation.
From Eqs. (6) and (7) we can see there are two free
parameters that define the evolution of linear perturbations:
the effective sound speed of the fluid, c2ϕ, and the
anisotropic shear σϕ. It is through variation of these
parameters that we test noncanonical EDE microphysics.

1. Varied sound speed

Our first test of microphysics comes with shear-less
models where the only perturbative parameter we have to
define is the sound speed c2ϕ. The role of the gauge-
invariant sound speed is dependent upon the time rate of
change of the background equation of state. For a slowly
varying equation of state, c2ϕ determines the fluctuation
response on subhorizon scales. Here, slow means
w0
ϕ=wϕ ≲ a0=a. Whereas for a rapidly varying equation

of state, w0
ϕ=wϕ ≳ a0=a, a new scale is introduced into the

system. Roughly speaking, for subhorizon perturbations in
the range a0=a≲ k≲ w0

ϕ=wϕ, the effective sound speed
may differ dramatically. Consider c2eff ¼ hδpi=hδρi, where
the angle brackets indicate an appropriate time averaging.
Only on smaller scales, k≳ w0

ϕ=wϕ, does the gauge-
invariant sound speed c2ϕ play an important role. It is in
this way that a rapidly oscillating scalar field can achieve a
nonrelativistic sound speed, despite c2ϕ ¼ 1. (See, for
example, Refs. [61,62].)
For the phenomenological fluid model described in

Sec. II A, the equation of state changes slowly, allowing
c2ϕ ¼ 1 to represent a canonical scalar field. It would
certainly be possible to introduce rapid variations in wϕ

that affect the microphysics. However, designing such a
wϕðtÞ time history seems baroque in the absence of a
particular underlying model to serve as a guide. Hence, for
the purposes of this work, a fluid with c2ϕ ¼ 1 will be used
to delineate a scalar field-like model, with deviations from
this value probing alternative microphysics scenarios.
We consider two distinct scenarios with varied sound

speeds: (i) a constant sound speed c2ϕ ¼ 0, giving a

pressureless fluid, and (ii) a dynamical formulation of
the sound speed such that

c2ϕðaÞ ¼ 1 −
1

1þ ðacϕ=aÞn
: ð8Þ

In this dynamical model, the sound speed will transition
from c2ϕ ¼ 1, to c2ϕ ¼ 0 at a time specified by a critical scale
factor acϕ, as shown in Fig. 1. Similarly to the transition in
the background equation of state, the sharpness of this
transition is set by n. This transition in the sound speed
can either occur simultaneously with the transition in the
equation of state such that acϕ ¼ at, or acϕ can be altered to
happen before or after the background transition as shown
in Fig. 1. In this way we have four distinct cases of
noncanonical sound speeds which we outline in Table I.
Case 1 gives our pressureless fluid with a constant sound
speed c2ϕ ¼ 0. Cases 2–4 consider the dynamical sound
speed model with different values of sound speed transition
scale factor acϕ.
The acoustic dark energy (ADE) model of Ref. [34]

explores the phenomenology of noncanonical constant
sound speed in a similar EDE fluid model. They find that
joint variations to the final equation of state and sound
speed of the fluid can improve on the fit to cosmological
data given in a canonical case. Our variations to the sound
speed differ in that the final equation of state is held fixed at
wϕ ¼ 1, and the sound speed is allowed to vary independ-
ently from the background evolution of the fluid. In this
way, we explicitly probe changes to the perturbative sector,
decoupled from the background fluid dynamics.
The background dynamics of our fluid give wϕ, and c2ϕ is

a free parameter that can vary as described above, leaving
the anisotropic shear as the only variable left to define.
Standard EDE has no shear, so we must look to other
components for realistic models. We consider two different
shear models, described below.

2. Shear models

For our first shear model, we follow the approach
suggested in Ref. [50] to model dark sector stress in terms
of a gauge invariant equation of state and define

TABLE I. Outline of various sound speed cases considered for
the shear-less PFM model. In case 1 the sound speed is constant
and set to c2ϕ ¼ 0. Cases 2–4 consider the dynamical sound speed
presented in Eq. (8) with different transition scale factors.

Case c2ϕ Aσ Description

1 0 0 Pressure-less fluid
2 cϕðaÞ 0 Dynamic cϕ with acϕ ¼ at
3 cϕðaÞ 0 Dynamic cϕ with acϕ < at
4 cϕðaÞ 0 Dynamic cϕ with acϕ > at
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ð1þ wϕÞσϕ ¼ Aσ½δϕ þ 3Hð1þ wϕÞθϕ=k2�; ð9Þ

where Aσ is a free scaling parameter. Depending on the sign
of Aσ this shear is built to damp or enhance the growth of
the velocity perturbation at late times, resulting in changes
to the evolution of the EDE density perturbation at the same
scales. We will henceforth refer to this equation-of-state
shear model, Eq. (9), as shear model I.
The second shear model we consider is derived from the

density and velocity perturbations of our generalized fluid
component and defines an equation of motion for the shear

σ0ϕ þ 3Hðc2ϕ − c2aÞσϕ þ Aσðθϕ þ αk2Þ ¼ 0; ð10Þ

where α ¼ ðh0 þ 6η0Þ=2k2, and Aσ is again a free scaling
parameter, just like in our previous shear model. Similarly
to the generalized dark matter (GDM) stress presented in
Ref. [51], we choose the shear to be sourced by the velocity
perturbation θϕ, with the metric perturbation term included
for gauge invariance. In the limit that c2ϕ ¼ 1 and wϕ ¼ 0,
this equation exactly matches the GDM stress of Ref. [51].
By setting c2ϕ ¼ wϕ ¼ 1=3, we recover the equation of
motion for the stress given by a Boltzmann hierarchy for
radiation truncated at the quadrupole [60]. This equation of
motion formalism of the shear, Eq. (10), will henceforth be
referred to as shear model II. Details on the specific form of
both shear models considered can be found in Appendix A.

3. Generalized shear behavior

To better understand the physical meaning of our micro-
physics parameters c2ϕ and Aσ , it is instructive to think about
the anisotropic shear within the context of the stress energy
of our fluid. By perturbing the stress-energy tensor it is
simple to show that shear is only nonzero when the pressure
response to some scalar perturbation is anisotropic,
with δp ¼ ðδpx þ δpy þ δpzÞ=3 and ðρþ pÞσ ¼
−ðk̂ik̂j − 1

3
δijÞδTi

j. Let us now consider a mode traveling
in the ẑ direction, and rotate our system such that δpx ¼
δpy ¼ δp⊥ making δpz ¼ δpk. Combining this framework
with our two shear models we find that we can write c2ϕ and
Aσ in terms of the perpendicular and parallel sound speeds
of the fluid, such that

c2ϕ ¼ 1

3

�
2
δp⊥
δρ

þ δpk
δρ

�
¼ 1

3
ð2c2⊥ þ c2kÞ; ð11Þ

and

Aσ ¼
2

3

�
δp⊥
δρ

−
δpk
δρ

�
¼ 2

3
ðc2⊥ − c2kÞ; ð12Þ

in both shear models we consider. As expected, c2ϕ is just
the spatially averaged sound speed of our fluid. The amount
of shear in our fluid, parametrized by Aσ, is controlled by
the difference in the directional sound speeds. For an

isotropic pressure perturbation, Aσ ¼ 0, and there is no
shear contribution. When the pressure perturbation
becomes anisotropic, Aσ ≠ 0 and we have a nonzero shear
contribution. This framework also gives us physical bounds
on our model parameters c2ϕ and Aσ . For stability and
causality, 0 ≤ c2⊥; c2k ≤ 1, which restricts 0 ≤ c2ϕ ≤ 1

and −2=3 ≤ Aσ ≤ 2=3.
The equations of motion given in Eqs. (6) and (7),

coupled with either stress model constitute a full descrip-
tion of the perturbative sector dynamics. Besides the three
background parameters n, Ω0, and at, there are now two
additional free parameters describing the microphysics of
our phenomenological EDE fluid, c2ϕ and Aσ.

III. DATA AND METHODOLOGY

We derive cosmological parameter constraints by run-
ning a complete Markov Chain Monte Carlo (MCMC)
using the public code COSMOMC (see https://cosmologist
.info/cosmomc/) [63] with modified versions of the
Boltzmann solver CAMB to solve the different linearized
perturbations in each of our microphysics scenarios [64].
We model neutrinos as two massless and one massive
species with mν ¼ 0.06 eV and Neff ¼ 3.046. Our dataset
includes different combinations of early and late time data
described below:

(i) P18: Planck 2018 CMB measurements via the
TTTEEE plik lite high-l, TT and EE low-l,
and lensing likelihoods [65].

(ii) BAO: We use data from the BOSS survey (data
release 12) at z ¼ 0.38, 0.51, and 0.61 [2], low
redshift measurements from the 6dF survey at z ¼
0.106 [66], and the BOSS main galaxy sample at
z ¼ 0.15 [67].

(iii) R19: Local Hubble constant measurement by the
SH0ES collaboration giving H0 ¼ 74.03�
1.42 km=s=Mpc [4].

(iv) SN: Pantheon supernovae dataset consisting of the
luminosity distances of 1048 SNe Ia in the redshift
range of 0.01 < z < 2.3 [68].

