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The recent transition from decelerated to accelerated expansion can be seen as a reflection (or “bounce”)
in the connection variable, defined by the inverse comoving Hubble length (b ¼ _a, on shell). We study the
quantum cosmology of this process. We use a formalism for obtaining relational time variables either
through the demotion of the constants of nature to integration constants, or by identifying fluid constants of
motion. We extend its previous application to a toy model (radiation and Λ) to the realistic setting of a
transition from dust matter to Λ domination. In the dust and Λ model two time variables may be defined,
conjugate to Λ and to the dust constant of motion, and we work out the monochromatic solutions to the
Schrödinger equation representing the Hamiltonian constraint. As for their radiation and Λ counterparts,
these solutions exhibit “ringing,” whereby the incident and reflected waves interfere, leading to oscillations
in the amplitude. In the semiclassical approximation we find that, close to the bounce, the probability
distribution becomes double peaked, one peak following a trajectory close to the classical limit but with a
Hubble parameter slightly shifted downwards, the other with a value of b stuck at its minimum b ¼ b⋆. Still
closer to the transition, the distribution is better approximated by an exponential distribution, with a single
peak at b ¼ b⋆, and a (more representative) average b biased towards a value higher than the classical
trajectory. Thus, we obtain a distinctive prediction for the average Hubble parameter with redshift: slightly
lower than its classical value when z ≈ 0, but potentially much higher than the classical prediction around
z ∼ 0.64, where the bounce most likely occurred. The implications for the “Hubble tension” have not
escaped us.
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I. INTRODUCTION

The connection representation is sometimes favored over
the metric representation in quantum gravity. This is the
case in loop quantum gravity, but the issue is more general.
The choice of representation is nontrivial and can lead to
nonequivalent quantum theories due to matters of ordering,
inner product, boundary conditions, etc. The choice of
representation also unveils new interpretations of some
phenomena. For example, the well-established ([1] and
references therein) recent transition from decelerated to
accelerated expansion can be seen as a reflection or bounce
in the cosmological connection variable (this is not to be
confused with a primordial bounce in the metric a). The
connection variable associated with homogenous cosmo-
logical models is the inverse comoving Hubble parameter
(herein b), with b ¼ _a=N on shell (where a is the expansion
factor and N is the lapse function). This is precisely the
variable used in characterizing the horizon structure of the
Universe: it decreases in time for decelerated expansion,
increases in time for accelerated expansion. Hence, b must

have reflected or bounced off a minimum b ¼ b� in our
recent past (around redshift z ∼ 0.64 in most models).
Reflection can bring to the fore quantum behavior [2],

sometimes paradoxically [3]. The incident and reflected
waves interfere, inducing oscillations in the probability
(“ringing”), spoiling the semiclassical limit. The turning
point, dividing classically allowed and forbidden regions, is
always surrounded by a region where the semiclassical
limit breaks down, revealing fully quantum behavior. This
matter was given a preliminary investigation in [4] in the
context of a toy model exhibiting reflection in b: a Universe
containing a mixture of radiation and Λ. Here we extend
this work to the realistic but technically more demanding
case of a transition from matter (dust) domination to Λ
domination, as witnessed by our Universe some 7 bil-
lion years.
As in [4] we use a generalization of unimodular

gravity [5] as formulated in [6]. In such theories a rela-
tional time (converting the Wheeler-DeWitt equation into a
Schrödinger-like equation) is obtained by demoting a
constant of nature to a constant on shell only [7,8] (i.e.,
a quantity which is constant as a result of the equations of
motion, rather than being a fixed parameter in the action).*magueijo@ic.ac.uk
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The conjugates of such “constants” supply excellent
physical time variables. In the case of Λ this is the 4-D
volume to the past of the observer [6]. Extensions targeting
other constants (for example Newton’s constant) have been
considered before, for example in the sequester [9–11]
(where the associated “times” are called “fluxes”), or in
[12,13]. The approach of [14] produces equivalent results
using instead fluid constants of motion and their conju-
gates, as defined in the Lagrangian formulation of [14–16].
In a sense the constants of motion and the deconstantized
constants are put on the same footing in this approach.
As shown in [8,14,17,18], in this approach to the

Wheeler-DeWitt (WDW) equation, one finds that the fixed
constant solutions appear as monochromatic partial waves.
The general solution is a superposition of such partial
waves, with amplitudes that depend on the no-longer
constants. Such superpositions can form wave packets
with better normalizability properties. The first purpose
of this paper is to work out these solutions, proceeding as
follows.
In Sec. IIwe first formulate the classical theory in the same

format as that discussed in [4], but adapted to a mixture ofΛ
and dust matter. Whereas beforewe had a quadratic equation
with two solutions, we now find a cubic with a spurious
solution (with a < 0) in addition to two solutions corre-
sponding to matter and Λ domination. What follows is a
carbon copy of [4], albeit with significant further technical
hurdles. We find the solutions to the WDW equation in
Sec. III. In spite of theirmuchmore complicated expressions,
they are, just as in [4], composed of an incident and a
reflected wave for b > b⋆, and an evanescent wave for
b < b⋆, which we combine using matching conditions at
b ¼ b⋆. In Sec. IV we then augment these solutions with a
time factor, to produce themonochromatic partial waves, and
superpose these in wave packets.
The second purpose of this paper is to apply these results

to the real world, which we do in Sec. V. We focus on
corrections within the semiclassical limit for the probability
measure, and use the average b as the relevant quantity for
making predictions for departures from the classical tra-
jectory. The results depend on the variance chosen for
the coherent state representing the wave function of the
Universe. It is possible that the Lambda clock only
becomes a suitable clock around the start of the Lambda
epoch. The fact that we have a reflection makes the average
b be higher than the classical trajectory, and we evaluate the
profile of this effect with redshift.

