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We introduce a new logotropic model based on a complex scalar field with a logarithmic potential
that unifies dark matter and dark energy. The scalar field satisfies a nonlinear wave equation
generalizing the Klein-Gordon equation in the relativistic regime and the Schrödinger equation in
the nonrelativistic regime. This model has an intrinsically quantum nature and returns the Λ cold dark
matter (CDM) model in the classical limit ℏ → 0. It involves a new fundamental constant of physics
A=c2 ¼ 2.10 × 10−26 gm−3 responsible for the late accelerating expansion of the Universe and
superseding the Einstein cosmological constant Λ. The logotropic model is almost indistinguishable
from the ΛCDM model at large (cosmological) scales but solves the CDM crisis at small (galactic)
scales. It also solves the problems of the fuzzy dark matter model. Indeed, it leads to cored dark matter
halos with a universal surface density Σth

0 ¼ 5.85ðA=4πGÞ1=2 ¼ 133 M⊙=pc2. This universal surface
density is predicted from the logotropic model without adjustable parameter and turns out to be close to
the observed value Σobs

0 ¼ 141þ83
−52 M⊙=pc2. We also argue that the quantities Ωdm;0 and Ωde;0, which are

usually interpreted as the present proportions of dark matter and dark energy in the ΛCDM model, are
equal to Ωth

dm;0 ¼ 1
1þe ð1 − Ωb;0Þ ¼ 0.2559 and Ωth

de;0 ¼ e
1þe ð1 −Ωb;0Þ ¼ 0.6955 in very good agreement

with the measured values Ωobs
dm;0 ¼ 0.2589 and Ωobs

de;0 ¼ 0.6911 (their empirical ratio 2.669 is close to the
Euler number e ¼ 2.71828…). We point out, however, important difficulties with the logotropic model,
similar to those encountered by the generalized Chaplygin gas model. These problems are related to the
difficulty of forming large-scale structures due to an increasing speed of sound as the Universe expands.
We discuss potential solutions to these problems, stressing in particular the importance to perform a
nonlinear study of structure formation.
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I. INTRODUCTION

The nature of dark matter (DM) and dark energy
(DE) is still unknown and remains one of the greatest
mysteries of cosmology. In a previous paper [1] (see
also [2–4]), we have introduced an exotic fluid, called
the logotropic dark fluid (LDF), that unifies DM and
DE in the spirit of a generalized Chaplygin gas
model.1 The LDF is characterized by the equation of
state [1–4]

P ¼ A ln

�
ρm
ρP

�
; ð1Þ

where ρm ¼ nm is the rest-mass density, ρP ¼ 5.16 ×
1099 g=m3 is the Planck density, and A=c2 ¼
2.10 × 10−26 gm−3 is a constant interpreted as a new

fundamental constant of physics superseding the Einstein
cosmological constant Λ. For ρm < ρP, the pressure of
the LDF is negative.2 At early times, the pressure is
negligible with respect to the energy density and the
LDF behaves like the pressureless cold dark matter
(CDM) model. At later times, the negative pressure
of the LDF becomes efficient and explains the accel-
eration of the Universe that we observe today. We
obtained very encouraging results [1–4]. At large
(cosmological) scales, the logotropic model is almost
indistinguishable from the ΛCDM model up to the
present time for what concerns the evolution of the
homogeneous background. The two models will differ
in about 25 Gyr when the logotropic model will start
to exhibit a phantom behavior, i.e., the energy density
will increase with the scale factor, leading to a
super–de Sitter era where the scale factor increases

*chavanis@irsamc.ups-tlse.fr
1The original logotropic model [1–4] has been further studied

in [5–12].

2The logotropic model is not valid in the primordial Universe
so that, in practice, the LDF exhibits a negative pressure, as
required to explain the acceleration of the Universe today.
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as a ∼ et
2

.3 At small (galactic) scales, the logotropic
model is able to solve the small-scale crisis of the CDM
model. Indeed, contrary to the pressurelessCDMmodel, the
logotropic equation of state provides a pressure gradient
that can balance the gravitational attraction and prevent
gravitational collapse. As a result, logotropic DM halos
present a central core rather than a cusp, in agreement with
the observations. In addition, a very nice property of the
logotropic equation of state is that it generates DM halos
with a universal surface density. Its predicted value Σth

0 ¼
5.85ðA=4πGÞ1=2¼133M⊙=pc2 turns out to be close to the
observed value Σobs

0 ¼ 141þ83
−52 M⊙=pc2 [15–17]. This is

remarkable because there is no adjustable parameter in our
model [1–4]. The logotropic model implies that the mass of
dwarf galaxies enclosedwithin a sphere of fixed radius ru ¼
300 pc has a universal value Mth

300 ¼ 1.82 × 107 M⊙, i.e.,
logðMth

300=M⊙Þ ¼ 7.26, in agreement with the observations
giving logðMobs

300=M⊙Þ¼7.0þ0.3
−0.4 [18]. The logotropic model

also reproduces the Tully-Fisher relation Mb ∝ v4h, where
Mb is the baryonic mass and vh is the circular velocity at the
halo radius, and predicts a value of the ratio ðMb=v4hÞth ¼
46.4 M⊙ km−4 s4 which is close to the observed value
ðMb=v4hÞobs ¼ 47� 6 M⊙ km−4 s4 [19].
In the present paper, we introduce a related, but different,

logotropic model. We develop a field theory based on the
Klein-Gordon (KG) equation in general relativity for a
complex scalar field (SF) with a logarithmic potential.4 In
the fast oscillation regime, which is equivalent to the
Thomas-Fermi (TF) approximation ℏ → 0, this complex
SF generates a logotropic equation of state similar to
Eq. (1) except that the rest-mass density ρm is replaced
by a pseudo-rest-mass density ρ related to the squared
modulus of the SF. This new logotropic model is similar to
the previous one (conserving its main virtues), except that it
does not display a phantom behavior in the future but rather
a late de Sitter era. Indeed, the energy density always
decreases as the Universe expands and tends to a constant
ϵmin like in the ΛCDM model but with a slightly different
value. Correspondingly, the speed of sound is real and
always smaller than the speed of light while, in the original
logotropic model [1–4], the speed of sound was diverging
at the entry of the phantom regime before becoming
imaginary. Therefore, the new logotropic model avoids

some pathologies of the original logotropic model such
as a phantom behavior (violation of the dominant-energy
condition P=ϵ > −1 and little rip) and a superluminal
or imaginary speed of sound. It rather asymptotically
approaches a well-behaved de Sitter era. Therefore,
the new logotropic model interpolates a regime of dust-
dominated Universe to a vacuum-energy-dominated
Universe, providing an explanation for the possible accel-
erating phase today: For small values of the scale factor, the
LDF exhibits the same behavior as a pressureless fluid; for
large values of the scale factor, it approaches the equation
of state of a cosmological constant.
The logotropic complex SF model is based on a non-

linear KG equation involving a logarithmic potential whose
strength is measured by the logotropic constant A. We
argue that this constant does not correspond to a particular
characteristic of the SF (such as its mass m or self-
interaction constant λ) but that it has a fundamental and
universal nature.5 In our model, this constant is responsible
for the accelerating expansion of the Universe and, at the
same time, for the universality of the surface density of DM
halos. In the nonrelativistic limit, the nonlinear KG
equation reduces to a nonlinear Schrödinger equation
which has the form of a generalized Gross-Pitaevskii
(GP) equation with a logarithmic potential.
The aim of this paper is to develop the logotropic

complex SF model in detail and to compare it with other
models such as the original logotropic model, the ΛCDM
model, and the fuzzy dark matter (FDM) model. The paper
is organized as follows. In Sec. II, we summarize the theory
developed in [20–22] for a spatially homogeneous complex
SF with an arbitrary potential Vðjφj2Þ evolving in an
expanding background. We consider in particular the fast
oscillation regime, equivalent to the TF approximation,
where the equations can be simplified and where the SF
behaves as a fluid with a barotropic equation of state PðρÞ
determined by the SF potential. In Sec. III, we consider a
logarithmic potential and show that it leads to a logotropic
equation of state. In Sec. IV, we determine the rest-mass
density and the internal energy of the LDF which represent
DM and DE, respectively. In Sec. V, we study the evolution
of the LDF, stressing that it behaves as DM in the early
Universe and as DE in the late Universe. In Sec. VI, we
determine the fundamental constant A (and the equivalent
dimensionless constant B) of our model from cosmological
considerations. We argue that the quantities Ωdm;0 and
Ωde;0, which are usually interpreted as the present propor-

tions of DM and DE in the ΛCDM model, are equal to

3By contrast, in the ΛCDM model, the energy density tends to
a constant ϵΛ leading to a de Sitter era where the scale factor
increases as a ∼ et. Note that the increase of the energy density ϵ
with a in the logotropic model is slow—logarithmic. As a result,
there is no future finite time singularity (no “big rip”) [13]. The
energy density becomes infinite in infinite time. This is called
“little rip” [14].

4Most authors describe DM and DE by a real SF. Here, we
consider a complex SF based on the general formalism developed
in [20–22] for an arbitrary potential. It could be called the CSF
model.

5This term should be present in all SF theories even though it
may be negligible in certain cases. In other words, a SF with a
purely logarithmic potential is considered to be massless and
noninteracting. We can then introduce specific attributes of the SF
such as a mass term 1

2
m2jφj2 and a self-interaction term like a

quartic potential 1
4
λjφj4.
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Ωth
dm;0 ¼ 1

1þe ð1 −Ωb;0Þ ¼ 0.2559 and Ωth
de;0 ¼ e

1þe ð1 −
Ωb;0Þ ¼ 0.6955 in very good agreement with the measured
values Ωobs

dm;0 ¼ 0.2589 and Ωobs
de;0 ¼ 0.6911 (their empirical

ratio 2.669 is close to the Euler number e ¼ 2.71828…).
In Sec. VII, we write the equations of the problem in
dimensionless form and study the cosmic evolution of the
LDF. We show that the ΛCDM model is recovered in the
limit B → 0 which corresponds to ℏ → 0. Therefore,
the ΛCDM model can be viewed as the classical limit of
the logotropic model (it corresponds to a dark fluid with a
constant pressure P ¼ −ϵΛ or to a complex SF with a
constant potential V ¼ ϵΛ). In Sec. VIII, we determine the
effective proportions of DM and DE in the logotropic
model. In Secs. IX and X, we study the evolution of the
deceleration parameter and speed of sound. We show that
the speed of sound increases from cs ¼ 0 to cs ¼ c as the
Universe expands. In Sec. XI, we study the evolution of the
scale factor. In Sec. XII, we determine the total SF potential
including the rest-mass term and the potential term and
discuss the motion of the SF in this potential in relation to
the phenomenon of spintessence. In Sec. XIII, we deter-
mine the validity of the fast oscillation regime. We first
show that it imposes the condition m ≫ mΛ on the mass of
the SF, where mΛ ¼ ðΛℏ2=3c4Þ1=2 ¼ 1.20 × 10−33 eV=c2

is the cosmon mass. We then show that the SF undergoes a
stiff matter era (in the slow oscillation regime) prior to the
DM and DE eras. We also argue that the fast oscillation
regime ceases to be valid at very late times and we
determine the dynamical phase diagram of the logotropic
model. In Sec. XIV, we discuss the analogies and the
differences between the logotropic model and the ΛCDM
model. We show that the asymptotic energy density ϵmin in
the logotropic model is slightly larger than the asymptotic
energy density ϵΛ in the ΛCDM model. They differ by a
factor 1.02. We also show that the logotropic model leads to
DM halos with a universal surface density consistent with
the observations, while the CDM model leads to cuspy
density profiles that are not observed. In Sec. XV, we go
beyond the TF approximation and describe DM halos in
terms of the logotropic GP equation. Their equilibrium
state is determined by a quantum Lane-Emden equation of
index n ¼ −1. Quantum logotropic DM halos have a
quantum core (soliton), an inner logotropic envelope where
the density decreases as ρ ∼ r−1 (responsible for the
constant surface density of DM halos), and an outer
Navarro-Frenk-White (NFW) envelope where the density
decreases as r−3, or an outer isothermal envelope where the
density decreases as r−2. The classical logotropic model is
recovered in the TF approximation ℏ → 0. On the other
hand, the FDM model is recovered in the limit B → 0. We
mention that the inner logotropic envelope solves the
problems of the FDM model reported in our previous
papers [23–25] (see also [26,27]). In Sec. XVI, we study
the Jeans instability of an expanding logotropic Universe
by using a nonrelativistic approach. We show that the speed

of sound and the comoving Jeans length increase as the
Universe expands. As a result, the density contrast first
increases like in the ΛCDMmodel, then undergoes damped
oscillations. This is the same behavior as in the generalized
Chaplygin gas (GCG) model and the opposite behavior as in
the FDM model. We explain that this behavior poses
problems for the formation of structures and we discuss
possible solutions that have been invoked in the context of the
GCG model. In particular, we stress the importance to
perform a nonlinear study of structure formation. The
Appendices provide complements to our main results. In
Appendix A, we recall the motivations of the logotropic
model and explain that it can be regarded as the simplest
generalization of the ΛCDM model. In Appendix B, in
line with [21], we show that different types of logotropic
models can be introduced depending on whether the pre-
ssure is specified in terms of the energy density, the rest-mass
density, or the pseudo-rest-mass density (the present model
corresponds to a logotropic model of type III in the
terminology of [21]). In Appendix C, we extend certain
results of the Jeans instability study to the case of DMwith a
linear equation of state. In Appendix D, we discuss different
equivalent versions of theΛCDMmodel. In Appendix E, we
discuss the main properties of the ΛFDM model. In
Appendix F, we describe the structure of logotropic DM
halos. In Appendix G, we determine the typical mass of the
DM particle in the quantum logotropic model.

II. COMPLEX SF THEORY

In this section, we recall the basic equations governing
the cosmological evolution of a spatially homogeneous
complex SF with an arbitrary self-interaction potential in a
Friedmann-Lemaître-Robertson-Walker (FLRW) universe.
We also recall how these equations can be simplified in the
fast oscillation regime (equivalent to the classical or TF
approximation) that will be considered in the following
sections. We refer to our previous papers [20–22] and
references therein for a more detailed discussion.

A. Spatially homogeneous SF

Let us consider a complex SF φ with a self-interaction
potential Vðjφj2Þ described by the KG equation. For a
spatially homogeneous SF φðtÞ evolving in an expanding
background, the KG equation takes the form6

1

c2
d2φ
dt2

þ 3H
c2

dφ
dt

þm2c2

ℏ2
φþ 2

dV
djφj2 φ ¼ 0; ð2Þ

where H ¼ _a=a is the Hubble parameter and aðtÞ is the
scale factor. The second term in Eq. (2) is the Hubble drag.
The rest-mass term (third term) can be written as φ=λ2C,

6See, e.g., Refs. [20–22,28–31] and Sec. XV for the general
expression of the KG equation valid for possibly inhomogeneous
systems.
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where λC ¼ ℏ=mc is the Compton wavelength defined with
the mass m of the SF. The total potential including the rest-
mass term and the self-interaction term reads

V totðjφj2Þ ¼
m2c2

2ℏ2
jφj2 þ Vðjφj2Þ: ð3Þ

The energy density ϵðtÞ and the pressure PðtÞ of the SF are
given by

ϵ ¼ 1

2c2

���� dφdt
����2 þm2c2

2ℏ2
jφj2 þ Vðjφj2Þ; ð4Þ

P ¼ 1

2c2

���� dφdt
����2 −m2c2

2ℏ2
jφj2 − Vðjφj2Þ: ð5Þ

The equation of state parameter is defined by w ¼ P=ϵ.
The Friedmann equations determining the evolution of

the homogeneous background are

dϵ
dt

þ 3Hðϵþ PÞ ¼ 0 ð6Þ

and

H2 ¼ 8πG
3c2

ϵ −
kc2

a2
þ Λ

3
; ð7Þ

where Λ is the cosmological constant and k determines the
curvature of space. The universe may be closed (k > 0), flat
(k ¼ 0), or open (k < 0). In this paper, we consider a flat
universe (k ¼ 0) in agreement with the inflation paradigm
[32] and the observations of the cosmic microwave back-
ground (CMB) [33,34]. On the other hand, we set Λ ¼ 0
because the acceleration of the expansion of the Universe
will be taken into account in the potential of the SF (see
below). The Friedmann equation (7) then reduces to the
form

H2 ¼ 8πG
3c2

ϵ: ð8Þ

The Friedmann equations can be derived from the Einstein
field equations by using the FLRWmetric [35]. The energy
conservation equation (6) can also be obtained from the KG
equation (2) by using Eqs. (4) and (5) (see Appendix G of
[21]).7 Once the SF potential Vðjφj2Þ is given, the Klein-
Gordon-Friedmann (KGF) equations provide a complete
set of equations that can in principle be solved to obtain the
evolution of the Universe, assuming that the energy density
is entirely due to the SF. To complete the description one
can introduce radiation and baryonic matter as independent
species but, for simplicity, we shall not consider their
effect here.

B. Charge of the SF

Writing the complex SF as

φ ¼ jφjeiθ; ð9Þ

where jφj is the modulus of the SF and θ is its argument
(angle), inserting this decomposition into the KG equa-
tion (2) and separating the real and imaginary parts, we
obtain the following pair of equations:

1

c2

�
2
djφj
dt

dθ
dt

þ jφj d
2θ

dt2

�
þ 3H

c2
jφj dθ

dt
¼ 0; ð10Þ

1

c2

�
d2jφj
dt2

− jφj
�
dθ
dt

�
2
�
þ 3H

c2
djφj
dt

þm2c2

ℏ2
jφj þ 2

dV
djφj2 jφj ¼ 0: ð11Þ

Equation (10) can be rewritten as a conservation equation

d
dt

�
a3jφj2 dθ

dt

�
¼ 0: ð12Þ

Introducing the pulsation ω ¼ −_θ, we get

ω ¼ Qℏc2

a3jφj2 ; ð13Þ

where Q is a constant of integration which represents the
conserved charge of the complex SF [20–22,28,29,36,37]
(see Sec. II G).8 Note that this equation is exact. On the
other hand, in the fast oscillation regime ω ¼ dθ=dt ≫
H ¼ _a=a where the pulsation is high with respect to the
Hubble expansion rate, Eq. (11) reduces to

ω2 ¼ m2c4

ℏ2
þ 2c2

dV
djφj2 : ð14Þ

For a free field (V ¼ 0), the pulsation ω is proportional to
the mass of the SF (ω ¼ mc2=ℏ) and the fast oscillation
condition reduces to mc2=ℏ ≫ H. Combining Eqs. (13)
and (14), we obtain

Q2ℏ2c4

a6jφj4 ¼ m2c4

ℏ2
þ 2c2

dV
djφj2 : ð15Þ

This equation relates the modulus jφj of the SF to the scale
factor a in the fast oscillation regime. The pulsation ω of
the SF is then given by Eq. (13) or (14).

7Inversely, the KG equation (2) can be obtained from the
energy conservation equation (6).

8The conservation of the charge results from the global Uð1Þ
symmetry of the Lagrangian of a complex SF. There is no such
conservation law for a real SF.
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C. Spintessence

According to Eqs. (11) and (13) we have

d2jφj
dt2

þ 3H
djφj
dt

þm2c4

ℏ2
jφj þ 2c2

dV
djφj2 jφj−

Q2ℏ2c4

a6jφj3 ¼ 0;

ð16Þ

where H is given by Eq. (8). This equation is exact. It
determines the evolution of the modulus of the complex SF.
It differs from the KG equation of a real SF by the presence
of the last term and the fact that φ is replaced by jφj. The
energy density and the pressure are given by

ϵ ¼ 1

2c2

�
djφj
dt

�
2

þ
�
ω2

2c2
þm2c2

2ℏ2

�
jφj2 þ Vðjφj2Þ; ð17Þ

P ¼ 1

2c2

�
djφj
dt

�
2

þ
�
ω2

2c2
−
m2c2

2ℏ2

�
jφj2 − Vðjφj2Þ: ð18Þ

Equation (16) can be written as

d2R
dt2

þ 3H
dR
dt

¼ −c2
dV tot

dR
þ ω2R; ð19Þ

where R ¼ jφj and ω ¼ Qℏc2=ða3R2Þ. This equation is
similar to the equation of motion of a damped particle of
position RðtÞmoving in a potential c2V totðRÞ− ð1=2Þω2R2.
The last term coming from the “angular motion” of the
complex SF can be interpreted as a “centrifugal force”
whose strength depends on the charge of the complex SF
[37]. The presence of the centrifugal force for a complex SF
is a crucial difference with respect to a real SF (that is not
charged) because the fast oscillation approximation leading
to Eq. (14) or (15) corresponds to the equilibrium
c2V 0

totðRÞ ¼ ω2R between the centrifugal force and the
force associated with the total SF potential V tot (see Sec. V
A of [20]). When this condition is satisfied, the phase of the
SF rotates rapidly while its modulus remains approximately
constant. This is what Boyle et al. [38] call “spintessence.”
There is no relation such as Eq. (14) or (15) for a real SF.
Remark.—For a complex SF in the fast oscillation regime,

only the phase θ of the SF oscillates (spintessence). The
modulus jφj of the SF evolves slowly (adiabatically) without
oscillating. By contrast, for a real SF in the fast oscillation
regime, φðtÞ oscillates rapidly by taking positive and
negative values. In this connection, we note that Arbey et al.
[36] study a complex SFbut consider a fast oscillation regime
different from spintessencewhere the complex SFbehaves as
a real SF. In the present paper, when considering the fast
oscillation regime of a complex SF, we shall implicitly
assume that it corresponds to the spintessence regime.

D. Equation of state in the fast oscillation regime

To establish the equation of state of the SF in the fast
oscillation regime,we can proceed as follows [20,28,39–42].

Multiplying the KG equation (2) by φ� and averaging over a
time interval that is much longer than the field oscillation
period ω−1, but much shorter than the Hubble timeH−1, we
obtain

1

c2

����� dφdt
����2
�

¼ m2c2

ℏ2
hjφj2i þ 2

�
dV
djφj2 jφj

2

�
: ð20Þ

This relation constitutes a sort of virial theorem. On the other
hand, for a spatially homogeneous SF, the energy density and
the pressure are given by Eqs. (4) and (5). Taking the average
value of the energy density and pressure, using Eq. (20), and
making the approximation�

dV
djφj2 jφj

2

�
≃ V 0ðhjφj2iÞhjφj2i; ð21Þ

we get

hϵi ¼ m2c2

ℏ2
hjφj2i þ V 0ðhjφj2iÞhjφj2i þ Vðhjφj2iÞ; ð22Þ

hPi ¼ V 0ðhjφj2iÞhjφj2i − Vðhjφj2iÞ: ð23Þ

The equation of state parameter is then given by

w ¼ P
ϵ
¼ V 0ðhjφj2iÞhjφj2i − Vðhjφj2iÞ

m2c2

ℏ2 hjφj2i þ V 0ðhjφj2iÞhjφj2i þ Vðhjφj2iÞ : ð24Þ

We note that the averages are not strictly necessary in
Eqs. (22)–(24) since the modulus of the SF changes slowly
with time.
Remark.—Equations (22) and (23) can also be obtained

from Eqs. (17) and (18) by using Eq. (14) and neglecting
the term ðdjφj=dtÞ2.

E. Equation of state in the slow oscillation regime:
Kination and stiff matter era

In the so-called “kination regime” [43] where the kinetic
term dominates the potential term in Eqs. (4) and (5), we
obtain the stiff equation of state P ¼ ϵ where the speed of
sound cs ¼ ðP0ðϵÞÞ1=2c equals the speed of light. This
equation of state applies in particular to a free massless SF
(m ¼ V ¼ 0) or when H ∼ _jφj=jφj is large. The stiff matter
era associated with the kination regime may take place in
the very early Universe before other eras associated with
the fast oscillation regime (ω ≫ H). The stiff matter era
usually corresponds to a slow oscillation regime (ω ≪ H).
In that case, the SF cannot even complete one cycle of spin
within one Hubble time so that it just rolls down the
potential well, without oscillating. Therefore, the compari-
son of ω and H determines whether the SF oscillates or
rolls (see Sec. XIII). For the stiff equation of state P ¼ ϵ,
using the Friedmann equations (6) and (8), one easily gets
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ϵ ∝ a−6, a ∝ t1=3, and ϵ ∼ c2=24πGt2. One can also show
that jφj ∼ ð3c4=4πGÞ1=2ð− ln aÞ [29].

F. Hydrodynamic variables and TF approximation

Instead of working with the SF φðtÞ, we can use hydro-
dynamic variables (see our previous works [20–22,29–31]
for a general hydrodynamic description valid for possibly
inhomogeneous systems). We define the pseudo-rest-mass
density by

ρ ¼ m2

ℏ2
jφj2: ð25Þ

We stress that it is only in the nonrelativistic limit c → þ∞
that ρ has the interpretation of a rest-mass density (in this
limit, we have ϵ ∼ ρc2). In the relativistic regime, ρ does not
have a clear physical interpretation but it can always be
defined as a convenient notation. We note that the total
potential (3) can be written as

V totðρÞ ¼
1

2
ρc2 þ VðρÞ: ð26Þ

We now write the SF in the de Broglie form

φðtÞ ¼ ℏ
m

ffiffiffiffiffiffiffiffi
ρðtÞ

p
eiStotðtÞ=ℏ; ð27Þ

where ρ is the pseudo-rest-mass density and Stot ¼
ð1=2Þiℏ lnðφ�=φÞ is the total action of the SF. The total
energy of the SF (including its rest-mass energy mc2) is

EtotðtÞ ¼ −
dStot
dt

: ð28Þ

Substituting Eq. (27) into the KG equation (2) and taking
the imaginary part, we obtain the conservation equation
[20]

d
dt

ðρEtota3Þ ¼ 0: ð29Þ

It expresses the conservation of the charge of the SF.9 It can
be integrated into

Etot

mc2
¼ Qm

ρa3
; ð30Þ

where Q is the charge of the SF. These equations are
equivalent to Eqs. (12) and (13).10 Next, substituting

Eq. (27) into the KG equation (2), taking the real part,
and making the TF approximation ℏ → 0, we obtain the
Hamilton-Jacobi (or Bernoulli) equation [20]

E2
tot ¼ m2c4 þ 2m2c2V 0ðρÞ: ð31Þ

This equation is equivalent to Eq. (14). It can be rewritten
as

Etot ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

c2
V 0ðρÞ

r
: ð32Þ

We note that Eq. (31) requires

1þ 2

c2
V 0ðρÞ > 0; ð33Þ

corresponding to V 0
totðρÞ > 0. Combining Eqs. (30) and

(32), we obtain

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

c2
V 0ðρÞ

r
¼ Qm

a3
; ð34Þ

which is equivalent to Eq. (15). Finally, writing Eqs. (4) and
(5) in terms of hydrodynamic variables, making the TF
approximation ℏ → 0, and using the Hamilton-Jacobi (or
Bernoulli) equation (31), we get [20]

ϵ ¼ ρc2 þ VðρÞ þ ρV 0ðρÞ; ð35Þ

P ¼ ρV0ðρÞ − VðρÞ; ð36Þ

which are equivalent to Eqs. (22) and (23). Equation (36)
determines the equation of state PðρÞ for a given potential
VðρÞ.11 Inversely, for a given equation of state, the potential
is given by

VðρÞ ¼ ρ

Z
PðρÞ
ρ2

dρ: ð37Þ

The correspondences with the results of the previous
sections show that the fast oscillation regime (ω ≫ H) is
equivalent to the TF or semiclassical approximation
(ℏ → 0). We note that we cannot directly take ℏ ¼ 0 in
the KG equation (this is why we have to average over the
oscillations) while we can take ℏ ¼ 0 in the hydrodynamic
equations (see Refs. [20–22] for more details). This is an
interest of the hydrodynamic representation of the SF.
It can be shown [21,22,44] that Eqs. (35) and (36)
remain valid for a spatially inhomogeneous SF in the TF

9The density of charge is proportional to ρEtot (see [31] and
footnote 4 of [20]).

10To make the link between the SF variables and the hydro-
dynamical variables, we use jφj ¼ ðℏ=mÞ ffiffiffi

ρ
p

, θ ¼ Stot=ℏ, and
ω ¼ Etot=ℏ.

11We can add a term of the form Aρ in the potential without
changing the pressure. This adds a term 2Aρ in the energy
density. If we add a constant term C (cosmological constant) in
the potential, this adds a term C in the energy density and a term
−C in the pressure.
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approximation.12 They determine the equation of state P ¼
PðϵÞ of the SF in parametric form. The equation of state
parameter can be written as

w ¼ P
ϵ
¼ ρV 0ðρÞ − VðρÞ

ρc2 þ VðρÞ þ ρV 0ðρÞ ; ð38Þ

which is equivalent to Eq. (24). We note that the condition
from Eq. (33) implies w > −1 so that a complex SF in the
fast oscillation regime has never a phantom behavior. The
pseudo squared speed of sound is

c2s ¼ P0ðρÞ ¼ ρV 00ðρÞ; ð39Þ

while the true squared speed of sound is

c2s ¼ P0ðϵÞ ¼ ρV 00ðρÞ
c2 þ 2V 0ðρÞ þ ρV 00ðρÞ : ð40Þ

Remark.—We note that Eq. (34) can be obtained directly
from the energy equation (6) with Eqs. (35) and (36) [29].
Indeed, combining these equations we obtain

½c2 þ 2V 0ðρÞ þ ρV 00ðρÞ� dρ
dt

¼ −3H½ρc2 þ 2ρV 0ðρÞ�; ð41Þ

leading to

Z
c2 þ 2V 0ðρÞ þ ρV 00ðρÞ

ρc2 þ 2ρV 0ðρÞ dρ ¼ −3 ln a: ð42Þ

Equation (42) integrates to give Eq. (34).