Note that the plik lite likelihood is a foreground and
nuisance marginalized version of the full plik likelihood
[65]. We have found that the two likelihoods return nearly
identical posterior distributions with statistically equivalent
Δχ2 values for cases of standard EDE as a phenomeno-
logical fluid, as well as cases with altered sound speed and
nonzero anisotropic stress. Therefore, we use the plik
lite likelihood in place of the full likelihood for speed in
analysis.
We start our analysis of the full phenomenological fluid

model by setting our microphysics to match a canonical
scalar field model with c2ϕ ¼ 1 and Aσ ¼ 0 and obtain
constraints on our background model parameters, as well as
the six standard ΛCDM parameters fωb;ωc; θs; τ;
lnð1010AsÞ; nsg. This serves as a proof of concept that this
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phenomenological EDE fluid model can resolve the Hubble
tension in an equivalent manner to scalar field EDE models.
We then fix the background model parameters, and vary the
standard model parameters along with only our added
microphysics parameters to directly test the impact of the
altered microphysics scenarios. We first set Aσ ¼ 0 and
consider four variations to the gauge-invariant sound speed
c2ϕ, outlined in Table I. We then incorporate the two shear
models presented in Sec. II B 2 and parametrize our micro-
physics via Eqs. (11) and (12) to derive constraints on our
microphysics parameters c2ϕ and Aσ . When considering
models with anisotropic shear, we assume the sound speed
of the fluid is constant, but allowed to vary from the
canonical value of c2ϕ ¼ 1. The dynamical c2ϕðaÞ model
given by Eq. (8) is only used in models with no anisotropic
shear (i.e., Aσ ¼ 0). We perform our analysis with a
Metropolis-Hasting algorithm with flat priors on all param-
eters. Our results were obtained by running eight chains
and monitoring convergence via the Gelman-Rubin cri-
terion, with R − 1 < 0.05 for all parameters considered
complete convergence [69].

IV. RESULTS

In the following section we explore the implications of
this phenomenological EDE fluid model on CMB-derived
cosmological parameters. We start by holding the micro-
physics parameters fixed to their canonical values, and
show that our fluid model gives a comparable resolution to
the Hubble tension at the background level to standard EDE
[23,24]. Next, we vary only the effective sound speed of the
fluid and show that altering c2ϕ alone does not improve the
standard EDE solution. We then evaluate our two shear
models presented in Sec. II B 2 and find that shear model II

with c2ϕ ∼ 0.55 and Aσ ∼ −0.2 not only improves the
resolution to the Hubble tension provided by standard
EDE, but also softens the S8 tension in comparison to the
standard EDE solution, all while providing as comparable a
fit to Planck 2018 data as the ΛCDM model. Finally, we
use Fisher forecasting to determine the power of CMB-S4
[70] to distinguish altered microphysics from the standard
EDE case. Extended results can be found in Appendix B.

A. Resolution to the Hubble tension

We begin our analysis by confirming that our phenom-
enological fluid model can resolve the Hubble tension in
the same way as standard EDE. We set the microphysics of
our fluid such that it behaves like a canonical scalar field
with c2ϕ ¼ 1 and Aσ ¼ 0. In order to facilitate convergence
of the MCMC chains, we reparametrize our background
model and derive constraints on rϕ ≡ ρϕðatÞ=ρΛCDMðatÞ,
where ρΛCDMðatÞ represents the contribution to the energy
density of the standard model components at the transition
scale factorat. Furthermore, instead of varying the sharpness
parameter n, we derive constraints on 1=n for computational
ease. This background parametrization in terms of rϕ is
distinct from, but analogous to, the effective-fluid approxi-
mation given in Ref. [23] where the fractional density is set
via fedeðzcÞ≡ΩϕðzcÞ=ΩtotðzcÞ with zc defining the time at
which the fluid becomes dynamical. We assume flat priors
on all parameters, with 0.1 < 1=n < 1, 0 < rϕ < 1, and
2.49 < at × 104 < 9.21, to keep the transition before
recombination. We show parameter constraints for the
background model and standard model parameters in
Table II for the PFM with a combination of different
datasets. The best-fit ΛCDM model is shown for compari-
son. Posterior distributions for all relevant parameters are
shown in Figs. 3 and 4.

TABLE II. The mean (best-fit) �1σ error of the cosmological parameters for ΛCDM and the PFM with c2ϕ¼1 and Aσ¼0 for the P18
dataset and a combined P18þBAOþR19þSN dataset. For the PFM the microphysics parameters are held fixed and constraints are
derived on the background model parameters only.

P18 only P18þBAOþR19þSN

Parameter ΛCDM PFM ΛCDM PFM

100ωb 2.235ð2.237Þ�0.015 2.241ð2.248Þþ0.017
−0.022 2.252ð2.250Þ�0.013 2.287ð2.291Þ�0.022

ωc 0.1202ð0.1199Þ�0.0013 0.1227ð0.1224Þþ0.0017
−0.0029 0.11830ð0.11843Þ�0.00091 0.1269ð0.1283Þþ0.0031

−0.0034
100θs 1.04089ð1.04105Þ�0.00032 1.04071ð1.04081Þ�0.00034 1.04115ð1.04106Þ�0.00028 1.04063ð1.04061Þ�0.00035
τ 0.0553ð0.0551Þ�0.0076 0.0541ð0.0573Þþ0.0070

−0.0079 0.0608ð0.0584Þþ0.0072
−0.0081 0.0575ð0.0541Þ�0.0074

lnð1010AsÞ 3.046ð3.045Þ�0.015 3.049ð3.056Þ�0.015 3.055ð3.051Þþ0.014
−0.016 3.065ð3.063Þ�0.015

ns 0.9645ð0.9644Þ�0.0043 0.9668ð0.9714Þþ0.0046
−0.0061 0.9693ð0.9685Þ�0.0038 0.9809ð0.9844Þ�0.0065

1=n ��� <0.525ð0.136Þ ��� <0.249ð0.159Þ
rϕ ��� <0.0222ð0.0242Þ ��� 0.071ð0.090Þþ0.027

−0.030
at×104 ��� 4.02ð2.78Þþ0.17

−1.50 ��� 3.07ð3.12Þþ0.22
−0.44

H0 [km=s=Mpc] 67.27ð67.45Þ�0.56 67.90ð68.07Þþ0.63
−0.91 68.16ð68.07Þ�0.41 70.32ð70.82Þ�0.89

S8 0.834ð0.829Þ�0.013 0.840ð0.841Þ�0.014 0.816ð0.817Þ�0.010 0.840ð0.841Þ�0.013
Total χ2min 1014.09 1012.72 2073.37 2063.33
Δχ2min ��� −1.37 ��� −10.04
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FIG. 3. Top: Posterior distributions of the standard model parameters for theΛCDMmodel (red) and the PFMwith c2ϕ ¼ 1 and Aσ ¼ 0
(blue). Bottom: Posterior distributions of the standard model parameters vs the background PFM parameters for the PFM with c2ϕ ¼ 1
and Aσ ¼ 0. The darker inner (lighter outer) regions correspond to 1σð2σÞ confidence intervals. The SH0ES collaboration measurement
of H0 ¼ 73.04� 1.04 km=s=Mpc and the KiDS-1000 weak lensing survey measurement of S8 ¼ 0.759þ0.024

−0.021 are shown in the orange
and purple bands, respectively [5,71]. Distributions are generated with the P18þ BAOþ R19þ SN datasets.
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As can be seen in Table II, our phenomenological fluid
provides a similar resolution to the Hubble tension as the
standard EDE model of Refs. [23,24], when considering
the same datasets. For a combined analysis using the
P18þ BAOþ R19þ SN datasets outlined in Sec. III,
this fluid model of EDE yields a best-fit value of
H0 ¼ 70.82 km=s=Mpc, reducing the Hubble tension with
late-universe measurements to ∼2σ, while fitting the full
suite of data better than ΛCDM with Δχ2min ¼ −10.4.
We find a preference for a nonzero amount of this EDE
fluid at 2σ with rϕ ¼ 0.071þ0.027

−0.030 , peaking at at ¼
3.07þ0.22

−0.44 × 10−4. As expected, the S8 tension is exacer-
bated with S8 ¼ 0.840� 0.013. Similarly to scalar field
EDE, this appreciable increase in H0 only occurs when a
late-universe prior on the Hubble constant is used in
analysis. Considering Planck 2018 data alone yields
H0 ¼ 68.07 km=s=Mpc, in statistical agreement with the
best-fit ΛCDM value. Putting this all together, this phe-
nomenological fluid model proves to behave just like a
standard EDE model at the background level.
Furthermore, these results show good agreement with the

ADE model presented in Ref. [34]. While there is no direct
parameter mapping between our two models, our phenom-
enological fluid EDE model is comparable to the canonical
ADE model of Ref. [34], as we consider the same micro-
physics model with different parametrizations of a phe-
nomenological standard EDE fluid. Our constraints on the
full dataset shown in Table II are in good agreement with

the cADE constraints given in Table I of Ref. [34]. The
variations between our constraints can be explained by
slight differences in our models and analysis. Our analysis
of our phenomenological fluid EDE model considers an
extra parameter, n, when compared to Ref. [34], however
we still achieve similar results. Furthermore, we base our
analysis on the updated Planck 2018 data [1] as opposed to
the Planck 2015 data [72]. Despite these differences, our
results are still statistically comparable to the cADE para-
metrization, suggesting consistency between our two
models.
With these results we have shown that we can mimic the

solution to the Hubble tension that scalar field EDE
provides without specifying a particular physical model.
In order to directly compare the impact of altering the
microphysics in this model, we define a baseline case
for which the background model parameters are fixed to
n ¼ 6, logð1010Ω0Þ ¼ −3.95, and at ¼ 3.1 × 10−4. For
this baseline case, the microphysics parameters are also
held fixed at their canonical values of c2ϕ ¼ 1 and Aσ ¼ 0.
This baseline model gives a 5.7% spike in the energy
density right around matter-radiation equality, matching the
background evolution of the best-fit nstd ¼ ∞ model of
Ref. [23]. Parameter constraints for this baseline model are
given in Table III.
We can now use this phenomenological fluid model to

assess the viability of nonscalar field EDE via altered
microphysics. Specifically, the presence of anisotropic
shear can be used as a diagnostic of any EDE models that
arise from anisotropic media, like cosmic strings or cosmic
lattice models [53,56] or coherent vector fields [59], where
isotropy is preserved at the background level, but broken in
the evolution of linear perturbations. These deviations from
the baseline case manifest as changes to the microphysics
of our phenomenological fluid, which we discuss in the
following sections.

