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Second-order tensor modes induced by nonlinear gravity are a key component of the cosmological
background of gravitational waves. A detection of this background would allow us to probe the primordial
power spectrum at otherwise inaccessible scales. Usually, the energy density of these gravitational waves is
studiedwithin perturbation theory in a particular gauge—a connection between our physical spacetime and a
fictitious background. It is a widely recognized issue that the second-order, scalar-induced gravitational
waves are gauge dependent. This issue arises because they are not well-defined as tensors in the physical
spacetime at second-order and are thus unphysical. In this paper, we propose the covariant transverse-
traceless projection of the extrinsic curvature to study cosmological gravitational waves on a spatial
hypersurface. We define a new energy density, which is based purely on spacetime tensors, independent of
perturbation theory, and thus, is gauge invariant by definition. We show that, in the context of second-order
perturbation theory, this new energy density contains only propagating modes in the constant-time
hypersurface in the Newtonian gauge. We further show that we can recover the same gravitational waves
after a transformation to the synchronous gauge, so long aswe correctly identify theNewtonian hypersurface.

DOI: 10.1103/PhysRevD.106.063521

I. INTRODUCTION

A new era of observational astrophysics began with the
discovery of gravitational waves (GWs) from a binary black
hole merger [1]. Increasing numbers of events will even-
tually allow for precise measurements of cosmological
parameters using GWs [2]. In addition to measurements
of isolated events, both astrophysical and cosmological
backgrounds of GWs may be detected in the coming years
[3–8]. A cosmological background of GWs is usually
described by tensor perturbations on top of a background
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time. While the primordial GWs generated during inflation
is the best known example of such a GW background [see,
e.g., 9–11], nonlinear dynamics of gravity also source
propagating tensor modes at second-order in perturbation
theory [12–19]. These scalar-induced GWs are attracting
growing attention as a means to probe large density
perturbations in the early Universe [20–43].
Cosmological perturbation theory has a gauge freedom,

which arises from general covariance of the physical
spacetime. Induced tensor modes have been studied in a

variety of gauges and have been shown to contain gauge
dependent, nonpropagating tensor modes at second order
[44–54]. This implies the effective GW energy density
usually defined in the literature is gauge dependent. This is
a crucial issue for writing the GW effective energy
momentum as a spacetime tensor in the physical spacetime.
We therefore must find a definition of the induced GW
energy density that is consistent at nonlinear order.
From a perturbation theory perspective, the construction

of gauge-invariant quantities at nonlinear order has been
discussed [47,55,56]. A gauge-invariant version of the
nonlinear Isaacson formalism may be possible using such
gauge-invariant variables [57]. However, this approach is
complex at nonlinear order, and the existence of the GW
energy momentum as a spacetime tensor is not guaranteed.
References [53,54] recently introduced a reference mani-
fold to define the GWenergy density as a quasilocal energy
density—which may offer alleviation of the gauge issue—
however, here, we consider an alternate approach. In this
paper, we propose a new way to define the GW energy
density in a covariant perspective and without reference to
any background spacetime. Such an approach is, by
definition, free from the gauge issue—making it potentially
viable for nonperturbative analysis, e.g., using numerical
relativity (NR) to study nonlinear regimes such as primor-
dial black holes or cosmological structure formation.
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Latin indices ða; b; c � � �Þ represent abstract indices for a
general tensor field, greek indices (μ; ν; ρ; � � �) are space-
time indices with a coordinate basis and take values 0…3,
and latin indices (i; j; k; � � �) are spatial indices and take
values 1…3. Repeated indices imply summation irrespec-
tive of their position, and indices are always raised and
lowered by the physical spatial or spacetime metric tensor.
In Appendix A, we provide further specifics on our index
convention. We set the speed of light c ¼ 1 throughout
this paper.

II. GRAVITATIONAL WAVE ENERGY IN THE
COVARIANT PERSPECTIVE

GWs are usually defined in cosmological perturbation
theory as the transverse-traceless (TT) part of the spatial
metric for a particular background spacetime. This pro-
cedure is not covariant with respect to a general coordinate
transformation, which causes the GWs to be gauge depen-
dent at second-order in cosmological perturbation theory.
From a geometrical perspective, using a fully covariant
decomposition in the physical spacetime should be more
robust. In Ref. [58], York discussed such a covariant TT
decomposition in 3-space, which we will apply to study the
GW energy density in cosmology.

A. York’s covariant TT projection

Reference [58] showed that the covariant TT decom-
position for an arbitrary symmetric tensorQab, on a smooth
Riemannian 3-manifold with metric γab, is written as

Qab ¼ Qab
TT þ ðLVÞab þ 1

3
γabQ; ð1Þ

whereQ≡ γabQab is the trace ofQab, and we have defined

ðLVÞab ≡DaVb þDbVa −
2

3
γabDcVc; ð2Þ

whereDa is the covariant derivative associated with γab. Va

is the unique solution to the vector Laplacian equation,
namely,

DaðLVÞab ¼ Da

�
Qab −

1

3
γabQ

�
; ð3Þ

for certain boundary conditions [58]. The covariant TT
conditions on Qab

TT imply DbQab
TT ¼ 0 and γabQab

TT ¼ 0,
which we note are distinct from the noncovariant TT
conditions usually considered for the tensor perturbation in
an FLRW background spacetime.
Since the TT condition (1) defines a tensor which is TT

with respect to γab, we cannot apply this covariant
decomposition to the spatial metric itself. Therefore, we
must first identify a tensor that carries the energy of GWs in
a covariant perspective. In NR simulations of binary black

holes, the covariant TT part of the extrinsic curvature is
loosely associated with GWs. Specifically, this tensor is
often set to zero in the initial data to remove any GWs not
generated by the binary itself [see Chap. 3 of 59]. We will
consider this tensor in the following section and assess its
use in cosmology.
York’s construction implies that we first need to define a

three-dimensional spatial foliation of a four-dimensional
spacetime; it requires choosing a particular spatial hyper-
surface. The hypersurface dependence of GWs defined as
spin-2 degrees of freedom (d.o.f.s) associated with the
spatial metric is, therefore, essentially inevitable. We
discuss the implications of this hypersurface dependence
in Sec. IV.
We would like to clarify some terminology we use in this

paper. Specifically, that “hypersurface dependence” is
distinct from “gauge dependence”: the latter is defined
only in the context of perturbation theory and the former
refers to the dependence on a particular foliation of
spacetime into a series of spatial surfaces regardless of
whether we are using perturbation theory [60]. We note that
the term “gauge” is also sometimes used to refer to a choice
of hypersurface within the 3þ 1 framework of numerical
relativity [see Chap. 9 of 61]. This is equivalent to the first
kind gauge described in Sec. II B 1 of Ref. [60], namely, a
choice of a coordinate system in a physical spacetime. In
this paper, we use the term “gauge” to describe the second
kind gauge in Sec. II B 2 of Ref. [60], which is the mapping
between a physical spacetime and a fictitious background
spacetime introduced specifically for perturbation theory
(see Sec. III A).