II. THE CLASSICAL THEORY

We consider a model with two fluids: Λ or dark energy
(w ¼ −1), and pressureless or dust matter (w ¼ 0). Hence,
the Hamiltonian constraint is classically equivalent to

−b2 − kþ Λ
3
a2 þm

a
¼ 0 ð1Þ

which can be written in the form of a cubic equation:

a3 − VðbÞϕaþmϕ ¼ 0; ð2Þ

where VðbÞ ¼ b2 þ k and ϕ ¼ 3
Λ. In analogy with the

quadratic found in [4] this is the equation we have to
solve in order to implement a multibranch connec-
tion representation of the WDW equation. Being a cubic
equation, we know that it has three solutions, which can
either be all real, or one be real and the other two complex
conjugates. These two cases depend on the sign of
discriminant of the equation:

Δ ¼ V3 −
27m2

4ϕ
: ð3Þ

It is helpful to understand the physical nature of the
problem in order to select the correct solutions.

A. Some physical guidance

As with the case of Λ and radiation studied in [4], an
expanding Universe will start by decelerating (in this case
due to matter domination), to then transition to accelerated
expansion and Λ domination. Hence, there will be a
“bounce” in b (the inverse comoving Hubble length): b
decreases at first, when matter dominates, to bounce off
a minimum value b� as Λ creeps in, and then continue
increasing as Λ dominates. The classically allowed region
is b ≥ b� and this should have two branches, one containing
the matter dominated solution, the other the Λ dominated
solution. The 0 < b < b� region is classically forbidden
(we will only be considering expanding Universes in this
paper, so b > 0).
Considering the Friedmann equations,

b2 þ k ¼ V ¼ a2

ϕ
þm

a
ð4Þ

_b ¼ a
ϕ
−

m
2a2

; ð5Þ

we see that (5) implies that the bounce in b (i.e., _b ¼ 0)
happens when

a ¼ a� ¼
�
mϕ

2

�
1=3

ð6Þ

with (4) then implying

V3 ¼ V3� ¼ ðb2� þ kÞ3 ¼ 27m2

4ϕ
ð7Þ

[which defines b�; for k ¼ 0, we have b6⋆ ¼ 27m2=ð4ϕÞ].
Comparing with (3) we note that the bounce point is the
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point where the discriminant Δ vanishes. We can therefore
wed the mathematics and physics as follows.
For Δ > 0 we are in the classically allowed region, and

we know that when

V3 ≫
27m2

4ϕ
¼ V3� ð8Þ

(i.e., asymptotically) there are two branches, one corre-
sponding to matter domination, the other to Λ domination.
Hence for Δ > 0 we expect three real roots, one of which
is negative (i.e., a < 0), so that it can be discarded as
nonphysical. The other two should be positive, one
representing the branch with Λ domination, the other the
branch with matter domination. They become degenerate (a
double real positive root) at b ¼ b�.
For the classically forbidden region we expect the real

root to be negative (indeed a continuation of the negative
root in the allowed region, which we have discarded). The
other two roots must be complex conjugates, with a real
part connecting to the degenerate positive roots found at
b ¼ b�. Their imaginary parts will be symmetric, so that
quantum mechanically one will describe an evanescent
wave, the other a wave blowing up exponentially, to be
discarded.
These physical arguments will help us understand the

mathematics that follows, as well as select the correct
solutions.

B. Solving the algebraic equation

Solving Eq. (2) for a we obtain three roots, whose form
will depend on the region we are considering. For V ≥ V�
we have three real solutions given by

a1 ¼ a�½ð−1þ ixÞ1=3 þ ð−1 − ixÞ1=3�
a2 ¼ −a�½ð−1þ ixÞ1=3e−iπ=3 þ ð−1 − ixÞ1=3eiπ=3�
a3 ¼ −a�½ð−1þ ixÞ1=3eiπ=3 þ ð−1 − ixÞ1=3e−iπ=3�;

with x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
V3

V3�
− 1

q
. To avoid issues with conventions for

negative roots, these expressions can be written in the more
explicit form:

a1 ¼ 2a�ð1þ x2Þ1=6 cos
�
arctan x

3
−
π

3

�
≡ a�f1 ð9Þ

a2 ¼ −2a�ð1þ x2Þ1=6 cos
�
arctan x

3

�
≡ a�f2 ð10Þ

a3 ¼ 2a�ð1þ x2Þ1=6 cos
�
arctan x

3
þ π

3

�
≡ a�f3: ð11Þ

Taking the asymptotic limitV ≫ V� we do recover theΛ and
matter dominated solutions for a1 and a3 (respectively):

a1 ≈
ffiffiffiffiffiffiffi
Vϕ

p
ð12Þ

a3 ≈
m
V
: ð13Þ

The second root is negative, as expected, and so can be
discarded. We illustrate this behavior in Fig. 1, right-hand
side of the plots, where the classically allowed region lies.
For V < V� we obtain one real and two complex

solutions (which are the complex conjugate of each other):

a1 ¼ 2a�ð1 − x̃2Þ1=6 cos
�
arctan ix̃

3
−
π

3

�

a2 ¼ −2a�ð1 − x̃2Þ1=6 cos
�
arctan ix̃

3

�

a3 ¼ 2a�ð1 − x̃2Þ1=6 cos
�
arctan ix̃

3
þ π

3

�
;

with x ¼ ix̃ and x̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − V3

V3�

q
. Using the identity

arctanðix̃Þ ¼ i
2
ln
1þ x̃
1 − x̃

; ð14Þ

one can write these roots as

FIG. 1. The real and imaginary parts of the solutions of the
cubic equation (2) as a function of b for m ¼ 1, ϕ ¼ 106 and
k ¼ 0. The vertical dashed line separates the classically allowed
region b > b� from the forbidden region b < b�. We see how f1
and f3 represent the physical double branches.
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a1 ¼
a�
2
ð1 − x̃2Þ1=6