G. Rest-mass density and internal energy

The rest-mass density ρm ¼ nm (proportional to the
charge density) of a spatially homogeneous SF is given
by [21,22]

ρm ¼ ρ
Etot

mc2
¼ ρ

ℏω
mc2

¼ −ρ
_Stot
mc2

: ð43Þ

It is equal to ρm ¼ J0=c, where J0 ¼ −ρ∂0Stot=m is the
time component of the current of charge. This formula is
general for a homogeneous SF, being valid beyond the TF
approximation. According to Eq. (30), we have

ρm ¼ Qm
a3

: ð44Þ

The rest-mass density (or the charge density) decreases as
a−3. This expresses the conservation of the charge of the SF
or, equivalently, the conservation of the boson number

(provided that antibosons are counted negatively).13

In the TF approximation, using the Hamilton-Jacobi
(or Bernoulli) equation (32), we find that the relation
between the rest-mass density ρm and the pseudo-rest-mass
density ρ is

ρm ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

c2
V 0ðρÞ

r
: ð45Þ

From the knowledge of PðρÞ we can then obtain
P ¼ PðρmÞ. It can be shown [21,22] that Eq. (45) remains
valid for an inhomogeneous SF in the TF approximation.
The energy density can be written as

ϵ ¼ ρmc2 þ uðρmÞ; ð46Þ

where the first term is the rest-mass energy and the second
term is the internal energy. The internal energy is related to
the equation of state PðρmÞ, expressed in terms of the rest-
mass density, by14

uðρmÞ ¼ ρm

Z
PðρmÞ
ρ2m

dρm: ð47Þ

It is argued in [1] that the rest-mass density ρm represents
DM and that the internal energy uðρmÞ represents DE. This
provides an interesting interpretation of these two mysteri-
ous components. From Eqs. (35), (45), and (46), we obtain

u ¼ ρc2 þ VðρÞ þ ρV 0ðρÞ − ρc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

c2
V 0ðρÞ

r
: ð48Þ

Therefore, the rest-mass density (DM) is determined by
Eq. (45) and the internal energy density (DE) is determined
by Eq. (48). We can then obtain u ¼ uðρmÞ. Equation (48)
remains valid for an inhomogeneous SF in the TF approxi-
mation [21,22].
Remark.—Owing to our interpretation of DM and DE,

we can write

ρmc2 ¼
Ωm;0ϵ0
a3

ð49Þ

and

ϵ ¼ Ωm;0ϵ0
a3

þ u

�
Ωm;0ϵ0
c2a3

�
; ð50Þ

12Equation (36) is also valid for a nonrelativistic SF in the
general case, i.e., for a possibly spatially inhomogeneous SF
beyond the TF approximation [21,24].

13Inversely, Eq. (43) can be directly obtained from Eq. (30) by
using Eq. (44).

14This relation can be obtained by integrating the first law of
thermodynamics at T ¼ 0 which reads dðϵ=ρmÞ ¼ −Pdð1=ρmÞ
[1]. Combining the first law of thermodynamics at T ¼ 0 written
as dϵ=dρm ¼ ðPþ ϵÞ=ρm with the energy conservation equation
dϵ=dtþ 3Hðϵþ PÞ ¼ 0, we get dρm=dtþ 3Hρm ¼ 0, which
integrates to give ρm ∝ a−3 [1].
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where ϵ0 is the present energy density of the Universe and
Ωm;0 is the present proportion of DM. We can then solve
the Friedmann equation (8) with Eq. (50) to obtain the
temporal evolution of the scale factor aðtÞ. We note that, in
this interpretation, the constant Qmc2 (which is propor-
tional to the charge of the SF) is equal to the present energy
density of DM ϵm;0 ¼ Ωm;0ϵ0 [compare Eqs. (44) and (49)].
Therefore, we have the relation

Qmc2 ¼ Ωm;0ϵ0: ð51Þ

H. Two-fluid model

In our model, we have a single SF (or a single dark fluid).
Still, the energy density (46) is the sum of two terms, a rest-
mass term ρm which mimics DM and an internal energy
term uðρmÞ which mimics DE. It is interesting to consider a
two-fluid model which leads to the same results as the
single dark fluid model, at least for what concerns the
evolution of the homogeneous background. In this two-
fluid model, one fluid corresponds to pressureless DM
with an equation of state Pm ¼ 0 and a density ρmc2 ¼
Ωm;0ϵ0=a3 determined by the energy conservation equation
for DM, and the other fluid corresponds to DE with an
equation of state PdeðϵdeÞ and an energy density ϵdeðaÞ
determined by the energy conservation equation for DE.
We can obtain the equation of state of DE yielding the same
results as the one-fluid model by taking

Pde ¼ PðρmÞ; ϵde ¼ uðρmÞ: ð52Þ

In other words, the equation of state PdeðϵdeÞ of DE in the
two-fluid model corresponds to the relation PðuÞ in the
single-fluid model. Explicit examples of the correspon-
dence between the one-fluid model and the two-fluid model
are given in [21,22] and in Sec. IV. We note that, although
the one- and two-fluid models are equivalent for the
evolution of the homogeneous background, they may differ
for what concerns the formation of the large-scale struc-
tures of the Universe and for inhomogeneous systems in
general.

III. LOGARITHMIC POTENTIAL AND
LOGOTROPIC EQUATION OF STATE

The previous equations are general. We now apply them
to a specific model of the Universe called the logotropic
model. We assume that DM and DE are the manifestation
of a single substance and that this substance can be
described by a complex SF (or an exotic dark fluid)
governed by a KG equation with a logarithmic potential
of the form

Vðjφj2Þ ¼ −A ln

�
m2jφj2
ℏ2ρP

�
− A: ð53Þ

Using the hydrodynamic variables introduced previously,
the SF potential can be written as

VðρÞ ¼ −A ln

�
ρ

ρP

�
− A; ð54Þ

where A=c2 and ρP are two positive constants with the
dimensions of a mass density. We will give the physical
meaning and the value of these constants in Sec. VI. In the
fast oscillation regime, using Eq. (36), we find that the
pressure is given by15

P ¼ A ln

�
ρ

ρP

�
: ð55Þ

This equation is similar to the logotropic equation of state
[see Eq. (1)] introduced in our previous papers [1–4].
However, as we shall see, the present model is substantially
different from the model of Refs. [1–4]. In particular, we
stress that ρ represents here the pseudo-rest-mass density
defined by Eq. (25), not the true rest-mass density ρm ¼ nm
used in Refs. [1–4]. It is only in the nonrelativistic limit that
they coincide. The relation between the different logotropic
models is discussed in Appendix B (see also [21]).
For the logarithmic potential (54) the equations of the

problem valid in the fast oscillation regime [see Eqs. (32)–
(35)] are

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2A
ρc2

s
¼ Qm

a3
; ð56Þ

ϵ ¼ ρc2 − A ln

�
ρ

ρP

�
− 2A; ð57Þ

Etot

mc2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2A
ρc2

s
: ð58Þ

They depend on three parameters A, Qm, and ρP. The first
equation can be solved explicitly giving

ρc2 ¼ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ ðQmc2Þ2

a6

s
: ð59Þ

On the other hand, eliminating ρ between Eqs. (55) and
(57), we find that the equation of state PðϵÞ is given under
the inverse form ϵðPÞ by

ϵ ¼ ρPc2eP=A − P − 2A: ð60Þ

Finally, the equation of state parameter is given by

15Conversely, we could start from the equation of state (55) and
integrate Eq. (37) to obtain the potential VðρÞ.
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w ¼ P
ϵ
¼

A lnð ρ
ρP
Þ

ρc2 − A lnð ρ
ρP
Þ − 2A

: ð61Þ

We note from Eq. (55) that P > 0 when ρ > ρP and P < 0
when ρ < ρP. The pressure vanishes (P ¼ w ¼ 0) when
ρ ¼ ρP. We will see that the logotropic model is valid for
ρ ≪ ρP. Therefore, in practice, the pressure of the LDF is
always negative.

IV. REST-MASS DENSITY
AND INTERNAL ENERGY

According to Eqs. (45) and (54), the rest-mass density ρm
of the LDF is related to its pseudo-rest-mass density ρ by

ρm ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2A
ρc2

s
: ð62Þ

This equation can be inverted to give

ρ ¼ A
c2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

c4
þ ρ2m

s
; ð63Þ

where ρm is given by Eq. (44). Using Eqs. (48), (54), and
(63), we find that the internal energy is given by

u ¼ −Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ ρ2mc4

q
− ρmc2

− A ln

"
A

ρPc2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

ρ2Pc
4
þ ρ2m

ρ2P

s #
: ð64Þ

Finally, according to Eqs. (55) and (63), we obtain the
equation of state of the SF in terms of the rest-mass density as

P ¼ A ln

"
A

ρPc2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

ρ2Pc
4
þ ρ2m

ρ2P

s #
: ð65Þ

As we have recalled in Sec. II G, the rest-mass density ρm of
the SF represents DM and the internal energy u of the SF
represents DE [1].
Remark.—In the two-fluid model associated with the

logotropic model (see Sec. II H), the DE has an equation of
state PdeðϵdeÞ which is obtained by eliminating ρm between
Eqs. (64) and (65) and by identifying PðuÞ with PdeðϵdeÞ. It
can be written in inverse form as16

ϵde ¼ ρPc2ePde=A − Pde − 2A

− ρPc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Pde=A −

2A
ρPc2

ePde=A

s
: ð66Þ

V. THE EVOLUTION OF THE PARAMETERS
WITH THE SCALE FACTOR

In our model, strictly speaking, there is no DM and no
DE. There is just a single SF [or a single dark fluid (DF)].
This is an example of unified models of DM and DE
that are referred to as unified dark matter (UDM) models
or “quartessence” models [45]. The logotropic model is
therefore fundamentally different from theΛCDMmodel in
which DM and DE are interpreted as two distinct entities
(see Appendices D 1 and D 2).17 Nevertheless, since the
ΛCDM model works remarkably well in describing the
large-scale structure of the Universe, it is important to make
a connection between the logotropic model and the ΛCDM
model. This connection will allow us to determine in which
limit the ΛCDM model is valid from the viewpoint of our
more general model and to obtain the parameters of the
LDF by using the values of the parameters that have been
obtained from cosmological observations interpreted in the
framework of the ΛCDM model.

A. Early Universe: DM-like regime

In the early Universe (a → 0), the general equations of
Sec. III reduce to

ρ ∼
Qm
a3

; ð67Þ

ϵ ∼ ρc2 ∼
Qmc2

a3
; ð68Þ

Etot

mc2
→ 1; ð69Þ

P ∼ A ln

�
Qm
ρPa3

�
; ð70Þ

P ∼ A ln
�

ϵ

ρPc2

�
; ð71Þ

w ∼
A
ρc2

ln

�
ρ

ρP

�
; ð72Þ

w ∼
Aa3

Qmc2
ln

�
Qm
ρPa3

�
; ð73Þ

w ∼
A
ϵ
ln

�
ϵ

ρPc2

�
: ð74Þ

Since ϵ ∝ a−3 and w ≃ 0 we see that the LDF behaves at
early times similar to DM. If we impose that the LDF
matches the ΛCDM model for a ≪ 1 (see Appendix D 2),
we obtain

16This relation can be obtained simply by solving Eq. (65) to
get ρmðPÞ and by using Eqs. (46) and (60).

17Actually, the ΛCDM model can also be regarded as a UDM
model as discussed in Appendix D 3.
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Qmc2 ¼ Ωm;0ϵ0: ð75Þ

Therefore, the quantity Qmc2 which is proportional to the
charge of the SF corresponds to the present energy density
of DM (ϵm;0 ¼ Ωm;0ϵ0) in the ΛCDM model [see also
Eq. (51)].18 Using the values of Appendix H, we get

Qm ¼ 2.66 × 10−24 gm−3: ð76Þ

Remark.—In the DM-like era, the energy and the
pulsation of the SF are given by Etot ∼mc2 and ω ∼
mc2=ℏ like for a free SF. They are constant. For a boson
mass m ∼ 10−22 eV=c2 (see Appendix E 3), we get
ω ∼ 10−7 s−1. On the other hand, in the DM-like era, the
pseudo-rest-mass density ρ coincides with the true rest-
mass density ρm (see Sec. IV).

B. Late Universe: DE-like regime

In the late Universe a → þ∞, the general equations of
Sec. III reduce to

ρ → ρmin ¼
2A
c2

; ð77Þ

ϵ → ϵmin ¼ A ln

�
ρPc2

2A

�
; ð78Þ

Etot

mc2
→ 0; ð79Þ

P → Pmin ¼ −ϵmin; ð80Þ

w → wmin ¼
Pmin

ϵmin
¼ −1: ð81Þ

Since the energy density ϵ tends to a constant ϵmin and since
the equation of state parameter w → −1 we see that the
LDF behaves at late times similar to DE. We shall come
back to the value of ϵmin in Sec. XIV. We can check that the
equation of state parameter w is always strictly larger than
−1 so the Universe does not become phantom.19 It
asymptotically tends to a de Sitter–like solution. This is
an important difference with our previous logotropic model

[1–4], based on a different equation of state [see Eq. (1)],
which displays a phantom behavior at late times (in that
case, the scale factor has a super–de Sitter behavior).
Remark.—The asymptotic value ρmin of the pseudo-rest-

mass density corresponds to the limit where the rest-mass
termm2c2=ℏ2 in the KG equation (2) is compensated by the
self-interaction term 2dV=djφj2. In that case, ω ≃ 0 accord-
ing to Eq. (14) and the fast oscillation regime ceases to be
valid (see Sec. XIII).

C. Intermediate regime: Stiff matter

Considering the subleading terms in Eqs. (55), (57), and
(59) for large values of a, one obtains the following
expressions for the pseudo-rest-mass density, energy den-
sity, and pressure:

ρ ¼ ρmin þ
ðQmc2Þ2
2Aa6

þ… ð82Þ

ϵ ¼ ϵmin þ
ðQmc2Þ2
4Aa6

þ… ð83Þ

P ¼ Pmin þ
ðQmc2Þ2
4Aa6

þ… ð84Þ

These equations describe the mixture of a cosmological
constant ϵmin [first terms in Eqs. (83) and (84)] with a form
of “stiff” matter described by the equation of state P ¼ ϵ
[second terms in Eqs. (83) and (84)] in which the speed of
sound is equal to the speed of light.20 Therefore, the
logotropic model interpolates between different phases
of the Universe. Initially, the Universe behaves as if it
were dominated by a pressureless (dust) fluid. Ultimately,
the density becomes asymptotically constant implying a de
Sitter evolution. There is also an intermediate phase which
can be described by a cosmological constant mixed with a
stiff matter fluid. The interesting point is that such an
evolution is accounted for by a single fluid. This is similar
to the Chaplygin gas model [46].

VI. THE VALUE OF THE FUNDAMENTAL
CONSTANT OF OUR MODEL

A. An important identity obtained
in the present Universe

Applying the general equations (57) and (59) at the
present time (a ¼ 1) we get

ϵ0 ¼ ρ0c2 − A ln

�
ρ0
ρP

�
− 2A ð85Þ

and

18To simplify the presentation, we ignore the presence
of baryons.

19This is a general result for a complex SF. It is shown after
Eq. (38) that a complex SF in the fast oscillation regime can never
have a phantom behavior whatever the form of the self-interaction
potential. This is because we have considered a SF with a
Lagrangian L ¼ 1

2c2 j _φj2 − V totðjφj2Þ involving a positive kinetic
term. A SF with a negative kinetic term has always a phantom
behavior. Therefore, a complex SF has either a normal behavior
(if it has a positive kinetic term) or a phantom behavior (if it has a
negative kinetic term) but it cannot pass from a normal to a
phantom regime.

20This stiff matter era is completely different from the one
considered in Sec. II E.
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ρ0c2 ¼ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ ðQmc2Þ2

q
: ð86Þ

Substituting Eq. (86) into Eq. (85) we obtain

ϵ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ ðQmc2Þ2

q
−A ln

�
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ ðQmc2Þ2

p
ρPc2

�
−A:

ð87Þ

Using Eq. (75), this relation can be rewritten as

ϵ0 ¼ −Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ ðΩm;0ϵ0Þ2

q

− A ln

2
64Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ ðΩm;0ϵ0Þ2

q
ρPc2

3
75: ð88Þ

Assuming that A and ρP are universal constants, this
equation gives a relation between Ωm;0 and ϵ0. Inversely,
we can use Eq. (88) and the measured values of ϵ0 andΩm;0

to determine the constants of our model (see Appendix H).
As in our previous papers [1–4], it is convenient to write

A ¼ BϵΛ; ð89Þ

where B is a dimensionless constant and

ϵΛ ¼ ρΛc2 ¼ ð1 −Ωm;0Þϵ0 ð90Þ

is the present density of DE. Numerically,

ρΛ ¼ 5.96 × 10−24 gm−3: ð91Þ

In the ΛCDM model (see Appendix D), ρΛ represents the
cosmological density which is related to the Einstein
cosmological constant Λ by

ρΛ ¼ Λ
8πG

ð92Þ

with Λ ¼ 1.00 × 10−35 s−2. For given ρΛ, Eq. (89) is just a
change of notation. In the following, we shall work with B
instead of A. In that case, Eqs. (85) and (86) can be
rewritten as

1

1 −Ωm;0
¼ ρ0

ρΛ
− B ln

�
ρ0
ρΛ

ρΛ
ρP

�
− 2B ð93Þ

and

ρ0
ρΛ

¼ Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ

�
Qm
ρΛ

�
2

s
: ð94Þ

Using Eqs. (75) and (90), we also have

ρ0
ρΛ

¼ Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ

�
Ωm;0

1 −Ωm;0

�
2

s
: ð95Þ

Substituting Eq. (95) into Eq. (93) we obtain the exact
identity

1

1 − Ωm;0
¼ −Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ

�
Ωm;0

1 −Ωm;0

�
2

s

− B ln

"
Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ

�
Ωm;0

1 −Ωm;0

�
2

s #

þ B ln

�
ρP
ρΛ

�
; ð96Þ

which is equivalent to Eq. (88). We can also rewrite
Eq. (75) as

Qmc2 ¼ Ωm;0

1 −Ωm;0
ρΛc2: ð97Þ

B. The value of B

Equation (96) determines the relation between B and ρP
from the measured values ofΩm;0 and ρΛ¼ð1−Ωm;0Þϵ0=c2.
We will find that B ≪ 1 so we can make the approximation

B ¼ 1

lnðρPρΛÞ − 1 − ln



Ωm;0

1−Ωm;0

� : ð98Þ

We will also find that 1þ ln ½Ωm;0=ð1 −Ωm;0Þ� is much
smaller than ln ðρP=ρΛÞ so we can make the additional
approximation

B ¼ 1

lnðρPρΛÞ
: ð99Þ

This is the same result as in our previous papers [1–4].
Equation (99) can be rewritten as

ρP
ρΛ

¼ e1=B: ð100Þ

Now the crucial remark is to observe that Eq. (100) is
analogous to the fundamental identity

ρP
ρΛ

¼ 10123 ð101Þ

expressing the fact that the Planck density

ρP ¼ c5

ℏG2
¼ 5.16 × 1099 g=m3 ð102Þ
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and the cosmological density

ρΛ ¼ Λ
8πG

¼ 5.96 × 10−24 gm−3 ð103Þ

differ by 123 orders of magnitude (this is related to the
cosmological constant problem [47,48]). Following our
previous works [1–4], this analogy prompts us to identify
ρP with the Planck density.21 In that case, B is fully
determined by Eq. (99). Its numerical value is

B ¼ 3.53 × 10−3: ð104Þ
We note that B ≃ 1=½123 lnð10Þ�, so that B is essentially the
inverse of the famous number 123 (up to a conversion
factor from Naperian to decimal logarithm). We note that B
has a small but nonzero value. This is because B depends
on the Planck constant ℏ through the Planck density ρP in
Eq. (99) and because ℏ has a small but nonzero value. In the
semiclassical limit ℏ → 0, we find that ρP → þ∞ and
B → 0. In that case, we recover the ΛCDM model (see
Sec. VII D). The fact that B is nonzero means that quantum
effects (ℏ ≠ 0) play a fundamental role in the logotropic
model. Indeed, ρP explicitly appears in the logarithmic
potential from Eq. (54). Since the effects of B manifest
themselves in the late Universe (see below), this implies—
surprisingly—that quantummechanics affects the late acce-
leration of the Universe. As we shall see in Sec. XIV,
quantum mechanics provides (in the framework of our
model) a small correction to the Einstein cosmological
constant.

C. The value of A

The logarithmic potential from Eq. (54) involves two
constants: A and ρP. We have seen that ρP is the Planck
density. On the other hand, in line with our previous works
[1–4], we interpret the logotropic constant A as a new
fundamental constant of physics which supersedes (in the
framework of our model) the Einstein cosmological con-
stant Λ or the Einstein cosmological density ρΛ ¼ Λ=8πG.
Indeed, the logotropic constant A is responsible for the late
acceleration of the Universe. According to Eqs. (89) and
(99) we have

A ¼ ρΛc2

lnðρPρΛÞ
: ð105Þ

Its numerical value is

A=c2 ¼ 2.10 × 10−26 gm−3: ð106Þ

We note that A=c2 is equal to the Einstein cosmological
density ρΛ divided by 123 (up to a logarithmic conversion
factor). More precisely, the logotropic constant A is related
to the Einstein cosmological constant Λ by

A ¼ B
Λc2

8πG
ð107Þ

with B ¼ 1= lnðρP=ρΛÞ ¼ 3.53 × 10−3. We stress, how-
ever, that, in the logotropic model, the DE density is not
constant (see Sec. IV).
Remark.—Using Eq. (105), the logotropic equation of

state (55) can be rewritten as

P ¼ −
ρΛc2

lnðρPρΛÞ
ln

�
ρP
ρ

�
: ð108Þ

We note that P ¼ −ρΛc2 at ρ ¼ ρΛ, i.e., when the pseudo-
rest-mass density is equal to the present DE density.

D. Validity of our approximations
and a curious result

We can now check the validity of our approximations.
Since B ¼ 3.53 × 10−3 ≪ 1, the approximation leading
from Eq. (96) to Eq. (98) is valid. We also observe that
1þ ln ½Ωm;0=ð1 − Ωm;0Þ� ¼ 0.195 is much smaller than
ln ðρP=ρΛÞ ¼ 283 so we can make the additional approxi-
mation leading from Eq. (98) to Eq. (99).
As an interesting (and intriguing) remark, we note the

following. If we assume that B is exactly given by Eq. (99),
then, according to Eq. (98), we get

1þ ln

�
Ωm;0

1 −Ωm;0

�
¼ 0: ð109Þ

This equation determines the value of Ωm;0 which, in the
ΛCDM model, represents the present proportion of DM.22

We get

Ωth
m;0 ¼

1

1þ e
¼ 0.269: ð110Þ

Remarkably, this value is reasonably close to the measured
value Ωm;0 ¼ 0.3089. This result was previously obtained
in [4] in the framework of the original logotropic model.
Remark.—For the simplicity of the presentation, we have

ignored the presence of baryonic matter (in a sense,
baryonic matter has been incorporated into DM). If we
take into account the presence of baryons as an independent
species and redo the preceding analysis, we find that

21Actually, the density ρ� that appears in the logotropic
equation of state P ¼ A lnðρ=ρ�Þ [1] could be smaller than the
Planck density ρP, being equal for example to the characteristic
scale ρGUT ∼ 10−3ρP of a generic grand unified theory (GUT).
However, for definiteness, we shall take ρ� ¼ ρP.

22In the framework of our model where there is no DM and no
DE (just a single DF), Ωm;0 represents the coefficient that appears
in the asymptotic behavior ϵ=ϵ0 ∼ Ωm;0=a3 of the energy density
when a ≪ 1 [see Eq. (68) with Eq. (75)]. This coefficient, which
is related to the charge Qmc2 of the SF, is expected to be
universal.
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Eq. (109) is replaced by 1þ lnðΩdm;0=Ωde;0Þ ¼ 0.23 This
implies that the present ratio between DE and DM is equal
to the Euler number

Ωth
de;0

Ωth
dm;0

¼ e ¼ 2.71828… ð111Þ

If we introduce the present proportion of baryons Ωb;0 and
use Eq. (111) together with Ωdm;0 þΩde;0 þ Ωb;0 ¼ 1, we
find that the present proportions of DM and DE are

Ωth
dm;0 ¼

1

1þ e
ð1 −Ωb;0Þ; ð112Þ

Ωth
de;0 ¼

e
1þ e

ð1 − Ωb;0Þ: ð113Þ

If we neglect baryonic matter Ωb;0 ¼ 0 we obtain the pure
numbers Ωth

de;0 ¼ e
1þe ¼ 0.731059… and Ωth

dm;0 ¼ 1
1þe ¼

0.268941… which give the correct proportions 70% and
25% of DE and DM [4]. If we take baryonic matter into
account and use the measured value of Ωb;0 ¼ 0.0486�
0.0010, we get Ωth

de;0 ¼ 0.6955� 0.0007 and Ωth
dm;0 ¼

0.2559� 0.0003 which are very close to the observed
values Ωde;0 ¼ 0.6911� 0.0062 and Ωdm;0 ¼ 0.2589�
0.0057 within the error bars.24 We note that the predicted
ratio Ωth

de;0=Ωth
dm;0 ¼ e ¼ 2.71828… is independent of

Ωb;0 and close to the empirical value Ωde;0=Ωdm;0 ¼
2.66937� 0.08. Finally, combining the foregoing formu-
las, we find that the charge Qmc2 ¼ Ωdm;0ϵtot;0 of the SF
[see Eq. (75)] can be written as Qmc2 ¼ ρΛ=e. The
postulate from Eq. (109) means that the fundamental
constant A is equal to ρΛc2= lnðρP=ρΛÞ where ρΛ is the
present DE density. This can be viewed as a strong cosmic
coincidence [4] giving to our epoch a particular (central)
place in the history of the Universe.25 The same results are
obtained with the original logotropic model. These impor-
tant results are emphasized in a specific paper [49].

E. Validity of the nonrelativistic regime

According to the results of Sec. V, the nonrelativistic
regime is valid provided that26

ρc2 ≫ ϵΛ;
Qmc2

a3
≫ ϵΛ: ð114Þ

Using Eqs. (75) and (90), these conditions can be rewritten
as

ρ ≫ ρΛ; a ≪ at ¼
�

Ωm;0

1 −Ωm;0

�
1=3

; ð115Þ

like for the ΛCDM model (see Appendix D). The scale
factor at ¼ 0.765 determines the transition between the
DM era and the DE era. In the nonrelativistic regime, we
have ϵ ∼ ρc2, Etot ∼mc2, ρ ∼Ωm;0ðϵ0=c2Þ=a3, and w ≪ 1.
The SF behaves at large (cosmological) scales as pressure-
less DM. Note, however, that the logotropic pressure
manifests itself at small (galactic) scales even in the
nonrelativistic regime and can solve the problems of the
CDMmodel such as the core-cusp problem and the missing
satellite problem (see Sec. XIV).

VII. DIMENSIONLESS EQUATIONS

A. General equations

It is convenient to write the equations of the problem in
terms of dimensionless variables. Introducing ρ̃ ¼ ρ=ρΛ,
ϵ̃ ¼ ϵ=ρΛc2, P̃ ¼ P=ρΛc2, and Ẽtot ¼ Etot=mc2, we obtain

ρ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2B
ρ̃

s
¼ Ωm;0

1 − Ωm;0

1

a3
; ð116Þ

ϵ̃ ¼ ρ̃ − B ln ρ̃þ 1 − 2B; ð117Þ

Ẽtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2B
ρ̃

s
; ð118Þ

P̃ ¼ B ln ρ̃ − 1; ð119Þ

ϵ̃ ¼ e1=BeP̃=B − P̃ − 2B; ð120Þ

w ¼ P̃
ϵ̃
¼ B ln ρ̃ − 1

ρ̃ − B ln ρ̃þ 1 − 2B
: ð121Þ

We can easily solve the first equation to express the pseudo-
rest-mass density in terms of the scale factor as

23If ϵ denotes the energy density of DMþ DE (without
baryons) and ϵtot the total energy density (including baryons)
we have ϵdm;0=ϵ0 ¼ Ωdm;0=ðΩdm;0 þΩde;0Þ and ϵde;0=ϵ0 ¼ Ωde;0=
ðΩdm;0 þ Ωde;0Þ, where Ωdm;0 ¼ ϵdm;0=ϵtot;0 and Ωde;0 ¼
ϵde;0=ϵtot;0 are the present proportions of DM and DE. Therefore,
we just have to replace Ωm;0 by Ωdm;0=ðΩdm;0 þ Ωde;0Þ and
1 − Ωm;0 by Ωde;0=ðΩdm;0 þ Ωde;0Þ in the foregoing equations
to account for the presence of baryons (see a more detailed
calculation in [49]).

24We see that the agreement with the observations is better if
we treat DM and baryons as two different species instead of a
single one (i.e., if we incorporate baryons in DM). This is at
variance with the ΛCDM model where baryons and DM behave
similarly.

25Since the logotropic model is able to predict the values of the
proportions of DM and DE, it solves the cosmic coincidence
problem of the ΛCDM model [50,51]. However, this is at the
price of introducing another intriguing coincidence.

26More generally, the nonrelativistic regime is valid when the
rest-mass energy density ρmc2 (DM) is much larger than the
internal energy u (DE).
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ρ̃ ¼ Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ

�
Ωm;0

1 −Ωm;0

�
2 1

a6

s
: ð122Þ

We can then inject this relation into the other equations to
obtain the evolution of the different dimensionless variables
as a function of a. Their evolution is represented in solid
lines in Figs. 1–8. The dashed lines in these figures
correspond to the ΛCDM model which is recovered from
the logotropic model when B ¼ 0 (see Sec. VII D).
The pressure vanishes (P̃ ¼ w ¼ 0) when

ρ̃w ¼ e1=B ¼ 8.65 × 10122; ð123Þ
corresponding to ρ ¼ ρP. Using Eqs. (116) and (117), this
corresponds to a scale factor

aw ≃
�

Ωm;0

1 −Ωm;0

�
1=3

e−1=ð3BÞ ¼ 8.02 × 10−42 ð124Þ

and an energy density

ϵ̃w ≃ e1=B ¼ 8.65 × 10122: ð125Þ

The pressure is positive (P > 0) when a < aw and negative
(P < 0) when a > aw.