B. Curvature energy density in FLRW spacetime

In Sec. II C below, we will define the energy density of
GWs from their contribution to the total energy density via
the Hamiltonian constraint. In this section, we will first
briefly review the analogous (but familiar) contribution of
the curvature to the total energy density in an FLRW
spacetime.
In the FLRW model, the metric tensor in spherical

coordinates is

ds2 ¼ −dt2 þ a2
�

dr2

1 − κr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
; ð4Þ

where a ¼ aðtÞ is the scale factor, and κ is the scalar
curvature. The total (critical) energy density, ρ̄c, is defined
from the Hamiltonian constraint, which for an FLRW
spacetime reduces to the Friedmann equation,

3M2
plH

2 ¼ ρ̄c; ð5Þ

where H is the Hubble parameter, Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the

reduced Planck mass, and G is the gravitational constant.
In the above, ρ̄c is distinct from the energy density of the
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matter content, ρ̄. The remaining energy density is the
contribution from curvature.

ρ̄c − ρ̄ ¼ ρκ ¼ −
κ

a2
: ð6Þ

Here, we see that the curvature in the metric tensor (4)
contributes to the total energy density and therefore to the
cosmic expansion, H. We do not need to consider a
perturbative expansion with respect to κ to define the
energy density of curvature in Eq. (6).
In a perturbed FLRW spacetime, GWs are also present in

the components of the metric tensor and will therefore
contribute to the cosmic expansion. This should also hold
in the case of a general spacetime—independent of a
background cosmology—which will also contain GWs.
In the next section, we will show that the energy density in
the Hamiltonian constraint for a general spacetime natu-
rally includes both curvature and GW energy densities.

C. Hamiltonian constraint for GW energy density

We consider a four-dimensional spacetime with metric
tensor gab, whichwe foliate into a series of three-dimensional
spatial hypersurfaces with timelike unit normal na. The
extrinsic curvature of the hypersurfaces, Kab, is the Lie
derivative of the spatial metric,

γab ≡ gab þ nanb; ð7Þ

along the normal vector, namely,

Kab ≡ 1

2
£nγab: ð8Þ

The trace of the extrinsic curvature K ≡ γabKab is the
logarithmic expansion rate of the volume element

ffiffiffiffiffijγjp
along na, which reduces toK ¼ 3H in an FLRW spacetime.
The Friedmann equation comes from the Hamiltonian
constraint [see, e.g., 61],

Rþ K2 − KabKab −
2ρ

M2
pl

¼ 0; ð9Þ

where R is the 3-Ricci curvature of the hypersurface, and
ρ≡ Tabnanb is the energy density of matter, with Tab the
energy-momentum tensor. We can recast Eq. (9) into a
Friedmann-like form, namely,

3M2
pl

�
K
3

�
2

¼ ρc; ð10Þ

where ρc is the total energy density and ρc − ρ thereforemust
contain all forms of energy density not contained in matter,

including the energy density of GWs. As we mentioned
above,wewill show that the covariant TTpart of the extrinsic
curvature may represent the kinetic energy density of the
GWs in a covariant perspective. We aim to isolate the GWs
from other contributions by considering the covariant TT
decomposition (1) of the extrinsic curvature (see Ref. [62]
for a similar method without the transverse projection),
namely,

Kab ¼ Kab
TT þ ðLVÞab þ 1

3
γabK: ð11Þ

Combining this decomposition with Eq. (2), we find

KabKab ¼ KTT
abK

ab
TT þ

1

3
K2

þ ðLVÞabðLVÞab þ 4DaðVbKab
TTÞ; ð12Þ

and substituting Eq. (12) into Eq. (9), we can now write
Eq. (10) as

3M2
pl

�
K
3

�
2

¼ ρþ ρK þ ρR þ ρV þ ρdiv; ð13Þ

where we have defined

ρK ≡M2
pl

2
KTT

abK
ab
TT; ð14Þ

ρR ≡ −
M2

pl

2
R; ð15Þ

ρV ≡M2
pl

2
ðLVÞabðLVÞab; ð16Þ

ρdiv ≡ 2M2
plDaðVbKab

TTÞ: ð17Þ

The energy density in Eq. (17) is a covariant divergence,
which vanishes in the perturbative approach when taking the
Brill-Hartle average, as shown in Ref. [see also Sec. 35.15 of
[63,64]]. In the general case, this becomes a surface term and
will thus still vanish when considering its spatial average.
The left-hand side of Eq. (13) is the energy of expansion of
the hypersurface, and ρK þ ρR þ ρV is the contribution to
this expansion from the metric tensor.
The energy density ρR must contain curvature as well as

the gradient energy density of GWs—since R contains only
spatial gradients of the metric tensor—and ρV is related to
the vector field Va, including the scalar shear, and thus, its
physical interpretation is unclear. However, since the latter
is not purely TT, it cannot contain GWs energy in a
covariant perspective.
The energy density ρK is purely TTand is built from time

derivatives of the metric tensor, and we thus define ρK as
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the kinetic energy density of GWs.1 We have confirmed
that Eq. (14) reduces to the Isaacson energy density
[63,65,66] in the case of linear tensor perturbations about
an FLRW background cosmology,2 and we also find
ρK ¼ 0 for linear scalar or vector perturbations, which
can be seen from our perturbation theory calculations in
Sec. V. Therefore, we might naively expect the 4-scalar ρK
to be a generalized kinetic energy density of GWs which
could be useful in cosmology. Since ρK is a scalar in the
spacetime, any coordinate transformation cannot set
ρK ¼ 0, unlike the tensor mode in perturbation theory.
For linear tensor modes, ρR reduces to the gradient

energy of GWs with time average the same as that of ρK at
high frequencies. In the case of linear scalar perturbations,
ρR contains only the curvature energy density. Therefore, in
a general spacetime, ρR will contain both curvature and GW
gradient energy density, making it difficult to isolate the
GW contribution. Instead using ρK to characterize the GW
energy density, we can potentially separate the GW energy
from other sources. Further, the notion of gauge depend-
ence only arises within perturbation theory. Since Eq. (13)
is exact and obtained in the physical spacetime without
reference to perturbation theory, ρK must be gauge inde-
pendent by definition.

