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Spatially homogeneous cosmological spacetimes evolving in the presence of a positive cosmological
constant and matter satisfying some reasonable energy conditions, typically approach the de Sitter
geometry asymptotically (at least locally). In this work, we propose an alternative way to characterize this
phenomena. We focus on a subset of such models admitting a generalized Kerr-Schild representation. We
argue that the functions which define such a representation can be chosen, such that, their asymptotic
behavior makes the evolution toward the de Sitter spacetime manifest through the representation. We verify
our claim for the Kantowski-Sachs family of cosmological spacetimes.
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I. INTRODUCTION

It is well known that a positive cosmological constant is
the best “isotropizer” [1], in the sense that expanding
cosmological models in the presence of a positive cosmo-
logical constant typically approach the de Sitter spacetime
asymptotically [2]. Such statements can be turned into a
precise theorem for a large class of spatially homogeneous
cosmological models. This result, to be referred to as
Wald’s theorem [3] henceforth, can be stated as follows:

(i) an initially expanding solution of a homogeneous
cosmological model

(ii) characterized by a nonpositive scalar (Ricci) curva-
ture R of the surfaces of homogeneity (i.e., R ≦ 0)

(iii) evolving under the influence of a positive cosmo-
logical constant (i.e., Λ > 0)

(iv) and matter satisfying the dominant and the strong
energy conditions

must continue to expand indefinitely, isotropize, and be
locally indistinguishable from the de Sitter spacetime
asymptotically. For reasons to be clarified below, we will
call this process de Sitterization.
Our presentation of Wald’s theorem differs from the

original formulation, in that, in [3] the theorem only
concerned Bianchi-type cosmological models, and it was
actually proven that all Bianchi models except Bianchi IX
respect the condition R ≦ 0. However, even in models
like Bianchi IX where this condition may not hold, de
Sitterization may still take place under suitable additional
conditions. Keeping this condition as a separate assumption
therefore helps us to understand the precise role of this
particular condition in the de Sitterization process.

Two remarkable aspects of Wald’s theorem are the
generality of its premise and the simplicity of the under-
lying arguments. Indeed, as long as the aforementioned
conditions are satisfied, the result is neither sensitive to the
detailed nature of the matter present nor to most of the
dynamical equations governing the overall evolution of
the spacetime and matter. We present a brief outline of the
proof of the theorem in Appendix A.
The generality of the arguments also makes it difficult

to explicitly understand how the result may (or may not)
fail when one of the underlying assumptions is violated. In
fact, the various Friedmann-Lemaître-Robertson-Walker
(FLRW) models offer an excellent illustration of this point.
Consider, for example, the evolution of the FLRW models
in the presence of a positive cosmological constant and a
perfect fluid satisfying both the dominant and the strong
energy conditions. Then, every initially expanding solution
of both the flat and open FLRW models de Sitterizes,
as dictated by Wald’s theorem. On the other hand, the
situation is more interesting with the closed FLRWmodels.
Here, some initially expanding solutions do de Sitterize, but
others generically recollapse and end up in a “big crunch.”
Incidentally, these FLRW examples justify our coinage

of the term “de Sitterization.” Every FLRW spacetime is
isotropic, and so it is meaningless to talk about their
isotropization, but a FLRW spacetime may or may not
de Sitterize as we just noted. In other words, the term de
Sitterization can unambiguously be applied to both iso-
tropic and initially anisotropic spacetimes evolving toward
the de Sitter spacetime.1
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1We should also note in this regard that the term “isotropization”
can describe more general situations than de Sitterization. For
instance, an anisotropic Bianchi I spacetime may evolve into
a non–de Sitter FLRW spacetime in the absence of any cosmo-
logical constant. This is an example of isotropization, but not of
de Sitterization.
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In order to understand the issues raised in the preceding
paragraphs better, it is customary to employ the techniques
of dynamical systems analysis. In this approach, we exploit
the fact that the evolution equations of a homogeneous
cosmological model form a set of coupled first order
ordinary differential equations, and therefore, can be
viewed as describing a dynamical system. This is well-
established research program (see [4–8] and references
therein) which has made significant progress in describing
various cosmological models with different types of matter
content in the context of general relativity and in extended
theories of gravity [9].
Detailed analyses of the homogeneous cosmological