27 We note that the equation of
state parameter w reaches a maximum value wmax ¼ 1.50 ×
10−126 at a� ¼ 5.75 × 10−42.
The pressure is equal to P̃ ¼ −1 (i.e., P ¼ −ρΛc2) when

ρ̃ ¼ 1; ð126Þ

corresponding to ρ ¼ ρΛ. Using Eqs. (116) and (117), this
corresponds to a scale factor

a ¼
�

Ωm;0

1 −Ωm;0

�
1=3 1

ð1 − 2BÞ1=6 ¼ 0.765 ð127Þ

and an energy density

ϵ̃ ¼ 2ð1 − BÞ ¼ 1.99: ð128Þ
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FIG. 1. Pseudo-rest-mass density as a function of the scale
factor. Here and in the following figures, the dashed line
corresponds to the ΛCDM model (B ¼ 0).
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FIG. 2. Energy density as a function of the scale factor.
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FIG. 3. Relation between the energy density and the pseudo-
rest-mass density.
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FIG. 4. Equation of state parameter as a function of the scale
factor.

27Since ρP has been identified with the Planck density, and
since the logotropic model is expected to unify DM and DE but
not the early inflation where the density is of the order of the
Planck scale, we conclude that the logotropic model is valid only
for ρ ≪ ρP. In that regime, the pressure is always negative.
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At that point w ¼ −1=½2ð1 − BÞ� ¼ −0.502. This corre-
sponds typically to the time of equality between DM and
DE in the ΛCDM model (see Appendix D).

B. Early Universe

In the early Universe (a → 0), we get

ρ̃ ∼ ϵ̃ ∼
Ωm;0

1 −Ωm;0

1

a3
; ð129Þ

Ẽtot → 1; ð130Þ

P̃ ≃ B ln

�
Ωm;0

1 −Ωm;0

1

a3

�
− 1; ð131Þ

P̃ ≃ B ln ϵ̃ − 1; ð132Þ

w ∼
B ln ρ̃ − 1

ρ̃
; ð133Þ

w ∼
1 − Ωm;0

Ωm;0
a3
�
B ln

�
Ωm;0

1 −Ωm;0

1

a3

�
− 1

�
; ð134Þ

w ∼
B ln ϵ̃ − 1

ϵ̃
: ð135Þ

C. Late Universe

In the late Universe (a → þ∞), we get

ρ̃ → ρ̃min ¼ 2B ¼ 7.065 × 10−3; ð136Þ

ϵ̃ → ϵ̃min ¼ 1 − B lnð2BÞ ¼ 1.02; ð137Þ

Ẽtot → 0; ð138Þ

P̃ → P̃min ¼ −ϵ̃min; ð139Þ

w → wmin ¼
P̃min

ϵ̃min
¼ −1: ð140Þ

D. Recovery of the ΛCDM model when B = 0

When B ¼ 0, the general equations of Sec. VII A
reduce to

0 2e-42 4e-42 6e-42 8e-42 1e-41
a

-0.4

-0.2

0

0.2

w
 (

X
 1

012
5 )

a
w

P < 0

P > 0

FIG. 5. Enlargement of Fig. 4 at very small values of the scale
factor where the pressure passes from positive to negative values.
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FIG. 6. Pressure as a function of the scale factor (P̃ ¼ −1 for
a ¼ 0.765).
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FIG. 7. Pressure as a function of the pseudo-rest-mass density
(P̃ ¼ −1 for ρ̃ ¼ 1).

0 1 2 3 4 5

-1.02

-1.01

-1

-0.99

P

min

P
min

- 
Λ

FIG. 8. Pressure as a function of the energy density (P̃ ¼ −1 for
ϵ̃ ¼ 1.99).
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ρ̃ ¼ Ωm;0

1 −Ωm;0

1

a3
; ð141Þ

ϵ̃ ¼ ρ̃þ 1; ð142Þ

ϵ̃ ¼ Ωm;0

1 −Ωm;0

1

a3
þ 1; ð143Þ

P̃ ¼ −1; ð144Þ

Ẽtot ¼ 1; ð145Þ

w ¼ −
1

ρ̃þ 1
¼ −

1

ϵ̃
; ð146Þ

w ¼ −
1

Ωm;0

1−Ωm;0

1
a3 þ 1

: ð147Þ

Therefore, for B ¼ 0, we recover the equations of the
ΛCDM model (see Appendix D). Since the ΛCDM model
works very well at large scales, the logotropic model should
also work well provided that B is small enough. We recall
that B is not a free parameter of our model that could be
tuned in order to fit the data. It is actually determined by the
theory (see Sec. VI B). Indeed, if we identify ρP with the
Planck density, this automatically fixes B through Eq. (99).
Therefore, our model is fully predictive. As we have seen in
Sec. VI B, the limit B → 0 corresponds to ρP → þ∞ or
ℏ → 0 (quantum effects negligible). Therefore, the ΛCDM
model corresponds to the semiclassical limit ℏ → 0 of the
logotropic model. However, because of the fundamentally
nonzero value of ℏ, the logotropic model with a nonzero
value of B ¼ 3.53 × 10−3 should be privileged over the
ΛCDM model (corresponding to B ¼ 0).
Remark.—It is instructive to establish the connection

between the LDF and the ΛCDM model directly from the
dimensional equation of state (55). This equation can be
rewritten as

P ¼ A ln

�
ρ

ρΛ

�
− A ln

�
ρP
ρΛ

�
: ð148Þ

Taking the limit A → 0 and ρP → þ∞with A lnðρP=ρΛÞ ¼
ρΛc2 fixed [see Eq. (105)], we obtain

P ¼ ρΛc2

lnðρPρΛÞ
ln

�
ρ

ρΛ

�
− ρΛc2 ≃ −ρΛc2: ð149Þ

This returns the constant equation of state of the ΛCDM
model in its UDM interpretation (see Appendix D 3).

VIII. EFFECTIVE DM AND DE

In terms of dimensionless variables, the rest-mass
density is given by (see Sec. IV)

ρ̃m ¼ ρ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2B
ρ̃

s
ð150Þ

and the internal energy u ¼ ϵ̃ − ρ̃m is given by

ũ ¼ ρ̃ − B ln ρ̃þ 1 − 2B − ρ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2B
ρ̃

s
: ð151Þ

Using Eq. (122), they evolve with the scale factor a as

ρ̃m ¼ Ωm;0

1 −Ωm;0

1

a3
ð152Þ

and

ũ ¼ 1 − Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ

�
Ωm;0

1 −Ωm;0
Þ2 1

a6

s

− B ln

"
Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ

�
Ωm;0

1 − Ωm;0

�
2 1

a6

s #
−

Ωm;0

1 −Ωm;0

1

a3
:

ð153Þ

As indicated previously, the rest-mass density ρm can be
interpreted as DM and the internal energy density u can
be interpreted as DE [1]. The proportions of DM and DE
as a function of the scale factor a are plotted in Fig. 9. At
early times, the Universe is dominated by DM (ρmc2 ≫ u)
and at late times, the Universe is dominated by DE
(ρmc2 ≪ u). The DE density increases monotonically from
ũ ∼ 3B ln a → −∞ when a → 0 to ũ → 1 − B lnð2BÞ
when a → þ∞. Since the DE density corresponds to the
internal energy density u of the LDF, it can very well be
negative as long as the total energy density ϵ is positive. In
the regime of interest (ρm ≪ ρP) where the logotropic
model is valid, the DE density ϵde ¼ u is positive.

0 1 2 3 4 5
a

0

0.2

0.4

0.6

0.8

1

m de

FIG. 9. Proportions of DM (rest mass) and DE (internal energy)
as a function of the scale factor (Ωm ¼ ρmc2=ϵ and Ωde ¼ u=ϵ).
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Remark.—For the ΛCDM model (B ¼ 0), we find that
ρ ¼ ρm ∝ a−3 and u ¼ ρΛc2 (see also Appendices D
and E).

IX. DECELERATION PARAMETER

In a flat Universe without cosmological constant
(k ¼ Λ ¼ 0), the deceleration parameter q ¼ −äa= _a2 is
related to the equation of state parameter w by (see,
e.g., [52])

q ¼ 1þ 3w
2

: ð154Þ

Therefore, we can easily deduce the evolution of q from the
evolution of w obtained in Sec. VII. The function qðaÞ is
represented in Fig. 10.
The Universe starts accelerating when q ¼ 0 correspond-

ing to wc ¼ −1=3. At that point ρ̃c ≃ 2, ϵ̃c ≃ 3, and ac ≃
0.607 like for the ΛCDM model (the difference is less
than 1%).
The present value of the deceleration parameter is

q0 ¼
1þ 3w0

2
; ð155Þ

where

w0 ¼
B ln ρ̃0 − 1

ρ̃0 − B ln ρ̃0 þ 1 − 2B
ð156Þ

with

ρ̃0 ¼ Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ

�
Ωm;0

1 −Ωm;0

�
2

s
: ð157Þ

We get ρ̃0 ¼ 0.4505, ϵ̃0 ¼ 1.45, Ẽtot ¼ 0.992, P̃ ¼ −1.00,
w0 ¼ −0.693, and q0 ¼ −0.540. For the ΛCDM model,
we obtain ρ̃0 ¼ 0.447, ϵ̃0 ¼ 1.45, Ẽtot ¼ 1, P̃ ¼ −1,

w0 ¼ −0.691, and q0 ¼ −0.537. The values of the two
models are very close to each other, differing by less
than 1%.

X. SPEED OF SOUND

A. Dimensional variables

The speed of sound cs is defined by

c2s ¼ P0ðϵÞc2: ð158Þ

Differentiating Eq. (60) with respect to ϵ and using Eq. (55)
we obtain

c2s
c2

¼ 1
ρc2

A − 1
: ð159Þ

Since ρ ≥ ρmin ¼ 2A=c2 we find that c2s ≥ 0 and cs < c.
The speed of sound tends to zero (cs → 0) when ρ → þ∞
and to the speed of light (cs → c) when ρ → ρmin (see
Fig. 11).28

In the early Universe,

c2s
c2

∼
A
ρc2

; ð160Þ

c2s
c2

∼
A

Qmc2
a3; ð161Þ

c2s
c2

∼
A
ϵ
: ð162Þ

In the late Universe,

cs → c: ð163Þ

Remark.—The pseudo speed of sound c�s defined by
ðc�sÞ2 ¼ P0ðρÞ is given by

ðc�sÞ2 ¼
A
ρ
: ð164Þ

It coincides with the true speed of sound cs in the
nonrelativistic regime ρ ≫ A=c2 (early Universe). On the
other hand, in the late Universe, we get c�s ¼ c=

ffiffiffi
2

p
when ρ ¼ ρmin ¼ 2A=c2.
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FIG. 10. Deceleration parameter as a function of the scale
factor. The value ac ¼ 0.607 corresponds to the moment at which
the Universe starts accelerating.

28We note that the squared speed of sound in the LDF is
positive in spite of the fact that its pressure is negative. This is a
very important property because, in many cases, fluids with
negative pressure obeying a barotropic equation of state suffer
from hydrodynamic or tachyonic instabilities at small scales due
to an imaginary speed of sound. This does not occur in the present
model. In addition, the speed of sound is always less than the
speed of light. By contrast, in the original logotropic model [1],
the speed of sound diverges as we enter the phantom era, before
becoming imaginary.
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B. Dimensionless variables

Introducing the dimensionless speed of sound c̃s ¼ cs=c
and using the dimensionless variables defined previously,
we get

c̃2s ¼
1

ρ̃
B − 1

: ð165Þ

In the early Universe,

c̃2s ∼
B
ρ̃
; ð166Þ

c̃2s ∼ B
1 − Ωm;0

Ωm;0
a3; ð167Þ

c̃2s ∼
B
ϵ̃
: ð168Þ

In the late Universe,

c̃s → 1: ð169Þ

The present value of the squared speed of sound is

ðc̃2sÞ0 ¼
1

ρ̃0
B − 1

¼ 7.90 × 10−3; ð170Þ

showing that the present Universe is strongly special rela-
tivistic [ðcsÞ0 ∼ 0.1c]. The pseudo squared speed of sound
is ðc̃�sÞ2 ¼ B=ρ̃ and its present value is ðc̃s�Þ20 ¼ B=ρ̃0 ¼
7.84 × 10−3. As discussed in Sec. XVI and in Appendix C
the present value of the squared speed of sound c2s=c2 ∼
10−2 is too large to enable the formation of clusters of
galaxies and to account for the observations of the
power spectrum. This is a serious problem of the logotropic
model.

C. ΛCDM model (B= 0)

For B ¼ 0, corresponding to ρP → þ∞ (no quantum
effects), we find that

cs ¼ 0: ð171Þ
The speed of sound vanishes in the ΛCDMmodel since the
pressure P ¼ −ρΛc2 is constant (see Appendix D 3). The
vanishing of the speed of sound in the ΛCDM model
(implying the absence of pressure gradient to balance the
gravitational attraction in DM halos) is at the origin of
the small-scale crisis of the CDM model. The fact that
the speed of sound is nonzero in the logotropic model
(B ¼ 3.53 × 10−3) while it vanishes in the ΛCDM model
(B ¼ 0) is an important difference between the two models.
Indeed, a nonzero speed of sound may solve the CDM
small-scale crisis. However, the fact that the speed of sound
increases with the scale factor in the logotropic model (see
Fig. 11) poses new problems regarding the formation of
structures as discussed in Sec. XVI.

XI. EVOLUTION OF THE SCALE FACTOR

The evolution of the scale factor of the Universe is
determined by the Friedmann equation (8) combined with
the relation ϵðaÞ between the energy density and the scale
factor. This yields an equation of the form

H ¼ _a
a
¼

�
8πG
3c2

�
1=2

ϵ1=2ðaÞ: ð172Þ

Introducing the dimensionless energy ϵ̃ ¼ ϵ=ρΛc2 and the
dimensionless time t̃ ¼ ð8πGρΛ=3Þ1=2t, this equation can
be rewritten as

_a
a
¼ ϵ̃1=2ðaÞ: ð173Þ

It can be integrated into

t̃ ¼
Z

a

0

dx

xϵ̃1=2ðxÞ≡ t̃ðaÞ; ð174Þ

which gives aðt̃Þ in reversed form. In the logotropic model,
the relation ϵ̃ðaÞ between the dimensionless energy and the
scale factor is determined by Eqs. (117) and (122). One can
then solve Eq. (174) numerically. The function aðt̃Þ is
plotted in Fig. 12.
In the early Universe t → 0, using Eq. (129), we get

a ¼
�
3

2

�
8πGρΛ

3

�
1=2

�
Ωm;0

1 −Ωm;0

�
1=2

t

�
2=3

; ð175Þ

which can be rewritten as

a ¼
�
3

2

ffiffiffiffiffiffiffiffiffi
Ωm;0

p
H0t

�
2=3

; ð176Þ
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FIG. 11. Speed of sound as a function of the scale factor (the
dashed line corresponds to the pseudo speed of sound). We note
that cs ¼ 0 in the ΛCDM model.
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where H0 is the present value of the Hubble constant. This
is the usual Einstein–de Sitter solution.
In the late Universe t → þ∞, using Eq. (137), we get

a ∝ eð
8πGρΛ

3
Þ1=2½1−B lnð2BÞ�1=2t: ð177Þ

This is the de Sitter solution with a B-modified cosmo-
logical constant. As discussed in Secs. VI and XIVA, this
modification has a quantum origin.
The age of the Universe in the logotropic model is

t0 ¼
�

3

8πGρΛ

�
1=2

Z
1

0

dx

xϵ̃1=2ðxÞ : ð178Þ

We obtain t̃0 ¼ 0.795 giving t0 ¼ 13.8 Gyr like for the
ΛCDM model corresponding to B ¼ 0 (the difference is
less than 1%).

XII. TOTAL POTENTIAL

A. Dimensional variables

In the logotropic model, the total potential of the SF
including the rest-mass term and the logarithmic term [see
Eqs. (3) and (53)] is

V totðjφj2Þ ¼
m2c2

2ℏ2
jφj2 − A ln

�
m2jφj2
ℏ2ρP

�
− A: ð179Þ

Introducing the pseudo-rest-mass density defined by
Eq. (25) it can be rewritten as

V tot ¼
1

2
ρc2 − A ln

�
ρ

ρP

�
− A: ð180Þ

It is represented in Fig. 13. It behaves as V tot ∼ −A ln ρ for
ρ → 0 and as V tot ∼ ð1=2Þρc2 for ρ → þ∞. It has a
minimum at

ρmin ¼
2A
c2

; Vmin ¼ ϵmin ¼ A ln

�
ρPc2

2A

�
: ð181Þ

We note that ρmin corresponds to the asymptotic value of
the pseudo-rest-mass density for a → þ∞ (see Sec. V B).
Since ρ ≥ ρmin, only the exterior branch of the potential is
accessible. For a complex SF, the potential is symmetric
with respect to the origin jφj ¼ 0 and, by rotation around
the vertical axis, the exterior branch defines a surface
similar to the surface of a “bowl” (there is also a central
“wall” corresponding to the interior branch). The SF slowly
descends the potential on the surface of the bowl by rapidly
spinning around the vertical axis. We note that the SF does
not reach the origin jφj ¼ ρ ¼ 0 because of the presence of
the central wall. This is a particularity of the logotropic
model. In the SF representation of the ΛCDM model, there
is no central wall. In that case, ρmin ¼ 0 and the SF can
reach the origin (see Appendix E 2). We also note that the
modulus jφj of a complex SF does not oscillate, contrary to
the case of a real SF. Only its phase θ oscillates. This
corresponds to the spintessence phenomenon described in
Sec. II C. In this sense, the evolution of a complex SF is
very different from the evolution of a real SF.

B. Dimensionless variables

Introducing the dimensionless variables Ṽ tot ¼ V tot=ρΛc2

and φ̃ ¼ ðm=ℏÞφ= ffiffiffiffiffi
ρΛ

p
in addition to those defined previ-

ously, we can rewrite the total SF potential of the logotropic
model under the form

Ṽ tot ¼
1

2
jφ̃j2 − B ln jφ̃j2 − Bþ 1; ð182Þ

or

Ṽ tot ¼
1

2
ρ̃ − B ln ρ̃ − Bþ 1; ð183Þ
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FIG. 12. Scale factor as a function of time. The logotropic
model starts to deviate from the ΛCDM model for a≳ 2 but the
difference between the two models is hardly perceptible on this
representation.
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FIG. 13. Total potential of the logotropic SF. The SF descends
the potential by rapidly spinning around the vertical axis. Only
the exterior branch ρ ≥ ρmin is accessible. The dashed line
corresponds to the total potential of the ΛCDM model in its
SF representation (see Appendix E).
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where

ρ̃ ¼ jφ̃j2: ð184Þ

C. ΛCDM model (B= 0)

For B ¼ 0, the foregoing equations reduce to

Ṽ tot ¼
1

2
jφ̃j2 þ 1 ¼ 1

2
ρ̃þ 1: ð185Þ

Coming back to the original variables, or taking the limit
A → 0 and ρP → þ∞ with A lnðρP=ρΛÞ → ρΛc2 fixed [see
Eq. (105)] in Eqs. (179) and (180), we obtain

V totðjφj2Þ ¼
m2c2

2ℏ2
jφj2 þ ρΛc2 ¼

1

2
ρc2 þ ρΛc2: ð186Þ

We recover the constant potential V ¼ ϵΛ ¼ ρΛc2 of the
complex SF associated with the ΛCDM model that we call
the ΛFDM model (see Appendix E).

XIII. VALIDITY OF THE FAST
OSCILLATION REGIME

(TF APPROXIMATION) IN COSMOLOGY

The previous results are valid in the fast oscillation
regime of the complex SF. We have seen that it corresponds
to the TF approximation. Let us determine the domain of
validity of this approximation. The fast oscillation regime is
valid provided that ω ≫ H, where ω ¼ _θ ¼ _Stot=ℏ ¼
−Etot=ℏ is the pulsation of the SF and H ¼ _a=a is the
Hubble constant which is related to the energy density by
the Friedmann equation H2 ¼ ð8πG=3c2Þϵ. In terms of the
dimensionless variables introduced previously, the fast
oscillation regime is valid provided that

ϵ̃

Ẽ2
tot

≪ σ; ð187Þ

where

σ ¼ 3m2c4

8πGℏ2ρΛ
ð188Þ

is a dimensionless parameter. It can be written as

σ ¼
�
m
mΛ

�
2

; ð189Þ

where

mΛ ¼ ℏ
c2

�
8πGρΛ

3

�
1=2

¼ ℏ
c2

ffiffiffiffi
Λ
3

r
¼ 1.20 × 10−33 eV=c2

ð190Þ

is the cosmon mass.29 The fast oscillation regime will be
valid over a large period of time provided that σ ≫ 1, i.e.,

m ≫ mΛ: ð191Þ

Therefore, the mass of the SF has to be much larger than the
cosmon mass.30 The mass of the boson required in the FDM
model to explain DM halos—one of the smallest particle
mass quoted in the literature—is of the order of m22 ¼
10−22 eV=c2 (see Appendix E). For this value, we get
σ22 ¼ 6.93 × 1021 ≫ 1 implying that the fast oscillation
regime is valid over a large period of time. For future
comparison, we note that the criterion (191) determining
the validity of the fast oscillation regime (or TF approxi-
mation) in cosmology can also be written as

m ≫
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGℏ2ρ3Λ

p
A

; ð192Þ

where we have used Eq. (89).
In the logotropic model, the quantities ϵ̃ and Ẽtot are

given as a function of the scale factor a by Eqs. (117),
(118), and (122). The curve ðϵ̃=Ẽ2

totÞðaÞ is plotted in
Fig. 14. It presents a minimum value ðϵ̃=Ẽ2

totÞmin ¼ 1.18
at a ¼ 1.71. The condition ϵ̃=Ẽ2

tot < σ can be fulfilled
provided that σ ≥ σmin ¼ 1.18, i.e., m ≥ 1.09mΛ ¼ 1.30×
10−33 eV=c2. When this condition is satisfied, we find that

the fast oscillation regime is valid for að1Þv ≪ a ≪ að2Þv ,

where að1Þv and að2Þv are given by

av
at

¼ f

�
3m2c4

8πGℏ2ρΛ

�
ð193Þ

with

29This mass scale is often interpreted as the smallest mass of
the elementary particles predicted by string theory [53] or as the
upper bound on the mass of the graviton [54]. The mass mΛ also
represents the quantum of mass in theories of extended super-
gravity [55]. The mass scale mΛ is simply obtained by equating
the Compton wavelength of the particle λC ¼ ℏ=mc with the
Hubble radius RΛ ¼ c=H0 (the typical size of the visible Uni-
verse) giving mΛ ¼ ℏH0=c2 ∼ ℏ

ffiffiffiffi
Λ

p
=c2 (since H2

0 ∼ GρΛ ∼ Λ).
The mass mΛ corresponds to Wesson’s [56] minimum mass
interpreted as a quantum of DE [Wesson’s maximum massMΛ ¼
ð4=3Þπðϵ0=c2ÞR3

Λ ¼ c3=2GH0 ¼ 9.20 × 1055 g is of the order of
the mass of the Universe]. These mass scales were also intro-
duced in [4]. Böhmer and Harko [57] proposed to call the
elementary particle of DE having the mass mΛ the “cosmon.”
Cosmons were originally introduced by Peccei et al. [58] to name
SFs that could dynamically adjust the cosmological constant to
zero (see also [59–61]). The name cosmon was also used in
a different context [62] to designate a very light scalar par-
ticle (dilaton) of mass ∼10−3 eV=c2 which could mediate new
macroscopic forces in the submillimeter range.

30In particular, the validity of our approach requires that the
mass of the SF is nonzero.
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fðσÞ ¼ 1

r1=3ð1 − 2B=rÞ1=6 ð194Þ

and

σ ¼ r − B ln rþ 1 − 2B
1 − 2B=r

: ð195Þ

We have introduced the transition scale factor at from
Eq. (115). Equations (194) and (195) define the two-valued
function fðσÞ in parametric form. When σ ≫ 1, we find that

að1Þv

at
∼

1

σ1=3
ð196Þ

and

að2Þv

at
∼

σ1=6

ð2BÞ1=3½1 − B lnð2BÞ�1=6 : ð197Þ

For a SF of mass m22 ¼ 10−22 eV=c2, corresponding to

σ22 ¼ 6.93 × 1021, we obtain að1Þv ¼ 4.01 × 10−8 and

að2Þv ¼ 1.73 × 104. Therefore, the range of validity of the
fast oscillation regime is large. For a larger massm of the SF,
the range of validity of the fast oscillation regime is even
larger.
According to the previous discussion, the fast oscillation

regime is valid for m ≫ mΛ on the period að1Þv ≪ a ≪ að2Þv .
During this period, we have seen that the SF behaves
successively as DM and DE. The transition between the
DM-like era and the DE-like era corresponds to a scale
factor (see Sec. VI E)31

at ¼ 0.765: ð198Þ

The fast oscillation regime is not valid at very early times

(i.e., a < að1Þv ). In that case, the SF is in a slow oscillation
regime of kination (see Sec. II E). As discussed in [20,28],
this gives rise to a stiff matter era. The stiff matter era
usually takes place in the very early Universe. Therefore,

að1Þv marks the end of the stiff matter era and the beginning
of the DM era.32 The logotropic SF successively experi-
ences a stiff matter era, a DM era, and a DE era (this is also
the case for the ΛFDM model discussed in Appendix E).
More surprisingly, the fast oscillation regime ceases to be

valid at very late times (i.e., a > að2Þv ). This shows that
quantum mechanics becomes important in the very late
Universe. In that case, we have to come back to the full set
of KGF equations, or their hydrodynamic representation
[20], and take the terms in ℏ into account (i.e., we have to
go beyond the TF approximation). Quantum mechanics
will change the results derived on the basis of the fast
oscillation (or TF) approximation. Therefore, in the logo-
tropic model, the very late Universe will not remain in a de
Sitter stage. It may experience a stiff matter era again, or
another (unknown) era, possibly passing from a phase of
acceleration to a phase of deceleration. It should return to a
de Sitter stage ultimately as it falls in the bottom of the
potential. Note, by contrast, that the fast oscillation regime
is always valid at late times in the ΛFDM model (see
Appendix E).
We can represent the previous results on a dynamical

phase diagram (see Fig. 15) where we plot the transition

scales að1Þv and að2Þv as a function of the mass m of the SF.
For m > 1.09mΛ, the logotropic complex SF undergoes

four successive eras: a stiff matter era for a < að1Þv , a DM

era for að1Þv < a < at, a DE era for at < a < að2Þv , and

another (unknown) era for a > að2Þv .
It is interesting, in parallel, to discuss how the complex

SF evolves in the potential V totðjφj2Þ during these different

periods. During the stiff matter era (a < að1Þv ), correspond-
ing to a slow oscillation regime, the SF rolls down the

potential well without oscillating. Then, for a > að1Þv , the
SF enters in the fast oscillation regime and descends
the potential by oscillating rapidly about the vertical axis
as explained in Sec. XII. This covers the DM and DE eras.

Finally, for a > að2Þv , the SF stops oscillating rapidly again.
Its detailed behavior, which corresponds to an evolution
different from an exponential (de Sitter) expansion, is
unknown. The evolution of the SF—roll versus oscilla-
tions—is represented schematically in Fig. 16.
Remark.—Combining the present results with those of

[20,28], we can propose a more general complex SF model
based on a potential of the form

0 2 4 6 8 10
a

0

20

40

60

80

100

/E
to

t2

a
v

(1)
a

v

(2)

Kination

Fast oscillation regime

Unknown

FIG. 14. Graphical construction determining the range of
validity of the fast oscillation regime in the logotropic model
(we have represented ϵ̃=Ẽ2

tot versus a).

31To define the transition between the DM-like era and the DE-
like era, we could have alternatively used the value ac ¼ 0.607 at
which the Universe starts accelerating.

32If the SF has an additional jφj4 self-interaction (see the
Remark below), a radiationlike era may be present between the
stiff matter era and the DM era [20,28].
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V totðjφj2Þ ¼
m2c2

2ℏ2
jφj2 þ 2πasm

ℏ2
jφj4 − A ln

�
m2jφj2
ℏ2ρP

�
− A:

ð199Þ
This potential applies to a self-interacting relativistic
Bose-Einstein condensate (BEC) in the framework of the
logotropic model. Indeed, it includes a jφj4 self-interaction
potential, proportional to the scattering length as of the
bosons, in addition to the logarithmic potential. When
as > 0 (repulsive self-interaction), the jφj4 potential pro-
duces a radiationlike era in the fast oscillation regime
preceding the DM era (see [20,28] for details). Therefore, a
complex SF evolving in the potential defined by Eq. (199)
experiences successively a stiff matter era, a (dark)

radiationlike era, a DM era, and a DE era (the case of
an attractive self-interaction is more complicated [20]). For
A → 0 and ρP → þ∞ with A lnðρP=ρΛÞ ¼ ρΛc2 fixed [see
Eq. (105)], the DE era is equivalent to a cosmological
constant (see Appendix E) and the potential from Eq. (199)
reduces to

V totðjφj2Þ ¼
m2c2

2ℏ2
jφj2 þ 2πasm

ℏ2
jφj4 þ ϵΛ: ð200Þ

It applies to a self-interacting relativistic self-interacting
BEC in the presence of a cosmological constant.

XIV. ANALOGIES AND DIFFERENCES
BETWEEN THE LOGOTROPIC MODEL

AND THE ΛCDM MODEL

In this section, we compare the predictions of the
logotropic and ΛCDM models.