III. GAUGE TRANSFORMATION

In practice, we need perturbation theory for the analytic
evaluation of ρK , and hence, the gauge issue arises. In
Sec. III A, we explain the gauge freedom in cosmological
perturbation theory, and in Sec. III B, we provide a proper
interpretation of the gauge transformation of GWs.

A. Gauge freedom in perturbation theory

In cosmological perturbation theory, we start from a
physical spacetime M with some approximate symmetry—
e.g., homogeneity and isotropy on large scales. Then we
consider a solution to Einstein’s equations which has that
exact symmetry—e.g., the FLRW model—and define this
as the background spacetime M0. We then identify this
fictitious background spacetime with the physical space-
time through a particular choice of gauge, Ψ: M0 → M
(see Fig. 1). This identification is not unique, which is the
“gauge freedom” in perturbation theory (see, e.g., Ref. [60]
for a recent review).
A physical quantity is expressed by a spacetime tensorQ

in M. When the calculation of Q is difficult in practice,
we often go to M0, where Q is identified with Ψ�Q;

the pullback of Q by Ψ. However, a choice of gauge is not
unique, and one may choose Φ∶ M0 → M and Φ�Q
instead. Both Ψ�Q and Φ�Q are physically equivalent, but
their representations are not necessary the same. The
diffeomorphism Φ ∘ Ψ−1∶M0 → M0 is the gauge trans-
formation, and the representation of Q changes from Q0 ≡
Ψ�Q to Q̂0 ≡Φ�Q. In general, the gauge transformation is
approximated by the Knight-diffeomorphism: a sequence
of exponential maps generated by a set of infinitesimal
tangents in the background spacetime. The gauge trans-
formation of Q0 along ξað1Þ; ξ

a
ð2Þ; � � � is written as [67]

Q0 → Q̂0 ¼ e
£ξð1Þe

£ξð2Þ � � �Q0: ð18Þ

For the remainder of this paper, we use a hat to denote
quantities transformed by Eq. (18). The tensor Q0 is
identified with Q̂0 by the Knight diffeomorphism, which
implies that they are physically equivalent quantities.
Therefore, the variation,

δQ0 ≡ Q̂0 −Q0; ð19Þ

represents unphysical degrees of freedom, that is, the gauge
freedom.

B. Gauge transformation of GWs

If there exists a generalized energy density of GWs, it
could be a 4-scalar—associated with either a hypersurface
or an observer—or the time-time component of a 4-tensor.
In either case, such a quantity is expressed via a tensorQ in
M. In a background spacetime, we can caclulateQ0 or Q̂0,
and we may consider the gauge transformation of those

FIG. 1. Illustration of gauge transformation on a background
spacetime M0. There exits an arbitrary pair of identifications Φ
and Ψ between the physical spacetime M and a background
manifold M0 due to general covariance on the physical space-
time. Different points Φ−1ðpÞ and Ψ−1ðpÞ on M0 represent the
same point p on M, so that the diffeomorphism Φ−1 ∘Ψ∶ M0→
M0 is a nonphysical freedom, that is, the gauge freedom.

1This definition holds after performing a proper volume
average of ρK over a domain larger than the wavelength of the
GWs of interest.

2To bemore precise, ρK ¼ ρIsaacson=2, and ρK corresponds to the
time derivative term when we do not use the linearized equation of
motion for the tensor mode in Isaacson’s derivation. When
hρKi ¼ hρRi, our expression recovers hρIsaacsoni ¼ hρKi þ hρRi.

OTA, MACPHERSON, and COULTON PHYS. REV. D 106, 063521 (2022)

063521-4



tensors by using Eq. (18) directly. Then, we find δQ0 ¼
Oð£ξQ0Þ, which guarantees their gauge invariance at
the leading order (see the proposition 1 of Ref. [68]).
Therefore, the leading order gauge invariance is a necessary
requirement when constructing the effective energy density
of GWs in a background spacetime, Q0. The gauge
dependence of the second-order tensor modes implies that
we cannot simply apply Isaacson’s formula to guarantee the
leading order gauge invariance of the energy density of
scalar-induced GWs. One method to overcome this issue is
to introduce a second-order, gauge-invariant tensor pertur-
bation and thus, maintain Isaacson’s formula, as considered
by Ref. [47]. A second approach would be to find a
generalized energy density such that, within perturbation
theory, the gauge dependence of the tensor modes cancels
to realize the gauge invariance at leading order. In this
paper, we make use of this second approach.
Our solution is simple: as discussed in the previous

section, we use ρK—which is a 4-scalar—to define the
energy density of induced GWs. Equation (18) straight-
forwardly applies to Ψ�ρK in a background spacetime,
which we simply denote by ρK when in the context of
perturbation theory. Hereafter, other tensors in M are
always understood as tensors in M0 in a similar way.
The gauge transformation of ρK is

ρ̂K ¼ ρK þ ξað1Þ∇aρK þ � � � ; ð20Þ

where � � � represents corrections higher order in
ξað1Þ; ξ

a
ð2Þ � � �. For the scalar-induced GWs, the leading-order

term of ρK is fourth order in the scalar perturbations, so we
find that

ρ̂K ¼ ρK; ð21Þ

is satisfied in any gauge to fourth order in scalar perturba-
tions, which is the main result of this paper. We have
proposed an energy density of GWs that is expressed by a
4-scalar, which is gauge invariant at leading order. We will
provide the explicit form of ρK in perturbation theory in
Sec. Vand will show that the gauge-dependent part cancels
in ρ̂K .