��
1 − x̃
1þ x̃

�
1=6

þ
�
1þ x̃
1 − x̃

�
1=6

þ i
ffiffiffi
3

p ��
1þ x̃
1 − x̃

�
1=6

−
�
1 − x̃
1þ x̃

�
1=6

��
≡ a�f̃1 ð15Þ

a2 ¼ −a�ð1 − x̃2Þ1=6
��

1 − x̃
1þ x̃

�
1=6

þ
�
1þ x̃
1 − x̃

�
1=6

�
≡ a�f̃2 ð16Þ

a3 ¼
a�
2
ð1 − x̃2Þ1=6

��
1 − x̃
1þ x̃

�
1=6

þ
�
1þ x̃
1 − x̃

�
1=6

− i
ffiffiffi
3

p ��
1þ x̃
1 − x̃

�
1=6

−
�
1 − x̃
1þ x̃

�
1=6

��
≡ a�f̃3; ð17Þ

showing explicitly that the real solution is a2 and continues
to be negative (and so to be discarded, as before), whereas
the other solutions are the conjugate complex solutions.
These features are displayed in the left-hand side of Fig. 1,
corresponding to the classically forbidden region. Note
how a1 and a3 converge to a� for V ¼ Vþ� , the point for
which we have a bounce in b.
As a side remark, we note that this two-branch structure

could be an expression in the connection representation
language of the issues raised in [19].

III. THE MONOCHROMATIC SOLUTIONS

A solution to the WDW equation in the connection
representation can now be found just as in [4], with the
proviso that we should discard one of the solutions of the
cubic equation. Hence we start from solutions a − an ¼ 0
with n ¼ 1; 3, for which we shall now relabel to n ¼ �,
where − ¼ 1 and þ ¼ 3. We also write a� ¼ a�F� with
F� defined as f� for b > b� and f̃� for b < b� (as defined
in the previous section). The Hamiltonian constraint can
then be put in the form proposed in [4,8]:

h�ðbÞa2 −m2 ¼ 0; ð18Þ
where h�ðbÞ is given by

h�ðbÞ ¼
��

ϕ

2m2

�
2=3

F2
�

�
−1
: ð19Þ

Upon quantization we get the WDW equation in the
connection representation:�

−ihh�ðbÞ
∂

∂b
−m2

�
ψ s� ¼ 0 ð20Þ

with h ¼ l3P
3Vc

, where Vc is the comoving spatial volume of

the region under study (Vc ¼ 2π2 for a whole k ¼ 1

Universe), lP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG0ℏ

p
is the reduced Planck length

and G0 is the gravitational constant.
As in [4] we can define a linearizing variable:

X�ðbÞ ¼
Z

db
h�ðbÞ

¼
�

ϕ

2m2

�
2=3

Z
dbF2

�; ð21Þ

which generalizes the Chern-Simons functional. For the
rest of this paper we shall assume k ¼ 0. We can then
simplify its expression as

X� ¼ 4ϕ

3m2

Z
b⋆
dbb2 cos2

�
arctan x

3
� π

3

�
ð22Þ

(since for k ¼ 0, V⋆ ¼ b2⋆). The solutions of (20) are linear
combinations of plane waves in the linearizing variables
X�, which will depend on the region of b space that we
are considering. For b > b� we find a superposition of an
incident and a reflected wave:

ψ s> ¼ A−e
i
hm

2X− þ Aþe
i
hm

2Xþ : ð23Þ
For b < b� we have an evanescent and a divergent solution.
Rejecting the latter we find

ψ s< ¼ Be
i
hm

2X̃− ; ð24Þ

where X̃ corresponds to the case of f̃. A plot of the
imaginary part of these wave functions for both regions is
shown in Fig. 2.

FIG. 2. Imaginary part of the wave functions associated with
the solutions a1 and a3 in the classical (top panel) and forbidden
(bottom panel) regions for k ¼ 0, m ¼ 1 and ϕ ¼ 106, as a
function of b.

BRUNO ALEXANDRE and JOÃO MAGUEIJO PHYS. REV. D 106, 063520 (2022)

063520-4



Thus, we have to solve a problem of wave reflection in
quantum mechanics. One should match the wave functions
in the bouncing point b ¼ b�, as well as their first and
second derivatives. The first boundary condition leads to

ψ s>ðb⋆Þ ¼ ψ s<ðb⋆Þ ⇒ A− þ Aþ ¼ B: ð25Þ

For the first derivatives one gets the same condition as
above and for the second we should match the divergent
terms which lead to

B ¼ iðA− − AþÞ: ð26Þ
Combining these relations we can solve the system in terms
of one free parameter, which we choose to be Aþ, and
consequently fix all the other coefficients. Therefore we
arrive at

A− ¼ −
1þ i
1 − i

Aþ: ð27Þ

In this way the wave functions are fully determined in both
regions as we have the freedom to fixAþ as we see fit, which
in this case is picking a phase factor that gives the correct
matter limit V ≫ V� for ψþ. The imaginary part of the full
wave function is represented in Fig. 3, wherewe can see both
the evanescent and the propagatingwaves in each region. For
the rest of this paper we will focus on the propagating
solutions in the b > b⋆ region.