models within this framework reveal that forgoing the
R ≦ 0 assumption typically leads to the existence of
additional fixed points which are usually saddle points.
The resulting state space gets partitioned, such that some
orbits describe de Sitterization while others describe
recollapse, and the boundaries between such regions
consist of metastable states. One minor drawback of the
dynamical systems approach is that one might need to redo
the analysis if the matter content of the model is modified.
However, the process always yields much more detailed
information about the dynamics of the model.

A. Our proposal

In the present work, we wish to describe the
de Sitterization process in yet another way. Our proposal
can be stated as follows: Let gab be the physical metric on a
de Sitterizing cosmological spacetime, and suppose that it
can be expressed in a generalized Kerr-Schild form [10] as
follows:

gab ¼ Ω2g̃ab − 2Φlalb; ð1Þ

where g̃ab is the “de Sitter metric” (more precisely, a
conformally flat Einstein metric whose curvature is deter-
mined by the physical cosmological constant Λ > 0), la is
a real null 1-form of the physical metric, and Ω and Φ are a
pair of functions. Then, we claim that for appropriate
choices for the functions Ω and Φ and the null 1-form la,
the above relation captures the de Sitterization process.
Before proceeding further, some clarifications of our

claim seem warranted. Perhaps it is best to start with the
choice of the two functions and the null 1-form appearing
in Eq. (1). Suppose for a moment that la is an arbitrary real
null 1-form of the physical metric, and likewise, letΦ be an
arbitrary function on the spacetime. It is then very easy to
show that as long as the function Φ and the 1-form la are
nonsingular, the tensor ĝab ≡ gab þ 2Φlalb is a symmet-
ric rank-(0,2) nondegenerate tensor with the same signature
as that of the physical metric. In other words, ĝab may
define some metric on the spacetime. However, for arbi-
trary choices of Φ and la, one can hardly expect ĝab
to have any physical relevance. In other words, for the

relation (1) to have any physical significance whatsoever,
one has to carefully prescribe the properties of the
quantities appearing on the right-hand side. Note that the
function Ω can never vanish since it would otherwise make
the conformally de Sitter metric Ω2g̃ab degenerate (which
can never happen as long as Φ is nonsingular). Hence, Ω
can never change sign, and we can always assume Ω > 0.
One reasonable assumption, then, is to impose all the

Killing symmetries of the physical metric on the functions
Ω and Φ (since we do want these functions to contain
physical information about the evolution of the solutions).
Furthermore, a prerequisite to the metric g̃ab being de Sitter
metric is that it be conformally flat. This last condition
usually puts significant restrictions on the physical metric,
because it will not likely hold unless the physical metric is
algebraically special. In fact, under such conditions, the
null vector la ¼ gablb must become a principal null vector
of the conformal (Weyl) curvature of the physical metric
[10], and therefore, will also satisfy all of the Killing
symmetries. One may thus deduce that the metric g̃ab must
admit all the Killing symmetries of the physical metric as
well.2 The primary goal of this paper is to demonstrate,
through a specific example, that the above requirements are
enough to determine the functions Ω and Φ uniquely, and
more importantly, that these functions have the right kind of
asymptotic behavior to capture de Sitterization.
An obvious shortcoming of the proposed approach is that

it is only possible to study algebraically special solutions
(typically Petrov type D, at most type II) in this manner.
However, whenever applicable, this approach can be quite
useful and is intended to complement the well-established
approaches to understand de Sitterization. Indeed, the
seemingly “perturbative appearance” of the relation (1)—
where one expresses the physical metric as its asymptotic
de Sitter form (up to a conformal factor) plus a “correction
term” (the −2Φlalb piece)—makes it rather easy to
visualize the de Sitterization process. When chosen cor-
rectly, the function Ω is expected to approach unity
asymptotically for a de Sitterizing solution, while Φ is
expected to vanish in the same limit, thereby forcing the
physical metric to approach its asymptotic de Sitter form.
We will demonstrate this behavior explicitly for our exam-
ple below. Such a behavior thus offers us a coordinate-
independent way to capture useful information about the
asymptotic behavior of such de Sitterizing spacetimes
through the functions Ω and Φ. However, despite its
perturbative appearance, the relation (1) is actually fully
nonperturbative, and therefore describes a de Sitterizing
solution far away from the de Sitter fixed point.We elaborate