IV. HYPERSURFACE DEPENDENCE

Equation (21) implies that we can compute ρK for a
specific hypersurface in any gauge. The gauge transforma-
tion of ρK is given by Eq. (20), which identifies ρ̂K with the
energy density defined in the original hypersurface in the
new gauge. A practical choice of hypersurface might be
one where the time coordinate is constant. A gauge trans-
formation will change the constant-time hypersurface,
and therefore, the corresponding energy densities are
physically different scalars associated with different spatial

hypersurfaces. Here, we denote the former as ρK and the
latter as ρ̃K , whereas the gauge transform of ρK is ρ̂K .
As we already discussed, ρK and ρ̂K are physically

equivalent, and their representations are equal at leading
order. However, as we will show in the following, in
general, we have ρ̂K ≠ ρ̃K . This is because gauge depend-
ence and hypersurface dependence are different concepts.
The former can be imposed from theoretical consistency,
but the latter depends on our choice of the system.
To show that ρ̂K ≠ ρ̃K in general, we start with ρ̂K , which

is the energy density associated with the timelike normal in
the new gauge,

n̂a ¼ e
£ξð1Þe

£ξð2Þ � � � na: ð22Þ

The construction of the extrinsic curvature is given coor-
dinate independently, so once we have n̂a we straightfor-
wardly obtain

K̂ab ¼
1

2
£n̂γ̂ab; ð23Þ

where the spatial metric in the new gauge is

γ̂ab ¼ ĝab þ n̂an̂b: ð24Þ

Then, ρ̂K can be constructed from K̂TT
ab (which is TT with

respect to γ̂ab). We also arrive at Eq. (23) when directly
considering the gauge transformation of Kab via Eq. (18).
Next, we will compute ρ̃K . The gauge transform also

applies to the coordinate time t → t̂, which consequently
defines a timelike normal for the new hypersurface, ña. The
fact that we change the constant-time hypersurface in the
gauge transform naturally implies

ña ≠ n̂a; ð25Þ

which can be shown by explicitly calculating the compo-
nents of the 1-form ña, an example of which we show in
Sec. V B. Then, the spatial metric of the new constant-t̂
hypersurface is

γ̃ab ≡ ĝab þ ñañb; ð26Þ

and the extrinsic curvature in the new hypersurface is

K̃ab ≡ 1

2
£ñγ̃ab: ð27Þ

The GW energy density associated with the new hyper-
surface, ρ̃K , can then be calculated from K̃ab after applying
the covariant TT projection (11) with respect to γ̃ab.
From Eqs. (27) and (23), one finds K̂ab ≠ K̃ab and

consequently, K̃ab
TT ≠ K̂ab

TT, which further implies ρ̂K ≠ ρ̃K .
We emphasize again that the energy density ρ̂K is
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physically identified with ρK via Eq. (18) but does not
represent the energy density associated with the new
constant-time hypersurface: it represents the energy density
associated with the original hypersurface as seen from the
new gauge. Instead, ρ̃K is the energy density on the new
constant-time hypersurface—and therefore contains the TT
component associated with γ̃ab and not the original spatial
metric γab. The transformation ρK → ρ̃K is thus not a gauge
transformation since they are physically different quan-
tities. In Fig. 2, we illustrate the relation between the
different hypersurfaces involved in the transformation.
Due to the explicit dependence of ρK on a particular

spatial hypersurface, its connection to physical observables
is unclear. We leave an investigation into this connection to
future work. However, ρK may still prove useful in analytic
studies in cosmology via perturbation theory—which
typically need to define a spatial hypersurface. In the
following section, we will consider its use in both the
Newtonian and synchronous gauges.

V. SECOND ORDER PERTURBATION THEORY

In the previous section, we presented the gauge invariance
of ρK at the lowest order of ξ in a general way. Although ρK
may be computed in any gauge, it depends on the choice of a
hypersurface from which to define the expansion, K, and
thus, the energy densities in Eq (13). Therefore, identifying
the hypersurface where ρK behaves as physical GW radi-
ation is important. One approach is to make use of NR
simulations, for which we must specify a hypersurface for
the evolution of Einstein’s equations. We can then directly
compute ρK from the simulation itself, i.e., without a
perturbative expansion, and see if it behaves as radiation
in terms of cosmological evolution.We perform this test in a
paper in preparation [69], while in the following, we will
instead consider an approach based on perturbation theory.
We consider the metric in 3þ 1 form,

ds2 ¼ −α2dt2 þ γijðβidtþ dxiÞðβjdtþ dxjÞ; ð28Þ

where α is the lapse function, βi is the shift vector, and
xμ ¼ ðt; xiÞ are the spacetime coordinates. The normal vector
to the constant-time hypersurface is nμ ¼ α−1ð1;−βiÞ, and
the components of the extrinsic curvature are

Kij ¼ −
1

2α
ð_γij − βk∂kγ

ij þ γik∂kβ
j þ γkj∂kβ

iÞ; ð29Þ

where an overdot implies a derivative with respect to
coordinate time, we have defined ∂k ≡ ∂=∂xk, and we have
K00 ¼ K0i ¼ γ00 ¼ γ0i ¼ 0.
In Sec. VA, we will first calculate ρK in the Newtonian

gauge up to fourth order in scalar perturbations. We will
then consider a gauge transformation from the Newtonian
gauge to the synchronous gauge in Sec. V B. Consequently,
we will show that the gauge-transformed energy density ρ̂K
is equivalent to ρK at leading order; however, the energy
density on the new (synchronous) constant-time hyper-
surfaces, ρ̃K , is physically different.

A. Newtonian gauge

First, we consider an FLRW background with scalar
perturbations and second-order induced vector and tensor
perturbations in the Newtonian gauge. Our metric ansatz is

α ¼ eϕ; βi ¼ Ct
i; γij ¼ a2e2ψðδij þ httijÞ; ð30Þ

where aðtÞ is the background scale factor, and the super-
scripts “t” and “tt” imply the noncovariant transverse
condition, ∂iCt

i ¼ 0, and transverse-traceless condition,
δijhttij ¼ ∂ihttij ¼ 0, respectively. The tensor perturbation
httij is the second-order GWs induced by the scalar
perturbations—composed of terms quadratic in the first
order ϕ and ψ . Similarly, the vector perturbation Ct

i is also
of quadratic order in the scalar perturbations. In Eq. (30),
gauge fixing is perfect up to second order for both vector
and scalar perturbations.
Expanding Eq. (29) up to second order for the metric

(30), we find

Kij ¼ −
1

2
_γij −

1

2a4
∂jCt

i −
1

2a4
∂iCt

j; ð31Þ

K
3
¼ H þ _ψ : ð32Þ

Then, the trace-free part of the extrinsic curvature (the shear
tensor) is evaluated as

Kij − γij
K
3
¼ 1

2a2
_httij −

1

2a4
∂jCt

i −
1

2a4
∂iCt

j: ð33Þ

Applying the projection in Eq. (1), we find the following
covariant TT decomposition of the extrinsic curvature:

FIG. 2. Here we illustrate perturbatively defined spatial metrics
γab, γ̃ab, and γ̂ab in a background manifold. Points connected by
the Knight diffeomorphism (blue dotted curve) represent the
same point in the physical manifold. A constant-time hypersur-
face in the new gauge, γ̃ab, is different from the transformed
hypersurface γ̂ab with normal n̂a. Physically equivalent GWs are
shown in gray, which are distinct from those shown in magenta.
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Kij
TT ¼

_httij
2a2

; Vi ¼ −
Ct
i

2a2
; ð34Þ

and we have K00
TT ¼ K0i

TT ¼ 0. Hence, the leading order
energy density is

ρK ¼ M2
pl

8
_httij _h

tt
ij þ � � � ; ð35Þ

which is correct to fourth order in scalar perturbations. This
is the energy density of GWs in the constant-time hyper-
surface in Newtonian gauge. This expression may appear
similar to the Isaacson energy density; however, this
coincidence is only explicitly valid for the special case
of linear tensor modes in a vacuum spacetime. For the case
considered here—namely, second-order induced tensor
modes—ρK does not in general give the same result as
the Isaacson energy density.
It has been shown that the rhs of Eq. (35) has physically

nice properties in Newtonian gauge, namely that the short-
scale induced _httij contains only oscillating modes for
various constant equations of state [18] including during
matter domination [49]. These authors find ð _httijÞ2 ∝ a−4 in
the Newtonian gauge on subhorizon scales, which further
implies ρK ∝ a−4. We expect this result for propagating
GWs, since they should decay like radiation in an expand-
ing universe. Therefore, the constant-time hypersurface in
Newtonian gauge could be a helpful reference to describe
physical GWs. The gauge transformation of Eq. (35) is
given by Eq. (20), and the energy density is gauge invariant
at fourth order in the scalar perturbations as we discussed in
Sec. III B. We should note that the particular form of
Eq. (35) that we find is valid only in the Newtonian gauge.

B. Synchronous gauge

Next, we will compute the GW energy density in the
new constant-time hypersurface in the synchronous gauge,
i.e., ρ̃K . The metric tensor in the synchronous gauge is
written as

α̃ ¼ ĝ00 ¼ −1; β̃i ¼ ĝ0i ¼ CS;t
i ;

γ̃ij ¼ ĝij ¼ a2e2ψ
Sðδij þ hS;ttij Þ þ 2a2∂i∂jES; ð36Þ

where we distinguish the perturbations in the synchronous
gauge from those in Newtonian gauge using the superscript
S. In this gauge, after the equivalent calculation as
Eqs. (31)–(34) (see Appendix B for details), we find

K̃ij
TT ¼

_hS;ttij

2a2
−

_Xtt
ij

2a2
; ð37Þ

Ṽi ¼ ∂i
_ES

2
−

_Xt
i

2
−
∂k

_ES
∂k∂iES

2
−
CS;t
i

2a2
; ð38Þ

where Xtt
ij and Xt

i are defined such that

4ψS
∂j∂iES þ ∂k∂iES

∂j∂kES

¼ X̄δij þ 2∂i∂jX þ ∂iXt
j þ ∂jXt

i þ Xtt
ij: ð39Þ

This calculation is more complicated than in Newtonian
gauge because in this gauge, we have a nonvanishing scalar
shear, ES. From Eq. (37), we find

ρ̃K ¼ M2
pl

8
ð _hS;ttij − _Xtt

ijÞ2; ð40Þ

from which we can see we have an additional contribution,
Xtt
ij, to ρK in the synchronous gauge hypersurface.
Next we wish to directly compare ρK and ρ̃K . The

second-order gauge transformation of the metric tensor
from the Newtonian gauge to the synchronous gauge gives
the relation between the tensor modes in each gauge to be
(see Appendix C for details)

hS;ttij ¼ httij þ Xtt
ij − Ytt

ij; ð41Þ

where we have introduced

Yij ¼ a2∂i _E
S
∂j
_ES: ð42Þ

Combining Eqs. (41) and (40), we can write ρ̃K in terms of
Newtonian gauge variables, which gives

ρ̃K ¼ M2
pl

8
ð _httij − _Ytt

ijÞ2 ≠ ρK; ð43Þ

i.e., the energy density in the new hypersurface (synchro-
nous) is not equal to the energy density on the original
hypersurface (Newtonian). The GW energy density in the
synchronous gauge hypersurface contains the secondary
effect of the scalar shear ES via Yij—which are not GWs.
To remove these fictitious tensor modes, we must correctly
identify the constant time hypersurface of the Newtonian
gauge from the synchronous gauge; i.e., we must calculate
ρ̂K instead of ρ̃K . Specifically, this requires using γ̂μν
instead of γ̃μν, i.e., calculating K̂ij

TT instead of K̃ij
TT.

Using Eq. (18) for nμ ¼ −αδ0μ, we find

n̂i ¼ a2∂i _E
S: ð44Þ

Thus, ñμ ≠ n̂μ since ñμ ¼ −δ0μ, and we get

n̂in̂j − ñiñj ¼ a4∂i _E
S
∂j
_ES: ð45Þ

The two spatial metrics are thus related by

γ̂ij ¼ γ̃ij þ a2Yij: ð46Þ
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This connection implies that for the correct calculation, we
should replace hS;ttij → hS;ttij þ Ytt

ij in Eq. (40) and thus, in
Eq. (43). We thus arrive at ρ̂K ¼ ρK correct to fourth order
in the scalar perturbations. Thus, we confirmed Eq. (21) for
this particular gauge transformation.
In the separate case of linear tensor modes, from

Eq. (42), we will have Yij ¼ 0, which implies all energy
densities are equivalent ρK ¼ ρ̂K ¼ ρ̃K . Therefore, the GW
energy density in linear theory is not only gauge indepen-
dent but also hypersurface independent to leading order.
Let us briefly consider when the hypersurface depend-

ence is negligible at second order, i.e., in which cases we
find ρK ≈ ρ̃K. During the radiation era, _Yij is decreasing as
we approach the subhorizon limit such that ρK ¼ ρ̃K ¼ ρ̂K
[47,48]. During matter domination, the formation of
structures leads to natural time variation between different
locations in spacetime. The synchronous gauge unnaturally
synchronizes the time and consequently, the scalar shear
introduces unphysical effects. As the scalar shear grows
during matter domination, so does the additional contri-
bution to (43), and we have ρ̃K ≠ ρ̂K . This argument is
limited to the synchronous gauge; however, extending this
to a general gauge condition should be possible.