IV. WAVE PACKETS AND TIME EVOLUTION

Following [8] and still mimicking its implementation in
[4], we now construct superpositions evolving in times
conjugate to a set of target constant α, generalizing the
procedure for unimodular gravity. We choose

α ¼ ðm2;ϕÞ ð28Þ
in order to recover the monofluid solutions in the appro-
priate limits for matter and Lambda domination. Thus, we
arrive at

ψ�ðb;TÞ ¼
Z

dαAðαÞe− i
hα·Tψ s�ðb;αÞ; ð29Þ

where the “spatial” part ψ s� was found in the last section.
These superpositions have simple approximate solutions if
the amplitudes are sufficiently peaked. Defining

P� ¼ m2X�ðb;αÞ ð30Þ
so that ψ s� ¼ exp½ihP��, we proceed in the same way as in
[4] using the saddle point approximation for a dispersive
medium. It leads to

ψ�ðb;TÞ ≈ e
i
hðP�ðb;α0Þ−α0·TÞ

Y
i

ψ�iðb; TiÞ; ð31Þ

where the envelopes have expressions

ψ�iðb; TiÞ ¼
Z

dαiffiffiffiffiffiffiffiffi
2πh

p AðαiÞ exp
�
−
i
h
ðαi − αi0ÞðTi − Xeff

�iðbÞÞ
�

ð32Þ

with effective generalizations of theChern-Simons functional:

Xeff
�iðbÞ ¼

∂P�
∂αi

����
α0

: ð33Þ

Specializing towave packetswithGaussian amplitudesAðαiÞ,

AðαiÞ ¼
1

ð2πσ2i Þ1=4
exp

�
−
ðαi − αi0Þ2

4σ2i

�
; ð34Þ

Eq. (32) reduces to a complementary Gaussian:

ψ�iðb; TiÞ ¼
1

ð2πσ2TiÞ1=4
exp

�
−
ðXeff

�iðbÞ − TiÞ2
4σ2Ti

�
; ð35Þ

with

σTi ¼
h
2σi

: ð36Þ

Thus, this is an example in this context of a coherent
state, i.e., a state saturating the Heisenberg relations between
the constants and their times. The full time-dependent wave
function in the classical region (b > b⋆) is of the form

ψ>ðb;TÞ ¼ Aþψþðb;TÞ þ A−ψ−ðb;TÞ; ð37Þ

i.e., it is made of an incident and a reflected wave, each
of which comprises two factors, one for each clock being used.

FIG. 3. Imaginary part of the wave functions in both regions
after considering the boundary conditions in b�, for k ¼ 0,m ¼ 1

and ϕ ¼ 106.
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It should be noted that here, just as for the radiation plus
Λ model [4,8], the classical trajectory is given by

_Xeff
�i ¼ _Ti ð38Þ

(with i ¼ m;ϕ) as we have succeeded in proving numeri-
cally (the algebra proves forbidding). Hence the peak of the

Gaussian wave packets follows the classical trajectory for
both factors, with either clock.

A. Matter clock

We now illustrate the behavior of the wave packets in the
region b > b�, focusing first on the matter clock, Tm. The
waves, therefore, have the form

ψ�ðb; TmÞ ¼ e
i
hðP�ðb;α0Þ−m2TmÞ 1

ð2πσ2TmÞ1=4
exp

�
−
ðXeff

�mðbÞ − TmÞ2
4σ2Tm

�
; ð39Þ

with

Xeff
�mðbÞ ¼

Z
b

b�

2ϕV
9m2x

sin

�
2 arctan x

3
� 2π

3

�
db: ð40Þ

In Fig. 4 we plot the imaginary part1 of the wave packet at
three different matter times, Tm, before, at and after the
bounce. We see that just as in [4], well before and after the
bounce, the wave function behaves as separate envelopes
ψþðb; TmÞ and ψ−ðb; TmÞ, respectively. These packets
correspond to matter and Lambda domination. Near the
bounce, however, the two packets interfere, resulting in the
“ringing” phenomenon. This interference is transposed into
the amplitude of the total wave function, as observed in
Fig. 5, where we can see the small oscillations in the
distribution, which fade away far from the bounce time.
This illustrates a phenomenon present in general, well

beyond the saddle approximation used in obtaining these
wave functions. However, we may consider using the
semiclassical measure [4], inferred from the same approxi-
mation used in computing these wave packets. Then, the
probability is given by

Piðb; TiÞ ¼ jψþij2j∂bXeff
þi j þ jψ−ij2j∂bXeff

−i j: ð41Þ

Applying this to the matter case we have

∂bXeff
�m ¼ 2ϕV

9m2x
sin

�
2 arctan x

3
� 2π

3

�
ð42Þ

and ψ�i are given by (39). This probability is plotted in
Fig. 6 for different times. As we can see, we no longer have
the ringing effect near Tm ¼ 0 in this approximation.
Nevertheless, we find the presence of a divergence as
b → b�, since

Pmðb → b�; TiÞ ¼
2ϕV�

9m2xð2πσ2TmÞ1=2
e
− T2m
2σ2

Tm : ð43Þ

This divergence becomes irrelevant (exponentially sup-
pressed) for jTmj ≫ σTm due to the exponential factor, as FIG. 4. Imaginary part of the wave function in the classically

allowed region, forTm ¼ −50, 0, 50 respectively.Herewe consider
a “matter”wave packetwith σTm ¼ 30.We also have k ¼ 0,m ¼ 1

and ϕ ¼ 106. The bounce in b space happens at Tm ¼ 0.