2Of course, the de Sitter metric being maximally symmetric
will admit more Killing symmetries than the physical metric. Our
assumptions merely imply that a subset of these symmetries will
be shared with the physical metric.
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on these (and other) points further in our concluding remarks
in Sec. V.
The rest of this paper is devoted to the analysis of a

specific example in order to substantiate our proposal. This
example, the Kanstowski-Sachs family of spacetimes, is
introduced in Sec. II, and the properties of such spacetimes
relevant for discussing de Sitterization are reviewed. The
generalized Kerr-Schild decomposition of these space-
times, à la (1), is presented in Sec. III, and the demon-
stration of the required asymptotic behavior of the
functions Ω and Φ for de Sitterizing solutions is carried
out in Sec. IV. We end with a discussion of our results in
Sec. V. We have also included two appendixes: Appendix A
contains an outline of the proof of Wald’s theorem, and
Appendix B discusses a conformal representation of de
Sitterizing FLRW solutions analogous to (1).

II. THE KANTOWSKI-SACHS FAMILY
OF SPACETIMES

As mentioned in our introductory remarks, we wish to
illustrate our proposal (1) through the example of the
Kantowski-Sachs family of spacetimes.3 We can define
them as a family of homogeneous spacetimes whose
symmetries constrain the metric to take the following form:

ds2 ¼ −dt2 þ a2zdz2 þ a2γðdθ2 þ SγðθÞ2dφ2Þ: ð2Þ

Here, the time coordinate t parametrizes the homogeneous
hypersurfaces, and the metric components az and aγ are
functions of t only. The coordinates θ and φ on the
transverse space need not be compact (here and henceforth,
any function carrying the subscript γ will pertain to the
transverse space, unless specified otherwise), and the
function SγðθÞ can take one of the three possible forms,
namely, sinh θ, θ, or sin θ.
The scalar curvature R of the homogeneous hyper-

surfaces is given by

R ¼ 2cγ
a2γ

; ð3Þ

where the constant cγ is defined via the relation cγ ¼
−S00γ ðθÞ=SγðθÞ. Hence,

cγ ¼
8<
:

−1; for SγðθÞ ¼ sinh θ;

0; for SγðθÞ ¼ θ;

1; for SγðθÞ ¼ sin θ:

In other words, the choice of the function SγðθÞ determines
the curvature of the homogeneous hypersurfaces.

The metric (2) admits two obvious Killing vectors,
namely, ∂z and ∂φ, the former being orthogonal to the
transverse space, and the latter being inside it. There are
also two additional Killing vectors, both residing in the
transverse space given by

sinφ∂θ þ ½S0γðθÞ=SγðθÞ� cosφ∂φ
and

cosφ∂θ − ½S0γðθÞ=SγðθÞ� sinφ∂φ:

Together, these four Killing vectors generate the Lie
algebra of the G4 symmetry group of such spacetimes.
In each case, the parent G4 admits a G3 subgroup, and in all
but one case the symmetry acts in a simply transitive
manner. All such cases are locally rotationally symmetric
(LRS) Bianchi models; in particular, for SγðθÞ ¼ sinh θ, the
model is LRS Bianchi III, while for SγðθÞ ¼ θ, it is LRS
Bianchi I. The only exception occurs with the subfamily of
spacetimes with SγðθÞ ¼ sin θ where the symmetry group
acts multiply transitively. These are the proper Kantowski-
Sachs models introduced in [12,13]. For further informa-
tion about these models, see [4,11] and references therein.
In order to describe the de Sitterization process effi-

ciently, it is useful to introduce the scale factor a given in
terms of the metric functions az and aγ as

a3 ¼ aza2γ
τ20

; ð4Þ

where τ0 is a (time) scale associated with the (positive)
cosmological constant Λ according to