C. Analogy with gauge-invariant scalar perturbations

We may draw an analogy between the gauge invariance
of ρK within perturbation theory and the well-known gauge
invariant Bardeen potentials in cosmology [70]. One
usually finds the “gauge transformation” of metric pertur-
bations by comparing the metric components before and
after a gauge transformation. We can then construct gauge
invariant variables, such as the Bardeen potentials, by
making combinations such that gauge dependent parts
cancels one other. We can also construct these variables
more concisely from a geometrical perspective, as we will
now demonstrate. In linear perturbation theory, we may
define the metric perturbation tensor as the difference
between the physical metric tensor gab and a fictitious
background metric tensor gabð0Þ; i.e.,

δgab ≡ gab − gabð0Þ; ð47Þ
where the parentheses indicate the order of each tensor.
Equation (47) is different from “metric perturbations” we
defined in Eqs. (30) and (36). Once we fix a reference
gauge, we always identify the equivalent background
metric gabð0Þ, which is obtained by transforming gabð0Þ
with Eq. (18). As a result, δgab is also considered as a
spacetime tensor. To linear order, the gauge transformation
of δgab is written as

δgab → δgab þ £ξδgab: ð48Þ
Thus, the metric perturbation tensor is a linear gauge
invariant, which is a formal construction of a gauge-invariant

quantity. In Newtonian gauge, the first order δgabð1Þ is
constructed from the Bardeen potentials ΦB and ΨB.
Specifically, in component representation, we have

δg00ð1Þ ¼ −2ΦB; ð49Þ

δgijð1Þ ¼ 2a2ΨBδij; ð50Þ

and δg0ið1Þ ¼ 0.Only, in this gauge, we find thatΦB andΨB

coincide with the gravitational potential and curvature
perturbations, respectively. However, it is well known that
we can always compute the Bardeen potentials as a combi-
nation of the perturbations in a generic gauge. Thus, the
metric perturbation tensor is gauge invariant to the lowest
order as we simultaneously transform both gab and gabð0Þ. As
shown in Sec. V, this is analogous to our formalism within
perturbation theory. Namely, we used the constant-time
hypersurface in the Newtonian gauge as a reference, and
maintaining the same reference for the GW energy density
before and after the gauge transformationwe found that ρK is
gauge invariant.

VI. CONCLUSIONS

The effective GW energy momentum tensor in the
literature is gauge dependent for the second-order scalar-
induced GWs. This implies that it is not consistently
defined from a spacetime tensor. This is a crucial problem
for the physical interpretation of these GWs since any
physical quantities must be written as tensors in the
physical spacetime. In this paper, we revisited the definition
of GWs outside of perturbation theory and showed that the
covariant TT part of the extrinsic curvature may represent
the kinetic energy of GWs associated with a particular
hypersurface. The definition is based only on spacetime
tensors. We showed that we can correctly interpret the
gauge transformation of the GW energy density by iden-
tifying the original hypersurface on which the GW energy
density of interest was defined. Our work is consistent with
the traditional Isaacson formalism for linear GWs and may
be straightforwardly used in analyses of second-order
induced GWs. This new energy density has gauge invari-
ance at leading order by construction, and we have shown
an example of this by calculating its gauge transformation
from the Newtonian to synchronous gauge. Our approach is
independent of any form of the stress-energy tensor and
therefore is valid for eras of radiation, matter, or dark
energy dominance (or any combination of these).
We propose Eq. (14) as a nonperturbative characteriza-

tion of the kinetic energy density of GWs in the expanding
Universe, with the gauge freedom wholly removed.
While ρK is independent of any particular gauge choice

(i.e., a map between the physical spacetime and a fictitious
background), it is explicitly dependent on a particular
choice of spatial hypersurface. The issue of finding
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hypersurfaces, which best represent the physical GWs that
we observe remains to be solved (though see Refs. [51,71]).
Additionally, the relation of ρK (as defined on a hypersur-
face) to the observable signature of GWs remains unclear,
and we leave this to future work. However, we have
shown that the Newtonian constant-time hypersurface
could be useful to study physical (purely oscillating)
GWs at second order. We have not explored the extension
of ρK to a fully nonlinear framework in this paper. We
investigate this extension, making use of NR simulations of
nonlinear cosmological structure formation, in a paper in
preparation [69].
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APPENDIX A: INDEX CONVENTION

In this paper, we distinguish between the spatial com-
ponent of 4-tensors (defined with a coordinate basis) and
variables labeled by the spatial index (which are not
components of 4-tensors).
As an example of the former, Kμν represents the

components of the spacetime tensor Kab with a coordinate

basis (whereas Kab is defined without reference to any
coordinate basis). Kij then represents the spatial compo-
nents of Kμν. The spatial upper indices in Kij imply the
spatial part of Kμν, which is the component of the
corresponding tensor in the cotangent space, Kab.
The extrinsic curvature is automatically projected onto
the hypersurface, so we have

Kij ¼ giμgjνKμν ¼ γiμγjνKμν; ðA1Þ

where the last equality is true only for the tensors projected
onto the hypersurface. The index levels are meaningful
only for tensors to distinguish the tangent space and the
cotangent space.
On the other hand, quantities such as the vector and

tensor perturbations Ct
i and h

tt
ij, respectively, and the partial

derivative ∂i are variables labeled by the spatial indices,
which are not components of 4-tensors. To be more precise,
those are representations of the symmetry group in the
background spacetime, e.g., ISO(3) symmetry in the case
of the FLRW background spacetime. We perturbatively
expand the spacetime tensor using those fields in cosmo-
logical perturbation theory. In this paper, we do not
explicitly raise and lower the indices of ISO(3) group
representations to avoid the conflicts with those in
Eq. (A1), whereas one often uses the spatial background
metric to do this. Instead, we clarify that we have
contraction/summation over repeated indices regardless
of position, and the covariance of the ISO(3) group is
always implicit.