1This is merely for definiteness and plot clarity. The real part
has a similar behavior, out of phase with the imaginary part.
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observed in the plot for Tm ¼ 190. For smaller Tm a double
peaked distribution occurs, the main peak corresponding to
the Gaussian distribution and the other one associated with
the semiclassical measure factor. Approaching the bounce
at Tm ¼ 0, the Gaussian peak vanishes (in Fig. 6 the
transition point is around Tm ¼ 65) and the distributions
remain only peaked around b ¼ b�.
We now examine the evolution of the width of the peak

with time far away from the bounce (b ≫ b�). In this limit,
the expressions for Xeff take the form

Xeffþm ≈ −
1

3b3
; ð44Þ

Xeff
−m ≈ −

ffiffiffiffiffi
27

p

4b3�
ln b: ð45Þ

The standard deviation in b space can be obtained
through σX ¼ σT with

σb ¼
���� db
dXeff

����σX; ð46Þ

which leads to

σb
b

¼ b3σTm ð47Þ

for Xeffþm and

σb
b

¼ 4b3�ffiffiffiffiffi
27

p σTm ¼ 2mffiffiffiffi
ϕ

p σTm ð48Þ

for Xeff
−m. Therefore, deep in the matter epoch, i.e., for

Tm ≫ 0, since b increases with Tm the peak of the wave
packet becomes larger with b3, which demonstrates the
quantum nature of the early universe. On the other hand, for
Tm ≪ 0, we are in the Lambda epoch and b increases with
jTmj. However, the standard deviation does not depend on b
and so the width of the distribution stays approximately
constant over time, corresponding to the propagation of a
semiclassical state.

B. Lambda clock

If we use the Lambda clock the wave function is given by

ψ�ðb; TϕÞ ¼ e
i
hðP�ðb;α0Þ−ϕTϕÞ 1

ð2πσ2TϕÞ1=4
exp

�
−
ðXeff

�ϕðbÞ − TϕÞ2
4σ2Tϕ

�
; ð49Þ

with

Xeff
�ϕðbÞ ¼

P�
ϕ

−
Z

b

b�

2V
9x

sin

�
2 arctan x� 2π

3

�
db: ð50Þ

We observe a similar behavior in the imaginary part of the wave function (Fig. 7) as compared to the previous sub-
section. We plot again jψ j2 at different Tϕ in Fig. 8, where we can observe the ringing phenomenon during the bounce.

FIG. 5. The module squared of the wave function in the
classically allowed region, for Tm ¼ 0, 50, 80 respectively. We
consider a matter wave packet with σTm ¼ 30 and set k ¼ 0,
m ¼ 1 (central value) and ϕ ¼ 106. The phenomenon of ringing
is in evidence. Although the internal beats of the incident and
reflected packets are separately invisible in the separate jψ j2, they
become visible near the reflection due to the interference of the
incident and reflected wave.

FIG. 6. Probability calculated using the semiclassical measure
for Tm ¼ 0, 65, 90, 190 respectively, for a matter m wave packet
with associated σTm ¼ 30. We set k ¼ 0, m ¼ 1 (central value)
and ϕ ¼ 106. For each time (i.e., for any given color) the point
marks the peak of the distribution (where present), the dashed
vertical line the average b and the solid vertical line the position
of b for the classical trajectory for that time. As we see the peak
and the average of the distribution both disagree substantially
with the classical trajectory, in opposite directions.
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This disappears using the semiclassical measure (Fig. 9), but corrections are still visible around the bounce. Specifically, we
see that the peak of the distribution tends to be biased to lower values with respect to the classical trajectory. This can be
derived analytically in regions where one of the waves dominates (incident or reflected) and is due to the measure effect.
This not only induces a divergence at b ¼ b⋆ but also induces a correction in the motion of the peak, as can be obtained by
examining the derivative:

Xeff
�ϕ − Tϕ ¼ −

2σ2Tϕb

3j∂bXeff
�ϕj2

�
4 cos2

�
arctan x� π

3

�
þ
�

b6

b6�x3
−

8

3x

�
sin

�
2 arctan x� 2π

3

�
−

2

3x2
cos

�
2 arctan x� 2π

3

��
:

ð51Þ

In contrast the average value of b tends to be higher than
the classical value around the bounce. This is likely to be
the relevant prediction of this calculation. For this reason
we will examine this effect in more detail in the next
section, with real observational data.
We close this section by noting that for b ≫ b� we obtain

the Lambda limit from Xeff
−ϕ,

Xeff
−ϕ ≈

b3

3
; ð52Þ

and the matter limit from Xeff
þϕ,

Xeff
þϕ ≈ Cϕ þ

32

6561

b12�
b9

¼ Cϕ þ
2

9

m4

ϕ2b9
; ð53Þ

with Cϕ a constant. We can now analyze the behavior of the
peak far away from the bounce in each epoch. For Xeff

þϕ we
get the standard deviation in b given by

σb
b

¼ 729

32

b9

b12�
σTϕ ¼ ϕ2

2m4
σTϕb9: ð54Þ

FIG. 7. Imaginary part of the wave function in the classically
allowed region, for Tϕ ¼ −0.00015, 0, 0.00015 respectively.
Here we consider a “Lambda” wave packet with σTϕ ¼ 0.00003.
We also have k ¼ 0, m ¼ 1 and ϕ ¼ 106. The bounce in b space
happens at Tϕ ¼ 0.