FIG. 4. Posterior distributions of the background PFM param-
eters for the PFM with c2ϕ ¼ 1 and Aσ ¼ 0. The darker inner
(lighter outer) regions correspond to 1σð2σÞ confidence intervals.
Distributions are generated with the P18þ BAOþ R19þ SN
datasets.

TABLE III. The mean (best-fit) �1σ error of the cosmological
parameters for baseline PFM with c2ϕ ¼ 1 and Aσ ¼ 0. Con-
straints are based on the P18 dataset.

Parameter PFM—baseline case

100ωb 2.263ð2.263Þ � 0.015
ωc 0.1261ð0.1259Þ � 0.0011
100θs 1.04059ð1.04065Þ � 0.00029
τ 0.0542ð0.0564Þ � 0.0072
lnð1010AsÞ 3.057ð3.061Þ � 0.014
ns 0.9747ð0.9760Þ � 0.0042
n 6 (fixed)
logð1010Ω0Þ −3.95 (fixed)
at 0.00031 (fixed)
H0 [km=s=Mpc] 69.04ð69.11Þ � 0.58
S8 0.849ð0.849Þ � 0.013
Total χ2min 1013.39
Δχ2min −0.70
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B. Varying the sound speed

We have shown that a phenomenological fluid model can
solve the Hubble tension in the most minimal microphysics
scenario with a canonical sound speed of c2ϕ ¼ 1 and no
anisotropic shear. Before including anisotropic shear in our
microphysics scenario, we investigate how changing only
the effective sound speed of the fluid alters cosmological
parameter estimation, while holding Aσ ¼ 0. The back-
ground model parameters are fixed to n ¼ 6,
logð1010Ω0Þ ¼ −3.95, and at ¼ 3.1 × 10−4 for ease in
comparison to the baseline case. We then vary the sound
speed from its baseline value of c2ϕ ¼ 1, considering the
four alternative cases, each with no added anisotropic shear,
outlined in Table I. We consider two cases for comparison.
The first is ΛCDM, used as a control. The second is the
baseline model, used for direct comparison of the altered
microphysics.
The results of the MCMC analysis, consisting of con-

straints on cosmological parameters for cases 1–4 are
presented in Table IV. We show the posterior distributions
for the relevant parameters in these models in Fig. 5. We
restrict our dataset to only include Planck 2018 data to
focus on the CMB inference of H0 within this phenom-
enological fluid. We present results for extended datasets in
Appendix B.
We can see from Table IV that setting c2ϕ ¼ 0 in case 1

gives values of H0 and S8 that are in better agreement with
local measurements than the baseline model. For case 1, the
Hubble tension is reduced even further from the baseline
model to < 1σ, with a best-fit value of H0 ¼ 73.97
km=s=Mpc, compared with the SH0ES Collaboration
measurement of H0 ¼ 73.2� 1.3 km=s=Mpc, shown by
the orange bands in Fig. 5 [4]. Case 1 also offers a complete
resolution to the S8 tension, with a best-fit value of
S8 ¼ 0.749, compared to the measurement from the
KiDS-1000 weak lensing survey of S8 ¼ 0.759þ0.024

−0.021 , shown
by the purple bands in Fig. 5 [71]. While the cosmological

parameter estimationmay be favorable in case 1, the fit to the
data is significantly degraded, with a Δχ2min ¼ 312.38
compared to the ΛCDM model.
To better understand the effect of setting c2ϕ ¼ 0 in case

1, we take a closer look at the fluid perturbations equations
of motion. Whenever c2ϕ ¼ 0, the pressure perturbation
simplifies to

δpϕ ¼ −3Hðρϕ þ pϕÞ
�
wϕ −

w0
ϕ

3Hð1þ wϕÞ
�
θϕ=k2: ð13Þ

Using this to simplify Eq. (7) we can see that

θ0ϕ ¼ −Hθϕ; ð14Þ

meaning that with adiabatic initial conditions, where
θinit ¼ 0, the velocity divergence of our fluid is always
zero. With θϕ ¼ 0, we can see from Eq. (13) that δpϕ ¼ 0,
meaning that this fluid clusters. By the same logic, Eq. (6)
simplifies to

δ0ϕ ¼ −ð1þ wϕÞ
h0

2
þ 3Hwϕδϕ; ð15Þ

where we see that when c2ϕ ¼ 0, there is nothing to damp
the growth of density perturbations of our phenomenologi-
cal fluid. This can be seen in Fig. 6, where we show the
evolution of the density perturbations of all relevant
components as a function of scale factor. Compared to
the baseline model shown in gray, the density perturbation
of the EDE fluid in case 1, shown in black, is non-
negligible at late times, dominating over the radiation
components at late times, and over the baryonic contribu-
tion for a brief period when the background fluid density
first spikes.
This addition of a clustering fluid component deepens

the gravitational potentials and decreases power over the

TABLE IV. The mean (best-fit) �1σ error of the cosmological parameters for cases 1–4 of our PFM model with varied sound speeds,
outlined in Table VI. The background model is fixed for all cases to n ¼ 6, logð1010Ω0Þ ¼ −3.95, and at ¼ 3.1 × 10−4 for direct
comparison to the baseline case. All cases considered have no added anisotropic shear. Constraints are based on the P18 dataset.

Parameter PFM—case 1 PFM—case 2 PFM—case 3 PFM—case 4

100ωb 2.185ð2.176Þ � 0.014 2.274ð2.280Þ � 0.015 2.184ð2.182Þ � 0.014 2.263ð2.266Þ � 0.015
ωc 0.1111ð0.1117Þ � 0.0014 0.1163ð0.1160Þ � 0.0013 0.1112ð0.1114Þ � 0.0014 0.1261ð0.1264Þ � 0.0012
100θs 1.03974ð1.03966Þ � 0.00030 1.04081ð1.04082Þ � 0.00031 1.03975ð1.03966Þ � 0.00030 1.04059ð1.04063Þ � 0.00030
τ 0.0642ð0.0622Þþ0.0072

−0.0093 0.0641ð0.0650Þþ0.0074
−0.0091 0.0636ð0.0619Þ � 0.0082 0.0541ð0.0528Þ � 0.0077

lnð1010AsÞ 3.053ð3.049Þþ0.014
−0.018 3.070ð3.071Þþ0.014

−0.017 3.051ð3.047Þ � 0.016 3.057ð3.056Þ � 0.015
ns 0.9617ð0.9602Þ � 0.0042 0.9707ð0.9713Þ � 0.0044 0.9615ð0.9613Þ � 0.0041 0.9746ð0.9733Þ � 0.0043
acϕ × 104 � � � 3.1 (fixed) 0.3 (fixed) 30 (fixed)
H0 [km=s=Mpc] 74.39ð73.97Þ � 0.79 73.27ð73.45Þ � 0.73 74.34ð74.13Þ � 0.80 69.02ð68.96Þ � 0.60
S8 0.743ð0.749Þ � 0.014 0.752ð0.749Þ � 0.013 0.742ð0.744Þ � 0.015 0.849ð0.850Þ � 0.013
Total χ2min 1326.47 1087.30 1323.68 1013.28
Δχ2min þ312.38 þ73.21 þ309.59 −0.81
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first acoustic peak. The cold dark matter (CDM) and baryon
densities in this model must be lowered to account for this
additional clustering component as seen in Fig. 5. The
change in Ωch2 is also why we see a slightly higher H0 in
case 1 than in the baseline model; a lower CDM density

shifts the acoustic peaks towards low l, so to maintain
the correct angular scales in the CMB anisotropy pattern,
H0 must be raised even more, as seen in Table IV. It is
important to note that the decrease we see in the S8
parameter in case 1 is mostly driven by the change in

FIG. 5. Posterior distributions for the standard model parameters in the PFM with noncanonical sound speeds. For all PFM cases, the
background model parameters are set to n ¼ 6, logð1010Ω0Þ ¼ −3.95, and at ¼ 3.1 × 10−4, and there is no anisotropic shear (Aσ ¼ 0).
In red we show case 1 for which there is a constant sound speed set to c2ϕ ¼ 0. In blue we show case 2 for which the sound speed is
dynamical, given by Eq. (8), and acϕ ¼ at. Posteriors for the ΛCDM and baseline PFM are shown in green and gray, respectively, for
comparison. The darker inner (lighter outer) regions correspond to 1σð2σÞ confidence intervals. The SH0ES Collaboration measurement
of H0 ¼ 73.04� 1.04 km=s=Mpc and the KiDS-1000 weak lensing survey measurement of S8 ¼ 0.759þ0.024