A. Minimum energy density

Since the ΛCDM model corresponds to B ¼ 0 and since
the predicted value of B ¼ 3.53 × 10−3 is relatively small,
we expect that the logotropic model will not differ sub-
stantially from the ΛCDM model regarding the description
of the large-scale structure of the Universe. This is a
prerequisite to any viable cosmological model since the
ΛCDM model works well at large scales. Actually, the two
models are almost indistinguishable for what concerns the
evolution of the cosmological background up to the present
epoch, and they will only slightly differ in the far future.
The two models both tend to a constant energy density,
ultimately leading to a de Sitter era, but the values of this
minimum energy density slightly differ.
In the ΛCDM model, the energy density tends, for

a → þ∞, to the Einstein cosmological density

ϵΛCDMmin ¼ ρΛc2; ð201Þ
which is the constant density of DE. In the logotropic
model, the energy density tends to the value

ϵLDFmin ¼ ρΛc2½1 − B lnð2BÞ�: ð202Þ

Their ratio is

ϵLDFmin

ϵΛCDMmin

¼ 1 − B lnð2BÞ ¼ 1.02: ð203Þ

They differ by 2%.33 The difference, which is due to the
nonzero value of B, may be interpreted as a quantum
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FIG. 15. Dynamical phase diagram of the logotropic model
showing the different eras experienced by the SF during the
evolution of the Universe as a function of its mass m (this figure
also determines the validity of the fast oscillation regime between

að1Þv and að2Þv ). We see how the fundamental cosmon mass mΛ
comes into play in the problem.
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FIG. 16. Schematic evolution of the logotropic complex SF in
the total potential V totðjφj2Þ (the scales are not respected). For

a < að1Þv , it rolls down the potential well without oscillating (stiff

matter era); for að1Þv < a < að2Þv , it oscillates rapidly about the

vertical axis (DM and DE eras); for a > að2Þv , it stops oscillating
rapidly (its evolution remains to be characterized in detail).

33Such a difference may be accessible to the precision of
modern cosmology. It would be interesting to carefully compare
the logotropic model with the observations to see if it can relieve
some tensions experienced by the ΛCDM model or, on the
contrary, if it increases them.
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correction to the Einstein cosmological constant (since B
depends on ρP) in a theory of quantum gravity. It is
interesting to find a logarithmic correction. Similar loga-
rithmic corrections due to quantum effects arise in particle
physics and in the context of black hole thermodynamics.
Remark.—We note that the present results substantially

differ from those obtained in the framework of the original
logotropic model developed in [1–4]. In these former
works, we found that the logotropic model is indistin-
guishable from the ΛCDM model up to the present epoch
but, at later times, the energy density in the logotropic
model increases logarithmically with the scale factor
(implying a phantom era), while in the ΛCDM model
the energy density always decreases and tends to a
constant. This leads to a super–de Sitter behavior instead
of a standard de Sitter behavior. It was shown in [1–4] that
the two models would substantially differ in about 25 Gyr
when the logotropic Universe becomes phantom. The
present logotropic model does not display a phantom
behavior. It rather evolves toward a de Sitter era, like the
ΛCDM model, but with a quantum-modified cosmologi-
cal constant. This may be an advantage of the new
logotropic model over the original one because phantom
models are known to lead to pathologies and singularities.
By contrast, a model that tends to a de Sitter era is well
behaved and respects the cosmic censorship. On the other
hand, in the original logotropic model [1–4], the speed of
sound becomes larger than the speed of light as we
approach the phantom regime, then becomes imaginary.
We do not have such anomalies in the present model since
the speed of sound is always real and smaller than the
speed of light (0 ≤ cs ≤ c). As discussed in Sec. X, it
increases from 0 to c as the Universe expands. In
comparison, the speed of sound is always equal to zero
in the ΛCDM model.

B. Logotropic DM halos

As discussed in our previous papers [1–4] (see also
Appendix F), the main interest of the logotropic model with
respect to the ΛCDM model becomes manifest when this
model is applied to DM halos. When treating DM halos,
one can use Newtonian gravity. Furthermore, in this
section, we shall make the Thomas-Fermi approximation
which amounts to neglecting the quantum potential.34 In
that case, the equilibrium state of a logotropic DM halo
results from the balance between the gravitational attraction
and the repulsion due to the pressure force. It is described
by the classical equation of hydrostatic equilibrium

∇Pþ ρ∇Φ ¼ 0 ð204Þ

coupled to the Poisson equation

ΔΦ ¼ 4πGρ: ð205Þ

These equations can be combined into a single differential
equation

−∇ ·

�∇P
ρ

�
¼ 4πGρ; ð206Þ

which determines, together with the equation of state (55),
the density profile of a logotropic DM halo.
In the framework of theΛCDMmodel (see Appendix D),

the pressure is zero (P ¼ 0) or constant (P ¼ −ϵΛ) so there is
no pressure gradient to balance the gravitational attraction.
This leads to cuspy density profiles. This also leads to the
formation of structures at all scales since the Jeans length
vanishes owing to the fact that the speed of sound is zero:
λJ=2π ¼ cs=

ffiffiffiffiffiffiffiffiffiffiffi
4πGρ

p ¼ 0. These two predictions of the
ΛCDM model are in contradiction with the observations
which reveal that DM halos have a core instead of a cusp
(core-cusp problem) and that there is no DM halo below a
certain scale of orderM ∼ 108 M⊙ and R ∼ 1 kpc (missing
satellite problem). The fact that the pressure, or pressure
gradient, vanishes in theΛCDMmodel is the basic reason of
the so-called CDM small-scale crisis.
In the framework of the logotropic model, the equation

of state is given by Eq. (55) where ρ can be assimilated, in
the nonrelativistic regime, to the mass density. Since the
pressure is nonzero (and nonconstant), the pressure gra-
dient can balance the gravitational attraction leading to
cores instead of cusps.35 The structure of the logotropic DM
halos is studied in detail in Sec. 5 of Ref. [1] (see also
Appendix F). Their density profile can be obtained by
numerically solving the Lane-Emden equation of index
n ¼ −1. It presents a core for r → 0 and decreases as
ρ ∼ ðA=8πGÞ1=2r−1 for r → þ∞. In addition, the Jeans
length in the logotropic model is nonvanishing and can
account for the absence of structures below a certain scale
as discussed in Sec. 6 of Ref. [1] (see also Sec. XVI). These
results remain valid in the present logotropic model
because, in the nonrelativistic regime, the equation of state
(55) coincides with the equation of state studied in our
former works [1–4].
A remarkable result of the logotropic model is to predict

that all the DM halos (of any size) have the same surface
density Σ0 ¼ ρ0rh, where ρ0 is the central density and rh is
the halo radius at which the central density is divided by 4.
Furthermore, the logotropic model predicts that this uni-
versal surface density is given by

34The domain of validity of the TF approximation at the scale
of DM halos is discussed in Sec. XV.

35We introduced the logotropic model in [1] by looking for the
equation of state that is the closest to a constant in order to have
cored density profiles at small (galactic) scales while producing
the smallest deviation from the ΛCDM model at large (cosmo-
logical) scales (see Appendix A).
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Σth
0 ¼

�
A

4πG

�
1=2

ξh ¼ 133 M⊙=pc2; ð207Þ

where A is the fundamental constant of Eq. (106) and ξh ¼
5.8458… is the dimensionless halo radius obtained by
solving the Lane-Emden equation of index n ¼ −1 numeri-
cally (see Ref. [1] and Appendix F). It turns out that the
theoretical value (207) is in very good agreement with
the value Σobs

0 ¼ ρ0rh ¼ 141þ83
−52 M⊙=pc2 obtained from the

observations [17]. This is remarkable because there is no
free (or adjustable) parameter in our model. As discussed in
Sec. VI, the value of the logotropic constant A is deter-
mined by cosmological considerations (large scales) while
the result from Eq. (207) applies to DM halos (small
scales). This suggests that there is a connection between
the acceleration of the Universe and the universality of the
surface density of DM halos. They are both due to the
logotropic constant A. Indeed, the logarithmic potential
from Eq. (53) or the logotropic equation of state from
Eq. (55) accounts both for the acceleration of the Universe
and for the universality of the surface density of DM halos.
Remark.—We can write the universal surface density

of DM halos given by Eq. (207) in terms of the
Einstein cosmological constant Λ. Using A ¼ BρΛc2 and
ρΛ ¼ Λ=ð8πGÞ, we get36

Σth
0 ¼

�
B
32

�
1=2 ξh

π

c
ffiffiffiffi
Λ

p

G
¼ 0.01955

c
ffiffiffiffi
Λ

p

G
; ð209Þ

where we have used the numerical value of B from
Eq. (104). Recalling that B is given by Eq. (99) with
ρP=ρΛ ¼ 8πc5=ℏGΛ, we also have

Σth
0 ¼ 0.329

c
ffiffiffi
Λ

p
Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð8πc5ℏGΛÞ
q : ð210Þ

These identities express the universal surface density of
DM halos in terms of the fundamental constants of
physics G, c, Λ, and ℏ. We stress that the prefactors are
also determined by our model. We note that the identities
from Eqs. (208)–(210), which can be checked by a direct
numerical application, are interesting in themselves even in
the case where the logotropic model would turn out to be
wrong. Furthermore, as observed in [4], the surface density
of DM halos is of the same order of magnitude as the
surface density of the electron. As a result, the identities

from Eqs. (208)–(210) allow us to express the mass of the
electron in terms of the cosmological constant (or the
Hubble constant) and the other fundamental constants of
physics as [4]

me ∼
�
Λℏ4

G2c2

�
1=6

or me ∼
�
H0ℏ2

Gc

�
1=3

: ð211Þ

This returns the Eddington-Weinberg relation [35,63]
which provides a curious connection between atomic phy-
sics (microphysics) and cosmology (macrophysics) [49].

XV. LOGOTROPIC WAVE EQUATIONS

The logotropic model developed in this paper is based on
a complex SF theory relying on the KG equation taking into
account quantum effects (ℏ ≠ 0). In the previous sections,
we have neglected quantum effects by making the TF
approximation (ℏ → 0). In this section, we present more
general equations that are valid beyond this approximation.

A. Logotropic KG equation

For a spatially inhomogeneous complex SF, the Klein-
Gordon-Einstein (KGE) equations read (see, e.g., [30])

□φþm2c2

ℏ2
φþ 2

dV
djφj2 φ ¼ 0; ð212Þ

Rμν −
1

2
gμνR ¼ 8πG

c4
Tμν; ð213Þ

where □ is the d’Alembertian operator, Rμν is the Ricci
tensor, R is the Ricci scalar, and

Tμν ¼
1

2
ð∂μφ�

∂νφþ ∂νφ
�
∂μφÞ

− gμν

�
1

2
gρσ∂ρφ�

∂σφ − V totðjφj2Þ
�

ð214Þ

is the energy-momentum tensor of the SF. For the loga-
rithmic potential (53), the wave equation (212) becomes

□φþm2c2

ℏ2
φ −

2A
jφj2 φ ¼ 0: ð215Þ

This is the logotropic KG equation [1]. This equation
involves a nonlinear term, measured by the logotropic
constant A, which is responsible for the late acceleration
of the Universe. In Sec. VI we have interpreted A as a
fundamental constant of physics superseding the Einstein
cosmological constant. Therefore, instead of introducing
a cosmological constant Λ in the geometric part of the
equations of general relativity, i.e., on the left-hand side of
Eq. (213), as Einstein did, we introduce a new fundamental
constant A directly in the wave equation (215). This is a

36Recalling that ρΛ represents the present density of DE, it may
be more relevant to express Σth

0 in terms of the present value of the
Hubble constant H0. Using Λ ¼ 3ð1 − Ωm;0ÞH2

0 obtained from
Eqs. (8), (90), and (92), we get

Σth
0 ¼ 0.02815

H0c
G

: ð208Þ
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radically different point of view. We have seen in Sec. XIV
B that this term accounts not only for the present accel-
eration of the Universe but also for the universal surface
density of the DM halos. We cannot obtain this last result
with the ΛCDM model. Therefore, our approach is sub-
stantially different from the ΛCDM model.
Remark.—If we include a jφj4 self-interaction potential

in addition to the logarithmic potential in the complex SF
potential [see Eq. (199)], we obtain the generalized KG
equation

□φþm2c2

ℏ2
φþ 8πasm

ℏ2
jφj2φ −

2A
jφj2 φ ¼ 0: ð216Þ

B. Logotropic GP equation

In the nonrelativistic limit c → þ∞, using the Klein
transformation,

φðr; tÞ ¼ ℏ
m
e−imc2t=ℏψðr; tÞ; ð217Þ

the KGE equations (212) and (213) reduce to Gross-
Pitaevskii-Poisson (GPP) equations37 (see, e.g., [30])

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þmΦψ þm

dV
djψ j2 ψ ; ð218Þ

ΔΦ ¼ 4πGjψ j2; ð219Þ

where ψ is the wave function such that ρ ¼ jψ j2 represents
the mass density. For the logarithmic potential (54), the
nonrelativistic wave equation (218) becomes

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þmΦψ −

Am
jψ j2 ψ : ð220Þ

This is the logotropic GP equation [1]. For A ¼ 0 we
recover the Schrödinger-Poisson equations which corre-
spond to the FDM model (see Appendix E 3).
Remark.—If we include a jψ j4 self-interaction potential

in addition to the logarithmic potential in the complex SF
potential [see Eq. (199)], we obtain the generalized GP
equation

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þmΦψ þ 4πasℏ2

m2
jψ j2ψ −

Am
jψ j2 ψ :

ð221Þ

C. Madelung transformation

Writing the wave function as

ψðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρðr; tÞ

p
eiSðr;tÞ=ℏ; ð222Þ

where Sðr; tÞ is the action, and making the Madelung [64]
transformation

u ¼ ∇S
m

; ð223Þ

where uðr; tÞ is the velocity field, the GPP equations (218)–
(220) can be written under the form of hydrodynamic
equations

∂ρ

∂t
þ∇ · ðρuÞ ¼ 0; ð224Þ

∂u
∂t

þ ðu · ∇Þu ¼ −
1

m
∇QB −

1

ρ
∇P −∇Φ; ð225Þ

ΔΦ ¼ 4πGρ; ð226Þ

where

QB ¼ −
ℏ2

2m

Δ ffiffiffi
ρ

pffiffiffi
ρ

p ¼ −
ℏ2

4m

�
Δρ
ρ

−
1

2

ð∇ρÞ2
ρ2

�
ð227Þ

is the Bohm quantum potential taking into account the
Heisenberg uncertainty principle and PðρÞ is the pressure
determined by Eq. (36). For the logarithmic potential (54),
we obtain the logotropic equation of state (55).
Remark.—If we include a jφj4 self-interaction potential

in addition to the logarithmic potential in the complex SF
potential [see Eq. (199)], we need to account for an
additional pressure term

P ¼ 2πasℏ2

m3
ρ2 ð228Þ

in the quantum Euler equation (225).

D. Condition of quantum hydrostatic equilibrium

The condition of quantum hydrostatic equilibrium is
expressed by the equation

ρ

m
∇QB þ∇Pþ ρ∇Φ ¼ 0 ð229Þ

coupled to the Poisson equation

ΔΦ ¼ 4πGρ: ð230Þ

These equations describe the balance between the repul-
sion due to the quantum potential, the repulsion due
to the logotropic pressure, and the gravitational attraction.

37We consider here a static background (a ¼ 1) since we will
discuss these equations in the context of DM halos where the
expansion of the Universe can be neglected.
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In the TF approximation where the quantum potential can
be neglected, we recover the classical condition of hydro-
static equilibrium (204). This leads to classical logotropic
DM halos such as those studied in Sec. 5 of [1] and in
Appendix F. However, in the general case (QB ≠ 0),
Eq. (229) implies that logotropic DM halos have, like in
the FDM model (see Appendix E 3), a quantum core
(soliton) in which the pressure is provided by the
Heisenberg uncertainty principle. This quantum core is
surrounded by a logotropic envelope where the density
decreases as r−1.

E. Generalized Lane-Emden equation

Combining Eqs. (229) and (230), and using Eq. (227),
we obtain the fundamental differential equation of quantum
hydrostatic equilibrium

ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�
−∇ ·

�∇P
ρ

�
¼ 4πGρ: ð231Þ

This equation determines the density profile of BECDM
halos described by the GPP equations.38 For the logotropic
equation of state (55), it becomes

ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�
þ AΔ

�
1

ρ

�
¼ 4πGρ: ð232Þ

If we define

θ ¼ ρ0
ρ
; ξ ¼

�
4πGρ20

A

�
1=2

r; ð233Þ

where ρ0 is the central density, we find that Eq. (232) takes
the form of a generalized Lane-Emden equation

χΔ
�
Δθ−1=2

θ−1=2

�
þ Δθ ¼ 1

θ
ð234Þ

with a quantum coefficient

χ ¼ 2πGℏ2ρ30
m2A2

: ð235Þ

In the TF approximation χ ≪ 1, Eq. (234) reduces to the
usual Lane-Emden equation of index n ¼ −1 [see Ref. [1]
and Eq. (F3)].

F. Validity of the TF approximation for DM halos

The TF approximation for DM halos is valid when
χ ≪ 1, i.e., when

m ≫ m0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πGℏ2ρ30

q
A

: ð236Þ

If we consider an ultracompact DM halo of typical density
ρ0 ∼ 108 M⊙=kpc3 (Fornax), we find that m0 ¼ 3.57×
10−22 eV=c2. Remarkably, this mass scale is precisely of
the same order of magnitude as the mass m ∼ 10−22 eV=c2

of the ultralight boson that occurs in the FDM model (see
Appendix E).39 The mass m of the SF determines the
importance of the quantum core (soliton) relative to the
logotropic envelope in a DM halo. When m ≪ m0, the DM
halo is dominated by the quantum core, like in the FDM
model, and the logotropic envelope is negligible. Inversely,
in the TF approximation m ≫ m0, there is no quantum
core. In that case, the DM halo is purely logotropic and the
mass of the SF disappears from the equations (see
Sec. XIV B and Appendix F). When m ∼m0, we have
to take into account both the presence of the quantum core
(soliton) and the logotropic envelope. This is the case in
particular for the ultralight boson of massm ∼ 10−22 eV=c2

that occurs in the FDM model.
Remark.—Using the fact that ρ0 ¼ kρΛ with k ∼ 106 and

A ¼ BρΛc2, we find that

m0 ¼
ffiffiffi
3

p
k3=2

2B
mΛ; ð237Þ

where mΛ ¼ 1.20 × 10−33 eV=c2 is the cosmon mass [see
Eq. (190)]. We get m0 ∼ 3 × 1011mΛ. Therefore, the mass
scale m0 is equal to the cosmon mass multiplied by a large
prefactor.

G. Interpretation of the logotropic term

There are two manners to interpret the logotropic term in
Eqs. (215) and (220). Naively, we could interpret this term
as a property of the SF measuring, for example, the strength
of its self-interaction. However, since A is a fundamental
constant of physics rather than being a property of the SF
like its massm or its scattering length as, it is more relevant
to interpret this term as an intrinsic term, independent of the
SF, that is always present in the wave equation. In many
situations, this term is negligible and we recover the
standard KG and Schrödinger equations. However, when
considering galactic or cosmological scales, this term38More precisely, Eq. (231) determines the ground state of a

self-gravitating BEC. This solution describes ultracompact DM
halos—dwarf spheroidals (dSphs) like Fornax—or the quantum
core (soliton) of large DM halos. In large DM halos, the soliton is
surrounded by an extended envelope which arises from the
quantum interferences of excited states [65]. On a coarse-grained
scale, this envelope has a structure similar to the NFW profile (see
Appendix E 3).

39We note that the criterion m ≫ m0 ¼ 3.57 × 10−22 eV=c2
determining the validity of the TF approximation at the scale of
DM halos differs by 11 orders of magnitude from the criterion
m ≫ mΛ ¼ 1.20 × 10−33 eV=c2 determining the validity of the
TF approximation at the cosmological level (see Sec. XIII).
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becomes important and is responsible for the accelerating
expansion of the Universe (DE) and for the universal surface
density of the DM halos.40 It can therefore account for the
effects of DM and DE in a unified manner. We suggest
therefore that Eqs. (215) and (220) could be fundamental
equations of physics superseding the standard KG and
Schrödinger equations. We note that these wave equations
are nonlinear. In this point of view, the standard KG and
Schrödinger equations appear as approximations of themore
general nonlinear wave equations (215) and (220).

H. Analogies and differences between the logotropic
model and the ΛFDM model

TheΛFDMmodel (seeAppendixE) is based on a complex
SF with a constant potential Vðjφj2Þ ¼ ϵΛ equal to the
cosmological density. In that case, the relativistic wave
equation (212) reduces to the standard KG equation (E12)
and the nonrelativistic wave equation (218) reduces to the
standard Schrödinger equation (E13) like in the FDMmodel.
Therefore, the constant SF potential Vðjφj2Þ ¼ ϵΛ does not
explicitly appear in the fundamental wave equations of
quantum mechanics since only the derivative of V matters.
However, the constant potential Vðjφj2Þ ¼ ϵΛ appears in the
energy density and in the pressure of the SF [see Eqs. (4) and
(5)]. In the fast oscillation regime, a homogeneous complex
SF with a constant potential Vðjφj2Þ ¼ ϵΛ behaves as a gas
with a constant pressure (see Appendix E 1)

P ¼ −ϵΛ: ð238Þ

As a result, it is equivalent to the ΛCDM model and can
therefore account for the accelerating expansion of the
Universe and to the clustering of DM.41 If we apply this
model to DM halos and ignore quantum effects (TF approxi-
mation), we recover the small-scale problems of the CDM
model. Indeed, since the pressure is uniform [see Eq. (238)],

there is no pressure gradient to balance the gravitational
attraction. This leads to cuspy density profiles. However, if
we take quantum effects into account (see Appendix E 3) the
quantum potential can stabilize the system against gravita-
tional collapse and produce a core instead of a cusp. At the
level of DM halos, a complex SF with a constant potential is
equivalent to the FDM model which can possibly solve the
small-scale crisis of CDM.
There remains, however, an important problem with this

model. Indeed, the FDM model, unlike the logotropic
model, does not account for the universal surface density of
DM halos. In the FDMmodel, the core mass-radius relation
scales as M ∼ ℏ2=ðGm2RÞ (see Appendix E 3) and, con-
sequently, the surface density Σ ∼M=R2 of DM halos
scales with the radius as

Σ ∝
ℏ2

Gm2R3
: ð239Þ

Therefore, the surface density of FDM halos decreases as
the size of the DM halos increases instead of being
constant. Correspondingly, the mass of the FDM halos
decreases as their radius increases. This is in sharp contrast
with the observations of DM halos which reveal that their
mass increases with their radius as M ∝ R2 in agreement
with a constant surface density (Σ ∼ 1) [17].
The problems of the FDM model were mentioned by the

author at several occasions (see, e.g., Appendix F of
Ref. [23], the Introduction of Ref. [24], and Appendix L
of [25]) and they have been recently emphasized by Burkert
[26] and Deng et al. [27]. These are serious drawbacks
of the FDM model.42 It has been advocated that these
problems could be solved by taking into account the effect
of an isothermal halo and distinguishing between the
quantum core radius Rc and the isothermal core radius
r0 (see Ref. [25] and Appendix F 7 for more details).
Alternatively, we note that the logotropic model based on
the nonlinear Schrödinger equation (220) does not suffer
from the problems of the FDM model based on the usual
Schrödinger equation (E13) since it leads, in the TF
approximation, to a constant surface density Σ ∼ 1 and a
M ∝ R2 mass-radius relation in agreement with the obser-
vations (see Sec. XIV B), unlike the FDM model.43

Finally, we expect that the logotropic GPP equa-
tions (219) and (220), similar to the Schrödinger-Poisson
equations (E13) and (E15) of the FDM model, undergo a
process of violent relaxation and gravitational cooling (see
Appendix E 3). This should lead, in the general case, to DM

40We note that the logotropic term A=ðjψ j2c2Þ ∼ ρΛ=ρ
becomes important at very low densities, typically when ρ
becomes comparable to the cosmological density ρΛ ¼ 5.96 ×
10−24 gm−3 which is the absolute minimum density in the
Universe. At higher densities, the logotropic term is negligible
because the value of A=c2 ∼ ρΛ is extremely small. This forces us
to properly define what we call “vacuum.” For example, a density
ρlab may look small at the laboratory scale although it is much
larger than ρΛ. Therefore, we should not take ρlab ¼ 0 in
Eqs. (215) and (220) because that would make the logotropic
term A=ðρlabc2Þ diverge while in reality this term is negligible. If
we interpret ρΛ as typically representing the smallest possible
value of the density in the Universe [in line with Eq. (78)], then
the logotropic term is always less than unity.

41A complex SF with a constant potential Vðjφj2Þ ¼ ϵΛ,
corresponding to the ΛFDMmodel, provides a simple unification
of DM and DE. By contrast, a complex SF with a vanishing
potential Vðjφj2Þ ¼ 0, corresponding to the FDM model, has a
vanishing pressure (P ¼ 0) in the fast oscillation regime and
behaves only as DM.

42The fermionic DM model and the BECDM model with
a repulsive self-interaction experience the same problems
(see Appendix L of [25]).

43This remark suggests that DM halos should be in the TF
regime so that they are dominated by the logotropic profile, not
by the solitonic profile. According to the criterion from Eq. (236),
this implies that m ≫ m0 with m0 ∼ 10−22 eV=c2.
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halos possessing a quantum core (soliton) þ an inner
logotropic envelope whose density decreases as r−1 (yield-
ing a universal surface density) þ an outer envelope with a
density profile decreasing as r−3 (consistent with the NFW
profile). In the TF regime valid whenm ≫ m0, the quantum
core should be replaced by a classical logotropic core. The
resulting structure made of a logotropic coreþ a NFW halo
turns out to be in agreement with the observed structure of
DM halos.

XVI. JEANS INSTABILITY
IN A LOGOTROPIC UNIVERSE

In this section, we study the Jeans instability of a
spatially homogeneous self-gravitating logotropic gas
in the expanding Universe. We use a nonrelativistic
approach44 and make the TF approximation which amounts
to neglecting quantum effects.45 This approximate treat-
ment will be sufficient to point out important problems
encountered by the logotropic model regarding the for-
mation of the large-scale structures of the Universe.

A. The Jeans scales

We first study how the Jeans length λJ and the Jeans
massMJ of the logotropic gas depend on the density of the
Universe ρ. In the nonrelativistic regime (DM-like era) the
density evolves with time as [67]

ρ

g=m3
¼ 2.25 × 10−24a−3; ð240Þ

where a is the scale factor. The beginning of the non-
relativistic regime, which can be identified with the epoch
of matter-radiation equality (i.e., the transition between the
radiation era and the DM era), occurs at aeq ¼ 2.95 × 10−4

(corresponding to a redshift zeq ¼ 1=aeq − 1 ¼ 3390). At
that moment, the density of the Universe is ρeq ¼ 8.77×
10−14 g=m3. The present density of the Universe is
ρ0 ¼ 2.25 × 10−24 g=m3.
In the nonrelativistic þ TF approximation, the Jeans

wave number kJ is given by [68]

kJ ¼
�
4πGρ
c2s

�
1=2

; ð241Þ

where c2s ¼ P0ðρÞ is the squared speed of sound. The
Jeans length is λJ ¼ 2π=kJ and the comoving Jeans length
is λcJ ¼ λJ=a. The Jeans radius and the Jeans mass are
defined by

RJ ¼
λJ
2
; MJ ¼

4

3
πρR3

J: ð242Þ

They represent the minimum radius and the minimum mass
of a fluctuation that can collapse at a given epoch. They are
therefore expected to provide an order of magnitude of the
minimum size and minimum mass of DM halos.
For the logotropic equation of state

P ¼ A ln

�
ρ

ρP

�
; ð243Þ

the squared speed of sound reads

c2s ¼ P0ðρÞ ¼ A
ρ
: ð244Þ

The speed of sound increases as the density decreases. The
Jeans length and the Jeans mass are given by

λJ ¼ 2π

�
A

4πG

�
1=2 1

ρ
; ð245Þ

MJ ¼
4

3
π4
�

A
4πG

�
3=2 1

ρ2
: ð246Þ

They can be written as

λJ
pc

¼ 9.67 × 10−15
g=m3

ρ
; ð247Þ

MJ

M⊙
¼ 6.99 × 10−27

�
g=m3

ρ

�
2

: ð248Þ

Using Eq. (240), we find that during the expansion of the
Universe the Jeans length increases as a3 and the Jeans
mass increases as a6 (the comoving Jeans length increases
as a2). Eliminating the density between Eqs. (245) and
(246), we obtain

MJ ¼
π2

3

�
A

4πG

�
1=2

λ2J: ð249Þ

This relation is similar to the mass-radius relation MhðrhÞ
of logotropic DM halos (see Appendix F).
At the epoch of matter-radiation equality, we find

λJ ¼ 0.110 pc and MJ ¼ 0.910 M⊙ (the comoving Jeans
length is λcJ ¼ λJ=a ¼ 374 pc).46 In the case of CDM
where cs ¼ 0, the Jeans length and the Jeans mass vanish.

44In principle, the nonrelativistic approximation is valid for
a ≪ at ¼ 0.765 (see Sec. VI E). Since our discussion is essen-
tially qualitative, we shall extrapolate our nonrelativistic results
up to the present Universe (a ¼ 1).

45The validity of the TF approximation for the Jeans problem is
discussed in Sec. XVI E. A more general study going beyond the
TF approximation will be reported in a forthcoming paper [66].