τ0 ¼
ffiffiffiffi
3

Λ

r
: ð5Þ

The time derivative of the scale factor then allows us to
define the Hubble parameter H, as usual. However, instead
of working with the conventionally defined H, it turns out
to be more convenient to introduce a dimensionless Hubble
parameter h as follows:

h ¼ τ0
a
da
dt

: ð6Þ

The conventional Hubble parameter may then be related to
h through H ¼ τ−10 h. In particular, in a de Sitterizing
solution,H approaches the value τ−10 asymptotically; hence,
h approaches unity in the same limit.
We may also define a relative scale factor as through the

following relation:

as ¼
τ0az
aγ

: ð7Þ
3The terminology is borrowed from Ref. [11].
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The metric functions az and aγ both diverge as the de Sitter
limit is approached. However, they diverge at the same rate
such that the relative scale factor tends to unity asymp-
totically. Moreover, the time derivative of as allows us to
introduce the function ks as below

ks ¼
τ0
as

das

dt
; ð8Þ

which has the following interpretation: As is well known,
the trace-free part of the extrinsic curvature of the homo-
geneous hypersurfaces provides a measure of anisotropy of
homogeneous cosmological models. In the Kantowski-
Sachs family of spacetimes, in particular, the symmetries
dictate that the said trace-free part can be described by
a single function of t. The function ks introduced above
is essentially the dimensionless part of that function.
Naturally, in a de Sitterizing solution, ks is expected to
vanish asymptotically. To summarize, what we have done
so far is to capture the degrees of freedom of the metric (2)
and their time derivatives in the variables a, as, h, and ks.
Apart from their nice geometrical interpretations, these
variables are useful in expressing some of our results in a
succinct and more illuminating form.
To consider the dynamics, in addition to the cosmologi-

cal constant Λ, we need to specify the matter stress tensor
to source the Einstein equations. We take this to be that of
a perfect fluid whose flow lines are perpendicular to the
homogeneous hypersurfaces (as dictated by the sym-
metries) and whose pressure p and energy density ρ are
linked by an equation of state of the form

p ¼ wmρ: ð9Þ

In accordance with the assumptions behind Wald’s theo-
rem, we require the fluid to respect both the strong and
dominant energy conditions. These restrict the constant wm
to be bounded from both above and below according to

−
1

3
≦ wm ≦ 1: ð10Þ

The stress tensor conservation equation now allows the
energy density to be related to the scale factor through

ρ ¼ m0τ
−2
0

a3ð1þwmÞ ; ð11Þ

where m0 is a positive (by the dominant energy condition),
dimensionless, constant of integration. Clearly, if a
increases indefinitely with time, then ρ will tend to zero.
On using these expressions in the Einstein field equation,

we end up with the following evolution equation for h:

τ0
dh
dt

¼ 1 − h2 −
2k2s
9

−
ð1þ 3wmÞm0

6a3ð1þwmÞ ; ð12Þ

which is nothing but the Raychaudhuri equation, as well as
the following evolution equation for ks,

τ0
dks

dt
¼ 3 − 3hks − 3h2 þ k2s

3
þ m0

a3ð1þwmÞ : ð13Þ

These evolution equations, along with (6) and (8), and the
“initial value constraint equation” (i.e., the “time-time
component” of the Einstein equations)

h2 ¼ k2s
9
þ 1 −

τ20
3a2γ

þ m0

3a3ð1þwmÞ ð14Þ

form a complete set of first order ordinary differential
equations which determine the evolution of any appropriate
initial dataset (i.e., suitable values of the four functions a,
as, h, and ks at some “initial moment”).
We may also note parenthetically, that the above equa-

tions receive only minimal modifications if we let go of the
assumption about the equation-of-state (9). In that case,
every occurrence of m0a−3ð1þwmÞ in Eqs. (12)–(14) should
be replaced by a ρτ20, while every occurrence of wmρ should
be replaced by a p. The equations may then represent more
general situations involving multiple kinds of matter
including the presence of dynamical fields (e.g., scalar
field), etc. These more general versions of the equations are
enough to obtain the results presented in Sec. III below.
Two exact solutions of the above sets of equations are