APPENDIX B: COVARIANT TT DECOMPOSITION IN SYNCHRONOUS GAUGE

In this section, we provide a derivation for the TT decomposition of the extrinsic curvature associated with the
synchronous gauge hypersurfaces, namely Eqs. (37) and (38). We first compute the extrinsic curvature using Eq. (29) for the
spatial metric in synchronous gauge (36) and derive the traceless part of the extrinsic curvature (shear tensor). Then, we
define Ṽi in such a way that the transverse component of the shear tensor is all subtracted. In this section, we always truncate
the perturbative expansion at second order in scalar perturbations. The result forKij

TT in Newtonian gauge shown in Eq. (34)
can be found by setting ES ¼ 0 in this derivation.
First of all, from Eqs. (29) and (36), we obtain

K̃ij ¼ −
1

2
_̃γij −

1

2a4
∂jC

S;t
i −

1

2a4
∂iC

S;t
j ; ðB1Þ

where the tilde implies that the induced metric and associated extrinsic curvature are defined on the constant-time
hypersurface in the synchronous gauge. The inverse of the induced metric is

γ̃ij ¼ 1

a2
e−2ψ

Sðδij − hS;ttij Þ − 2

a2
∂i∂jES þ 8

a2
ψS

∂i∂jES þ 4

a2
∂i∂kES

∂k∂jES; ðB2Þ

which satisfies γ̃ilγ̃lj ¼ δij. Substituting (B2) into (B1), and taking the trace of the extrinsic curvature, we find

COVARIANT TRANSVERSE-TRACELESS PROJECTION FOR … PHYS. REV. D 106, 063521 (2022)

063521-9



K̃
3
¼ H þ _ψS þ 1

3
∂
2 _ES −

2

3
ðψS

∂
2ES _Þ − 1

3
ð∂l∂kES

∂l∂kES _Þ: ðB3Þ

From Eqs. (B1) to (B3), we arrive at the following shear tensor:

K̃ij − γ̃ij
K̃
3
¼ 1

a2

�
−
1

3
∂
2 _ES þ 2

3
ðψS

∂
2ES _Þ þ 2

3
ψS

∂
2 _ES þ 1

3
ð∂l∂kES

∂l∂kES _Þ
�
δij

þ 1

2a2
_hS;ttij þ 1

a2
∂i∂j

_ES −
2

a2
ðψS

∂i∂jES _Þ − 2

a2
ψS

∂i∂j
_ES −

2

a2
ð∂i∂kES

∂k∂jES _Þ þ 2

3a2
∂i∂jES

∂
2 _ES

−
1

2a4
∂jC

S;t
i −

1

2a4
∂iC

S;t
j : ðB4Þ

Next, we compute ðLṼÞi. We will put forward an ansatz of Ṽi and determine the form to subtract all transverse part from
the shear tensor (B4). The covariant derivative of Ṽi is defined as

D̃jṼi ¼ γ̃jm∂mṼi þ γ̃jmΓ̃i
mkṼ

k; ðB5Þ

where Γ̃i
mk and D̃i are the Christoffel symbol and the covariant derivative with respect to γ̃ij, respectively. Then we find

D̃jṼi þ D̃iṼj ¼ γ̃jm∂mṼi þ γ̃im∂mṼj − Ṽk
∂kγ̃

ij; ðB6Þ

Substituting Eq. (B2) into Eq. (B6), we find

D̃jṼiþ D̃iṼj ¼ 1

a2
½∂jṼiþ ∂iṼj−2ψS

∂jṼi−2ψS
∂iṼjþ2Ṽk

∂kψ
Sδij−2∂kṼi

∂j∂kES−2∂kṼj
∂i∂kESþ2Ṽk

∂k∂i∂jES�: ðB7Þ

Using (B7) in the definition of ðLVÞab in Eq. (2), we obtain

ðLṼÞij ¼ 1

a2

�
∂jṼi þ ∂iṼj − 2ψS

∂jṼi − 2ψS
∂iṼj − 2∂kṼi

∂j∂kES − 2∂kṼj
∂i∂kES þ 2Ṽk

∂k∂i∂jES þ 4

3
∂kṼk

∂i∂jES

−
2

3
δijð∂kṼk − 2∂kṼkψS þ Ṽk

∂k∂
2ESÞ

�
: ðB8Þ

Now, we put forward the following ansatz for Ṽi:

Ṽi ¼ 1

2
∂i
_ES −

1

2
∂k

_ES
∂k∂iES −

1

2
_Xt
i −

1

2a2
CS;t
i ; ðB9Þ

where we will fix _Xt
i later. Substituting Eq. (B9) into Eq. (B8), we get

ðLṼÞij ¼ 1

a2

�
∂j∂i

_ES − 2ψS
∂j∂i

_ES − ð∂k∂iES
∂j∂kES _Þ þ ∂k

_ES
∂k∂i∂jES þ 2

3
∂k∂k

_ES
∂i∂jES

−
1

3
δijð∂k∂k _ES − 2∂k∂k _E

SψS þ ∂k
_ES
∂k∂

2ES − ∂kð∂l _ES
∂l∂kESÞÞ − 1

2
ð∂k∂jES

∂k∂iES _Þ − ∂k
_ES
∂k∂i∂jES

�

−
1

2a2
∂i
_Xt
j −

1

2a2
∂j
_Xt
i −

1

2a4
∂iC

S;t
j −

1

2a4
∂jC

S;t
i : ðB10Þ

Finally, combing Eqs. (B4) and (B10), we get

K̃ij − γ̃ij
K̃
3
− ðLṼÞij ¼ 1

2a2
_hS;ttij þ 1

2a2
∂i
_Xt
j þ

1

2a2
∂j
_Xt
i þ

1

a2
ð2ψS

∂
2ES þ 1

2
∂l∂kES

∂l∂kES _Þ δij
3

−
1

a2

�
2ψS

∂i∂jES þ 1

2
∂i∂kES

∂j∂kES
_�
: ðB11Þ
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Now, we introduce Xtt
ij and Xt

i via Eq. (39) in the main text. Then, from Eq. (B9), we arrive at the result for Ṽi given in
Eq. (38), and we thus obtain Eq. (37) via

K̃ij
TT ¼ K̃ij − γ̃ij

K̃
3
− ðLṼÞij ¼

_httij
2a2

−
_Xtt
ij

2a2
: ðB12Þ

APPENDIX C: GAUGE TRANSFORMATION OF THE SPACETIME METRIC

The gauge transformation (18) expands to second order as [67]

Q̂0 ¼
�
1þ £ξð1Þ þ £ξð2Þ þ

1

2
£2ξð1Þ þ � � �

�
Q0: ðC1Þ

In this appendix, we apply this transformation Eq. (C1) for the metric tensor gμν from the Newtonian gauge to the
synchronous gauge. We specify the order in scalar perturbations with a subscript in parentheses.