46The Jeans mass computed at the epoch of matter-radiation
equality where structures start to form gives a lower bound on the
mass of the DM halos observed today. Indeed, the Jeans
instability leads to clumps of mass MJ and size λJ . These clumps
can merge to form bigger structures but, in general, their mass
cannot decrease.
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Therefore, structures can form at all scales. This is in
contradiction with the observations which reveal that DM
halos exist only above a minimum size R ∼ 1 kpc and
above a minimum mass M ∼ 108 M⊙ corresponding to
typical dSphs. In the framework of the logotropic model,
DM halos can form only above λJ ¼ 0.110 pc and
MJ ¼ 0.910 M⊙. The logotropic model implies the exist-
ence of a “minimum halo” but the size and mass of this
minimum halo are much too small to solve the missing
satellite problem. We shall come back to this problem in
Sec. XVI D.
At the present epoch, we find λJ ¼ 4.30 × 103 Mpc and

MJ ¼ 1.38 × 1021 M⊙. These values are of the order of the
size and mass of the Universe (see below). Therefore, the
Jeans instability is inhibited in the present Universe even at
very large scales, i.e., at the scale of the clusters of galaxies.
We shall come back to this problem in Sec. XVI F.
Remark.—We can rewrite the Jeans length (245) and the

Jeans mass (246) as

λJ ¼ 2π

�
2Bð1 −Ωm;0Þ

3Ω2
m;0

�
1=2

RΛa3; ð250Þ

MJ ¼ π3
�
2Bð1 −Ωm;0Þ

3Ω2
m;0

�
3=2

Ωm;0MΛa6; ð251Þ

where RΛ ¼ c=H0 ¼ 4.44 × 103 Mpc is the size of the
visible Universe andMΛ¼ð4=3Þπðϵ0=c2ÞR3

Λ¼c3=2GH0¼
4.62×1022M⊙ is its mass. To obtain Eqs. (250) and (251),
we have used ρ ¼ Ωm;0ðϵ0=c2Þa−3,H2

0 ¼ ð8πG=3c2Þϵ0 and
Eqs. (89) and (90). We see more clearly on these expressions
that the present values of the Jeans length and Jeansmass are
of the order of the size and mass of the Universe. This is due
to the fact that the speed of sound approaches the speed of
light (cs ∼ c) when ρ → ρΛ. As a result, the Jeans length
λJ ∼ cs=

ffiffiffiffiffiffiffiffi
Gρ0

p
withH2

0 ¼ 8πGρ0=3 becomes comparable to
the Hubble length λH ¼ c=H (horizon) and this prevents the
formation of structures (see below).47

B. Theory of perturbations in the linear regime

In the nonrelativistic þ TF approximation, the equation
determining the evolution of the density contrast δk ¼
δρk=ρ in the linear regime of structure formation is given
by [69]

d2δk
da2

þ 3

2a
dδk
da

þ 3

2a2

�
c2sk2

4πGρa2
− 1

�
δk ¼ 0; ð252Þ

where c2s ¼ P0ðρÞ is the squared speed of sound from
Eq. (244). For the logotropic equation of state, the
comoving Jeans wave number is

kcJ ¼
�
4πGρa2

c2s

�
1=2

¼
�
4πGρ2a2

A

�
1=2

: ð253Þ

Recalling that ρ ∝ a−3 it can be written as kcJ ¼ κJ=a2

where κJ ¼ ð4πGρ2a6=AÞ1=2 is a constant independent of
time (it is equal to the present Jeans wave number). In terms
of this parameter, Eq. (252) can be rewritten as

d2δk
da2

þ 3

2a
dδk
da

þ 3

2a2

�
k2a4

κ2J
− 1

�
δk ¼ 0: ð254Þ

The CDM model is recovered by taking κJ → þ∞ in
Eq. (254) yielding

d2δCDM
da2

þ 3

2a
dδCDM
da

−
3

2a2
δCDM ¼ 0: ð255Þ

The growing solution is δCDM ∝ a (there is also a decaying
solution proportional to a−3=2). It is usually considered that
δi ∼ 10−5 at the initial time ai ∼ 10−4 of matter-radiation
equality [70]. Therefore, the growing evolution of the
density contrast in the CDM model can be written as

δCDMðaÞ ¼
δi
ai
a: ð256Þ

We will take this CDM result as a reference and compare it
with the prediction of the logotropic model. We note that
Eq. (254) for the density contrast of the logotropic gas
reduces to Eq. (255) when k → 0 and when a → 0 because
the logotropic term k2a4=κ2J becomes negligible in these
two limits. Therefore, the logotropic gas is expected to
behave similar to CDM at large scales and at early times as
specified below.

C. Evolution of the density contrast

In this section, we study the evolution of the density
contrast δkðaÞ in the linear regime of structure formation. It
turns out that Eq. (254) can be solved analytically [69]. The
growing solution is given by

δkðaÞ ¼
AðkÞ
a1=4

J5
8

� ffiffiffi
6

p

4

k
κJ

a2
�
; ð257Þ

where J5=8ðxÞ is the Bessel function of order 5=8 [there is
also a decaying solution proportional to J−5=8ðxÞ]. The
amplitude AðkÞ is determined by requiring that the asymp-
totic behavior of Eq. (257) for a → 0 exactly matches the
solution (256) of the CDM model. This gives

AðkÞ ¼ Γ
�
13

8

�
85=8

65=16

�
κJ
k

�
5=8 δi

ai
: ð258Þ

Equations (257) and (258) determine the evolution of the
density contrast δkðaÞ in the logotropic gas. We can identify
two regimes:

47For the same reason, structure formation is impossible during
the radiation era where cs ¼ c=

ffiffiffi
3

p
.
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(i) Early times/large wavelengths: We first consider the
case ka2=κJ ≪ 1. For a given wave number k, this
corresponds to a scale factor a ≪ ðκJ=kÞ1=2. Alter-
natively, for a given scale factor a, this corresponds
to a wavelength λ ≫ λcJðaÞ. Since the wavelength of
the perturbation is larger that the comoving Jeans
length, the density contrast δkðaÞ increases. Using
the asymptotic expansion of the Bessel function for
large arguments, we find that

δkðaÞ ∼
δi
ai
a; ð259Þ

independent of k. This solution is valid for
a ≪ ðκJ=kÞ1=2. In that case, the perturbation grows
like in the CDM model [see Eq. (256)].

(ii) Late times/small wavelengths: We now consider the
case ka2=κJ ≫ 1. For a given wave number k, this
corresponds to a scale factor a ≫ ðκJ=kÞ1=2. Alter-
natively, for a given scale factor a, this corresponds
to a wavelength λ ≪ λcJðaÞ. Since the wavelength of
the perturbation is smaller that the comoving Jeans
length, the density contrast δkðaÞ displays damped
oscillations similar to acoustic oscillations (with
Hubble damping). Using the asymptotic expansion
of the Bessel function for small arguments, we find
that

δkðaÞ ∼ Γ
�
13

8

�
89=8

69=16
1ffiffiffi
π

p δi
ai

1

a5=4

�
κJ
k

�
9=8

× cos

� ffiffiffi
6

p

4

k
κJ

a2 −
9π

16

�
: ð260Þ

This solution is valid for a ≫ ðκJ=kÞ1=2. We see that
the amplitude of the oscillations decreases like a−5=4

as the Universe expands.
In conclusion, when a ≪ ðκJ=kÞ1=2 or λ ≫ λcJðaÞ, the

perturbation grows linearly with the scale factor like in
the CDM model; when a ≫ ðκJ=kÞ1=2 or λ ≪ λcJðaÞ, the
perturbation oscillates with a decreasing amplitude scaling
as a−5=4.
A typical example of evolution of the density contrast is

represented in Fig. 17. We assume that the matter era starts
at ai ¼ 10−4 and we study the evolution of the density
contrast up to the present time (a0 ¼ 1). We consider a
perturbation with a wavelength λ > λcJðaiÞ. This perturba-
tion first starts to grow like in the CDMmodel. However, at
late times, the perturbation decays and undergoes damped
oscillations. This behavior can be understood as follows.
Initially, for small a, the LDF behaves as pressureless CDM
and all relevant scales are gravitationally unstable
[λ > λcJðaÞ]. Therefore, the LDF exhibits growing modes
and clusters like ordinary matter. Thus, the density contrast
increases as δ ∝ a. However, as the Universe expands, the

comoving Jeans length increases significantly until there
are no relevant gravitationally unstable scales anymore
(λ < λcJðaÞ). The perturbation δkðaÞ stops growing and
begins to oscillate and decrease to zero when we enter the
DE era, becoming a smooth component of the Universe.48

Therefore, because of the increase of the comoving Jeans
length with a (which is due to the increase of the speed of
sound), the formation of structures is blocked as the
Universe expands.
The transition between the growing regime and the

oscillating regime occurs when k ∼ kcJðaÞ ¼ κJ=a2, i.e.,
when a ¼ a�ðkÞ with

a�ðkÞ ¼
�
κJ
k

�
1=2

: ð261Þ

Therefore, the typical value of the maximum density
contrast achieved by a perturbation of wavelength k is
ðδkÞmax ∼ δk½a�ðkÞ�, i.e.,

ðδkÞmax ¼ Γ
�
13

8

�
85=8

65=16
δi
ai
J5

8

� ffiffiffi
6

p

4

��
κJ
k

�
1=2

: ð262Þ

Since ðδkÞmax ∼ a�ðkÞ ∼ ðκJ=kÞ1=2 and κJ ∼ 1=RΛ, we see
that a perturbation with a wavelength λ smaller than the
horizon RΛ cannot achieve a large density contrast during
its evolution. Therefore, it cannot trigger the nonlinear
regime leading to the formation of the large-scale structures
of the Universe that we observe today. This illustrates the
blocking effect of the logotropic gas.
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FIG. 17. Evolution of the density contrast δkðaÞ in the logo-
tropic model for k=κJ ¼ 1000 (semilog plot). The comoving
Jeans length λcJðaÞ increases as the Universe expands. As a
result, the perturbation grows at early times like in the CDM
model [λ > λcJðaÞ] and undergoes damped oscillations at late
times [λ < λcJðaÞ].

48Similarly, it is well known that the density perturbation in a
universe dominated by the cosmological constant is zero (i.e.,
δcc ¼ 0).
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In Fig. 18, we plot the squared density contrast ðδkÞ2 at
the present epoch (a ¼ 1) as a function of the wave number
k of the perturbation. For k → 0, it tends to ðδi=aiÞ2. For
k → þ∞, it decreases as ðk=κJÞ−9=4 by oscillating. This
function gives an idea of the behavior of the matter power
spectrum in the logotropic model that is discussed in
Sec. XVI F.

D. Comparison between the logotropic model
and the FDM model

In the previous sections we have made the TF approxi-
mation in the logotropic model which amounts to neglect-
ing quantum effects. For comparison, it is interesting to
consider the opposite limit where we take quantum effects
into account but neglect the logotropic pressure. In that case
we are led back to the FDM model (see Appendix E). The
Jeans instability of the FDM model has been studied in
detail in our previous papers [29,67–69,71,72]. We recall
below the main results of these studies.
In the FDM model, the quantum Jeans wave number is

given by [68]

kJ ¼
�
16πGρm2

ℏ2

�
1=4

: ð263Þ

During the expansion of the Universe, the Jeans length
increases as λJ ∝ a3=4 and the Jeans mass decreases asMJ ∝
a−3=4 (the comoving Jeans length decreases as λcJ ∝ a−1=4).
As a result, the Jeans mass-radius relation MJðλJÞ ¼
π4ℏ2=ð6Gm2λJÞ decreases, similar to the core mass-radius
relationMcðRcÞ of FDM halos [see Eq. (E17) and [72] ]. Let
us consider a boson mass m ¼ 2.92 × 10−22 eV=c2 repre-
sentative of the FDM model [72]. At the epoch of matter-
radiation equality, we find λJ ¼ 124 pc and MJ ¼ 1.31 ×
109 M⊙ (the comoving Jeans length is λcJ ¼ λJ=a ¼
0.420 Mpc). At the present epoch, we find λJ ¼ 55.3 kpc
and MJ ¼ 2.94 × 106 M⊙.

In the nonrelativistic regime of the FDM model, the
equation determining the evolution of the density contrast
in the linear regime of structure formation is given by [69]

d2δk
da2

þ 3

2a
dδk
da

þ 3

2a2

�
ℏ2k4

16πGρm2a4
− 1

�
δk ¼ 0: ð264Þ

This equation, which is based on the Schrödinger-Poisson
equations, takes quantum effects into account. It has been
studied in detail in [29,69]. It is found (see Fig. 4 of [29])
that δkðaÞ first oscillates for small a (quantum regime) then
grows like in the CDMmodel for large a (classical regime).
This behavior can be understood as follows. Initially, for

small a, most scales are stable [λ < λcJðaÞ] and the perturba-
tion oscillates. However, as the Universe expands, the como-
ving Jeans length decreases significantly and the relevant
scales become gravitationally unstable [λ > λcJðaÞ]. In
that case, FDM behaves as pressureless CDM.49 It exhibits
growing modes and clusters like ordinary matter. Thus, the
density contrast increases as δ ∝ a. Therefore, because of the
decrease of the comoving Jeans length with a, the formation
of structures is facilitated as the Universe expands.
These results are reversed as compared to those obtained

in the logotropic model. Indeed, as the Universe expands,
the Jeans mass MJ and the comoving Jeans length λcJ
decrease in the FDM model while they increase in the
logotropic model.50 As a result, in the FDM model, the
density contrast initially oscillates, then grows like CDM
while, in the logotropic model, it first grows like CDM,
then undergoes damped oscillations. On the other hand, the
value of the Jeans mass MJ ¼ 1.31 × 109 M⊙ at the epoch
of matter-radiation equality computed in the framework of
the FDM model is much larger than the Jeans mass MJ ¼
0.910 M⊙ computed in the framework of the logotropic
model. The Jeans mass MJ ¼ 1.31 × 109 M⊙ is of the
order of the mass of the smallest DM halos (dSphs)
observed at present. Therefore, the FDM model is con-
sistent with the observations and can solve the missing
satellite problem (unlike the classical logotropic model).
The main drawback of the FDMmodel is that (i) it does not
account for the universal surface density of DM halos and
(ii) it does not account for the present acceleration of the
Universe (without adding an additional DE component like
a cosmological constant). By contrast, the logotropic model
can account for these two features simultaneously.
These results suggest that, regarding the formation of the

large-scale structures of the Universe (Jeans problem), it is
important to take into account quantum effects in the

001011
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FIG. 18. Squared density contrast ðδkÞ2 at the present time
(a ¼ 1) as a function of the wave number k of the perturbation.
The matter power spectrum has the same structure, displaying
oscillations at large k.

49This is true at large (cosmological) scales. At the scale of DM
halos, the quantum pressure is able to stabilize the system against
gravitational collapse and solve the core-cusp problem and the
missing satellite problem [68].

50The Jeans length λJ increases in the two models. Conse-
quently, the Jeans mass-radius relation MJðλJÞ decreases in the
FDM model and increases in the logotropic model.
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logotropic model, i.e., to go beyond the TF approximation.
The general expression of the Jeans wave number of a
complex SF (including quantum effects and self-interac-
tion) is given by [68]

k2J ¼
2m2

ℏ2

�
−c2s þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4s þ

4πGρℏ2

m2

r �
: ð265Þ

On the other hand, the general equation determining
the evolution of the density contrast of a nonrelativistic
complex SF in the linear regime of structure formation is
given by [69]

d2δk
da2

þ 3

2a
dδk
da

þ 3

2a2

�
c2sk2

4πGρa2
þ ℏ2k4

16πGρm2a4
− 1

�
δk ¼ 0:

ð266Þ

This equation, which is based on the GPP equations, takes
quantum effects into account in addition to a nonzero speed
of sound like in Eq. (244) for the logotropic gas. This
equation will be studied in a specific paper [66] for the
logotropic equation of state51 but we can already mention
its main properties. At early times, we can neglect the
logotropic pressure and we recover the results of the FDM
model. Quantum effects prevent the formation of structure
below a minimum mass (≲1.31 × 109 M⊙) and solve the
missing satellite problem as we have just seen. At late
times, we can neglect the quantum potential and we recover
the results of the logotropic model in the TF approximation
(see Sec. XVI C). In conclusion, the perturbation δkðaÞ first
oscillates like in the FDM model, then grows like in the
CDM model, and finally undergoes damped oscillations
like in the classical logotropic model [66].

E. Validity of the TF approximation
in the Jeans instability analysis

Considering the order of magnitude of the quantum and
logotropic terms in Eq. (265) [using Eq. (244)] or compar-
ing Eqs. (241) and (263), we find that the TF approximation
is valid when

c2s ≫
�
Gρℏ2

m2

�
1=2

i:e:; ρ ≪ ρt ∼
�
m2A2

Gℏ2

�
1=3

: ð267Þ

For a boson mass m ∼ 10−22 eV=c2 we obtain ρt ¼ 5.34 ×
10−18 g=m3 (corresponding to at ¼ 7.50 × 10−3 and
zt ¼ 132). Quantum effects are important when ρ ≫ ρt
while they can be neglected (TF approximation) when
ρ ≪ ρt. In particular, we must take into account quantum
effects at the beginning of the epoch of structure formation
corresponding to ρeq ¼ 8.77 × 10−14 g=m3. Quantum

effects could be neglected at this epoch (TF approximation)
provided that

m ≫ mt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ2ρ3eq

q
A

: ð268Þ

We find mt ¼ 2.10 × 10−16 eV=c2.52 Since m ≪ mt in
general (see Appendix E), the TF approximation is not
valid at the epoch of matter-radiation equality. On the
contrary, the quantum pressure is more important than the
logotropic pressure. At early times, the system is equivalent
to the FDM model and the results of Sec. XVI D apply.
Therefore, the quantum logotropic model can solve the
missing satellite problem.
Remark.—At the present epoch, the TF approximation is

valid if

m ≫ m0
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ2ρ30

q
A

; ð269Þ

where ρ0 denotes here the present density of the Universe
(not the central density of DM halos). We find m0

0 ¼
2.73 × 10−32 eV=c2, which is of the order of the cosmon
mass mΛ. Since m ≫ mΛ in general (see Appendix E), the
TF approximation is always valid at the present epoch.

F. The problem of the oscillations
in the matter power spectrum

In the logotropic model, the speed of sound increases as
the density of the Universe decreases. At early time, the
speed of sound is small and the LDF clusters identically to
CDM. In this regime, the Jeans length is small so that most
fluctuations are gravitationally unstable and grow. As one
approaches the present time, when the LDF starts behaving
like DE, the speed of sound increases. Correspondingly,
the Jeans scale becomes large. This prevents gravitational
collapse and clustering from happening, even at large
scales. Fluctuations with wavelength below the comoving
Jeans scale λcJ are pressure supported (the pressure effec-
tively opposes gravity) and oscillate rather than grow.

51It has been studied in [29] for a quadratic equation of state
corresponding to self-interacting BECs.

52We note that the criterion m ≫ mt ¼ 2.10 × 10−16 eV=c2
determining the validity of the TF approximation for the Jeans
problem at the epoch of matter-radiation equality differs by 6
orders of magnitude from the criterion m ≫ m0 ¼ 3.57 ×
10−22 eV=c2 determining the validity of the TF approximation
at the scale of ultracompact DM halos (see Sec. XV F) and by 17
orders of magnitude from the criterion m ≫ mΛ ¼ 1.20 ×
10−33 eV=c2 determining the validity of the TF approximation
at the cosmological level (see Sec. XIII). In particular, for a
particle massm ∼ 10−22 eV=c2, the TF approximation is not valid
for the Jeans problem at the epoch of matter-radiation equality,
while it is valid at the cosmological level to describe the evolution
of the background and marginally valid at the scale of ultra-
compact DM halos to determine their structure.
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Therefore, the large speed of sound produces oscillations
in the matter power spectrum (see Fig. 18 for a sche-
matic view).
These oscillations in the matter power spectrum are

not seen in observed data. To be a successful model for
UDM, the LDF should mimic the inhomogeneous Universe
as in the ΛCDM model. For this, it is necessary that the
LDF clusters similar to CDM at all observable scales.
Accordingly, the agreement with the observations will
be obtained provided that B is small enough since, for
B ¼ 0, the logotropic model becomes equivalent to the
ΛCDMmodel which has cs ¼ 0. Developing this argument,
Ferreira and Avelino [5] showed that Bmust be smaller than
Bmax ∼ 6 × 10−7. Unfortunately, this upper bound is smaller
than our theoretical prediction B ¼ 3.53 × 10−3. This is an
important problem of the logotropic model.53

These problems were first encountered in the context of
the GCG model [73–77],54 which is based on an equation
of state of the form

P ¼ −
A

ðϵ=c2Þα ð270Þ

with A > 0 and 0 ≤ α ≤ 1, and they actually arise in any
UDM model. In particular, Sandvik et al. [75] ruled out a
broad class of UDM models by showing that they produce
oscillations (or exponential blowups) of the DM power
spectrum that are inconsistent with the observations. For
the GCG model, they showed that 99.999% of the
parameter space is excluded. In order to obtain the mass
power spectra that we observe today, one needs jαj < 10−5

rendering the GCG indistinguishable from the standard
ΛCDMmodel corresponding to α ¼ 0 (see Appendix D 3).
Similar conclusions were reached by Carturan and Finelli
[76] and Amendola et al. [77] who studied the effect of the
GCG on density perturbations and on CMB anisotropies
and found that the GCG strongly increases the amount of
integrated Sachs-Wolfe effect.
More generally, these results apply to any UDM model

where P is a unique function of ϵ. Such models are ruled
out if the speed of sound is large, i.e., if the function PðϵÞ

departs substantially from a constant over the range where
pressure is important. Quantitatively, we must have
jd ln P=d ln ϵj < 10−5 (see footnote 53) leaving essen-
tially only the standard ΛCDM model.55 In other words,
a viable UDM model must have negligible pressure
gradient, i.e., the pressure must be essentially spatially
constant like a Λ term.56

In conclusion, UDM or quartessence models can
often correctly explain the evolution of the homogeneous
background (zeroth order cosmology) but they fail at
explaining the growth of linear perturbations (first order
cosmology) because they produce unphysical features
in the matter power spectrum in the form of huge
oscillations or exponential blowups which are not seen
in the observed matter power spectrum. If a solution to
these problems cannot be provided, this would appear as
evidence for an independent origin of DM and DE (i.e.,
they are two distinct substances) and the demise of UDM
models [75].

G. Possible solutions to the problems
of the logotropic model

Some solutions to the problems mentioned above have
been proposed in the context of the GCG. Since the LDF
experiences the same problems as the GCG, these solutions
could also be invoked for the LDF. We review these
different solutions below.

1. Two-fluid models

In the beginning of the matter era the GCG agglomerates
in the same way as CDM. Later, it behaves as DE and
becomes a smooth component of the total matter existing in
the Universe. It does not cluster anymore and produces
decaying oscillations (or exponential blowup) in the matter
power spectrum. As we have seen, this is a problem of any
UDMmodel.57 Therefore, the GCGmodel needs additional
CDM in order to explain the dynamics of the clusters of
galaxies since a fraction of the total DM must remain
clustered until today. Consequently, a more realistic model
is a two-fluid model where, besides the GCG, normal fluid
must be present. Therefore, some authors [73,74,76,77]
(see also [78–82]) have proposed that GCG describes only
DE and that it must be mixed with CDM. In this viewpoint,
the GCG simply plays the role of DE like in quintessence
models. This “Chaplygin quintessence” scenario would

53This constraint can be understood as follows. The matter
power spectrum of the logotropic model displays oscillations
when λ < λcJðaÞ or, equivalently, when k > kcJðaÞ. Since these
oscillations are not observed, we need λcJða ¼ 1Þ < R where R ∼
15 Mpc is the typical size of the clusters of galaxies. The present
value of the Jeans length must be smaller than the size of the
clusters of galaxies R ∼ 15 Mpc so that the linear growth of
cosmic structures on comoving scales larger than R is not
significantly affected with respect to the standard ΛCDM result.
From Eq. (250), we have λcJða ¼ 1Þ ∼ 10

ffiffiffiffi
B

p
RΛ. Therefore, we

need 100B < ðR=RΛÞ2 ∼ 10−5, i.e., B < 10−7. We note that the
constraint λcJða ¼ 1Þ < R is satisfied in the FDM model with
m ¼ 2.92 × 10−22 eV=c2 since λcJða ¼ 1Þ ¼ 55.3 kpc.

54Figure 17 can be compared to Fig. 2 of [74] and to Fig. 2 of
[76]. Figure 18 can be compared to Fig. 1 of [75].

55This criterion is not valid for a linear equation of state. The
corresponding criterion is given in Appendix C.

56However, in that case, we face the core-cusp problem and the
missing satellite problem (see Sec. XIV).

57Quintessence models have no such problems. Although they
have high speeds of sound, this does not prevent DM from
clustering since it is a separate component. Quintessence models
would fail if they were tightly coupled to DM and this is
effectively what happens with UDM models since DM and
DE are one and the same substance.
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solve the above mentioned problems but the original
interest of the GCG as a UDM (quartessence) model has
been lost.58

2. Baryons

Some authors [76,77,83] proposed to include baryons
in analyses of UDM scenarios. Indeed, while pressure
effects prevent the Chaplygin gas from collapsing, the
baryon fluctuations can still keep growing since this is
an independent component with a low speed of sound.
Therefore, baryons keep on clustering at all times after
decoupling, even after the end of the Jeans instability for
the GCG component. Amendola et al. [77] showed that
the inclusion of baryons affects the total linear matter
power spectrum, smoothing out the oscillations of the
GCG component and improving the agreement with
observations. As a result, the inclusion of baryons in
the analysis leads to less stringent bounds on the GCG
parameter α. However, this parameter remains tightly
constrained by cosmological observations. Therefore,
including baryons in UDM models may not be sufficient
to save the model.

3. Nonlinear effects

The importance of nonlinear effects in UDM models
was first mentioned in [76,77]. In the context of the
Chaplygin gas, Bilic et al. [84] proposed to take nonlinear
effects into account in the growth of inhomogeneities by
generalizing the Zeldovich approximation and the spheri-
cal model so as to include sonic horizon effects. They
showed that if the initial perturbation is above a certain
threshold then the perturbation always grows like in the
ΛCDMmodel [in contrast to linear theory where the speed
of sound eventually stops δðaÞ from growing irrespective
of the initial value of the perturbation]. If the initial
perturbation is below the critical threshold, the perturba-
tion does not grow even in the nonlinear regime.
Therefore, a fraction of the Chaplygin gas condensates
(i.e., collapses in gravitationally bound structures) and
never reaches a stage where its properties change from
DM to DE. Unfortunately, the detailed calculations of
Bilic et al. [84] show that the collapse fraction (the
fraction of Chaplygin gas that goes into condensate) is
not sufficient to solve the problems reported above.
Nonlinear condensate, while present, is insufficient to

save the Chaplygin gas model.59 The importance of
nonlinear effects was also pointed out by Avelino et al.
[87] using simple considerations. They argued that non-
linear effects severely complicate the analysis and render
linear results invalid even on large cosmological scales.
However, in the case of the Chaplygin gas, similar to Bilic
et al. [84], they argued that nonlinear effects are too small
to significantly affect the linear results. In a more recent
work, Avelino et al. [88] relaxed earlier simplifying
assumptions and showed that, if clustering is strong
enough, the linear theory results no longer hold and the
backreaction of the small-scale structures on the large-
scale evolution of the Universe render the Chaplygin gas
model virtually indistinguishable from the ΛCDM model
for all possible values of the GCG parameter α. They
concluded that the GCG may be consistent with obser-
vational constraints over a wide region of parameter space,
provided there is a high level of nonlinear clustering of the
UDM component on small scales. A detailed analysis of
nonlinear effects would nevertheless require solving the
full Einstein field equations for the evolution of realistic
cosmological fluctuations, which is a formidable task.
(Note: Recently, we came across the very interesting paper
of Abdullah et al. [89] who argue that a cosmological
scenario based on the Chaplygin gas may not be ruled out
from the viewpoint of structure formation as usually
claimed. Indeed, a nonlinear analysis may predict collapse
rather than a reexpansion of small-scale perturbations so
that nonlinear clustering may occur in the Chaplygin gas.
This is because pressure forces in UDM fluids decrease
with increasing density so that systems that are stable
against self-gravitating collapse in the linear regime may
become unstable in the nonlinear regime. As a result, the
problem of acoustic oscillations in the linear power
spectrum of UDM models may not be as serious as
usually assumed provided the hierarchical structure for-
mation process is adequately taken into account. These
arguments also apply to the logotropic model.)

4. Nonadiabatic perturbations

A possible solution to the problem of oscillations would
be to allow for nonadiabatic perturbations in the Jeans
stability analysis to make the effective speed of sound
vanish, even in the nonperturbative regime.60 Indeed, the
isentropic perfect fluid approximation might break down at

58We have seen in Sec. II H that a single-fluid model like the
Chaplygin gas or the LDF can be viewed as a two-fluid model
made of effective DM and DE (the effective equation of state of
DE in the Chaplygin gas model and in the original logotropic
model has been determined in Appendix D 3 of [21]). The single-
fluid model and the two-fluid model are equivalent at the level of
the homogeneous background but they differ from each other for
what concerns the formation of structures. The two-fluid model
does not present the problems of the single-fluid model reported
above.

59In later works, Bilic et al. [85,86] repeated their study for a
tachyon condensate model (a k-essence model corresponding to
the string-inspired tachyon Lagrangian that extends the Born-
Infeld Lagrangian of the original Chaplygin gas model) in full
general relativity and obtained, this time, gravitational conden-
sates in significant quantities. This is because this model reduces
the Jeans length by several orders of magnitude.

60In the adiabatic case, the effective speed of sound and the
adiabatic speed of sound are equal. However, this may not be true
anymore if entropy perturbations are present [90].

PIERRE-HENRI CHAVANIS PHYS. REV. D 106, 063525 (2022)

063525-34



sufficiently large densities or small scales. Reis et al.
[91,92] have shown that if nonadiabatic perturbations are
allowed, the quartessence GCG models may be compatible
with observations. Indeed, entropy perturbations eliminate
instabilities and oscillations in the mass power spectrum of
these models.

5. Braneworld models

Another possible solution, proposed by Bilic et al. [84],
would be to exploit the braneworld connection of the
Lagrangian associated with the Chaplygin gas. In brane-
world models [93], the Einstein equations are modified,
e.g., by dark radiation. Similar changes are also brought
about by the radion mode [94] which yields a scalar-tensor
gravity.