−0.021 are shown in the orange
and purple bands, respectively [5,71]. Distributions are generated with the P18 dataset.
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the matter density since S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, where σ8 gives

the amplitude of matter fluctuations. With a lower matter
density, the structure growth parameter S8 is decreased
while keeping the actual amplitude of fluctuations σ8
effectively fixed. Case 1 gives σ8 ¼ 0.8284þ0.0062

−0.0072 , in good
agreement with the baseline constraint of σ8 ¼ 0.8305�
0.0060.
This description of the c2ϕ ¼ 0 model offers insight on

the dynamical sound speed model as well. From the
constraints presented in Table IV, we can see that the
baseline case with c2ϕ ¼ 1 and case 4 are virtually indis-
tinguishable. In case 4, the sound speed speed does not
begin the transition from c2ϕ ¼ 1 to c2ϕ ¼ 0 until after the
equation of state has transitioned to wϕ ¼ 1. With virtually
no change in the fit to the data from the baseline case, this
suggests that once the background fluid density begins to
redshift away, the sound speed has little impact.
Alternatively, in case 3, c2ϕ ¼ 0 well before the fluid
becomes dynamical and relevant. As such, the parameter
constraints and fit to the data are similar to those for case 1,
where c2ϕ ¼ 0 always. Case 2 lies in the middle with the
transition in the sound speed and equation of state happen-
ing simultaneously. In this case, we see the fit to the data
begins to degrade and the best-fit parameters shift towards
their case 1 values. Looking at the evolution of the density
perturbations in each of these cases makes these parameter
constraints clear. In Fig. 6, we see that δρϕ in cases 2 and 3
both dominate over the contribution from baryons and
radiation for a brief period, resulting in the same changes to
the gravitational potentials that cause the poor fit to the data
in case 1. However, δρϕ in case 4 only begins to grow once

the background density of the fluid is negligible so we do
not see the same domination at late times.
These constraints tell a simple story: the earlier that

c2ϕ ¼ 0, the longer the fluid clusters and the growth of
density perturbations are left unchecked, resulting in a
worse fit to the data. After the fluid starts redshifting away,
the low background density keeps the sound speed from
leaving too strong an imprint. Hence, dynamical cϕðaÞ
models with acϕ > at are effectively the same as the
baseline model, and models with acϕ < at are effectively
the same as the c2ϕ ¼ 0model. As the sound speed can only
take values of 0 ≤ c2ϕ ≤ 1, setting c2ϕ ¼ 0 represents the
maximally different case of those we consider here.
Putting all of these constraints together, it seems that

altering the sound speed of EDE from its canonical value of
c2ϕ ¼ 1without jointly altering the background dynamics of
the fluid, as suggested in Refs. [23,34], is not preferred by
Planck 2018 data, despite providing preferable constraints
on the Hubble constant and structure growth parameter.

C. Shear model I

We have shown that only changing the sound speed of
our phenomenological EDE fluid cannot improve the
solution to the Hubble tension. We now move on to
including anisotropic shear in our model, starting with
shear model I, given by Eq. (9). We hold the background
model fixed at n ¼ 6, logð1010Ω0Þ ¼ −3.95, and at ¼
3.1 × 10−4 to facilitate direct comparison to the baseline
case, and vary c2⊥ and c2k alongside our six ΛCDM
parameters to derive constraints on c2ϕ and Aσ. Parameter
constraints for this shear model are presented in Table V.
Posterior distributions for relevant parameters in this
model, along with shear model II, are presented in

FIG. 6. The evolution of the density perturbation of all relevant
components as a function of scale factor for the k ¼ 0.1 Mpc−1

wave mode. These curves are generated from a shear-less model
with n ¼ 6, logð1010Ω0Þ ¼ −3.95, and at ¼ 3.1 × 10−4 with the
standard model parameters set to their ΛCDM best-fit values. The
density perturbation of our phenomenological fluid δρϕ is shown
in case 1 (black) and the baseline model (gray) for comparison.
Setting c2ϕ ¼ 0 results in the unhindered growth of density
fluctuations at later times as seen by the black curve.

TABLE V. The mean (best-fit) �1σ error of the cosmological
parameters for phenomenological fluid model with shear model I.
The background model parameters are held fixed at n ¼ 6,
logð1010Ω0Þ ¼ −3.95, and at ¼ 3.1 × 10−4. Constraints are de-
rived from the P18 dataset and Δχ2min is calculated with respect to
the best-fit ΛCDM model presented in Table II.

Parameter PFM w=shear I

100ωb 2.256ð2.225Þ � 0.016
ωc 0.1261ð0.1262Þ � 0.0013
100θs 1.04062ð1.04043Þ � 0.00033
τ 0.0541ð0.0531Þ � 0.0073
lnð1010AsÞ 3.058ð3.056Þ � 0.014
ns 0.9737ð0.9727Þ � 0.0044
c2ϕ 0.770ð0.848Þþ0.150

−0.097
Aσ −0.068ð−0.031Þþ0.063

−0.070
H0 [km=s=Mpc] 68.97ð68.83Þ � 0.62
S8 0.850ð0.850Þ � 0.013
Total χ2min 1013.31
Δχ2min −0.78
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FIG. 7. Top: Posterior distributions of the standard model parameters for the PFM with shear model I (red) and shear model II (blue)
with n ¼ 6, logð1010Ω0Þ ¼ −3.95, and at ¼ 3.1 × 10−4. Posteriors for the ΛCDM model (green) and the baseline PFM (gray) are
shown for comparison. Bottom: Posterior distributions of the standard model parameters vs the microphysics parameters for the PFM
with shear model I (red) and shear model II (blue) with n ¼ 6, logð1010Ω0Þ ¼ −3.95, and at ¼ 3.1 × 10−4. The darker inner (lighter
outer) regions correspond to 1σð2σÞ confidence intervals. The SH0ES Collaboration measurement of H0 ¼ 73.04� 1.04 km=s=Mpc
and the KiDS-1000 weak lensing survey measurement of S8 ¼ 0.759þ0.024

−0.021 are shown in the orange and purple bands, respectively
[5,71]. Distributions are generated with the P18 dataset. Both shear models converged to a negligible amount of added shear, with c2ϕ
very nearly equal to unity, making them virtually indistinguishable from the baseline model.
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Figs. 7 and 8, with ΛCDM and baseline posteriors included
for comparison.
As we can see from Table V, the best-fit microphysics

parameters for this shear model make it virtually indis-
tinguishable from the baseline case with c2ϕ ¼ 0.848 and
Aσ ¼ −0.031. To get a clear picture as to why this model of
anisotropic shear is so disfavored by data, it is useful to take
a closer look at how the addition of this shear changes the
CMB angular power spectrum via its interactions with the
other perturbative quantities of the EDE fluid.
The magnitude and sign of the EDE shear is controlled

via Aσ . The total shear in the cosmic fluid πtot, is given by
the sum of all nonzero shear components πtot ¼ Σið1þ wiÞ
σi. Besides our EDE component, the only other shear
contributions come from radiation for which σγ; σν < 0.
This means that for a model with Aσ ¼ 0, πtot < 0. When
ð1þ wϕÞσϕ > 0, due to a positive Aσ , the EDE shear adds
destructively to the total shear in the system, lowering the
magnitude of πtot. Conversely, when ð1þ wϕÞσϕ < 0, due to
a negative Aσ , the EDE shear enhances the total shear in the
system, increasing themagnitudeofπtot. These changes to the
total shear contribution compared to the baseline model have
a significant impact on the Weyl potential Φ, given by

Φ¼−
8πG
2k2

a2
X
i

ρi

�
δiþ3Hð1þwiÞθi=k2þ

3

2
ð1þwiÞσi

�
;

ð16Þ

where i sums over all components of the total energy density.
Hence, when we increase or decrease the magnitude of the
total shearcontribution, thegravitationalpotentialsgetdeeper
or shallower, respectively.
In addition to the inherent impact of adding a new

component to the total shear, σϕ influences the evolution of
the velocity perturbation of the EDE via Eq. (7), which
in turn alters the evolution of the density perturbation.
At large scales, we can analytically solve for the scaling
behavior of these perturbations which we parametrize via
an effective equation of state such that δϕ ∝ a−3ð1þwδÞ and
θϕ ∝ a−3ð1þwθÞ. During matter domination we find that

wδ ¼ −
1

4

�
5 − 2Aσ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4AσðAσ − 1Þ − 8c2ϕ

q �
; ð17Þ

wθ ¼−
1

12

�
17−6Aσþ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ4AσðAσ −1Þ−8c2ϕ

q �
; ð18Þ

which tell us that as you increase Aσ , both δϕ and θϕ decay
more rapidly, regardless of the background equation of
state of the fluid.
For very positive Aσ, the density and velocity perturba-

tions decay quicker than the baseline Aσ ¼ 0 case, causing
the overall magnitude of theWeyl potential to be decreased,
and vice versa for negative Aσ cases. The overall changes to
the Weyl potential due to the inherent impact of σϕ and the
subsequent impact on δϕ and θϕ can be seen in Fig. 9 where
we plot the evolution of the Weyl potential at low-k for
different manifestations of shear model I. We can see
that for very positive Aσ, shown in blue, the gravitational
potentials are shallower than the baseline model, shown in

FIG. 8. Posterior distributions for the microphysics parameters
c2ϕ and Aσ in the PFM model with shear model I (red) and shear
model II (blue) with n ¼ 6, logð1010Ω0Þ ¼ −3.95, and
at ¼ 3.1 × 10−4. The darker inner (lighter outer) regions corre-
spond to 1σð2σÞ confidence intervals. In both cases, the posterior
distributions favor Aσ ¼ 0, with a slight preference for negative
Aσ , particularly in shear model II. Distributions are generated
with the P18 dataset.