particularly relevant for the discussion of de Sitterization
(see, e.g., [8] and references therein for further details on
these well-known solutions). They both arise when the
matter terms in the above equations are set to zero. The first
class of solutions are given by the following expressions for
the metric functions:

az ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2

τ20
− cγ þ

2μτ0
τ

s
; aγ ¼ τ; ð15Þ

where τ is a time function defined through the relation

dτ
dt

¼ az; ð16Þ

and the parameter μ arises as a constant of integration.
In fact, it can be shown (e.g., along the lines of [14]) that
the constant μ is essentially the “conserved charge”
associated with the ∂z Killing symmetry. When μ is set
to zero, these solutions represent various covers of
parts of the global de Sitter manifold (for the different
allowed values of cγ). Likewise, the solutions for nonzero μ
cover patches of the de Sitter–Schwarzschild spacetimes.
However, the real relevance of these solutions in the context
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of de Sitterization stems from the fact that these solutions
approximately describe a de Sitterizing solution at “late
times” (i.e., as t → ∞), much like how the Schwarzschild
solution approximately describes the “faraway” region of a
static, spherically symmetric, and asymptotically flat space-
time. In other words, the “departure” of a de Sitterizing
solution with respect to that in (15) becomes increasingly
smaller as time grows.
The second exact solution that we wish to discuss exists

only when cγ ¼ 1, i.e., for the proper Kantowski-Sachs
spacetimes. This solution is given by

az ¼

8>><
>>:

coshð ffiffiffi
3

p
t=τ0Þ; jhj < 1=

ffiffiffi
3

p
;

expð� ffiffiffi
3

p
t=τ0Þ; jhj ¼ 1=

ffiffiffi
3

p
;

signðtÞ sinhð ffiffiffi
3

p
t=τ0Þ; jhj > 1=

ffiffiffi
3

p
;

aγ ¼
τ0ffiffiffi
3

p : ð17Þ

The following features of the solution are noteworthy:
(i) The solution consists of five disconnected branches,

namely, the parts with h < −1=
ffiffiffi
3

p
and h > 1=

ffiffiffi
3

p
,

the two fixed points of the equations of motion for
h ¼ �ð1= ffiffiffi

3
p Þ, and the branch with jhj < 1=

ffiffiffi
3

p
.

The two fixed points are the only solutions for which
h is constant at all times.

(ii) The branch for h > 1=
ffiffiffi
3

p
occurs for t > 0; in fact,

az → 0 and h diverges to þ∞ as t → 0þ, and the
solution cannot be extended past t ¼ 0. As t → þ∞,
h asymptotes to the limiting values of 1=

ffiffiffi
3

p
.

(iii) The branch for h < −ð1= ffiffiffi
3

p Þ describes the “time
reversed” scenario of the above. It exists only for
t < 0, az → 0, and h diverges to −∞ as t → 0−, and
the solution cannot be extended past t ¼ 0.

Clearly, this solution does not describe a de Sitterizing
solution. Indeed, the existence of this solution is ultimately
the reason why the cγ ¼ 1 Kantowski-Sachs family of
solutions do not necessarily de Sitterize; generic initial
states may also either recollapse or, with very finely tuned
initial conditions, may approach the above fixed points
(see, e.g., [6,8] for a more detailed discussion).
A relevant question to ask here is whether there exists

any condition on initial states of the cγ ¼ 1 models which
guarantee that they do de Sitterize. We will try to present
our conclusion here through a semiquantitative analysis
backed up by some heuristic arguments. The following
arguments are modeled after the discussion of the Bianchi
IX case in [3], and these results can be fully corroborated
through more careful analysis of the equations of motion
(an outline of which is presented in Sec. IV).
Now, unlike the cγ ≦ 0 cases, we cannot immediately

apply Wald’s arguments to the cγ ¼ 1 case. However, we
may still argue that if an initially expanding cγ ¼ 1 solution
also satisfies the following condition at an instant