FIG. 8. Module squared of the wave function in the classically
allowed region, for Tϕ ¼ 0, 0.00007, 0.00015 respectively. Here
we consider a Lambda wave packet with σTϕ ¼ 0.00003. We also
have k ¼ 0, m ¼ 1 and ϕ ¼ 106. The bounce in b space happens
at Tϕ ¼ 0.
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As we can see, the width of the peak will increase with the
power b9 and so, deep in the matter epoch, a long time
before the bounce (Tϕ ≪ 0), the wave packet will become
larger since b increases with jTϕj. The opposite happens in
the Lambda epoch since for Xeff

−ϕ we have

σb
b

¼ σTϕ
b3

ð55Þ

and b increases with Tϕ, therefore the wave packet
becomes more narrow in b space as time passes.

V. PHENOMENOLOGY AROUND THE
TRANSITION REGION

We now make use of the fact that we happen to be living
near the transition from deceleration to acceleration, to
examine possible observational effects of a bounce in
connection space. Indeed, no single component dominates
the recent Universe, with the present density parameter
associated with Lambda given by [20]:

ΩΛ0 ¼
Λ
3H2

0

¼ 1

ϕH2
0

¼ 0.6889� 0.0056 ð56Þ

(where the subscript 0 denotes “now,” whereas, we recall, *
denotes the bounce point). The present Hubble parameter
and value of b (with convention a0 ¼ 1) is

H0 ¼ b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

ϕ

s
¼ 67.37� 0.54 km s−1: ð57Þ

From (56) and (57) we can solve for m and ϕ in terms of
ΩΛ0 and H0, and then use (6) and (7) to find

a� ¼
ð1 −ΩΛ0Þ1=3
ð2ΩΛ0Þ1=3

; ð58Þ

b� ¼
�
27

4

�
1=6

ð1 −ΩΛ0Þ1=3Ω1=6
Λ0 H0 ð59Þ

or the central values

b� ¼ 6.027 × 10−11 y−1 ð60Þ

z� ¼
1

a�
− 1 ¼ 0.642: ð61Þ

Converting into more frequently used variables (using
standard numerical codes for relating a and t) we find
that the bounce occurs when

H⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3ΩΛ0

p
H0 ¼ 96.85 km s−1Mpc−1 ð62Þ

t⋆ ¼ 7.673 Gy: ð63Þ

We are thus close to the bounce, both in terms of metric
(redshift, z⋆) and connection b. Specifically, b⋆=b0 ≈ 0.875
so that

b0 − b⋆
b⋆

≈ 0.142: ð64Þ

Whether we are close enough to justify a power-law
expression for our predictions will presently be assessed.

A. Power series expansions near the bounce

Near the reflection point, we can approximate

Xeff
�ϕ ¼

X
n

ð�ÞnαXn b3−n=2⋆ ðb − b⋆Þn=2 ð65Þ

and refer to computer algebra to find as many coefficients
as needed.2 In general, the Λ probability factor is given by

Pϕðb;TϕÞ ¼
e
−
ðXeffþϕ

−TϕÞ2

2σ2
Tϕ j∂bXeff

þϕj þ e
−
ðXeff−ϕ−TϕÞ

2

2σ2
Tϕ j∂bXeff

−ϕjffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2Tϕ

q :

FIG. 9. Probability calculated using the semiclassical measure
for Tϕ ¼ 0, 0.00007, 0.00014, 0.0003, respectively, for a Lambda
wave packet with associated σTϕ¼0.00003. We set k ¼ 0,m ¼ 1

and ϕ ¼ 106 (central value). For each time (i.e., for any given
color) the point marks the peak of the distribution (where
present), the dashed vertical line the average b and the solid
vertical line the position of b for the classical trajectory for that
time. As we see the peak and the average of the distribution both
disagree substantially with the classical trajectory, in opposite
directions. Near the bounce the average b is substantially higher
than its classical value, as the blue curve illustrates.

2Concretely, αX1 ¼ −
ffiffi
2

p
9
, αX2 ¼ 11

27
, αX3 ¼ − 137

162
ffiffi
2

p , αX4 ¼ 131
243

,
αX5 ¼ − 8761

19440
ffiffi
2

p , αX6 ¼ 329
2187

, etc.
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Using only the first term in (65) this reduces to

Pϕðb;TϕÞ ≈
e
−
ðX⋆−TϕÞ2

2σ2
Tϕ þ e

−
ðX⋆þTϕÞ2

2σ2
Tϕffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2Tϕ

q j∂bX⋆j; ð66Þ

where X⋆ðbÞ ¼
ffiffi
2

p
9
b5=2⋆ ðb − b⋆Þ1=2. Hence, in this approxi-

mation, we have that the distribution is not a Gaussian, but an
exponential distribution [i.e., of the form∼expð−λðb−b0ÞÞ],
before we consider the divergence due to the measure factor
j∂bX⋆j (this is corroborated by Fig. 9). In this approximation
themethod of the images for reflections holds true [2], that is,
the totalwave is the sumof the incidentwave and an identical
mirror wave. However, neither of these two facts are true if
we add more than the first term of (65). This is because the
reflected and incidentwaves propagate in different dispersive
media. Nonetheless the first term makes the point that the
distribution is very skewed and squashed against b⋆.
We will use the average b̄ as an indicator of the quantum