FIG. 9. Evolution of the Weyl gravitational potential as a
function of scale factor for the k ¼ 7 × 10−6 Mpc−1 wave mode
in shear model I. The black curve shows the baseline model with
no added shear. The blue (orange) curves show that a case with
positive (negative) Aσ makes the potential wells shallower
(deeper) for the brief period of time that the background density
of the EDE fluid is relevant. The green curve shows that for a very
anisotropic fluid (Aσ < −0.6), the Weyl potential diverges from
its baseline evolution. The black-dashed line shows the transition
scale factor at, at which the fluid becomes dynamical.
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black, for the brief period following the transition in the
background equation of state when the EDE fluid has a
non-negligible background abundance. Due to the rapid
scaling of the perturbations and the background behavior of
the fluid density, this suppression of the Weyl potential is
short lived, and the gravitational potentials return to their
baseline trajectory at late times. When Aσ < 0, we see the
opposite behavior. The Weyl potential is deepened, and
because δϕ and θϕ do not decay as quickly as they do in the
baseline model, their effect lasts longer. When Aσ ≲ −0.6,
the fluid perturbations dominate over the standard model
components, causing the Weyl potential to diverge from its
baseline trajectory as seen through the green curve in Fig. 9.
For fixed c2ϕ and Aσ , this behavior at large scales leads to

large changes at l≲ 1000 in the CMB angular power
spectrum as seen in Fig. 10 where we plot the residuals
between the best-fit ΛCDM model and shear model I,
for choices of positive and negative Aσ . We can see that
for Aσ ¼ −0.6, shown in red, the divergence of the Weyl
potential suppresses power over the first acoustic peak and
enhances power at l≲ 100, when compared to the baseline
model. These large changes to the power spectrum for non-
negligible amounts of shear explain the best-fit parameters
for shear model I presented in Table V. Planck 2018 data
constrains the amount of shear allowed in this model to be
very close to zero with Aσ ¼ −0.068þ0.063

−0.070 , suggesting that
the large-scale influence of this equation-of-state formu-
lation of shear on gravitational potentials is too large an
obstacle to overcome. Putting this all together, if EDE has
some anisotropic shear component, the data suggests it
should not be introduced in the form of Eq. (9) due to the
large-scale influence of the shear on the evolution of
gravitational potentials.

D. Shear model II

Our second shear model is defined via a physically
motivated [51], gauge-invariant equation of motion given

by Eq. (10). Similarly to shear model I, the best-fit
parameters for shear model II with free c2ϕ and Aσ, given
in Table VI, are statistically indistinguishable from the best-
fit baseline model, given in Table III. However, as can be
seen by the blue curve in Fig. 8, the 1σ constraints on the
microphysics parameters are much looser in shear model II
than they are in shear model I. Specifically, a degeneracy
between c2ϕ and Aσ exists allowing a non-negligible amount
of negative shear coupled with a lower effective sound
speed.
These constraints are made clearer by looking at the

effect of positive and negative Aσ values on the CMB
angular power spectrum. Figure 11 shows the temperature
power spectrum for cases with very positive Aσ ¼ 0.6
(orange) and very negative Aσ ¼ −0.6 (green), with the
baseline case and the best-fit ΛCDM model shown in blue,
and black, respectively, for comparison. We show param-
eter constraints for shear model II with the same positive
and negative Aσ in Table VI.
In the baseline case, which mimics standard EDE, power

is enhanced over the first acoustic peak and all peaks are
shifted towards large scales. These changes to the power
spectrum result in the parameter shifts seen in the best-fit
baseline model shown in Table III, most notably, increased
ωc and H0 values. On top of the changes to the power
spectrum we see in the baseline case, when Aσ is positive,
we see an added suppression of power over the second
acoustic peak. This suppression requires a higher value of
ωb as seen in Table VI, restoring the heights of the first and
second acoustic peaks into agreement with Planck 2018
data, in conjunction with changes to the CDM density. The
key difference between this model and the baseline case is
that the requirement of a higher baryon density also shifts
the acoustic peaks towards larger scales, relinquishing the
need for a higher value of the Hubble constant, resulting
in a best-fit value of H0 ¼ 67.13 km=s=Mpc, virtually
unchanged from the best-fit ΛCDM value. Overall, these

FIG. 10. Temperature and polarization power spectrum residuals between the best-fit ΛCDM model and the best-fit fluid model with
shear model I with positive (orange) and negative (red) Aσ . The best-fit baseline model is shown in blue for comparison. Residuals from
Planck 2018 data are shown in gray. Left (right) vertical axis scaling is for multipoles less (greater) than l ¼ 30.
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parameter changes lead to a poor fit to the data seen through
the residuals between this positive Aσ case and the best-fit
ΛCDM model shown by the orange curve in Fig. 12.
Turning to a negative shear case, we get a different story.

FromFig. 8we know thatPlanck 2018 data allows for a non-
negligible, but not large, amount of negative shear. For
explanatory purposes we focus on an extremal case with
Aσ ¼ −0.6 and c2ϕ ¼ 0.3 to show the full effect of a negative
shear in this model. From Fig. 11, we can see that when we
add in this negative shear, leaving all ΛCDM parameters
unchanged from their best-fit values, the enhancement over
the first acoustic peak that comes in the baseline model is
avoided, giving a temperature power spectrum whose main
difference from the ΛCDM model is a shift in all acoustic
peaks towards small scales. As can be seen in Table VI, this
leads to an even higher Hubble constant than the baseline
case with H0 ¼ 69.64� 0.61 km=s=Mpc. Similarly to the

baseline case, the CDM density must be increased from its
ΛCDM value, but in this model the added shear counteracts
the deepening of the gravitational potentials caused by
the increase in the matter density, leaving the S8 value in
statistical agreement with ΛCDM giving S8 ¼ 0.830�
0.013. So, in addition to strengthening the solution to the
H0 tension, this model does not exacerbate the S8 tension
like standard EDE models. As can be seen in Fig. 12, the
best-fit model with Aσ ¼ −0.6 results in a slightly poorer
fit to Planck 2018 data than the baseline case with a
Δχ2min ¼ 17.64, as is to be expected for this extremal case.
For a more reasonable choice of c2ϕ ¼ 0.55 and

Aσ ¼ −0.2, which lies within the 2σ contours in Fig. 8,
we see the same shifts inH0 and S8 as we do in the extremal
case, shown in Fig. 13, but with a comparable fit to the data
as ΛCDM. From these results we see that the addition of a
negative shear that evolves according to the equation of

TABLE VI. The mean (best-fit) �1σ error of the cosmological parameters for phenomenological fluid model with shear model shear
model II with n ¼ 6, logð1010Ω0Þ ¼ −3.95, at ¼ 3.1 × 10−4, and different choices of c2ϕ and Aσ . Constraints are derived from the P18
dataset and Δχ2min is calculated with respect to the best-fit ΛCDM model presented in Table II. The best-fit values for the Aσ ¼ 0.6 and
Aσ ¼ −0.6 cases were used to generate the orange and red curves in Fig. 10, respectively.

Parameter PFM w=shear II Shear II—Aσ ¼ 0.6 Shear II—Aσ ¼ −0.6 Shear II—Aσ ¼ −0.2
100ωb 2.256ð2.257Þ � 0.016 2.069ð2.070Þ � 0.012 2.275ð2.269Þ � 0.016 2.250ð2.250Þ � 0.015
ωc 0.1255ð0.1257Þ � 0.0013 0.1260ð0.1259Þ � 0.0011 0.1245ð0.1247Þ � 0.0012 0.1245ð0.1248Þ � 0.0012
100θs 1.04067ð1.04059Þ � 0.00031 1.04007ð1.04009Þ � 0.00032 1.04026ð1.04032Þ � 0.00030 1.04067ð1.04065Þ � 0.00030
τ 0.0541ð0.0569Þ � 0.0078 0.0391ð0.0419Þþ0.0089

−0.0072 0.0546ð0.0528Þ � 0.0075 0.0550ð0.0562Þ � 0.0074
lnð1010AsÞ 3.058ð3.060Þ � 0.015 3.035ð3.039Þþ0.017

−0.014 3.063ð3.062Þ � 0.014 3.060ð3.063Þ � 0.014
ns 0.9740ð0.9772Þ � 0.0047 0.9591ð0.9603Þ � 0.0038 0.9618ð0.9602Þ � 0.0041 0.9723ð0.9715Þ � 0.0042
c2ϕ 0.778ð0.951Þþ0.170

−0.087 0.7 (fixed) 0.3 (fixed) 0.55 (fixed)

Aσ −0.08ð0.08Þþ0.15
−0.10 0.6 (fixed) −0.6 (fixed) −0.2 (fixed)

H0 [km=s=Mpc] 69.24ð69.11Þ � 0.62 67.07ð67.13Þ � 0.53 69.64ð69.52Þ � 0.61 69.56ð69.41Þ � 0.60
S8 0.843ð0.847Þ � 0.014 0.863ð0.864Þ � 0.012 0.830ð0.8311Þ � 0.013 0.833ð0.838Þ � 0.013
Total χ2min 1013.48 1355.69 1031.73 1016.50
Δχ2min −0.61 341.60 17.64 2.41