1. First order

At first order, the gauge transformation is

δð1Þg00 ¼ −2_ξ0ð1Þ ðC2Þ

δð1Þg0i ¼ −∂iξ0ð1Þ þ a2 _ξið1Þ ðC3Þ

δð1Þgij ¼ 2a2Hξ0ð1Þδij þ a2∂jξið1Þ þ a2∂iξ
j
ð1Þ: ðC4Þ

To realize the transformation from Newtonian gauge to the synchronous gauge, the first order ξ must satisfy

0 ¼ −ϕð1Þ − _ξ0ð1Þ; ðC5aÞ

0 ¼ −∂iξ0ð1Þ þ a2 _ξið1Þ; ðC5bÞ

ψS
ð1Þ ¼ ψ ð1Þ þHξ0ð1Þ; ðC5cÞ

2a2∂i∂jES
ð1Þ ¼ a2∂jξið1Þ þ a2∂iξ

j
ð1Þ: ðC5dÞ

From Eqs. (C5b) and (C5d), we get

ξið1Þ ¼ ∂iES
ð1Þ; ðC6Þ

ξ0ð1Þ ¼ a2 _ES
ð1Þ; ðC7Þ

which implies that ES satisfies ða2 _ES
ð1Þ _Þ ¼ −ϕð1Þ.

2. Second order

The second-order gauge transformation from Newtonian gauge to the synchronous gauge is

δð2Þg00 ¼ −2_ξ0ð2Þ − ξρð1Þ∂ρ _ξ
0
ð1Þ − 2_ξ0ð1Þ _ξ

0
ð1Þ − 2ξρð1Þ∂ρϕð1Þ − 4ϕð1Þ _ξ

0
ð1Þ ðC8Þ
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δð2Þg0i ¼ −∂iξ0ð2Þ þ a2 _ξið2Þ −
1

2
ξρð1Þ∂ρð∂iξ0ð1Þ − a2 _ξið1ÞÞ − ðϕð1Þ þ _ξ0ð1ÞÞ∂iξ0ð1Þ þ a2ðψ ð1Þ þHξ0ð1ÞÞ_ξið1Þ

þ 1

2
a2∂kξið1Þ _ξ

k
ð1Þ þ

1

2
a2∂iξkð1Þ _ξ

k
ð1Þ − ϕð1Þ∂iξ0ð1Þ þ a2ψ ð1Þ _ξ

i
ð1Þ ðC9Þ

δð2Þgij ¼ ½2a2Hξ0ð2Þ þ 2ξρð1Þ∂ρða2ψ ð1ÞÞ þ ξρð1Þ∂ρða2Hξ0ð1ÞÞ�δij þ a2∂jξið2Þ þ a2∂iξ
j
ð2Þ þ 2a2ðHξ0ð1Þ þ ψ ð1ÞÞ∂jξið1Þ

þ 2a2ðHξ0ð1Þ þ ψ ð1ÞÞ∂iξjð1Þ þ
1

2
a2∂kξið1Þ∂jξ

k
ð1Þ þ

1

2
a2∂kξ

j
ð1Þ∂iξ

k
ð1Þ þ a2∂iξkð1Þ∂jξ

k
ð1Þ þ

a2

2
ξ0ð1Þ∂j _ξ

i
ð1Þ

þ a2

2
ξ0ð1Þ∂i _ξ

j
ð1Þ þ

a2

2
ξkð1Þ∂k∂jξ

i
ð1Þ þ

a2

2
ξkð1Þ∂k∂iξ

j
ð1Þ: ðC10Þ

Using the constraints at first order in (C5), the second-order gauge transformation is simplified to

δð2Þg0i ¼ −∂iξ0ð2Þ þ a2 _ξið2Þ þ a2∂k∂iES
ð1Þ∂k _E

S
ð1Þ þ a2ð2ψS

ð1Þ þ a2H _ES þ a2ËSÞ∂i _ES
ð1Þ; ðC11Þ

δð2Þgij ¼ ½2a2Hξ0ð2Þ þ 2ξρð1Þ∂ρψ ð1Þ þ ξρð1Þ∂ρða2Hξ0ð1ÞÞ�δij þ a2∂jξið2Þ þ a2∂iξ
j
ð2Þ þ 4a2ψS

ð1Þ∂j∂iE
S
ð1Þ

þ 2a2∂k∂iES
ð1Þ∂j∂kE

S
ð1Þ þ a4 _ES

ð1Þ∂i∂j _E
S
ð1Þ þ a2∂kES

ð1Þ∂k∂i∂jE
S
ð1Þ: ðC12Þ

Next, we consider the following decomposition:

∂k∂iES
ð1Þ∂k _E

S
ð1Þ þ ð2ψS

ð1Þ þ a2H _ES þ a2ËSÞ∂i _ES
ð1Þ ¼ ∂iZ þ Zt

i; ðC13Þ

and

4ψS
ð1Þ∂j∂iE

S
ð1Þþ2∂k∂iES

ð1Þ∂j∂kE
S
ð1Þþa2 _ES

ð1Þ∂i∂j _E
S
ð1Þþ∂kES

ð1Þ∂k∂i∂jE
S
ð1Þ ¼W̄δijþ2∂i∂jWþ∂iWt

jþ∂jWt
iþWtt

ij: ðC14Þ

To realize the synchronous gauge up to second order, the second-order tangents, ξ, must satisfy

ξið2Þ ¼ ∂iES
ð2Þ − ∂iW −Wt

i; ðC15Þ

ξ0ð2Þ ¼ a2 _ES
ð2Þ − a2 _W þ a2Z: ðC16Þ

The gauge transformation for the secondary vector and tensor perturbations are given as

CS;t
ð2Þi ¼ Ct

ð2Þi − aWt
i þ aZt

i; ðC17Þ

hS;ttð2Þij ¼ httð2Þij þWtt
ij; ðC18Þ

and integrating by parts, we also find

½4ψS
ð1Þ∂j∂iE

S
ð1Þ þ∂k∂iES

ð1Þ∂j∂kE
S
ð1Þ−a2∂i _E

S
ð1Þ∂j _E

S
ð1Þ�tt ¼Wtt

ij;

ðC19Þ

where, in the main text, we have used Wtt
ij ¼ Xtt

ij − Ytt
ij.
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