anomalies that might be observed. This can be computed
directly in terms on Xeff

ϕ because

b̄ðTϕÞ ¼
Z

∞

b⋆
dbPðb; TϕÞb

¼
Z

∞

−∞
dXeff

ϕ PðXeff
ϕ ; TϕÞbðXeff

ϕ Þ; ð67Þ

where we drop the � subscript in Xeff
ϕ , since this is implicit

in the domain. Then PðXeff
ϕ ; TϕÞ is a normal distribution in

Xeff
ϕ centered at Xeff

ϕ ¼ Tϕ with variance σTϕ, and if we
approximate bðXeff

ϕ Þ via the Taylor expansion following
from (65),

b ¼ b⋆ þ
X∞
n¼2

αbn
ðXeff

ϕ Þn
b3n−1⋆

≈ b⋆ þ
81

2b5⋆
ðXeff

ϕ Þ2 − 2673

2b8⋆
ðXeff

ϕ Þ3 þ 85293

2b11⋆
ðXeff

ϕ Þ4 þ � � �

we reduce the problem to the moments of a Gaussian
distribution. These are sn ¼ 0, for odd n, sn ¼ ðn − 1Þ!! for
even n ≥ 2 (plus the normalization condition s0 ¼ 1). We
thus have

b̄
b⋆

¼ 1þ
X∞
n¼2

αbn
σnTϕ
b3n⋆

Xn
k¼0

�
n

k

�
sk

�
Tϕ

σTϕ

�
n−k

¼ 1þ
X∞
n¼2

Xn
k¼0

αbnsk

�
n

k

��
σTϕ
b3⋆

�
k
�
Tϕ

b3⋆

�
n−k

ð68Þ

resulting in a double expansion: in Tϕ (resulting from our
expansion of b around b⋆) and in even powers of σTϕ=b3⋆.

This expansion is only suitable when the effect is
reasonably small (because σTϕ=b3⋆ is small). For example
at Tϕ ¼ 0 (i.e., at the bounce) we have

b̄ − b⋆
b⋆

¼
X∞
n¼1

αb2n
σ2nTϕ
b6n⋆

ð2n − 1Þ!!: ð69Þ

It can be numerically checked that this does not converge if
σTϕ=b3⋆ is bigger than about 0.008, for which the fractional
correction (69) is only about 0.3%. However, when the
series converges, its first term is already a very good
approximation.
Bearing this in mind, we can derive a perturbative

expression for the redshift profile of the correction. Such
an expression is only practical if we are reasonably close to
z ¼ z⋆. Setting σTϕ ¼ 0 in (68) we obtain a perturbative
expansion for the classical trajectory:

b̄ðσTϕ ¼ 0Þ ¼ bcl ¼ b⋆ þ
X∞
n¼2

αbn
Tn
ϕ

b3n−1⋆
ð70Þ

as expressed by Xeff
ϕ ¼ Tϕ [cf. (65)]. Keeping only first

order terms in σ2Tϕ=b
6⋆ we have

b̄ ¼ bcl þ
σ2Tϕ
b5⋆

X∞
n¼2

αbn
nðn − 1Þ

2

�
Tϕ

b3⋆

�
n−2

ð71Þ

¼ bcl þ
σ2Tϕ
b5⋆

�
αb2 þ 3αb3

Tϕ

b3⋆
þ 6αb4

T2
ϕ

b6⋆
þ � � �

�
: ð72Þ

Using Tϕ ¼ Xeff
ϕ ðbclÞ and (65) we finally obtain an

expansion with leading order terms:

b̄ − bcl
bcl

≈
b⋆
bcl

σ2Tϕ
b6⋆

�
81

2
∓ 891ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bcl − b⋆

b⋆

s
þ 9369

2

bcl − b⋆
b⋆

�
;

where ∓ refers to after/before the bounce (a −=þ).
In Fig. 10 we see the redshift profile that emerges as we

add more and more terms to this expansion. We have
evaluated the Hubble parameter assuming that all its
uncertainties arise from b and not from the complementary
a (as suggested by the analysis in [21,22]). Clearly Taylor
expansions are not suitable for the redshift range we need
(down to z ¼ 0), and for values of σTϕ=b3⋆ capable of
generating corrections of a few percent (if a connection
with the Hubble tension is sought). Nonetheless they could
be useful in future settings, and provide good guidance and
checks for the numerical results that follow.

B. Numerical results

We can also numerically evaluate (67), check that the
results from the code match our analytical results when
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σTϕ=b3⋆ is sufficiently small and z ∼ z⋆, and then push the
code beyond the perturbative regime. The outcome of this
exercise is plotted in Fig. 11, which is the central result of
our paper. As we see, it is not difficult for the average
Hubble parameter to be larger than its classical trajectory

by 5%–10%. This requires values of σTϕ=b3⋆ of the order of
0.1. Should this be 1 order of magnitude smaller, the
concomitant corrections on H are also roughly 1 order of
magnitude smaller.
It is interesting that the overall effect always implies a

largermeasured Hubble parameter for small redshifts, as in
the Hubble tension. This is due to the squashing of the wave
function due to the reflection, which creates a positively
skewed distribution. But by adjusting σTϕ, one can obtain a
correction as high or as low as required.
What is truly predictive in our calculation, however, is

that the effect has a distinctive redshift profile, as plotted
in Fig. 11. The strength of the correction always peaks
around z⋆, as expected, and as Lambda dominates it
subsides. But as it does so, the correction changes sign,
i.e., the average Hubble parameter becomes slightly smaller
than its classical prediction. This may happen after z ¼ 0
(i.e., after nowadays), but as the top panel of Fig. 11 shows,
it is only for the largest values of σTϕ=b3⋆ (and so of the
effect near z ¼ z⋆) that this happens.
This feature can be checked analytically by writing