6. Higher order derivatives

The GCG can be obtained from a field theory based on a
k-essence Lagrangian. For the original Chaplygin gas
(α ¼ 1), this yields the Born-Infeld Lagrangian for d-brane
in a (dþ 1, 1) spacetime [95]. Creminelli et al. [96] have
shown that, for a k-essence Lagrangian, one can add a
specific higher derivative operator in the original action that
does not change the background evolution for the field or
its energy density and pressure. But for the perturbations,
this extra higher derivative operator leads to a vanishing
speed of sound (c2s ¼ 0). In such a scenario, the pressure
perturbation vanishes and the k-essence clusters at all scales
like the nonrelativistic matter. These are called “clustering
quintessence” models. Given the fact that GCG as a UDM
model fails because of the large speed of sound through the
fluid during the DE domination, Kumar and Sen [97]
proposed to apply this idea to the “clustering GCG” model
and explored its consequences. In that case, they showed
that the matter power spectrum for the parameter values of
0 ≤ α ≤ 0.043 are well behaved without any unphysical
features (note that the original Chaplygin gas α ¼ 1 is still
ruled out). Therefore, by properly modifying the k-essence
Lagrangian, we can ensure that the GCG clusters at all
scales similar to the CDM model, leaving, at the same
time, the background evolution of the Universe unaltered
(i.e., the GCG behaves like CDM in the early time and like
DE in the late time). This added clustering property makes
the GCG a suitable candidate for UDM models. Thus, the
study of Kumar and Sen [97] renewed interest in the GCG
as a viable option for UDM models. It would be interesting
to redo their analysis in the framework of the logotropic
model in order to obtain an enlarged range of allowed
values for the parameter B and see if the theoretical value
B ¼ 3.53 × 10−3 is included in that range.

7. Scale dependence

Another way to try to avoid these problems could be
by introducing some sort of scale dependence into the

equations. For example, Padmanabhan and Choudhury [98]
discussed a model based on a tachyonic SF that exhibits
different equations of state at different scales. The field
behaves like pressureless DM on small scales and like
smoothly distributed DE on large scales.
The solutions introduced in the context of the GCG

model could be applied to the logotropic model as well.
It must be recognized that none of them brings an
undisputable answer. Therefore, the problems essentially
remain. In spite of these difficulties, we think that the GCG
and logotropic models deserve further investigation. It is
possible that these models are incomplete rather than being
ruled out. On the other hand, a thorough investigation of the
nonlinear regime of the growth of inhomogeneities through
extensive numerical simulations is needed for a definite
conclusion concerning the compatibility of the GCG and
logotropic cosmologies with the observable large-scale
structure of the Universe.
Remark.—When applied to DM halos, the logotropic

equation of state cannot be valid everywhere because it
yields halos with an infinite mass (see Appendix F). Indeed,
only the core of DM halos is expected to be logotropic (its
density decays as r−1). In practice, the logotropic core is
surrounded by an envelope where the density decreases
more rapidly as r−2 or r−3 (see Appendix F). This suggests
that the logotropic equation of state is valid only at large
scales in an “average” sense, which allows us to correctly
describe the evolution of the cosmological background.
However, it may cease to be valid everywhere at small
scales when considering the more complicated problem of
structure formation. In particular, one has to be careful
when treating strongly inhomogeneous structures such as
DM halos in the nonlinear regime. A full numerical
solution of the nonlinear problem (accounting for relativ-
istic and quantum effects) may lead to a matter power
spectrum different from the one obtained in the linear
regime where it is assumed that the logotropic equation of
state holds everywhere.

XVII. CONCLUSION

In this paper, we have proposed a unification of DM and
DE based on a complex SF described by the KGE
equations (212) and (213) with a potential of the form

V totðjφj2Þ ¼
m2c2

2ℏ2
jφj2 − A ln

�
m2jφj2
ℏ2ρP

�
− A; ð271Þ

which is the sum of a rest-mass term and a logarithmic
term. This model is associated with a logotropic equation of
state

P ¼ A ln

�
ρ

ρP

�
; ð272Þ

where ρ ¼ ðm2=ℏ2Þjφj2 is the pseudo-rest-mass density.
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The logotropic model is able to account for the present
accelerating expansion of the Universe while solving at the
same time the small-scale crisis of the ΛCDM model.
Indeed, at cosmological scales, the logotropic model is
almost indistinguishable from the ΛCDM model up to the
present time and even far in the future. By contrast, at
galactic scales, it leads to DM halos presenting a central
core instead of a cusp. Furthermore, it predicts their
universal surface density Σth

0 ¼ 133 M⊙=pc2 (in agreement
with the observations giving Σobs

0 ¼ 141þ83
−52 M⊙=pc2) with-

out adjustable parameter.
The new logotropic model introduced in the present

paper is different from the original one [1–4] which is
characterized by the equation of state (B5) where ρm
represents the true rest-mass density. The interest of the
new logotropic model is that (i) it is based on a complex
SF theory; (ii) it avoids the pathologies of the original
logotropic model such as a phantom behavior violating
the dominant-energy condition, and leading to a little rip
and a superluminal or imaginary speed of sound; (iii) it
asymptotically approaches a well-behaved de Sitter era at
late times.
At the cosmological level, and for the evolution of the

homogeneous background, we have shown that the TF
approximation is equivalent to the fast oscillation regime
where the complex SF rapidly spins. In this spintessence
regime, the SF is described by the logotropic equa-
tion of state (272). It behaves as DM in the early
Universe (a ≪ at ¼ 0.765) and as DE in the late universe
(a ≫ at ¼ 0.765). At the cosmological level, the TF
approximation is valid for a large period of time provided
that m ≫ mΛ, where mΛ ¼ 1.20 × 10−33 eV=c2 is the
cosmon mass. For a boson mass m ∼ 10−22 eV=c2, the

TF approximation is valid from að1Þv ¼4.01×10−8 to að2Þv ¼
1.73 × 104. In the very early Universe (a < að1Þv ¼
4.01 × 10−8), the fast oscillation regime is not valid any-
more and the SF experiences a kination regime where it
behaves as stiff matter. Therefore, the homogeneous SF
successively experiences a stiff matter era, a DM-like era,
and a DE-like era. The logotropic model has an intrinsically
quantum nature (even in the TF regime) because the
equation of state (272) involves ρP, and it returns the
ΛCDM model in the semiclassical limit ℏ → 0.
At the level of DM halos, the logotropic model differs

from the ΛCDM model because it generates a pressure
which is either of quantum origin (as in the FDMmodel) or
due to the logarithmic potential. Following a process of
violent relaxation [99] and gravitational cooling [100], the
logotropic DM halos acquire a “core-halo” structure with a
quantum or logotropic core surrounded by a classical NFW
(or quasi-isothermal) atmosphere resulting from quantum
interferences of excited states [65]. The pressure effects can
solve the core-cusp problem of theΛCDMmodel. In the TF
approximation, the core is purely logotropic. The logo-
tropic equation of state implies a constant surface density

Σth
0 ¼ 5.85 ðA=4πGÞ1=2 ¼ 133 M⊙=pc2 which is in agree-

ment with the observations. Therefore, the logotropic
model avoids the problems of the FDM model reported
by the author [23–25] and by [26,27]. At the level of
DM halos, the TF approximation is valid provided that
m ≫ m0 ¼ 3.57 × 10−22 eV=c2. For a boson mass m ∼
10−22 eV=c2 we are just at the limit of validity of the TF
approximation so we have to take into account a quantum
core þ a logotropic inner halo þ a NFW (or isothermal)
outer halo.
We have also discussed the formation of structures

(Jeans problem) within the logotropic model. In that case,
there are two difficulties: (i) If we naively make the TF
approximation, we find that the Jeans mass MJ ¼
0.910 M⊙ at the epoch of matter-radiation equality is
much too small to solve the missing satellite problem.
However, the TF approximation is valid at this period
only if m ≫ mt ¼ 2.10 × 10−16 eV=c2. For a boson mass
m ∼ 10−22 eV=c2, we are in the opposite limit where
quantum effects are more important than the logotropic
pressure. In that case, the logotropic model reduces to the
FDM model. Quantum effects yield a much larger Jeans
massMJ ¼ 1.31 × 109 M⊙ that is able to solve the missing
satellite problem. At later times (a ≫ 7.50 × 10−3) the TF
approximation becomes valid and we can use the classical
logotropic model. (ii) In the logotropic model, the density
contrast δðaÞ first grows like in the ΛCDMmodel (after the
FDM era mentioned above) then undergoes decaying
oscillations (see Fig. 17). This is because the squared
speed of sound increases as the density decreases. As a
result, the comoving Jeans length becomes very large and
prevents the formation of structures. This gives rise to
oscillations in the matter power spectrum. These features
(large Jeans length and oscillations) are in severe disagree-
ment with the observations. The Chaplygin gas model, and
more generally most UDM models, share the same prob-
lems [75]. We have reviewed several possible solutions
proposed in the literature but none of these solutions has
gained complete acceptance so far. This remains an
important weakness of the logotropic and Chaplygin gas
models. The recent paper of Abdullah et al. [89] suggests,
however, that these problems may not be as insurmountable
as previously thought provided that an adequate nonlinear
analysis of structure formation is developed.
We note that the criteria (191), (236), and (268)

determining the validity of the TF approximation at the
cosmological level, at the level of ultracompact DM halos,
and for the Jeans problem at the epoch of matter-radiation
equality involve different densities (ρΛ, ρ0, and ρeq) yielding
different critical particle massesmΛ ¼ 1.20 × 10−33 eV=c2,
m0 ¼ 3.57 × 10−22 eV=c2, and mt ¼ 2.10 × 10−16 eV=c2.
As a result, for a boson mass m ∼ 10−22 eV=c2, the TF
approximation is valid during a long period of time for what
concerns the evolution of the homogeneous background
(quantum terms can beneglected),while it ismarginally valid
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to describe ultracompact DM halos (both quantum and
logotropic terms have to be taken into account), and not
valid at all to describe the formation of structures at the
beginning of the matter era (logotropic terms can be
neglected).
We have argued that the logarithmic term in Eq. (271) is

a fundamental term that is always present in the KG
equation. It is not a particular attribute of the SF (such
as its mass or self-interaction constant) but rather an
intrinsic property of spacetime. In other words, the ordinary
(linear) KG equation is an approximation of the more
fundamental wave equation (215). This equation involves
a new fundamental constant of physics A superseding
the Einstein cosmological constant Λ. This term accounts
simultaneously for the accelerating expansion of the
Universe and for the universal surface density of DM
halos. The logarithmic potential manifests itself only at
extremely low densities and this is why the ordinary (linear)
KG and Schrödinger equations are so successful at the
laboratory scale where ρ ≫ ρΛ. However, the logarithmic
potential becomes important at astrophysical and cosmo-
logical scales and leads to a logotropic dark fluid which
unifies DM and DE. If the logarithmic term in Eq. (271)
is replaced by a constant V ¼ ρΛc2 mimicking a cosmo-
logical constant, we obtain the ΛFDM model which is
associated with a constant equation of state P ¼ −ρΛc2 (see
Appendix E).61 In the TF approximation, it reduces to the
ΛCDM model (see Appendix D).62 The ΛFDM model
accounts for the accelerating expansion of the Universe and
solves the core-cusp problem and the missing satellite pro-
blem as a consequence of quantum effects (Heisenberg’s
uncertainty principle). However, it does not account for
the universal surface density of DM halos, contrary to the
logotropic model. This is an important advantage of the
logotropic model.
As discussed above, the KG equation with the potential

from Eq. (271) describes a noninteracting SF. Indeed, we
have argued that the logarithmic term in Eq. (271) is a
fundamental term which is rooted in the KG equation. We
can now consider more general models, where the bosons
have a self-interaction, by including additional terms in the
SF potential.
At the end of Secs. XIII, XVA, and XVB we have

briefly considered the case of a relativistic BEC with a
repulsive jφj4 self-interaction [see Eqs. (199), (216), and
(221)]. At a cosmological level, the jφj4 self-interaction is
responsible, in the fast oscillation (or TF) regime, for an
additional radiationlike era occurring before the matterlike
era. Therefore, the homogeneous SF successively

experiences a stiff matter era, a radiationlike era, a DM-like
era, and a DE-like era. On the other hand, logotropic DM
halos with a repulsive jφj4 self-interaction possess an addi-
tional hydrodynamic core stabilized by the self-interaction
(see, e.g., [25,68]) in addition to the quantum core (soliton)
due to the Heisenberg uncertainty principle, the logotropic
core due to the logarithmic potential, and the NFW halo
resulting from quantum interferences of excited states.
More generally, we can consider a relativistic BEC with

a potential of the form

V totðjφj2Þ ¼
m2c2

2ℏ2
jφj2 þ 2πasm

ℏ2
jφj4 þ 32π4a2s

9c2ℏ2
jφj6

þmkBT
ℏ2

jφj2
�
ln

�
m2jφj2
ℏ2ρ�

�
− 1

�

− A ln

�
m2jφj2
ℏ2ρP

�
− A: ð273Þ

This potential includes a jφj2 rest-mass term, a jφj4 self-
interaction which can be repulsive (as > 0) or attractive
(as < 0), a repulsive jφj6 self-interaction of relativistic
origin that can stabilize the system when as < 0, a
jφj2 ln jφj2 self-interaction which arises from effective or
real thermal effects, and the intrinsic logarithmic ln jφj2
self-interaction discussed above.63 A power-law potential
(see Appendix C of [22])

Vðjφj2Þ ¼ K
γ − 1

�
m
ℏ

�
2γ

jφj2γ ð274Þ

is associated with a polytropic equation of state

P ¼ Kργ: ð275Þ

In particular, for the jφj4 and jφj6 self-interaction, we have

Vðjφj2Þ ¼ 2πasm
ℏ2

jφj4 ⇒ P ¼ 2πasℏ2

m3
ρ2; ð276Þ

Vðjφj2Þ ¼ 32π4a2s
9c2ℏ2

jφj6 ⇒ P ¼ 64π4a2sℏ4

9m6c2
ρ3: ð277Þ

On the other hand, the jφj2 ln jφj2 self-interaction is
associated with an isothermal equation of state

P ¼ ρ
kBT
m

: ð278Þ

When T > 0, it can take into account the finite temperature
of DM halos. The KG equation associated with the
potential (273) is [see Eq. (212)]

61This is the limit of the logotropic model when A → 0 and
ρP → þ∞ with A lnðρP=ρΛÞ → ρΛc2 fixed (see Secs. VII D and
XII C).

62For V ¼ 0 we get the FDM model which reduces to the
CDM model in the TF approximation.

63Instead of the logarithmic term we can consider a constant
term V0 ¼ ϵΛ mimicking a cosmological constant like in Ap-
pendix E. It is associated with a constant equation of state
P ¼ −ϵΛ.
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□φþm2c2

ℏ2
φþ 8πasm

ℏ2
jφj2φþ 64π4a2s

3c2ℏ2
jφj4φ

þ 2mkBT
ℏ2

ln
�
m2jφj2
ρ�ℏ2

�
φ −

2A
jφj2 φ ¼ 0; ð279Þ

and the corresponding GP equation, valid in the non-
relativistic regime, is [see Eq. (218)]

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þmΦψ þ 4πasℏ2

m2
jψ j2ψ

þ 32π4a2sℏ4

3m5c2
jψ j4ψ þ kBT ln

�jψ j2
ρ�

�
ψ −

Am
jψ j2 ψ :

ð280Þ

At the cosmological level, the rest-mass term is respon-
sible for a DM-like era (ϵ ∼ a−3), the repulsive jφj4 self-
interaction is responsible for a radiationlike era (ϵ ∼ a−4),
the jφj6 self-interaction is responsible for a new primordial
era (ϵ ∼ a−9=2), the jφj2 ln jφj2 self-interaction is respon-
sible for a DM-like era with logarithmic corrections, and
the logarithmic ln jφj2 self-interaction is responsible for a
DE-like era. At the level of DM halos, the rest-mass term
produces a quantum core (soliton) and a NFWenvelope, the
jφj4 and jφj6 potentials produce a hydrodynamic core, the
jφj2 ln jφj2 potential produces an isothermal envelope
(when T > 0), and the logarithmic ln jφj2 self-interaction
produces a logotropic envelope. The jφj4 self-interaction
has been studied in [20,28,68,101], the jφj6 self-interaction
has been studied in [102], the jφj2γ self-interaction has
been studied in [22], the jφj2 ln jφj2 self-interaction has
been studied in [22,25], and the ln jφj2 self-interaction
has been studied in the present paper.

APPENDIX A: MOTIVATION OF THE
LOGOTROPIC MODEL

In this appendix, we recall the arguments that led us to
introduce the logotropic model in Ref. [1]. In short, we
assumed that DM and DE are the manifestation of a single
DF and we tried to construct a UDM model with a
nonconstant pressure that is as close as possible to the
standard ΛCDM model.64

Let us consider a DF described by the polytropic
equation of state

P ¼ Kργ; ðA1Þ

where K is the polytropic constant and γ ¼ 1þ 1=n is
the polytropic index. Up to a slight change of notations,
this corresponds to the equation of state of the GCG.

As shown in Appendix D 3, the ΛCDM model (interpreted
as a UDM model) is equivalent to a single DF with a
constant pressure

P ¼ −ρΛc2; ðA2Þ

where ρΛ is the cosmological density. Equation (A2) can be
viewed as a particular polytropic equation of state with
index γ ¼ 0 and negative polytropic constant K ¼ −ρΛc2.
In this sense, the ΛCDMmodel is the simplest UDMmodel
that one can imagine. Since the ΛCDM model works well
at large scales, a viable model must necessarily be close to
the ΛCDM model. However, it should not coincide with it,
otherwise it would not be able to solve the CDM small-
scale crisis such as the core-cusp problem and the missing
satellite problem. Therefore, we need a model with a
nonzero pressure gradient which can balance the gravita-
tional attraction in DM halos and avoid singularities. In
addition, a successful model should account for the con-
stant surface density of DM halos Σobs

0 ¼ 141þ83
−52 M⊙=pc2,

something that the ΛCDM model does not do. Following
[1], we look for the simplest extension of the standard
ΛCDM model viewed as a UDM model.
A first possibility would be to consider the polytropic

equation of state (A1) with an index γ very close to zero
(but nonzero). Such a model can be as successful as the
ΛCDM model at large scales. However, it seems hard to
explain theoretically why a polytropic index like, e.g., γ ¼
−0.0123 should be selected by nature. Furthermore, if we
let γ → 0 with K fixed we recover the ΛCDMmodel, so we
have not gained anything (in particular the small-scale
crisis remains).
Alternatively, in [1] we considered the limit γ → 0 and

K → ∞ in such a way that A ¼ Kγ is finite. Interestingly,
this leads to a model close to, but different from, theΛCDM
model. This is how we justified the logotropic model in [1].
We recall below how the logotropic equation of state can be
obtained from the polytropic equation of state in that
limit [1,103].
To that purpose we consider a nonrelativistic DM halo

described by the condition of hydrostatic equilibrium

∇Pþ ρ∇Φ ¼ 0: ðA3Þ

For the polytropic equation of state (A1), this condition can
be written as

Kγργ−1∇ρþ ρ∇Φ ¼ 0: ðA4Þ

Taking the limit γ → 0 and K → ∞ with A ¼ Kγ finite, we
obtain

A
ρ
∇ρþ ρ∇Φ ¼ 0: ðA5Þ

64As discussed in Appendix B, we can introduce different
types of logotropic models. The following arguments apply to all
of them.
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Comparing this equation with Eq. (204), we see that the
pressure involved in this expression corresponds to the
logotropic equation of state65

P ¼ A ln

�
ρ

ρ�

�
; ðA9Þ

where ρ� is a constant of integration. It is interesting to note
that the logotropic equation of state, when coupled to
gravity, yields the Lane-Emden equation of index n ¼ −1
(see Appendix F). Therefore, a logotrope is closely related
to a polytrope of index γ ¼ 0 (or n ¼ −1).66 In this sense,
the logotropic model may be viewed as the simplest
extension of the ΛCDM model (corresponding to γ ¼ 0)
in the framework of UDM models [1].
Remark.—As explained above, the ΛCDM model is

equivalent to a fluid with a pressure that is independent of
the density. On the other hand, the logotropic equation of
state depends on the density very weakly (logarithmically).
This is the argument that led us to introduce the logotropic
model [1]. Interestingly, by developing this model, we
found that the constants ρ� and A that appear in the
logotropic equation of state (A9) can be determined by
theoretical considerations and by observations (namely the
measured values of Ωm;0 and H0). As a result, there is no

adjustable parameter in our model. Furthermore, this model
can account for the observed value of the surface density of
DM halos Σobs

0 ¼ 141þ83
−52 M⊙=pc2 predicted to be equal to

Σth
0 ¼ 0.01955c

ffiffiffiffi
Λ

p
=G ¼ 133 M⊙=pc2 and for the present

ratio Ωobs
de;0=Ωobs

dm;0 ¼ 2.669 of DE and DM predicted to be
equal to Ωth

de;0=Ωth
dm;0 ¼ e ¼ 2.71828…. Following our

paper [1], some authors [6–8] have introduced a simple
extension of the logotropic model by considering an
equation of state of the form

P ¼ A

�
ρ

ρ�

�
−n

ln

�
ρ

ρ�

�
; ðA10Þ

where n is a free parameter. This equation of state is similar
to the Anton-Schmidt [106] equation of state for crystalline
solids in the Debye approximation [107]. In that case, the
index n can be written as n ¼ −1=6 − γG where γG is the
so-called Grüneisen [108] parameter. The original logo-
tropic model is recovered for n ¼ 0. However, since n is a
free parameter the generalized logotropic model (A10)
introduces some indetermination (or freedom) in the
analysis, while the original logotropic model [1] is com-
pletely predictive. By comparing the results of the gener-
alized logotropic model (A10) with cosmological
observations, the authors of [6–8] found that B ≃ 3.54 ×
10−3 and n ¼ −0.147þ0.113

−0.107 . This confirms the robustness
of the value of the fundamental constant B ¼ 3.53 × 10−3

introduced in [1,2]. On the other hand, up to the error bars,
the value of n is close to n ¼ 0, corresponding to the
logotropic model (see also [3]). This suggests that the
logotropic model tends to be selected among more general
families of models containing additional parameters fng.

APPENDIX B: LOGOTROPIC MODELS
OF TYPE I, II, AND III

As explained in [21] we can introduce three types of
barotropic equations of state with the same functional
form depending on whether the pressure P is expressed
in terms of the energy density ϵ (model I), the rest-mass
density ρm ¼ nm (model II), or the pseudo-rest-mass
density ρ (model III). These models are equivalent in
the nonrelativistic limit but they differ from each other in
the relativistic regime. A detailed discussion of these
models and their interrelations is given in [21] (see also
[1,20,109,110]). In this appendix, we briefly discuss these
models in the framework of the logotropic equation of state.
Barotropic models of type I correspond to an equation of

state of the form P ¼ PðϵÞ, where ϵ is the energy density.
The logotropic model of type I is therefore

P ¼ A ln

�
ϵ

ρPc2

�
: ðB1Þ

The energy conservation equation (6) combined with the
logotropic equation of state (B1) yields

65We can obtain the logotropic equation of state (A9) directly
from Eq. (A1) by writing

P ¼ Keγ ln ρ ðA6Þ
and expanding the right-hand side for γ → 0, yielding

P ¼ Kð1þ γ ln ρþ…Þ: ðA7Þ
In the limit γ → 0 and K → ∞ with A ¼ Kγ finite, we get

P ¼ A ln ρþ K: ðA8Þ
The drawback with this calculation is that it yields an infinite
constant (K → þ∞) in addition to the logotropic equation of
state so that the procedure is not well justified mathematically. By
contrast, the calculation based on Eq. (A4) avoids dealing
explicitly with infinite constants since they disappear in the
gradients.

66Note that the logotropic model differs from a pure polytrope
of index γ ¼ 0 (or n ¼ −1) and fixed K which has a constant
pressure P ¼ K. For this constant pressure model, equivalent to
the ΛCDM model, the condition of hydrostatic equilibrium (A4)
has no solution (there is no equilibrium state) since there is no
pressure gradient. As a result, in the framework of the polytropic
equation of state [104,105], the Lane-Emden equation of index
n ¼ −1 is ill-defined [the scale radius r0 defined by Eq. (A7) of
[105] vanishes]. Therefore, the limit γ → 0 and K → ∞ with A ¼
Kγ finite leading to the logotropic equation of state is very
peculiar. The logotropic model allows us to give a physical
meaning to the Lane-Emden equation of index n ¼ −1 which is
excluded by the usual polytropic model. In this sense, the
logotropic equation of state naturally completes the class of
polytropic equations of state.
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ln a ¼ −
1

3

Z
ϵ

ϵ0

dϵ0

ϵ0 þ A lnð ϵ0
ρPc2

Þ ; ðB2Þ

where ϵ0 denotes the present energy density of the Universe
(when a ¼ 1). This equation determines the evolution
of the energy density ϵðaÞ as a function of the scale
factor. When a → 0, we get ϵ ∝ a−3 similar to DM. When
a → þ∞ we get ϵ → ϵmin similar to DE where ϵmin is the
solution of the equation ϵmin þ A ln ðϵmin=ρPc2Þ ¼ 0. This
leads to an exponential (de Sitter) expansion like in the
ΛCDMmodel. If we identify ϵmin with the DE density ρΛc2

in the ΛCDM model (which coincides with the asymptotic
value of ϵ), we get

A ¼ ρΛc2

lnðρPρΛÞ
: ðB3Þ

This returns the relation obtained in the logotropic model of
type II [1] and in the logotropic model of type III [see
Eq. (105)]. This strengthens the validity of this relation [66].
If we set x ¼ ϵ0=ϵ0,A ¼ BρΛc2, andB ¼ 1=lnðρP=ρΛÞwith
ρΛ ¼ Ωde;0ϵ0=c2, we can rewrite Eq. (B2) as

ln a ¼ −
1

3

Z
ϵ=ϵ0

1

dx
xþ BΩde;0ðln x − ln Ωde;0 − 1

BÞ
: ðB4Þ

The function ðϵ=ϵ0ÞðaÞ is plotted in Fig. 19. We have taken
Ωde;0 ¼ 0.6911 andB ¼ 3.53 × 10−3. The logotropic model
of type I behaves similar to the ΛCDM model. This model
will be studied in more detail in a future work [66].
Barotropic models of type II correspond to an equation

of state of the form P ¼ PðρmÞ, where ρm ¼ nm is the rest-
mass density (n is the particle number density). The
logotropic model of type II is therefore

P ¼ A ln

�
ρm
ρP

�
: ðB5Þ

This is the original logotropic model introduced in [1].
Barotropic models of type III correspond to an equation

of state of the form P ¼ PðρÞ, where ρ is the pseudo-rest-
mass density associated with a complex SF (see Sec. II).
The logotropic model of type III is therefore

P ¼ A ln
�
ρ

ρP

�
: ðB6Þ

This is the logotropic model studied in the present paper. It
could be called the logotropic complex SF model and
referred to as the logotropic CSF model.
In the nonrelativistic limit, we have ρ ∼ ρm and ϵ ∼ ρc2,

so the three models become equivalent. They correspond to
an equation of state of the form P ¼ PðρÞ, where ρ is the
mass density. The nonrelativistic logotropic equation of
state is

P ¼ A ln

�
ρ

ρP

�
: ðB7Þ

The structure of logotropic DM halos described by the
equation of state (B7) has been studied in [1] (see also
Appendix F).

APPENDIX C: DM WITH A LINEAR
EQUATION OF STATE

In the CDM model it is assumed that DM is pressureless
(P ¼ 0). In this appendix, we consider the possibility that
CDM is described by a linear equation of state P ¼ αϵwith
α ≥ 0, yielding a constant (nonzero) speed of sound
cs ¼

ffiffiffi
α

p
c. We determine the condition that α must satisfy

in order to be consistent with the observations of the matter
power spectrum.
In the nonrelativistic regime where ϵ ∼ ρc2, we can

rewrite the equation of state as P ¼ αρc2. This linear
equation of state can be interpreted as an isothermal
equation of state of the form P ¼ ρkBTeff=m with α ¼
kBTeff=mc2. Here, Teff is a temperature which may be
identified with the effective temperature of DM halos. For a
typical DM halo of mass Mh ¼ 1011 M⊙ (medium spiral),
one has ðkBTeff=mÞ1=2 ¼ 108 km=s [25]. This gives
α ∼ 10−7.
According to Eqs. (241) and (242), the Jeans length and

the Jeans mass are given by

λJ ¼ 2π

�
αc2

4πG

�
1=2 1

ρ1=2
; ðC1Þ

MJ ¼
4

3
π4
�
αc2

4πG

�
3=2 1

ρ1=2
: ðC2Þ
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FIG. 19. Normalized energy density ϵ=ϵ0 as a function of the
scale factor a for the logotropic model of type I. It is compared
with the ΛCDM model. The two curves are indistinguishable on
the figure.
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Using Eq. (240), we find that during the expansion of the
Universe the Jeans length and the Jeans mass both increase
as a3=2 (the comoving Jeans length increases as a1=2).
Eliminating the density between Eqs. (C1) and (C2), we
obtain

MJ ¼
π2

6

αc2

G
λJ: ðC3Þ

This relation is similar to the mass-radius relation M ¼
2kBTR=Gm of an isothermal self-gravitating system con-
fined within a box [111]. Repeating the calculations made
at the end of Sec. XVI A we can rewrite the Jeans length
and the Jeans mass as

λJ ¼ 2π

�
2α

3Ωm;0

�
1=2

RΛa3=2; ðC4Þ

MJ ¼ π3
�

2α

3Ωm;0

�
3=2

Ωm;0MΛa3=2; ðC5Þ

where RΛ ¼ 4.44 × 103 Mpc and MΛ ¼ 4.62 × 1022 M⊙
represent the typical radius and mass of the visible Universe
today. As we have seen in footnote 53, observational
constraints from the matter power spectrum require that
λJða ¼ 1Þ < R with R ∼ 15 Mpc. Since λJða ¼ 1Þ∼
10

ffiffiffi
α

p
RΛ, we need 100α < ðR=RΛÞ2 ∼ 10−5. This imposes

α < 10−7 in agreement with the findings of [112].
Interestingly, the value α ∼ 10−7 obtained above from the
effective temperature of DM halos satisfies this constraint
marginally.

APPENDIX D: ΛCDM MODEL

In this appendix, we discuss different equivalent manners
to justify the ΛCDM model.