FIG. 11. Temperature power spectrum for shear model II. All curves are generated with the standard model parameters set to their best-
fit ΛCDM values from Table II. For the PFM models we set n ¼ 6, at ¼ 3.1 × 10−4, and logð1010Ω0Þ ¼ −3.95. The blue curves shows
the baseline model with c2ϕ ¼ 1, and Aσ ¼ 0, the orange curve shows shear model II with a fixed positive Aσ , and the green curve shows
shear model II with a fixed negative Aσ .
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motion given in Eq. (10) strengthens EDE as a solution
to the Hubble tension. In this case, the S8 tension is not
exacerbated by the inclusion of our new component while
preserving the solution to the Hubble tension.
This can be seen more clearly in comparison with local

measurements of S8 and H0. Comparing our S8 constraints
to the combined DES-Y3 constraint of S8 ¼ 0.776� 0.017
[3], we find that our baseline EDE model with a best-fit
S8 ¼ 0.849 gives a χ2DES ¼ 18.44, whereas shear model II
with Aσ ¼ −0.2 gives χ2DES ¼ 13.30 with its best-fit value
of S8 ¼ 0.838. Compared with the ΛCDM model best-fit
value of S8 ¼ 0.829 and χ2DES ¼ 9.72, our negative shear
model offers a significant improvement over standard EDE.
Similarly, as a resolution to the Hubble tension, we see a

slightly better fit with our negative shear model to the
SH0ES Collaboration measurement of H0 ¼ 73.04�
1.04 km=s=Mpc [5] which for ΛCDM leads to a χ2SH0ES ¼
28.89. The baseline EDE model softens this tension with a
best-fit H0 ¼ 69.11 km=s=Mpc leading to a χ2SH0ES ¼
14.28. Shear model II with Aσ ¼ −0.2 improves on this
slightly with H0 ¼ 69.41 km=s=Mpc giving χ2SH0ES ¼
12.18, a slight, but statistically irrelevant, improvement to
the resolution given by the baseline EDE model.
We have also considered the case where the background

parameters, rϕ, at, and n, are allowed to vary. We fix the
microphysics parameters to c2ϕ ¼ 0.55 and Aσ ¼ −0.2 to
explore the broader impact of this negative shear model.
This method has the advantage of providing constraints that
consider the full range of background evolution possible
with this microphysics scenario. However, as with the
standard EDE fluid model discussed in Sec. IVA, one must
use the full dataset, in particular a late-universe prior onH0,
in order to find preference for a nonzero density of EDE.
While the constraints on S8 andH0 in this extended case are
similar to the case with a fixed background evolution run on
only Planck data, the ΛCDM constraint on S8 from the full
dataset, shown in Table II, is lower than the ΛCDM

constraint from Planck data alone. This results in a weaker
softening of the S8 tension when the background param-
eters are sampled over, but one that is still statistically
relevant. For a more extended discussion of this scenario
see Appendix B. Any solution to the cosmological tensions
will preferably exist in Planck data alone. For this reason,
we fix the background evolution in our main analysis. With
a fixed background evolution we focus on the effects of
EDE microphysics on cosmological parameter constraints
from Planck data specifically.
This anisotropic microphysics scenario may be a sign of

nonscalar field EDE. However, this region of parameter
space is indistinguishable from standard scalar field EDE
when considering Planck data alone, so we must look to
future experiments to provide meaningful constraints on the
microphysics of EDE.

E. Future constraints

We forecast constraints on this model using a Fisher
information matrix formalism assuming a CMB-S4 experi-
ment that covers 40% of the sky, following the prescription
laid out in Ref. [70]. We model our Gaussian noise
according to

Nαα
l ¼ Δ2 exp

�
lðlþ 1Þ θ

2
FWHM

8 ln 2

�
; ð19Þ

where α ∈ fT; Eg, Δ is the white noise level in μK-arcmin,
and θFWHM is the beam width. We consider a telescope
beam with θFWHM ¼ 10 and a white noise level of ΔT ¼ 1
μK’ for temperature and ΔE ¼ ffiffiffi

2
p

ΔT for polarization. We
compute the covariance matrix as

ClðCαβ
l ; Cγδ

l Þ ¼
1

ð2lþ 1Þfsky
	

Cαγ
l þ Nαγ

l

�

Cβδ
l þ Nβδ

l

�

þ 

Cαδ
l þ Nαδ

l

�

Cβγ
l þ Nβγ

l

��
; ð20Þ

FIG. 12. Temperature and polarization power spectrum residuals between the best-fit ΛCDM model and the best-fit fluid model with
shear model II with positive (orange) and negative (red) Aσ . The best-fit baseline model is shown in blue for comparison. Residuals from
Planck 2018 data are shown in gray. Left (right) vertical axis scaling is for multipoles less (greater) than l ¼ 30.
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where α; β; γ; δ ∈ fT; Eg, and fsky is the fractional sky
coverage of the CMB-S4 experiment considered. Finally
the Fisher matrix is calculated using

Fij ¼
X
l

∂C⊤
l

∂θi
C−1
l

∂Cl

∂θj
; ð21Þ

where θi runs over the six ΛCDM parameters, as well as
our five model parameters n, at, logð1010Ω0Þ, c2⊥, and c2k,

making Fij an 11 × 11 matrix. Table VII gives the fiducial
model used in our Fisher analysis, as well as the forecasted
1σ constraints on all parameters. Figure 14 shows the
forecasted posterior distributions for c2ϕ and Aσ assuming
the fiducial model. From Fig. 14 we can see that CMB-S4
should be able to distinguish the case with c2ϕ ¼ 0.55 and
Aσ ¼ −0.2 from the standard EDE model where c2ϕ ¼ 1
and Aσ ¼ 0. It is important to note that a Fisher matrix
formalism assumes Gaussian errors for all parameters. As
suggested by the constraints on c2ϕ and Aσ presented in

FIG. 13. Posterior distributions for the PFM model with shear model II (blue) with n ¼ 6, logð1010Ω0Þ ¼ −3.95, at ¼ 3.1 × 10−4,
c2ϕ ¼ 0.55, and Aσ ¼ −0.2. The ΛCDM (gray) and baseline models (red) are shown for comparison. The darker inner (lighter outer)
regions correspond to 1σð2σÞ confidence intervals. The SH0ES collaboration measurement of H0 ¼ 73.04� 1.04 km=s=Mpc and the
KiDS-1000 weak lensing survey measurement of S8 ¼ 0.759þ0.024

−0.021 are shown in the orange and purple bands, respectively [5,71].
Distributions are generated with the P18 dataset. A small, but non-negligible amount of negative shear added to a generic EDE model
can simultaneously soften the H0 and S8 tensions in comparison to standard EDE [24].

MICROPHYSICS OF EARLY DARK ENERGY PHYS. REV. D 106, 063526 (2022)

063526-17



Figs. 8 and 14, the underlying probability distribution for
individual parameters in our model may not be Gaussian.
Hence the 1σ error predictions from our Fisher forecast
given in Table VII should not be thought of as restrictive
constraints. Nevertheless, they serve as useful references on
the ability of CMB-S4 to constrain new physics. Assuming
the fiducial model and errors presented in Table VII,
CMB-S4 may be able to distinguish the underlying micro-
physics at the 4σ level. If future constraints do favor
Aσ ≠ 0, this would be evidence of a richer microphysics
sector than that implied by scalar field EDE.
In short, EDE with an anisotropic shear in the form of

Eq. (10), with c2ϕ ∼ 0.55 and Aσ ∼ −0.2, can reduce the

Hubble tension to < 3σ, while not exacerbating the S8
tension like standard EDE models. The region of micro-
physics parameter space that accomplishes this solution is
indistinguishable from a shear-less case with current data,
but the CMB-S4 experiment will increase precision,
allowing us to concretely assess the viability of altering
the microphysics of EDE.

V. DISCUSSION

Early dark energy has emerged as one of the most
promising classes of solutions to the Hubble tension,
however the microphysics of the canonical scalar fields
used in these models preclude fully satisfactory solutions
mainly by exacerbating the S8 tension even further. In this
paper we investigate the ability of noncanonical micro-
physics to strengthen EDE as a solution to the Hubble
tension. We describe EDE as a phenomenological fluid
component whose background evolution mimics standard
EDE, and alter the perturbative dynamics of the fluid by
allowing the effective sound speed of the fluid to differ
from its canonical value of c2ϕ ¼ 1, and by introducing
an anisotropic shear perturbation via an equation of state
formalism (shear model I) or an equation of motion
(shear model II). In total this phenomenological model
constitutes a five parameter extension to ΛCDM, with three
parameters to describe the background evolution n, at, and
logð1010Ω0Þ, and two parameters to describe the micro-
physics c2ϕ, and Aσ .
We find that for models with no added anisotropic shear,

the H0 and S8 tensions can be jointly ameliorated by
making the phenomenological fluid cluster through setting
c2ϕ ¼ 0 before the transition in the background equation of
state. However, only altering the sound speed leads to a
significantly worse fit to Planck 2018 data, making this an
unfavorable solution to the tensions. This poor fit comes in
response to the deepening of gravitational potentials caused
by the addition of a new clustering component. Models that
transition from a nonclustering to clustering fluid, thereby
limiting the time that the clustering can effect the gravi-
tational potentials, suffer the same problem, unless the
transition in the sound speed happens well after the fluid
density begins to redshift away with wϕ ¼ 1.
Furthermore, we find that the inclusion of anisotropic

shear can help or hinder EDE as a solution to the Hubble
tension, depending on the way it is introduced. For shear
model I, defined by the gauge-invariant equation of state
given in Eq. (9), the addition of a new shear component to
the total stress energy of the system leads to significant
changes to the evolution of the density and velocity
perturbations of the fluid, and of the evolution of the
Weyl potential at large scales. These large-scale changes to
the perturbative evolution lead to significant alterations to
the CMB angular power spectrum at l < 1000, which in
turn constrain the amount of shear allowed in this model to
be negligible.