Xeff
−ϕ ≈ XCS ¼ b3=3, expanding the resulting bðXÞ around

X ¼ Tϕ (for each Tϕ) to second order, and inserting in (67).
This leads to

b̄ðTϕÞ ≈ bclðTϕÞ þ
1

2

∂
2b

∂X2
ðTϕÞσ2Tϕ ð73Þ

¼ bclðTϕÞ −
1

35=3

σ2Tϕ

T5=3
ϕ

ð74Þ

¼ bclðTϕÞ
�
1 −

σ2Tϕ
b6cl

�
: ð75Þ

The origin of this effect can also be understood qualita-
tively. It results from the measure factor in the probability in
terms of b, as given by Eq. (41). It shifts the peak and
average of the distribution to smaller values than the peak
of the Gaussian itself.
In closing this section we note that for large values of

σTϕ, the Lambda wave function will quickly run into the
type of behavior studied in [23]. This would most likely not
be observable, since one expects the matter or radiation
clocks to take over in this regime. Should the Lambda clock
still be in action deep in the matter epoch, however, this
remains an interesting possibility.

VI. CONCLUSIONS

We conclude with an appraisal of the ratio between
predictions and free parameters in our model. The free
parameters are all in the choice of the quantum state of the
Universe. Restricting AðαÞ to factorizable Gaussian states,
there are only two free parameters: the σi (or equivalently,

FIG. 11. Redshift profile of the corrections to the Hubble
parameter obtained for various values of σTϕ=b3⋆ large enough to
require numerical treatment. As we see the correction can be large
enough to explain Hubble tension (top panel), but also more
modest (bottom panel). The redshift profile provides testability to
this explanation. Note, in particular, how the positive correction
around z ∼ z⋆ may become negative near z ¼ 0 in some cases.

FIG. 10. Illustration of the correction to the Hubble parameter
around z ¼ z⋆ truncating the series at various orders in
ðbcl − b⋆Þ=b⋆, for σTϕ=b3⋆ ¼ 0.007.
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the complementary σTi). The central values α0i are fixed by
observations. The larger the σTi the stronger and more
persistent will be the quantum corrections, but obviously
these must also comply with constraints.
It is important to stress that the full class of theories

proposed in [7,8,14], albeit all equivalent classically, lead to
very different quantum theories, subject to different obser-
vational constraints, and making different predictions. If
there is only one clock (say the Lambda clock3) then clearly
this paper would not be possible, since it would imply a
quantum Universe at redshifts of order 1. But if there are
various clocks at play, and each one is associated with the
different components in the Universe that dominate in
different epochs [7], then such constraints vanish, since a
radiation or matter clock could take over in the matter or
radiation epochs.4 The best chance for observing quantum
effects (other than at the singularity [23]) would then be at
transition regions, where one clock is handing over to
another.
That is precisely the situation studied here, where we

have a matter and a Lambda clock. The fact that we have a
reflection in connection space at the redshift where Lambda
takes over only exacerbates the quantum aspects of the
problem. In Sec. IV we isolated three effects that poten-
tially could affect cosmological observations near the
transition from matter to Lambda domination:

(i) Ringing due to the interference of the incident and
reflected waves.

(ii) Effects of the semiclassical measure on the trajectory
of the peak of the distribution.

(iii) Bias towards higher averages due to the “squashing
against the wall” effect of the distribution at the
bounce.

The first effect would require the wave function to be
sufficiently non-Gaussian for the semiclassical measure to
break down. The second effect is more conservative in its
assumptions on the wave function, but is likely to be very
small. The third is the predominant correction, and we have
focused on it in Sec. V.
In this paper we raised the possibility that (at least part

of) the Hubble tension might be due to a quantum effect
(see [26] for an extensive review, and [27], for example, for

the problems in attending to all issues). We found that
because of the squashing of the wave function during the
reflection, the overall probability distribution is very
skewed, pushing the average value of the Hubble parameter
above the classical prediction for redshifts of order
z ¼ z⋆ ≈ 0.64, where the bounce occurred. For generic
parameters, the effect likes to be small (of the order of
0.1%) but it is not difficult to push σTϕ to values where 5%–
10% corrections are possible. But what makes our result
truly predictive is that we obtain a distinctive profile for the
corrections of the Hubble parameter with redshift: higher
than the classical prediction around z ∼ z⋆, but then slightly
lower than its classical value when z ≈ 0. This is depicted in
Fig. 11, and it is the central result of this paper.
It might seem strange that quantum cosmology, often

confined to the Planck epoch [28–31], appears to be
relevant at late times. In part this is due to the pragmatical
resolution [7,8,14] to the problem of time (e.g., [32])
adopted here. The idea that the late-time Universe might
be in the realm of quantum cosmology has been discussed
for quite a while. For example [33] argued that, beyond the
semiclassical approximation, quantum effects are unavoid-
able at the turning point of a recollapsing Universe. More
recently the matter has received some attention, both in the
context of toy models (e.g., Ref. [34]), or in the context of
realistic dark-energy models (see [35] for a comprehensive
review). The latter involve situations where singularities
would appear in the classical theory, and revolve around the
issue of their resolution or otherwise due to quantum effects
(as well as the issue of boundary conditions, in work that
resonates with [4,14]). To the best of our knowledge, we are
the first to address these issues using the connection
representation and in relation to the Hubble tension.
Important questions of interpretation naturally emerge

[36,37]. We would expect the experts in such issues to
voice their views. On a more pedestrian level it would be
interesting to test our prediction, both directly and indi-
rectly, for example via the implications to the growth factor
of cosmic structure or to the integrated Sachs-Wolf
effect [27].
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3This is precisely the set up studied in [24], with direct
implications for the cosmological constant problem.

4If there are several clocks at play during the same epoch the
situation is once again different [25].
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