1. DM+Λ
The usual manner to introduce the ΛCDM model in

cosmology is to assume that the Universe is filled with DM
(in addition to baryonic matter and radiation that we do not
consider here for brevity) and that the Einstein cosmologi-
cal constant Λ has a nonzero value. DM is introduced to
explain the formation of the large-scale structures of the
Universe and the flat rotation curves of the galaxies (see
Appendix D 4). A positive cosmological constant is intro-
duced to explain the present acceleration of the Universe.
DM is usually treated as a pressureless fluid with an

equation of state

Pm ¼ 0: ðD1Þ

Solving the energy conservation equation (6) with the
equation of state (D1), we obtain

ϵm ¼ ϵm;0

a3
; ðD2Þ

where ϵm;0 is a constant of integration which can be
identified with the present energy density of DM.
On the other hand, considering the Friedmann equa-

tion (7), we see that the cosmological constant Λ is
equivalent to a constant energy density

ϵΛ ¼ ρΛc2 ¼
Λc2

8πG
: ðD3Þ

Substituting Eq. (D2) into the Friedmann equation (7),
we get

H2 ¼ 8πGϵm;0

3c2a3
þ Λ

3
; ðD4Þ

where we have assumed k ¼ 0. Equation (D4) is equivalent
to Eq. (8) with a total energy density

ϵ ¼ ϵm;0

a3
þ ϵΛ: ðD5Þ

2. DM+DE

A second manner to introduce the ΛCDM model is to
assume that the Universe is filled with DM and DE
interpreted as two noninteracting fluids [in that case we
take Λ ¼ 0 in Eq. (7)]. DM is treated as a pressureless fluid
with the equation of state (D1). Its energy density evolves
with the scale factor according to Eq. (D2). DE is treated as
a fluid with a negative pressure determined by the linear
equation of state

Pde ¼ −ϵde: ðD6Þ

Solving the energy conservation equation (6) with the
equation of state (D6), we obtain

ϵde ¼ ϵΛ; ðD7Þ

where ϵΛ is a constant of integration that is identified with
the cosmological density.
The total energy density of the Universe is the sum of

DM and DE: ϵ ¼ ϵm þ ϵde. Summing Eqs. (D2) and (D7),
we get

ϵ ¼ ϵm;0

a3
þ ϵΛ; ðD8Þ

which is equivalent to Eq. (D5). Introducing the present
energy density of the Universe ϵ0 ¼ 3c2H2

0=8πG (where
H0 is the present value of the Hubble constant) and the
present fraction of DM and DE given by Ωm;0 ¼ ϵm;0=ϵ0
and Ωde;0 ¼ ϵΛ=ϵ0 ¼ 1 −Ωm;0, we obtain
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ϵ

ϵ0
¼ Ωm;0

a3
þ 1 − Ωm;0: ðD9Þ

The ΛCDM model involves two unknown parameters ϵ0
and Ωm;0 that must be determined by the observations.
When a → 0, the Universe is dominated by DM and we
have

ϵ ∼
Ωm;0ϵ0
a3

; ðD10Þ

leading to a decelerated expansion (Einstein–de Sitter era).
When a → þ∞, the Universe is dominated by DE and we
have

ϵ → ϵΛ ¼ ð1 −Ωm;0Þϵ0: ðD11Þ

The energy density tends to a constant, leading to an
exponential expansion (de Sitter era).
Remark.—Introducing the dimensionless variables of

Sec. VII, we can rewrite Eq. (D9) as

ϵ̃ ¼ Ωm;0

1 −Ωm;0

1

a3
þ 1: ðD12Þ

The equality between DM and DE in the ΛCDM model
corresponds to a scale factor

at ¼
�

Ωm;0

1 −Ωm;0

�
1=3

¼ 0.765; ðD13Þ

an energy density ϵ̃t ¼ 2, and a value of the equation of
state parameter wt ¼ −1=2.

3. DF

A third manner to introduce the ΛCDM model is to
assume that the Universe is filled with a single DF [in that
case, we take Λ ¼ 0 in Eq. (7)] with a constant equation of
state

P ¼ −ϵΛ; ðD14Þ

where ϵΛ is identified with the cosmological density.
We stress that this constant equation of state is different
from the linear equation of state (D6). Solving the energy
conservation equation (6) with the equation of state (D14),
we obtain

ϵ ¼ ϵm;0

a3
þ ϵΛ; ðD15Þ

where ϵm;0 is a constant of integration. This equation is
equivalent to Eq. (D5) or (D8). The equation of state
parameter is

w ¼ P
ϵ
¼ −ϵΛ

ϵm;0

a3 þ ϵΛ
: ðD16Þ

The squared speed of sound c2s ¼ P0ðϵÞc2 is equal to zero.
This single DF model, based on the equation of state (D14),
provides the simplest unification of DM and DE that one
can imagine and it coincides with the usual ΛCDM model
from Appendices D 1 and D 2.67 In this connection, the first
term in Eq. (D15) plays the role of DM and the second term
plays the role of DE. As shown in [1] at a general level, the
effective DM term corresponds to the rest-mass energy
ρmc2 of the DF and the effective DE term corresponds to its
internal energy u [for the ΛCDM model, Eq. (D15) can be
obtained from Eqs. (46) and (47) with the equation of state
(D14) yielding u ¼ ϵΛ].
Remark.—The relation (D15) between the energy den-

sity and the scale factor can be rewritten as

ϵ ¼ ρΛc2
��

at
a

�
3

þ 1

�
; ðD18Þ

where at is the transition scale factor defined by Eq. (D13).
Solving the Friedmann equation (8) with the energy density
given by Eq. (D18), we find that the temporal evolution of
the scale factor is given by

a
at

¼ sinh2=3 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πGρΛ

p
tÞ: ðD19Þ

4. CDM halos

Classical (nonquantum) numerical simulations of CDM
lead to DM halos with a universal density profile that is
well fitted by the function

ρðrÞ ∝ 1
r
rs
ð1þ r

rs
Þ2 ; ðD20Þ

where rs is a scale radius that varies from halo to halo. This
is the so-called NFW profile [115]. Such halos result from a
process of violent collisionless relaxation. The density
decreases as r−3 for r → þ∞ and diverges as r−1 for

67It is shown in Refs. [75,113] that the constant pressure model
(D14) is equivalent to the ΛCDM not only for the evolution of
the background but to all orders in perturbation theory, even in
the nonlinear clustering regime (contrary to the initial claim of
[114]). If we consider the affine equation of state P ¼ αϵ − ϵΛ,
which yields a constant squared speed of sound c2s ¼ αc2, we
obtain [52]

ϵ ¼ ϵm;0

a3ð1þαÞ þ ϵΛ: ðD17Þ

This is equivalent to a two-fluid model Pm ¼ αεm (DM) and
Pde ¼ −εde (DE).
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r → 0. The divergence of the density at the center is related
to the fact that classical CDM halos are pressureless
(P ¼ 0) so there is no pressure gradient to balance the
gravitational attraction. This divergence is not consistent
with the observations that reveal that DM halos possess a
core, not a cusp. Observed DM halos are better fitted by the
function

ρðrÞ ¼ ρ0
ð1þ r

rh
Þð1þ r2

r2h
Þ ; ðD21Þ

where ρ0 is the central density and rh is the halo radius
defined as the distance at which the central density ρ0 is
divided by 4. This is the so-called Burkert profile [116].
The density decreases as r−3 for r → þ∞, similar to the
NFW profile, but displays a flat core for r → 0 instead of a
cusp. It is important to recall, however, that the Burkert
profile is purely empirical and has no fundamental
justification.

5. SF

The previous models are purely classical (nonquantum)
since ℏ does not explicitly appear in the equations. However,
it is possible to introduce SFmodels that reproduce, in certain
limits, the ΛCDM model. These models are more general
than theΛCDMmodel since a SF, being governed by theKG
equation, has a quantum origin.
Let us first consider a spatially homogeneous real SF

evolving according to the KG equation68

φ̈þ 3H _φþ dV
dφ

¼ 0 ðD22Þ

coupled to the Friedmann equation (8). The SF tends to run
down the potential toward lower energies and is submitted
to a Hubble friction. The density and the pressure of the SF
are given by

ϵ ¼ 1

2
_φ2 þ VðφÞ; ðD23Þ

P ¼ 1

2
_φ2 − VðφÞ: ðD24Þ

We can easily check that these equations imply the energy
conservation equation (6) [21]. For a general equation of
state PðϵÞ, using standard techniques [117–120], we can
obtain the SF potential as follows [121]. From Eqs. (D23)
and (D24), we get

_φ2 ¼ ðwþ 1Þϵ; ðD25Þ

where we have defined w ¼ P=ϵ. Using _φ ¼ ðdφ=daÞHa
and the Friedmann equation (8), we find that the relation
between the SF and the scale factor is given by69

dφ
da

¼
�
3c4

8πG

�
1=2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p

a
: ðD26Þ

On the other hand, according to Eqs. (D23) and (D24), the
potential of the SF is given by

V ¼ 1

2
ð1 − wÞϵ: ðD27Þ

Therefore, the potential of the SF is determined in para-
metric form by the equations

φðaÞ ¼
�
3c4

8πG

�
1=2 Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ wðaÞ
p da

a
; ðD28Þ

VðaÞ ¼ 1

2
½1 − wðaÞ�ϵðaÞ: ðD29Þ

For the constant equation of state (D14) corresponding to
the ΛCDM model in its UDM interpretation, Eq. (D28)
with Eq. (D16) is readily integrated, leading to the hyper-
bolic potential [121,122]

VðψÞ ¼ 1

2
ρΛc2ðcosh2 ψ þ 1Þ; ðD30Þ

where

ψ ¼ −
�
8πG
3c4

�
1=2 3

2
φ: ðD31Þ

The SF is related to the scale factor by

ða=atÞ−3=2 ¼ sinh ψ ; ðD32Þ

where at is the transition scale factor defined by Eq. (D13)
and ψ ≥ 0. We note that this solution is exact in the sense
that it does not rely on any approximation. However, it
corresponds to a very particular initial condition of the KGF
equations [122]. We also note that the SF does not oscillate.
According to Eqs. (D19) and (D32) it gently descends the
potential.70

68Here VðφÞ denotes the total potential of the SF including the
rest-mass term. In addition, the time variable stands here for ct.

69We assume a nonphantom universe w > −1.
70We can also associate with the ΛCDM model a tachyonic SF

with a potential (see [121,122] for details)

VðψÞ ¼ ρΛc2

cos ψ
; ðD33Þ

where ψ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πGρΛ=c2

p
φ. The SF is related to the scale factor

by ða=atÞ−3=2 ¼ tan ψ with 0 ≤ ψ ≤ π=2.
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The ΛCDM model can also be obtained from a real SF
model with a potential

VðφÞ ¼ m2c2

2ℏ2
φ2 þ ϵΛ: ðD34Þ

In the fast oscillation regime, the SF experiences slowly
damped oscillations and behaves as DM. When it reaches
the bottom of the potential, the energy density becomes
constant (ϵ ¼ ϵΛ) and the SF behaves as DE (cosmological
constant).
We can finally consider a complex SF with a potential

Vtotðjφj2Þ ¼
m2c2

2ℏ2
jφj2 þ ϵΛ: ðD35Þ

This model, referred to as the ΛFDM model, is considered
in detail in Appendix E. Here, we just note that, in the
fast oscillation regime where quantum effects can be
neglected (TF approximation), the SF undergoes a process
of spintessence (it slowly descends the potential by rapidly
spinning about the vertical axis) and behaves like the
ΛCDM model.
We note that the shifted quadratic potentials from

Eqs. (D34) and (D35) are very different from the hyperbolic
potential from Eq. (D30). In addition, the SF oscillates or
spins rapidly in the potentials from Eqs. (D34) and (D35)
while it just descends the potential from Eq. (D30) without
oscillating. These remarks show that several SF models can
behave just like the ΛCDM model while being fundamen-
tally different from each others.
Remark.—If we expand Eq. (D30) for φ → 0we find that

VðφÞ ¼ ρΛc2 þ
9m2

Λc
2

8ℏ2
φ2 þ… ðD36Þ

We see that the minimum of the potential is equal to the
cosmological density V0 ¼ ρΛc2 and that the mass of the
SF is m ¼ ð3=2ÞmΛ, where mΛ ¼ 1.20 × 10−33 eV=c2 is
the cosmon mass [see Eq. (190)]. Our approach provides
therefore a physical interpretation to the cosmon mass as
being the mass of the SF responsible for the DE in the late
Universe. To the best of our knowledge, this interpretation
has not been given before. In comparison, the mass of the
SF in the ΛFDM model (D35) is of orderm ∼ 10−22 eV=c2

(see Appendix E).

APPENDIX E: ΛFDM MODEL

In this appendix, we consider a complex SF model with a
constant potential V ¼ ϵΛ equal to the cosmological
density. This model generalizes the relativistic FDM model
described by the KGE equations (212) and (213) with
V ¼ 0. In the fast oscillation regime or in the TF approxi-
mation (where quantum effects can be neglected), it
coincides with the ΛCDM model. On the other hand,
when quantum effects are taken into account but relativistic

effects are neglected (as in the case of DM halos), it
coincides with the nonrelativistic FDM model [123]
described by the GPP equations (218) and (219) with
V ¼ 0 reducing to the Schrödinger-Poisson equations. We
shall call it the ΛFDM model.

1. Potential of the ΛFDM model

We assume that DM and DE are described by a single
complex SF with a constant potential

V ¼ ϵΛ; ðE1Þ

where ϵΛ is the cosmological density. In the fast oscillation
regime, using Eq. (36), we find that the pressure is given by

P ¼ −ϵΛ: ðE2Þ

Therefore, the pressure is constant as in the ΛCDM model
[see Eq. (D14)]. On the other hand, the equations governing
the evolution of the homogeneous background in the fast
oscillation regime [Eqs. (32)–(40)] are

ρ ¼ Qm
a3

; ðE3Þ

ϵ ¼ ρc2 þ ϵΛ; ðE4Þ

Etot ¼ mc2; ðE5Þ

w ¼ P
ϵ
¼ −

ϵΛ
ρc2 þ ϵΛ

; ðE6Þ

cs ¼ 0: ðE7Þ

They return the equations of the ΛCDM model (see
Appendix D). In particular, combining Eqs. (E3) and
(E4), we obtain

ϵ ¼ Qmc2

a3
þ ϵΛ; ðE8Þ

which is equivalent to Eq. (D15) with the identification
Qmc2 ¼ ϵm;0. The constant Qmc2 (charge of the SF) is
equal to the present energy density ϵm;0 ¼ Ωm;0ϵ0 of
DM. This result is valid for an arbitrary potential V (see
Sec. II G). However, for a constant potential, the pseudo-
rest-mass density ρ coincides with the rest-mass density ρm
[see Eq. (45)] and plays the role of DM (ρ ¼ ρm). On the
other hand, the internal energy is constant (u ¼ ϵΛ) and
plays the role of DE [see Eq. (48)].
The total potential of the SF including the rest-mass

term is

V totðjφj2Þ ¼
m2c2

2ℏ2
jφj2 þ ϵΛ: ðE9Þ
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This is a shifted quadratic potential. Using Eq. (25), it can
be written as

V tot ¼
1

2
ρc2 þ ϵΛ: ðE10Þ

The total potential of the SF is represented by a dashed line
in Fig. 13. In the fast oscillation regime, the SF descends
the potential on the surface of the bowl up to the origin
jφj ¼ 0 by rapidly spinning around the vertical axis (see
Sec. XII A).
Remark.—The ordinary FDM model corresponds to a

complex SF with a vanishing potential V ¼ 0. In the fast
oscillation regime, it just describes pressureless DM
(P ¼ 0). Therefore, it does not provide a unification of
DM and DE. DE has to be introduced in a different manner,
either by introducing another species (like quintessence)
or through a nonvanishing cosmological constant Λ. The
ordinary FDMmodel (V ¼ 0)þ a cosmological constant is
the complex SF generalization of the ΛCDM model of
Appendix D 1. We shall call it the ΛFDMmodel. The FDM
model with a constant potential V ¼ ϵΛ provides a simple
unification of DM and DE. This is the complex SF
generalization of the ΛCDM model viewed as a DF or a
UDM model (see Appendix D 3). We shall also call it the
ΛFDM model.

2. Validity of the fast oscillation regime

Introducing the dimensionless variables of Secs. VII and
XIII, and using Eq. (D12), we find that the fast oscillation
regime ω ≫ H of the ΛFDM model (where it is equivalent
to the ΛCDM model) is valid for ϵ̃ ≪ σ, where σ is defined
by Eqs. (188) and (189). This criterion first requires that
σ ≫ 1, i.e., m ≫ mΛ ¼ 1.20 × 10−33 eV=c2. Therefore,
the mass of the SF must be much larger than the cosmon
mass. When this condition is fulfilled, the fast oscillation
regime is valid for a ≫ av (see Fig. 20) with

av
at

¼
�

1

σ − 1

�
1=3

; ðE11Þ

where at is the transition scale factor from Eq. (D13). The
fast oscillation regime is not valid for a < av. In that case,
the SF is in a slow oscillation regime of kination. This gives
rise to a stiff matter era as discussed in [20,28] and in
Sec. XIII.
In the ΛFDM model the SF undergoes three successive

eras: a stiff matter era for a < av, a DM era for
av < a ≪ at, and a DE era for a ≫ at (we recall that at ¼
0.765 corresponds to the transition between the DM and
DE eras). These results are represented on the dynamical
phase diagram of Fig. 21, where we have plotted the
transition scale av as a function of the mass m of the SF. If
the SF has a jφj4 self-interaction, an additional radiationlike
era occurs between the stiff matter era and the DM era (see
the Remark at the end of Sec. XIII).
In Fig. 22 we have represented the motion of the SF in

the potential V totðjφj2Þ during these different periods.
During the stiff matter era (a < av), corresponding to a
slow oscillation regime, the SF rolls down the potential well
without oscillating. Then, for a > av, the SF enters in the
fast oscillation regime and descends the potential by
oscillating rapidly about the vertical axis until it falls at
the bottom of the well ðV totÞmin ¼ ϵΛ and achieves a
constant energy density ϵΛ. This evolution successively
describes the DM and DE eras.

3. FDM halos

Since the potential Vðjφj2Þ ¼ ϵΛ of the ΛFDM model is
constant, it disappears from the wave equations. As a result,
the relativistic wave equation (212) reduces to the standard
KG equation
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FIG. 20. Graphical construction determining the range of
validity of the fast oscillation regime in the ΛFDM model (we
have represented ϵ̃ versus a).
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FIG. 21. Dynamical phase diagram of the ΛFDM model
showing the different eras experienced by the SF during the
evolution of the Universe as a function of its mass m (this figure
also determines the validity of the fast oscillation regime above
av). We see how the fundamental cosmon mass mΛ comes into
play in the problem.
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□φþm2c2

ℏ2
φ ¼ 0; ðE12Þ

and the nonrelativistic (GP) wave equation (218) reduces to
the standard Schrödinger equation

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þmΦψ : ðE13Þ

We thus recover the wave equations of the standard FDM
model corresponding to V ¼ 0.71

When considering DM halos, we can make the
nonrelativistic approximation. FDM halos are therefore
described by the Schrödinger-Poisson equations. The
Schrödinger-Poisson equations are known to undergo a
process of gravitational cooling and violent relaxation
[65,100]. This leads to FDM halos with a core-halo structure
involving a quantum core (soliton) surrounded by an
atmosphere of scalar radiation whose coarse-grained struc-
ture is consistentwith theNFWdensity profile ofCDMhalos
at large distances. This quantum core-halo structure is
observed in numerical simulations of FDMhalos [124–132].
The quantum core (soliton) corresponds to the ground

state of the Schrödinger-Poisson equations. In theMadelung
hydrodynamical representation of the Schrödinger-Poisson
equations (see Sec. XVC), it is determined by the condition
of quantum hydrostatic equilibrium

ρ

m
∇QB þ ρ∇Φ ¼ 0 ðE14Þ

coupled to the Poisson equation

ΔΦ ¼ 4πGρ: ðE15Þ

The solitonic core results from the balance between the
gravitational attraction and the quantumpotential, taking into
account the Heisenberg uncertainty principle. Its density
profile can be determined by solving numerically the differ-
ential equation

ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�

¼ 4πGρ; ðE16Þ

obtained by combining Eqs. (E14) and (E15), as done
in [133,134]. The exact core mass-radius relation is given
by [133,134]

M ¼ 9.95
ℏ2

Gm2R99

; ðE17Þ

where R99 is the radius enclosing 99% of the mass. This
mass-radius relation is consistent with the characteristics
of the smallest—ultracompact—DM halos observed in
the Universe (dSphs like Fornax with M ∼ 108 M⊙ and
R ∼ 1 kpc) provided that the boson mass is of the order of72

m ∼ 10−22 eV=c2: ðE18Þ

The exact density profile of the soliton is well approximated
by the Gaussian [68]

ρ ¼ ρ0e−r
2=R2 ðE19Þ

withM ¼ 5.57ρ0R3 andR99 ¼ 2.38R. It can also be fitted by
the function [124,125]

ρ ¼ ρ0
½1þ ðr=RÞ2�8 ðE20Þ

with M ¼ 0.318ρ0R3 and R99 ¼ 1.151R (see Fig. 2 of [25]
for a comparison between these two profiles and the exact
one). We note that the density presents a core, not a cusp,
when r → 0. Quantum terms are important at “small” scales,
implying that the soliton has a size comparable to the de
Broglie length (λdB ∼ 1 kpc).73 Quantum mechanics stabil-
izes the system against gravitational collapse and solves the
core-cusp problem.
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FIG. 22. Schematic evolution of the SF in the total potential
V totðjφj2Þ showing roll versus oscillations (the scales are not
respected). For a < av, the SF rolls down the potential well
without oscillating (stiff matter era); for a > av, it oscillates
rapidly (DM and DE eras).

71If the SF has a jφj4 self-interaction, it is described by the
KGE or GPP equations (216) and (221) with A ¼ 0.

72Ultracompact DM halos (like dSphs) are assumed to corre-
spond to a pure soliton without atmosphere, or a tiny one. This
is the ground state of the Schrödinger-Poisson equations. Large
DM halos (like the medium spiral) have a solitonic core
surrounded by an extended envelope. The core mass–halo mass
relation McðMhÞ has been obtained in different manners in
Refs. [25,105,125,128,132,135–137].

73The mass-radius relation of the soliton scales as
M ∼ h2=Gm2R. Introducing a typical velocity scale through
the virial relation v2 ∼ GM=R, we obtain R ∼ h=mv ¼ λdB. Since
v ∼

ffiffiffi
α

p
c ∼ 10−3c (see Appendix C), the de Broglie length is

larger than the Compton length λC ¼ ℏ=mc by about 3 orders of
magnitude.
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The halo of scalar radiation results from the quantum
interferences of excited states [65]. It is made of uncon-
densed bosons with an out-of-equilibrium DF. On the
coarse-grained scale the density of the halo is consis-
tent with the NFW density profile of CDM halos [see
Eq. (D20)] which decrease as r−3 at large distances. It is
also consistent with an isothermal profile with an effective
temperature Teff as predicted by the statistical theory of
violent collisionless relaxation developed by Lynden-Bell
[99]. Effective thermal effects are important at “large” scales
(≥1 kpc). An approximately isothermal halo can account for
the flat rotation curves of the galaxies which have a constant
circular velocity [e.g., v∞ ¼ ð2kBTeff=mÞ1=2 ∼ 153 km=s
for the medium spiral]. On the fine-grained scale, the halo
has a granular structure [124,125]. It is made of “quasipar-
ticles” [138] of the size of the solitonic core λdB ∼ ℏ=mv ∼
1 kpc (de Broglie wavelength) and with an effective
mass meff ∼ ρλ3dB ∼ 107 M⊙ ≫ m. These quasiparticles
can induce a secular collisional evolution of the halo as
discussed in [138–141].
In conclusion, in the FDM model, the quantum core

(soliton) is able to solve the core-cusp problem and the
approximately isothermal halo accounts for the flat rotation
curves of the galaxies. This core-halo structure is in
qualitative agreement with the observations. However, as
discussed in Sec. XVH, the FDMmodel cannot account for
the universality of the surface density of DM halos
Σobs
0 ¼ 141þ83

−52 M⊙=pc2. This suggests that the constant
potential from Eq. (E1) should be replaced by a more
general potential such as the logarithmic potential of
Eq. (53) leading to the logotropic model, which can
account for the universality and the value of Σobs

0 .

APPENDIX F: THE STRUCTURE OF
LOGOTROPIC DM HALOS

In this appendix, we describe in detail the structure of
logotropic DM halos. We use a nonrelativistic approach
that is appropriate to DM halos. This appendix comple-
ments the discussion given in Sec. 5 of Ref. [1] and in
Sec. XIV B of the present paper.

1. Density profile

In the TF approximation, the differential equation of
hydrostatic equilibrium determining the density profile of a
DM halo is given by Eq. (206). For the logotropic equation
of state (55), it becomes

AΔ
�
1

ρ

�
¼ 4πGρ: ðF1Þ

If we define

θ ¼ ρ0
ρ
; ξ ¼

�
4πGρ20

A

�
1=2

r; ðF2Þ

where ρ0 is the central density and r0 ¼ ðA=4πGρ20Þ1=2 is
the logotropic core radius, we find that Eq. (F1) reduces to
the Lane-Emden equation of index n ¼ −1 [104],

Δθ ¼ 1

θ
ðF3Þ

with the boundary conditions θ ¼ 1 and θ0 ¼ 0 at ξ ¼ 0.74

This equation has been studied in detail in [1,103]. There
exists an exact analytical solution θs ¼ ξ=

ffiffiffi
2

p
, corres-

ponding to ρs ¼ ðA=8πGÞ1=2r−1, called the singular logo-
tropic sphere. The regular logotropic density profiles must
be computed numerically. The normalized density profile
ðρ=ρ0Þðr=r0Þ is universal.75 It is plotted in Fig. 18 of [1].
The density profile of a logotropic DM halo has a core
(ρ → cst when r → 0) and decreases at large distances as
ρ ∼ r−1. More precisely, for r → þ∞, we have

ρ ∼
�

A
8πG

�
1=2 1

r
; ðF4Þ

like for the singular logotropic sphere. This profile has an
infinite mass because the density does not decrease
sufficiently rapidly with the distance. This implies that,
in the case of real DM halos, the logotropic equation
of state (55) or the logotropic profile determined by
Eq. (F1) cannot be valid at infinitely large distances
(corresponding to very low densities).76 The logotropic
profile is expected to be surrounded by an extended
envelope where the density decreases more rapidly like,

74As explained in footnote 66 the Lane-Emden equation of
index n ¼ −1 cannot be obtained from the equation of state of a
polytrope of index γ ¼ 0 (i.e., n ¼ −1) which has a vanishing
pressure gradient. One has to consider the limit γ → 0 and
K → ∞ with A ¼ Kγ finite, leading to the logotropic equation
of state (55). In this sense, Eq. (F3) is a new equation which com-
pletes the class of Lane-Emden equations for standard polytrope.

75This universality is related to the homology invariance of the
solutions of the Lane-Emden equation.

76This infinite mass problem does not rule out the logotropic
model. Actually, we have the same problem with the isothermal
sphere. The isothermal density profile decreases at large distances
as ρ ∼ 1=ð2πGβmr2Þ, like the singular isothermal sphere [104]. It
has an infinite mass. Despite this problem, the isothermal density
profile has often been used to model DM halos because it
provides a good fit of their central parts (up to a few halo radii)
and it can be justified by Lynden-Bell’s statistical theory of
violent collisionless relaxation [23,25,99,142]. In reality, the
density of DM halos decreases more rapidly at large distances,
typically as r−3, like for the Burkert [116] and NFW [115]
profiles. This can be explained in terms of incomplete relaxation
(see, e.g., Appendix B of [25]). In [1,2] we have suggested that
the logotropic model could be justified by a notion of generalized
thermodynamics. In this context, the constant A in the logotropic
distribution plays the role of a generalized temperature which is
the counterpart of the temperature T in the isothermal distribu-
tion. This generalized thermodynamical interpretation strength-
ens the analogy between the isothermal and logotropic models.
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e.g., r−3 (see footnote 76). In practice, we shall consider the
logotropic profile up to a few halo radii rh (see below).
We note that the density profiles of real DM halos

obtained from observations display a core (ρ ∼ r0) followed
by a region where the density decreases as r−1, similar to
the logotropic density profile. This r−1 decay can be seen in
Fig. 6 (right) of Oh et al. [143] and in Fig. 3 (plate U11583)
of Robles and Matos [144]. The fact that the slope of the
density profile of DM halos close to the core radius rh is
approximately equal to −1 has also been pointed out by
Burkert [145] (see in particular the upper right panel of
his Fig. 1). These properties are in good agreement with the
logotropic model.77 However, at large distances, the
density of real DM halos decreases more rapidly than
r−1, typically as r−2 or r−3, consistent with the asymptotic
behavior of the isothermal sphere [104] or with the
asymptotic behaviors of the Burkert [116] and NFW
[115] profiles. Now, we note that the logotropic density
profile defined by Eqs. (F2) and (F3) has been obtained by
neglecting quantum (or wave) effects. If we consider the
logotropic GPP equations (219) and (220) it is possible
that, like in the case of FDM (see Appendix E), quantum
interferences build up a halo whose average density profile
decreases as r−2 or r−3 at large distances [65].78 It would
be interesting to investigate this idea numerically. If this
idea is correct, a “quantum” logotropic DM halo would
possess a core (ρ ∼ r0)þ an intermediate logotropic profile
(ρ ∼ r−1) þ an extended isothermal (ρ ∼ r−2) or NFW
(ρ ∼ r−3) envelope, in agreement with the observations
(see, e.g., [143–145]). This structure would be obtained in
the TF approximation m≫m0¼3.57×10−22 eV=c2 (see
Sec. XV F). If we go beyond the TF approximation (which
is not satisfied for a boson massm ∼ 10−22 eV=c2), the DM
halo should also possess a quantum core (soliton) like in the
FDM model (see Appendix E).
Remark.—Using qualitative arguments, Ferreira and

Avelino [5] have argued that logotropic DM halos are
dynamically unstable. However, the stability of logotropic
spheres must be considered carefully due to the fact
that they have an infinite mass in an unbounded domain.
The stability of box-confined logotropic configurations
has been studied in detail in [103]. It is found that they
are stable below a critical density contrast and unstable
above it. These results are similar to those obtained for

box-confined self-gravitating isothermal spheres [111].
Isothermal spheres have been used in many models of
DM halos despite the fact that they have an infinite mass
and that they are unstable above a critical density contrast
leading to core collapse. Similar properties are expected for
logotropic spheres.