FIG. 14. Forecasts for c2ϕ and Aσ for the CMB-S4 experiment
(red) and its combination with Planck (black). The blue contour
shows current constraints using Planck 2018 data alone (same as
Fig. 8). With or without the inclusion of the P18 dataset, CMB-S4
will be able to distinguish a case with a small, but non-negligible
amount of shear from the baseline, shear-less case.

TABLE VII. Forecasted 1σ parameter constraints for the PFM
model with shear model II assuming a CMB-S4 experiment.

Parameter Fiducial CMB-S4

100ωb 2.250 �0.006
ωc 0.1248 �0.0025
H0 69.41 �0.93
109As 2.140 �0.014
ns 0.9715 �0.0039
τ 0.0562 �0.0027
n 6 �0.09
at × 104 3.1 �0.6
logð1010Ω0Þ −3.95 �1.08
c2ϕ 0.55 �0.104
Aσ −0.2 �0.103
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Alternatively, when anisotropic shear is introduced via the
equation of motion given in Eq. (10), we find significantly
different results. For a non-negligible region of parameter
space, the inclusion of this shear in a generic EDEmodel not
only slightly improves upon the resolution to the Hubble
tension provided by EDE, but simultaneously softens the S8
tension with H0 ¼ 69.56� 0.60 km=s=Mpc and S8 ¼
0.833� 0.013, when compared to the standard EDE case
which gives H0 ¼ 69.11� 0.58 km=s=Mpc and S8 ¼
0.849� 0.013. This favorable region of parameter space
loosely given by c2ϕ > 0.6 and Aσ < −0.2, is indistinguish-
able from the standard EDE model using Planck 2018 data
alone. Using a Fisher information matrix analysis, we found
that future observations from CMB-S4 will be able to
distinguish between these different microphysical scenarios.
A clear preference for a non-negligible amount of EDE

shear would imply that if EDE is at play, it need not be

the result of a canonical scalar field. Rather, strongly
anisotropic microphysics may be indicative of a novel
component that is isotropic at the background level, but
breaks isotropy perturbatively. Examples range from free-
streaming neutrinos to more speculative models such as a
cosmic lattice or coherent vector fields. Our approach has
been to study the impact of the equation of state, sound
speed, and anisotropic shear more generally.
While our focus has been on the scalar sector, it is

reasonable to expect that any microphysical model that
gives rise to scalar anisotropic stress will also contribute
vector and tensor stress. The latter is of great interest, for
the potential to affect a B-mode polarization signal of
primordial gravitational waves. A wide range of behavior
may be expected, considering free-streaming neutrinos
[52], topological defects [73], and coherent vector fields
[59]. We leave this subject for later investigation.

TABLE VIII. The mean (best-fit) �1σ error of the cosmological parameters for phenomenological fluid model with shear model I,
n ¼ 6, logð1010Ω0Þ ¼ −3.95, at ¼ 3.1 × 10−4, and different choices of c2ϕ and Aσ , generated from the P18 dataset. The best-fit values
were used to generate the orange and red curves in Fig. 10.

Parameter Aσ ¼ 0.6 Aσ ¼ −0.6

100ωb 2.047ð2.050Þ � 0.011 2.129ð2.123Þ � 0.012
ωc 0.1209ð0.1210Þ � 0.0012 0.1455ð0.1457Þ � 0.0010
100θs 1.03956ð1.03951Þ � 0.00029 1.03775ð1.03773Þ � 0.00030
τ 0.0424ð0.0429Þþ0.0075

−0.0067 < 0.0125ð0.0102Þ
lnð1010AsÞ 3.031ð3.033Þ � 0.015 2.9958ð2.9931Þþ0.0058

−0.0071
ns 0.9512ð0.9507Þ � 0.0037 0.9548ð0.9536Þ � 0.0038
c2ϕ 0.7 (fixed) 0.3 (fixed)
Aσ 0.6 (fixed) −0.6 (fixed)
H0 [km=s=Mpc] 68.73ð68.67Þ � 0.58 60.02ð59.91Þ � 0.40
S8 0.813ð0.816Þ � 0.013 1.056ð1.057Þ � 0.012
Total χ2min 1472.76 1719.88
Δχ2min þ458.67 þ705.79

TABLE IX. The mean (best-fit) �1σ error of the cosmological parameters in the baseline model, the PFM with shear I, and the PFM
with shear II, generated from the P18þ BAOþ R19þ SN datasets.

Parameter PFM—baseline PFM w=shear I PFM w=shear II

100ωb 2.278ð2.280Þ � 0.013 2.268ð2.273Þ � 0.016 2.267ð2.272Þ � 0.015
ωc 0.12466ð0.12464Þ � 0.00083 0.12449ð0.12462Þ � 0.00087 0.12418ð0.12435Þ � 0.00088
100θs 1.04079ð1.04076Þ � 0.00028 1.04083ð1.04082Þþ0.00027

−0.00030 1.04081ð1.04101Þ � 0.00030
τ 0.0584ð0.0582Þ � 0.0071 0.0578ð0.0598Þ � 0.0076 0.0583ð0.05711Þþ0.0068

−0.0077
lnð1010AsÞ 3.064ð3.065Þ � 0.014 3.063ð3.067Þ � 0.015 3.064ð3.062Þþ0.014

−0.015
ns 0.9786ð0.9775Þ � 0.0036 0.9782ð0.9783Þ � 0.0037 0.9768ð0.9786Þþ0.0046

−0.0042
c2ϕ � � � 0.799ð0.787Þþ0.140

−0.085 0.748ð0.812Þþ0.180
−0.096

Aσ � � � −0.036ð−0.058Þ � 0.058 −0.11ð−0.06Þþ0.15
−0.11

H0 [km=s=Mpc] 69.80ð69.81Þ � 0.42 69.79ð69.78Þ � 0.43 69.89ð69.95Þ � 0.43
S8 0.8344ð0.8342Þ � 0.0098 0.833ð0.836Þ � 0.010 0.830ð0.830Þ � 0.011
Total χ2min 2063.81 2063.59 2064.02
Δχ2min −9.56 −9.78 −9.35
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Future probes of LSS and the CMB will be essential to
verifying if anisotropic EDE was present in the early
universe, and will offer further clues into the microphysics
of EDE.
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APPENDIX A: SHEAR MODEL DERIVATION

In this appendix we give extended derivations of the
shear models presented in Sec. II B 2.

1. Shear model I

Following [60], the velocity divergence of a single
uncoupled fluid, like our phenomenological EDE fluid,
can be written most generally as

θ0 ¼ −Hð1 − 3wÞθ − w0

1þ w
θ þ k2

1þ w
δp
ρ

− k2σ; ðA1Þ

where the pressure is given by Eq. (4). From this equation
we can see that the pressure perturbation δp and anisotropic
shear σ act as positive and negative source terms respec-
tively. We specifically design our shear equation of state in
shear model I to counteract the growth of the pressure
source term in Eq. (A1). We define the shear to be

ðρþ pÞσ ¼ c2σðδp − c2t δρ − 3Hðc2t − c2aÞðρþ pÞθ=k2Þ;
ðA2Þ

where c2σ and c2t are new parameters. For c2σ ¼ 1 and
c2t ¼ 0, the pressure perturbation source term in Eq. (A1) is
completely canceled, however we choose to leave them as
free parameters for completeness. The second and third
terms in Eq. (A2) are included to keep the stress equation of
state gauge invariant. Plugging Eq. (4) into Eq. (A2) we
find

ðρþ pÞσ ¼ c2σðc2ϕ − c2t Þðδρþ 3Hðρþ pÞθ=k2Þ: ðA3Þ

By setting Aσ ¼ c2σðc2ϕ − c2t Þ, we recover Eq. (9) which we
use to define shear model I.
If we directly substitute shear model I into the equation

of motion for the velocity perturbation we find

θ0 ¼ −H½1 − 3ðc2ϕ − AσÞ�θ þ
k2

1þ w
ðc2ϕ − AσÞδ; ðA4Þ

where it becomes clear that for c2ϕ ¼ Aσ, we get complete
cancellation of the source term for the velocity perturbation
making θ ¼ 0 at all times with adiabatic initial conditions.

FIG. 16. Same as Fig. 8 but for the P18þ BAOþ R19þ SN
datasets.

TABLE X. The mean (best-fit) �1σ error of the cosmological parameters for phenomenological fluid model with
shear model II, n ¼ 6, logð1010Ω0Þ ¼ −3.95, at ¼ 3.1 × 10−4, c2ϕ ¼ 0.55, and Aσ ¼ −0.2, generated from the
P18þ BAOþ R19þ SN datasets.