2. Halo mass

The halo radius rh is defined as the distance at which the
central density ρ0 is divided by 4. For logotropic DM halos,
using Eq. (F2), it is given by

rh ¼
�

A
4πGρ20

�
1=2

ξh; ðF5Þ

where ξh is determined by the equation

θðξhÞ ¼ 4: ðF6Þ

The normalized density profile ðρ=ρ0Þðr=rhÞ of logotropic
DM halos is plotted in Fig. 19 of [1]. The halo mass Mh,
which is the massMh ¼

R rh
0 ρðr0Þ4πr02dr0 contained within

the sphere of radius rh, is given by

Mh ¼ 4π
θ0ðξhÞ
ξh

ρ0r3h: ðF7Þ

Solving the Lane-Emden equation of index n ¼ −1 [see
Eq. (F3)], we numerically find

ξh ¼ 5.85; θ0h ¼ 0.693: ðF8Þ

This yields

rh ¼ 5.85

�
A

4πG

�
1=2 1

ρ0
ðF9Þ

and

Mh ¼ 1.49ρ0r3h: ðF10Þ

3. Constant surface density

Eliminating the central density between Eqs. (F9) and
(F10), we obtain the logotropic halo mass-radius relation

Mh ¼ 8.71

�
A

4πG

�
1=2

r2h: ðF11Þ

Since Mh ∝ r2h we see that the surface density Σ0 is
constant.79 This is a very important property of logotropic
DM halos [1]. From Eq. (F9), we get

77We note that the logotropic profile ρ ∼ r−1 may be wrongly
interpreted in certain observations as a NFW cusp r−1 if the
logotropic core is not sufficiently well resolved. Indeed, in that
case, we see only the r−1 tail of the logotropic distribution, not the
core (ρ ∼ r0). This may lead to the illusion that certain DM halos
are cuspy in agreement with the NFW prediction while they are
not [146].

78This halo may also be obtained in a purely classical model
based on the Euler-Poisson equations with a logotropic equation
of state. This corresponds to the TF approximation ℏ → 0 of the
logotropic GPP equations.

79This is consistent with the fact that the density of a logotropic
DM halo decreases as r−1 at large distances.
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Σ0 ¼ ρ0rh ¼ 5.85

�
A

4πG

�
1=2

: ðF12Þ

Therefore, all the logotropic DM halos have the same
surface density, whatever their size, provided that A is
interpreted as a universal constant. With the value of
A=c2 ¼ 2.10 × 10−26 gm−3 obtained from cosmological
considerations (without free parameter) in Sec. VI we
obtain Σth

0 ¼ 133 M⊙=pc2 in very good agreement with
the value Σobs

0 ¼ ρ0rh ¼ 141þ83
−52 M⊙=pc2 obtained from the

observations [17]. On the other hand, Eq. (F10) may be
rewritten as

Mh ¼ 1.49Σ0r2h ¼ 1.49
Σ3
0

ρ20
: ðF13Þ

We note that the ratio Mh=ðΣ0r2hÞ ¼ 1.49 in Eq. (F13) is in
good agreement with the ratio Mh=ðΣ0r2hÞ ¼ 1.60 obtained
from the observational Burkert profile (see Appendix D 4
of [25]). This is an additional argument in favor of the
logotropic model.

4. The gravitational acceleration

We can define an average DM halo surface density by the
relation

hΣi ¼ Mh

πr2h
: ðF14Þ

For logotropic DM halos, we find

hΣith ¼
Mh

πr2h
¼ 1.49

π
Σth
0 ¼ 63.1 M⊙=pc2: ðF15Þ

This theoretical value is in good agreement with the
value hΣiobs ¼ 72þ42

−27 ;M⊙=pc2 obtained from the observa-
tions [147].80

The gravitational acceleration at the halo radius is

g ¼ gðrhÞ ¼
GMh

r2h
¼ πGhΣi: ðF16Þ

For logotropic DM halos, we find

gth ¼ πGhΣith ¼ 1.49GΣth
0 ¼ 2.76 × 10−11 m=s2. ðF17Þ

Again, this theoretical value is in good agreement with the
measured value gobs ¼ πGhΣiobs ¼ 3.2þ1.8

−1.2 × 10−11 m=s2

of the gravitational acceleration [147].

The circular velocity at the halo radius is

v2h ¼
GMh

rh
: ðF18Þ

Using Eqs. (F13)–(F17), we obtain the relation

v4h ¼ GgMh ¼ πhΣiG2Mh ¼ 1.49Σ0G2Mh; ðF19Þ

where g and Σ0 are universal constants. This relation is
connected to the Tully-Fisher relation [148] which involves
the baryon mass Mb instead of the DM halo mass Mh
via the cosmic baryon fraction fb ¼ Mb=Mh ∼ 0.17. This
yields ðMb=v4hÞth ¼ fb=ð1.49Σ0G2Þ ¼ 46.4 M⊙ km−4 s4

which is close to the observed value ðMb=v4hÞobs ¼ 47�
6 M⊙ km−4 s4 [19]. The Tully-Fisher relation is also a
prediction of the modification of Newtonian dynamics
(MOND) theory [149]. Using Eqs. (F17) and (208), we
obtain

gth ¼ 0.0291
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 −Ωm;0Þ

q
H0c ¼ 0.0419H0c: ðF20Þ

This relation explains why the fundamental constant a0 ¼
g=fb that appears in the MOND theory is of orderH0c=4 ¼
1.65 × 10−10 m=s2 (see the Remark in Sec. 3.3. of [4] for a
more detailed discussion). Note, however, that our model is
completely different from the MOND theory.

5. Logarithmic density slope

The logarithmic slope of the density profile of a DM halo
is defined by

αðrÞ ¼ d ln ρ

d ln r
: ðF21Þ

For logotropic DM halos it can be expressed in terms of the
Lane-Emden function θ by

αðrÞ ¼ −
ξθ0

θ
¼ −v; ðF22Þ

where v ¼ ξθ0=θ is the Milne variable [104]. The loga-
rithmic density slope αðrÞ of a logotropic DM halo is
plotted in Fig. 23. It starts from α ¼ 0 at r ¼ 0 (core) and
tends to −1 when r → þ∞. It reaches a minimum value
αmin ¼ −1.03 at r� ¼ 1.52rh. We find that α ¼ −0.3
(corresponding to the typical logarithmic inner density
slope of real DM halos found by [143,144,146]) at
r ¼ 0.186rh. Robles and Matos [144] define the core
radius r�h by the condition αðr�hÞ ¼ −1. In the case of
logotropic DM halos, r�h is consistent with our definition of
the halo radius rh since we find that r�h ¼ 0.890rh ∼ rh.

80This measured value is based on the observations and on a fit
of the density profile of DM halos by the Burkert profile [147].
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6. Logarithmic circular velocity slope

The circular velocity of a DM halo is given by

v2cðrÞ ¼
GMðrÞ

r
; ðF23Þ

where MðrÞ ¼ R
r
0 ρðr0Þ4πr02dr0 is the mass contained

within the sphere of radius r. The logarithmic slope of
the circular velocity profile is defined by

βðrÞ ¼ d ln vc
d ln r

: ðF24Þ

Using Eq. (F23) it can be written as

βðrÞ ¼ 1

2

�
d ln MðrÞ
d ln r

− 1

�
: ðF25Þ

For logotropic DM halos, using the Lane-Emden
equation (F3), we can establish that

d ln MðrÞ
d ln r

¼ ξ

θθ0
¼ u; ðF26Þ

where u ¼ ξ=ðθθ0Þ is the Milne variable [104]. Therefore,

βðrÞ ¼ 1

2
ðu − 1Þ: ðF27Þ

The logarithmic slope βðrÞ of the circular velocity of a
logotropic DM halo is plotted in Fig. 24.

7. Comparison between the logotropic model and the
fermionic and bosonic models of DM halos

It is an observational evidence that there is no DM halo
below a certain mass and below a certain size. The smallest
and most compact DM halos observed in the Universe are
dSphs like Fornax. To fix the ideas we shall consider that
the smallest halo observed in the Universe (what we call the
minimum halo) has a mass81

ðMhÞmin ¼ 108 M⊙ ðFornaxÞ: ðF28Þ

It is also an observational fact that the surface density Σ0 of
DM halos is constant and that it has the universal value [17]

Σobs
0 ¼ ρ0rh ¼ 141þ83

−52 M⊙=pc2: ðF29Þ

In the case of fermionic or bosonic models of DM, the
minimum halo is expected to correspond to the ground state
(T ¼ 0) of the self-gravitating quantum system [105]. We
can then combine the mass-radius relation MhðrhÞ of a
fermionic or bosonic DM halo at T ¼ 0 (ground state) with
the universal surface density Σ0 from Eq. (F29) in order to
express the mass ðMhÞmin, the radius ðrhÞmin, and the
central density ðρ0Þmax of the minimum halo as a function
of the characteristics (mass m and scattering length as) of
the DM particle. For specified values of m and as we can
thus obtain ðMhÞmin, ðrhÞmin, and ðρ0Þmax. In practice, we
proceed the other way round. We use the observed value of
ðMhÞmin given by Eq. (F28) to obtain the characteristics (m,
as) of the DM particle. Once these characteristics are
known, we can obtain the radius ðrhÞmin and the central
density ðρ0Þmax of the minimum halo. We can also plot the
density profile of the minimum halo for these different
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FIG. 24. Logarithmic circular velocity slope of the logotropic
profile as a function of the radial distance normalized by the halo
radius.
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FIG. 23. Logarithmic density slope of the logotropic profile as a
function of the radial distance normalized by the halo radius. It is
compared to the logarithmic density slope of the Burkert profile
(dashed line) from Eq. (D21). The two profiles are relatively close
to each other for r ≤ rh. At r ∼ rh the Burkert profile has an
effective slope α ∼ −1 like the asymptotic slope of the logotrope.
Asymptotically, the Burkert profile has a slope α ∼ −3, which is
out of the frame of the figure.

81We take this value as a reference in order to be consistent
with our previous papers. If a possibly more relevant minimum
mass is adopted, our numerical applications should be reconsid-
ered but our main conclusions should not be altered.

PIERRE-HENRI CHAVANIS PHYS. REV. D 106, 063525 (2022)

063525-50



models. These calculations are developed in detail in Sec. II
of [105] (they are generalized in Sec. VII C of [105] to more
complicated models by using a Gaussian ansatz). We can
also obtain an estimate of the minimum halo mass and
minimum halo radius as a function of m and as from the
Jeans instability theory (see, e.g., Refs. [67,72] and
Appendices H and I of [105]) but this method is less
accurate. We note that the fermionic or bosonic models of
DM halos are not fully predictive since (i) we have to
assume the value of Σ0 from the observations [see
Eq. (F29)] and (ii) we need to know the value of m and
as to determine ðMhÞmin, ðrhÞmin, and ðρ0Þmax theoretically
[alternatively, we have to know the value of ðMhÞmin to
obtain m and as, which then yield ðrhÞmin and ðρ0Þmax].
In the case of the logotropic model, there is no unknown

parameter. The universal constant surface density Σ0 ¼
133 M⊙=pc2 of the DM halos is predicted by this model
(see [1] and Appendix F 3). As a result, the characteristics
of a logotropic DM halo of massMh are fully characterized
by Eq. (F13). For ðMhÞmin ¼ 108 M⊙, we obtain (without
free parameter)

ðrhÞmin ¼ 710 pc; ðρ0Þmax ¼ 0.187 M⊙pc−3: ðF30Þ

We note, however, that the minimum halo mass ðMhÞmin is
not directly determined by the logotropic model since the
mass-radius relationMhðrhÞ of all the logotropic DM halos
satisfies the constraint from Eq. (F29).82

The density profile of a logotropic DM halo of mass
ðMhÞmin ¼ 108 M⊙ (minimum halo) is plotted in Fig. 25.
It can be compared to the profiles obtained in Sec. II
of [105] by assuming that DM is made of fermions (see
Fig. 1 of [105]), noninteracting BECs (see Fig. 2 of [105]),
or self-interacting BECs in the TF approximation (see

Fig. 3 of [105]). We see that the density of a logotropic
DM halo decreases less rapidly than the density of a
fermionic or bosonic DM halo in its ground state. Indeed,
it decays as r−1 at large distances, while the density
profile of noninteracting BECs decreases exponentially
rapidly and the density profiles of fermions and BECs in
the TF approximation have a compact support. As
mentioned previously, the logotropic profile is not valid
at large distances because it would have an infinite mass.
In reality, the logotropic core is surrounded by an outer
envelope where the density decreases more rapidly than
r−1, presumably as r−3.
Remark.—As discussed in Appendix F 1, the r−1 decay

of the logotropic density profile is in agreement with the
density profile of real DM halos close to the halo radius.
This r−1 decay is responsible for the universal surface
density of DM halos and the fact that their mass-radius
relation behaves as Mh ∝ r2h in agreement with the
observations [17]. By contrast, fermionic and bosonic
DM halos do not present a region where the density
decreases as r−1. As a result, they do not have a constant
surface density Σ0 and their mass-radius relation is not in
agreement with the observations (see the discussion at the
end of Sec. XVH). For large fermionic or bosonic DM
halos, the constraint from Eq. (F29) could be satisfied by
taking into account the presence of an isothermal halo
surrounding the quantum core and assuming that the
effective “central” density of the halo corresponds to the
density at the contact between the quantum core and
the halo (see Ref. [25] for details). In that case, we have
to identify the halo radius rh with the isothermal core
radius r0, not with the quantum core radius Rc, and we
have to allow the temperature T to change from halo to
halo according to Eq. (168) of [25] in order to maintain a
constant surface density. Alternatively, if the constraint
(F29) cannot be satisfied in all DM halos, the (pure)
fermionic and bosonic DM models are in trouble and the
logotropic model may be an interesting substitute.
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FIG. 25. Density profile of the minimum halo of mass
ðMhÞmin ¼ 108 M⊙ in the logotropic model.

82In the fermionic or bosonic DM models, the value of the
minimum halo mass ðMhÞmin results from the combination of the
mass-radius relation of the ground state MhðrhÞ with the con-
straint from Eq. (F29), for given values of m and as [105]. For
example, for noninteracting bosons of mass m ∼ 10−22 eV=c2,
we get ðMhÞmin ∼ 108 M⊙ and ðrhÞmin ∼ 1 kpc. However, for
bigger halos, these purely quantum models cannot account for the
observed constant surface density of DM halos (see Sec. XV H).
Note that, if we consider the quantum logotropic model (going
beyond the TF approximation), the core of DM halos has both a
quantum and a logotropic nature. It is possible that the quantum
core dominates in small halos [we have indeed seen that the
TF approximation is marginally valid in small DM halos of mass
ðMhÞmin ∼ 108 M⊙ form ∼m0 ∼ 10−22 eV=c2] and that the logo-
tropic core dominates in large DM halos. In that case, the mass
and size ðMhÞmin ∼ 108 M⊙ and ðrhÞmin ∼ 1 kpc of the minimum
halo could be due to quantum effects (the small boson mass
m ∼ 10−22 eV=c2) like in the FDM model—in agreement with
the Jeans study of Sec. XVI D—while the universal surface
density Σ0 ¼ 141 M⊙=pc2 of bigger DM halos could be due
to logotropic effects (the fundamental constant A=c2 ¼ 2.10 ×
10−26 gm−3 of our model). This important point is further
discussed in Appendix G.
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APPENDIX G: THE TYPICAL MASS
OF THE DM PARTICLE

Let us assume that DM halos are described by the
quantum logotropic model and that dSphs (with typical
mass 108 M⊙) are just at the limit of validity of the TF
approximation. This means that they can be marginally
described both by the FDM model (ℏ ≠ 0 and A ¼ 0) and
by the classical logotropic model (A ≠ 0 and ℏ ¼ 0).
The mass-radius relation of FDM halos is [see Eq. (E17)]

M ¼ 9.95
ℏ2

Gm2R
: ðG1Þ

The mass-radius relation of classical logotropic DM halos
is [see Eq. (F13)]

M ¼ 1.49Σ0R2; ðG2Þ

where Σ0 ¼ 5.85ðA=4πGÞ1=2 ¼ 133 M⊙=pc2 [see
Eq. (F12)] is the universal surface density of DM halos.
If we combine these two relations, we get

ðMhÞmin ¼ 5.28
�
Σ0ℏ4

G2m4

�
1=3

: ðG3Þ

This formula determines the mass ðMhÞmin of the minimum
halo as a function of the boson mass m. Inversely, knowing
the minimum halo mass from the observations, we can
determine the boson mass. Taking M ¼ 108 M⊙ we find
m ¼ 3.46 × 10−22 eV=c2. This explains why the mass
m0 ¼ 3.57 × 10−22 eV=c2 determining the domain of val-
idity of the TF approximation in DM halos similar to dSphs
happens to coincide with the boson mass m ∼ 10−22 eV=c2

(see Sec. XV F). We then obtain the minimum halo radius

ðrhÞmin ¼ 1.88

�
ℏ2

Gm2Σ0

�
1=3

¼ 709 pc; ðG4Þ

which is in good agreement with the typical size of dSphs.
On the other hand, the Jeans mass in the FDM model is

(see Appendix H of [105])

MJ ¼
π

6

�
π3ℏ2ρ1=3m;0

Gm2

�
3=4

; ðG5Þ

where ρm;0 is the present matter density in the homo-
geneous background. Writing ðMhÞmin ¼ χMJ with χ ∼
10–100 (see Appendix I of [105]) and using Eqs. (G3) and
(G5) we get

m ¼ 4.89χ6
ℏρ3=2m;0

Σ2
0G

1=2 : ðG6Þ

Using ρm;0 ¼ 0.0178Λ=G and Σ0 ¼ 0.0207c
ffiffiffiffi
Λ

p
=G [see

Eqs. (155) and (156) of [105]], we finally obtain

m ¼ 27.1χ6
ℏ

ffiffiffiffi
Λ

p

c2
: ðG7Þ

Therefore, the DM boson mass m is equal to the cosmon
mass (190) multiplied by a huge prefactor ∼1011 (this is
because χ is raised to the power 6). The cosmon mass gives
the fundamental mass scale of bosons [49,105].

APPENDIX H: NUMERICAL VALUES FROM
OBSERVATIONS

In our numerical applications, we have taken the
following values from the Planck Collaboration [34]:

H0 ¼ 2.19510−18 s−1; ðH1Þ

ϵ0 ¼ 7.75 × 10−7 gm−1 s−2; ðH2Þ

ϵ0=c2 ¼ 8.62 × 10−24 gm−3; ðH3Þ

Ωde;0 ¼ 0.6911; ðH4Þ

Ωdm;0 ¼ 0.2589; ðH5Þ

Ωb;0 ¼ 0.0486; ðH6Þ

Ωm;0 ¼ 0.3089: ðH7Þ
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92, 123527 (2015).
[24] P. H. Chavanis, Eur. Phys. J. Plus 132, 248 (2017).
[25] P. H. Chavanis, Phys. Rev. D 100, 083022 (2019).
[26] A. Burkert, Astrophys. J. 904, 161 (2020).
[27] H. Deng, M. P. Hertzberg, M. H. Namjoo, and A.

Masoumi, Phys. Rev. D 98, 023513 (2018).
[28] B. Li, T. Rindler-Daller, and P. R. Shapiro, Phys. Rev. D

89, 083536 (2014).
[29] A. Suárez and P. H. Chavanis, Phys. Rev. D 92, 023510

(2015).
[30] A. Suárez and P. H. Chavanis, J. Phys. Conf. Ser. 654,

012008 (2015).
[31] P. H. Chavanis and T. Matos, Eur. Phys. J. Plus 132, 30

(2017).
[32] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[33] Planck Collaboration, Astron. Astrophys. 571, A66

(2014).
[34] Planck Collaboration, Astron. Astrophys. 594, A13

(2016).
[35] S. Weinberg, Gravitation and Cosmology (John Wiley,

New York, 2002).
[36] A. Arbey, J. Lesgourgues, and P. Salati, Phys. Rev. D 65,

083514 (2002).
[37] J.-A. Gu and W.-Y. P. Hwang, Phys. Lett. B 517, 1 (2001).
[38] L. A. Boyle, R. R. Caldwell, and M. Kamionkowski, Phys.

Lett. B 545, 17 (2002).
[39] M. S. Turner, Phys. Rev. D 28, 1243 (1983).
[40] L. H. Ford, Phys. Rev. D 35, 2955 (1987).
[41] P. J. E. Peebles and A. Vilenkin, Phys. Rev. D 60, 103506

(1999).

[42] T. Matos and L. A. Ureña-López, Phys. Rev. D 63, 063506
(2001).

[43] M. Joyce, Phys. Rev. D 55, 1875 (1997).
[44] N. Bilic, G. B. Tupper, and R. D. Viollier, Phys. Lett. B

535, 17 (2002).
[45] M. Makler, S. Q. Oliveira, and I. Waga, Phys. Lett. B 555,

1 (2003).
[46] A. Kamenshchik, U. Moschella, and V. Pasquier, Phys.

Lett. B 511, 265 (2001).
[47] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[48] T. Padmanabhan, Phys. Rep. 380, 235 (2003).
[49] P. H. Chavanis, Phys. Dark Universe 37, 101098 (2022).
[50] P. Steinhardt, in Critical Problems in Physics, edited by

V. L. Fitch and D. R. Marlow (Princeton University Press,
Princeton, NJ, 1997).

[51] I. Zlatev, L. Wang, and P. J. Steinhardt, Phys. Rev. Lett. 82,
896 (1999).

[52] P. H. Chavanis, Eur. Phys. J. Plus 129, 38 (2014).
[53] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N.

Kaloper, and J. March-Russell, Phys. Rev. D 81,
123530 (2010).

[54] A. S. Goldhaber andM.M. Nieto, Rev. Mod. Phys. 82, 939
(2010).

[55] S. Tsujikawa, Classical Quantum Gravity 30, 214003
(2013).

[56] P. S. Wesson, Mod. Phys. Lett. A 19, 1995 (2004).
[57] C. G. Böhmer and T. Harko, Found. Phys. 38, 216 (2008).
[58] R. D. Peccei, J. Sola, and C. Wetterich, Phys. Lett. B 195,

183 (1987).
[59] C. Wetterich, Nucl. Phys. B302, 668 (1988).
[60] J. Sola, Phys. Lett. B 228, 317 (1989).
[61] J. Sola, Int. J. Mod. Phys. A 05, 4225 (1990).
[62] I. L. Shapiro and J. Sola, Phys. Lett. B 475, 236

(2000).
[63] A. S. Eddington, Proc. R. Soc. A 133, 605 (1931).
[64] E. Madelung, Z. Phys. 40, 322 (1927).
[65] P. H. Chavanis, Eur. Phys. J. B 95, 48 (2022).
[66] P. H. Chavanis (to be published).
[67] A. Suárez and P. H. Chavanis, Phys. Rev. D 98, 083529

(2018).
[68] P. H. Chavanis, Phys. Rev. D 84, 043531 (2011).
[69] P. H. Chavanis, Astron. Astrophys. 537, A127 (2012).
[70] S. Dodelson, Modern Cosmology (Academic Press, New

York, 2003).
[71] P. H. Chavanis, Universe 6, 226 (2020).
[72] P. H. Chavanis, Phys. Rev. D 103, 123551 (2021).
[73] J. C. Fabris, S. V. B. Gonçalves, and P. E. de Souza, Gen.

Relativ. Gravit. 34, 53 (2002).
[74] J. C. Fabris, S. V. B. Gonçalves, and P. E. de Souza, Gen.

Relativ. Gravit. 34, 2111 (2002).
[75] H. B. Sandvik, M. Tegmark, M. Zaldarriaga, and I. Waga,

Phys. Rev. D 69, 123524 (2004).
[76] D. Carturan and F. Finelli, Phys. Rev. D 68, 103501

(2003).
[77] L. Amendola, F. Finelli, C. Burigana, and D. Carturan,

J. Cosmol. Astropart. Phys. 07 (2003) 005.
[78] P. P. Avelino, L. M. G. Beça, J. P. M. de Carvalho,

C. J. A. P. Martins, and P. Pinto, Phys. Rev. D 67,
023511 (2003).

NEW LOGOTROPIC MODEL BASED ON A COMPLEX SCALAR … PHYS. REV. D 106, 063525 (2022)

063525-53

https://doi.org/10.1103/PhysRevD.104.023520
https://doi.org/10.3390/universe8090468
https://doi.org/10.3390/universe8090468
https://doi.org/10.1103/PhysRevLett.91.071301
https://doi.org/10.1103/PhysRevD.84.063003
https://doi.org/10.1103/PhysRevD.84.063003
https://doi.org/10.1111/j.1365-2966.2007.12545.x
https://doi.org/10.1111/j.1365-2966.2007.12545.x
https://doi.org/10.1111/j.1365-2966.2009.15004.x
https://doi.org/10.1111/j.1365-2966.2009.15004.x
https://doi.org/10.1038/nature07222
https://doi.org/10.1038/nature07222
https://doi.org/10.1088/0004-6256/143/2/40
https://doi.org/10.1103/PhysRevD.95.063515
https://doi.org/10.1103/PhysRevD.95.063515
https://arXiv.org/abs/2109.05963
https://doi.org/10.1103/PhysRevD.106.043502
https://doi.org/10.1103/PhysRevD.92.123527
https://doi.org/10.1103/PhysRevD.92.123527
https://doi.org/10.1140/epjp/i2017-11544-3
https://doi.org/10.1103/PhysRevD.100.083022
https://doi.org/10.3847/1538-4357/abb242
https://doi.org/10.1103/PhysRevD.98.023513
https://doi.org/10.1103/PhysRevD.89.083536
https://doi.org/10.1103/PhysRevD.89.083536
https://doi.org/10.1103/PhysRevD.92.023510
https://doi.org/10.1103/PhysRevD.92.023510
https://doi.org/10.1088/1742-6596/654/1/012008
https://doi.org/10.1088/1742-6596/654/1/012008
https://doi.org/10.1140/epjp/i2017-11292-4
https://doi.org/10.1140/epjp/i2017-11292-4
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1051/0004-6361/201424598
https://doi.org/10.1051/0004-6361/201424598
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1103/PhysRevD.65.083514
https://doi.org/10.1103/PhysRevD.65.083514
https://doi.org/10.1016/S0370-2693(01)00975-3
https://doi.org/10.1016/S0370-2693(02)02590-X
https://doi.org/10.1016/S0370-2693(02)02590-X
https://doi.org/10.1103/PhysRevD.28.1243
https://doi.org/10.1103/PhysRevD.35.2955
https://doi.org/10.1103/PhysRevD.60.103506
https://doi.org/10.1103/PhysRevD.60.103506
https://doi.org/10.1103/PhysRevD.63.063506
https://doi.org/10.1103/PhysRevD.63.063506
https://doi.org/10.1103/PhysRevD.55.1875
https://doi.org/10.1016/S0370-2693(02)01716-1
https://doi.org/10.1016/S0370-2693(02)01716-1
https://doi.org/10.1016/S0370-2693(03)00038-8
https://doi.org/10.1016/S0370-2693(03)00038-8
https://doi.org/10.1016/S0370-2693(01)00571-8
https://doi.org/10.1016/S0370-2693(01)00571-8
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1016/S0370-1573(03)00120-0
https://doi.org/10.1016/j.dark.2022.101098
https://doi.org/10.1103/PhysRevLett.82.896
https://doi.org/10.1103/PhysRevLett.82.896
https://doi.org/10.1140/epjp/i2014-14038-x
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/RevModPhys.82.939
https://doi.org/10.1103/RevModPhys.82.939
https://doi.org/10.1088/0264-9381/30/21/214003
https://doi.org/10.1088/0264-9381/30/21/214003
https://doi.org/10.1142/S0217732304015270
https://doi.org/10.1007/s10701-007-9199-4
https://doi.org/10.1016/0370-2693(87)91191-9
https://doi.org/10.1016/0370-2693(87)91191-9
https://doi.org/10.1016/0550-3213(88)90193-9
https://doi.org/10.1016/0370-2693(89)91552-9
https://doi.org/10.1142/S0217751X90001756
https://doi.org/10.1016/S0370-2693(00)00090-3
https://doi.org/10.1016/S0370-2693(00)00090-3
https://doi.org/10.1098/rspa.1931.0170
https://doi.org/10.1007/BF01400372
https://doi.org/10.1140/epjb/s10051-022-00299-9
https://doi.org/10.1103/PhysRevD.98.083529
https://doi.org/10.1103/PhysRevD.98.083529
https://doi.org/10.1103/PhysRevD.84.043531
https://doi.org/10.1051/0004-6361/201116905
https://doi.org/10.3390/universe6120226
https://doi.org/10.1103/PhysRevD.103.123551
https://doi.org/10.1023/A:1015266421750
https://doi.org/10.1023/A:1015266421750
https://doi.org/10.1023/A:1021187518781
https://doi.org/10.1023/A:1021187518781
https://doi.org/10.1103/PhysRevD.69.123524
https://doi.org/10.1103/PhysRevD.68.103501
https://doi.org/10.1103/PhysRevD.68.103501
https://doi.org/10.1088/1475-7516/2003/07/005
https://doi.org/10.1103/PhysRevD.67.023511
https://doi.org/10.1103/PhysRevD.67.023511


[79] A. Dev, J. S. Alcaniz, and D. Jain, Phys. Rev. D 67, 023515
(2003).

[80] J. S. Alcaniz, D. Jain, and A. Dev, Phys. Rev. D 67, 043514
(2003).

[81] T. Multamäki, M. Manera, and E. Gaztañaga, Phys. Rev. D
68, 023004 (2003).
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