Parameter PFM w=shear II—Aσ ¼ −0.2

100ωb 2.259ð2.256Þ � 0.014
ωc 0.12362ð0.12379Þ � 0.00087
100θs 1.04079ð1.04080Þ � 0.00029
τ 0.0579ð0.0540Þþ0.0069

−0.0078
lnð1010AsÞ 3.064ð3.058Þþ0.014

−0.016
ns 0.9746ð0.9751Þ � 0.0036
c2ϕ 0.55 (fixed)
Aσ −0.2 (fixed)
H0 [km=s=Mpc] 70.03ð69.94Þ � 0.45
S8 0.825ð0.824Þ � 0.010
Total χ2min 2065.55
Δχ2min −7.82
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2. Shear model II

Our second model of shear is derived directly from the
density and velocity perturbations whose evolution equa-
tions are given by Eqs. (6) and (7). We start by differ-
entiating Eq. (7) with respect to conformal time to get a
second order equation giving

θ00 ¼ −H0ð1 − 3c2ϕÞθ −Hð1 − 3c2ϕÞθ0

þ c2ϕ
1þ w

k2δ0 − 3Hðw − c2aÞ
c2ϕ

1þ w
k2δ − k2σ0; ðA5Þ

where we have assumed a time-varying equation of state
and used Eq. (5) to simplify. Using Eqs. (6) and (7) we can

write this second order equation as a function exclusively of
θ and σ,

θ00 ¼ −k2c2ϕ
h0

2
½−Hð1 − 3c2ϕÞ − 3Hðc2ϕ − c2aÞ�θ0

− ½k2c2ϕ þH0ð1 − 3c2ϕÞ þ 3H2ðc2ϕ − c2aÞ�θ
− k2½σ0 þ 3Hðc2ϕ − c2aÞσ�: ðA6Þ

At small scales, this simplifies to

θ00 ¼ −k2c2ϕ

�
θ þ h0

2

�
− k2½σ0 þ 3Hðc2ϕ − c2aÞσ�: ðA7Þ

FIG. 17. Same as Fig. 13 but for the P18þ BAOþ R19þ SN datasets.

VIVIAN I. SABLA and ROBERT R. CALDWELL PHYS. REV. D 106, 063526 (2022)

063526-22



Now we suppose that

σ0 þ 3Hðc2ϕ − c2aÞσ ¼ Bσðθ þ αk2Þ; ðA8Þ

where α ¼ ðh0 þ 6η0Þ=2k2 with h and η being the synchro-
nous gauge metric potentials. The right-hand side of this
equation is directly taken from the shear terms in the second
order differential we derived for the velocity perturbation.
At small scales, this implies

θ00 ¼ −k2ðc2ϕ þ BσÞθ − k2
�
ðc2ϕ þ BσÞ

h0

2
þ 3Bση

0
�
: ðA9Þ

For a wave traveling in the ẑ direction, θ ¼ ∂zvz, which
coupled with the above equation implies c2k ¼ c2ϕ þ Bσ. For
cohesion between our shear models, we reparametrize and
define Bσ ¼ −Aσ such that c2k ¼ c2ϕ − Aσ, just like in shear
model I, which gives us our definition of shear model II
presented in Eq. (10).

APPENDIX B: EXTENDED RESULTS

In this appendix we present extended MCMC results
from our analysis of the phenomenological EDE fluid
model with varied microphysics. In Table VIII we give the
parameter constraints for the positive and negative Aσ cases
run on the P18 dataset used to produce the residuals seen in
Fig. 10 for shear model I. As explained in Sec. IV, the large
scale impact of the anisotropic shear in this model causes
the poor fits we see in Table VIII, and constrains the
amount of shear allowed to be negligible.
In Table IX, we show constraints on the cosmological

parameters in the baseline PFM, the PFM w/ shear model I
and the PFM w/ shear model II run using the P18þ
BAOþ R19þ SN datasets. Posterior distributions for the
relevant parameters in these models are shown in Figs. 15
and 16, with ΛCDM shown for comparison. Comparing to
Tables Vand VI, we can see that the inclusion of additional

datasets does allow for slightly more anisotropic shear with
a higher H0, but does not significantly change the results
for either model of shear.
Next, we give the results of an MCMC analysis,

consisting of constraints on cosmological parameters in
Table X and posterior distributions for those parameters in
Fig. 17, for the phenomenological EDE fluid with shear
model II. We show the case of c2ϕ ¼ 0.55 and Aσ ¼ −0.2,
discussed in Sec. IV, run on the P18þ BAOþ R19þ SN
datasets. Similarly to the previous cases, the inclusion of
more datasets does not drastically alter the results of the
analysis. The main differences are slight upwards and
downwards shifts in the posteriors for H0 and S8, respec-
tively when compared to the run with only Planck 2018
data. However, in comparison to the best-fit ΛCDM model
run on the same extended dataset, the resolutions to the H0

and S8 tensions are less pronounced.
Finally, to see the broader impact of this negative shear

model we re-run our analysis to include sampling over the
background model parameters rϕ, at, and n. We hold the
microphysics fixed with c2ϕ ¼ 0.55 and Aσ ¼ −0.2 and
explore the effect of this microphysics scenario on the
background EDE solution. Parameter constraints on this
case are given in Table XI with their posterior distributions
shown in Fig. 18 for the P18 dataset, and Fig. 19 for the
combined P18þ BAOþ R19þ SN datasets.
As can be seen by comparing Tables II and XI, the

constraints on the model parameters follow a similar
trajectory for a standard EDE model and for this negative
shear case. As with the standard EDE fluid model presented
in Table II, Planck data alone shows no preference for EDE
with a best-fit EDE density fraction of rϕ ¼ 0.005. Hence,
there is no solution to the Hubble tension with a best-fit
H0 ¼ 67.52 km=s=Mpc, and the constraint on S8 is
unchanged from ΛCDM with S8 ¼ 0.837ð0.834Þ � 0.013.
As discussed in Sec. IVA, for a nonzero amount of EDE

to be preferred, we must include a late-universe prior on

TABLE XI. The mean(best-fit)�1σ error on the cosmological parameters for the PFM w=shear model II for the case of c2ϕ ¼ 0.55 and
Aσ ¼ −0.2, with sampling over the background PFM parameters.

Parameter P18 only P18þ BAOþ R19þ SN

100ωb 2.237ð2.239Þþ0.016
−0.018 2.274ð2.228Þ � 0.018

ωc 0.1224ð0.1206Þþ0.0014
−0.0026 0.1278ð0.1292Þ � 0.0036

100θs 1.04073ð1.04080Þ � 0.00033 1.04046ð1.04044Þ � 0.00038
τ 0.0540ð0.0569Þ � 0.0073 0.562ð0.0547Þ � 0.0073
lnð1010AsÞ 3.049ð3.049Þþ0.014

−0.015 3.067ð3.070Þ � 0.015
ns 0.9656ð0.9657Þþ0.0046

−0.0054 0.9768ð0.9791Þ � 0.0054
1=n < 0.600ð0.331Þ 0.397ð0.377Þþ0.098

−0.180
rϕ < 0.0196ð0.0052Þ 0.072ð0.083Þ � 0.026
at × 104 < 4.35ð2.59Þ < 2.98ð2.70Þ
H0 [km=s=Mpc] 67.97ð67.52Þþ0.61

−1.10 71.0ð71.50Þ � 1.1
S8 0.837ð0.834Þ � 0.013 0.834ð0.836Þ � 0.012
Total χ2min 1013.77 2061.43
Δχ2min −0.32 −11.94
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FIG. 18. Top: Posterior distributions of the standard model parameters for the ΛCDMmodel (gray), the PFM with c2ϕ ¼ 1 and Aσ ¼ 0
(red), and shear model II with c2ϕ ¼ 0.55 and Aσ ¼ −0.2 (blue). Bottom: Posterior distributions of the standard model parameters vs the
background PFM parameters. The darker inner (lighter outer) regions correspond to 1σð2σÞ confidence intervals. The SH0ES
collaboration measurement of H0 ¼ 73.04� 1.04 km=s=Mpc and the KiDS-1000 weak lensing survey measurement of S8 ¼
0.759þ0.024

−0.021 are shown in the orange and purple bands, respectively [5,71]. Distributions are generated with the P18 dataset.
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FIG. 19. Top: Posterior distributions of the standard model parameters for the ΛCDM model (gray), the PFM with c2ϕ ¼ 1 and Aσ ¼ 0
(red), and shear model II with c2ϕ ¼ 0.55 and Aσ ¼ −0.2 (blue). Bottom: Posterior distributions of the standard model parameters vs the
backgroundPFMparameters. The darker inner (lighter outer) regions correspond to1σð2σÞ confidence intervals. TheSH0ESCollaboration
measurement ofH0 ¼ 73.04� 1.04 km=s=Mpc and the KiDS-1000 weak lensing survey measurement of S8 ¼ 0.759þ0.024

−0.021 are shown in
the orange and purple bands, respectively [5,71]. Distributions are generated with the P18þ BAOþ R19þ SN datasets.
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H0. Any solution to the cosmological tensions would
preferably exist in Planck data alone, without the need
for external datasets to enforce parameter changes. This is
why in our main analysis of these models we fix the
background evolution and investigate the effect of EDE
microphysics under the assumption of a non-negligible
EDE density around matter-radiation equality, allowing us
to exclusively use Planck data in our analysis.
Considering the full dataset in this extended parameter

space we find S8 ¼ 0.834ð0.836Þ � 0.012 for this negative
shear model shown in Table XI. Compared to the standard

EDE fluid model constraint of S8 ¼ 0.840ð8.41Þ � 0.013
on this same dataset, we still see preference for a lower
value of S8. Comparing these values to the cases with fixed
background evolution (shear model II with Aσ ¼ −0.2 and
the baseline EDE case, respectively) discussed in the main
text, we see good agreement between models in both cases.
However, for the full dataset considered here, the ΛCDM
constraint is lowered to S8 ¼ 0.816ð0.817Þ � 0.010, mak-
ing the softening of the S8 tension weaker, but still
statistically relevant as the standard EDE constraint lies
outside the ΛCDM 1-σ error bars.
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