Λ ≧ R
2
⇔ aγ ≧ τ0ffiffiffi

3
p ; ð18Þ

then the condition must continue to hold, and such a
solution must de Sitterize. Note that the exact solution (17)
saturates the lower bound.
To arrive at the above conclusion, we note that if an

initially expanding solution (i.e., one which satisfies h > 0)
also satisfies the condition (18) as well as the dominant
energy condition (i.e., m0 > 0), then the initial value
constraint Eq. (14) implies h ≧ 1

3
ks. Hence, by the follow-

ing identity,

τ0
d
dt

�
Λ −

R
2

�
¼ 2

a2γ

�
h −

ks

3

�
; ð19Þ

which holds as an easy consequence of the relations (3)–(8),
we may conclude that the condition (18) continues to hold,
and in fact, even more strongly as time goes on. This in turn
keeps h > 0 (in fact, h can never be zero by the constraint
equation) so that the solution is ever expanding. That would
then alsomean that both the “three-curvature” and thematter
terms in the initial value constraint equation must vanish
asymptotically. Therefore, assuming that ks also vanishes
asymptotically, the constraint equation would force h to
approach unity in the same limit, indicating de Sitterization.
In fact, we may justify the asymptotic vanishing of ks as

follows: Based on the behavior of the exact de Sitter
solutions expressed in the form of the metric (2), we expect
the scale factor to diverge asymptotically as a ∼ ðτ=τ0Þ for
de Sitterizing solutions, where τ is the time function
defined through the relation (16). Now, the equation of
motion for ks (13) implies the following exact relation:

a3ks ¼
cγτ

τ0
þ constant; ð20Þ

where the “constant” piece is a constant of integration.
This relation then explicitly shows that for a de Sitterizing
solution, ks must vanish asymptotically at least as a−2 or
faster. Admittedly, our arguments are rather heuristic, but as
already mentioned, they can be properly justified through a
careful analysis of the equations of motion.
Clearly, every de Sitterizing Kantowski-Sachs solution

must satisfy the strict inequality (18) at least at one instant
during its evolution (and hence, at all times subsequently),
since R must vanish asymptotically. In other words, the
strict inequality part of condition (18) is necessary and
sufficient for de Sitterization. This also shows that any
solution which does not de Sitterize must strictly violate
the bound (18). However, a complete understanding of the
entire solution space can be obtained through a proper
analysis within the framework of dynamical systems. To
further appreciate how the behavior of solutions of the
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Kantowski-Sachs models are affected by the presence of a
positive cosmological constant, see [8,15].
So far, we have reviewed the essential details about the

Kantowski-Sachs family of solutions that will be relevant
for understanding de Sitterization. In the following section,
wewill look at such de Sitterizing solutions in terms of their
generalized Kerr-Schild representations.

III. GENERALIZED KERR-SCHILD
REPRESENTATIONS

A straightforward computation of the conformal (Weyl)
curvature of the metric (2) reveals that it is of Petrov type D.
Such algebraically special metrics often admit (generalized)
Kerr-Schild representations of the form (1).4 As the first step
toward illustrating our main proposal, we will demonstrate
this to hold for the Kantowski-Sachs family of solutions.
To that end, we proceed as follows. Let gab be a metric

of the Kantowski-Sachs family (2). It is then easy to
verify that the 1-form l ¼ − 1ffiffi

2
p ða−1z dtþ dzÞ, where we

have suppressed all tensor indices, is one of the two
repeated principal null 1-forms of the Weyl curvature
tensor. We want to express gab in the generalized Kerr-
Schild form (1) using the abovementioned null 1-form (this
is just a choice; we could have used the other principal null
1-form as well). Furthermore, as already discussed in our
introductory remarks, we want the functions Ω and Φ to
respect all the Killing symmetries of gab. Since this
property is also satisfied by the null 1-form la (being a
principal null vector of the Weyl curvature of gab), the
metric g̃ab also respects all the Killing symmetries of the
physical metric. Finally, we also require g̃ab to be a
conformally flat Einstein metric satisfying R̃ab ¼ Λ̃g̃ab,
where R̃ab is the Ricci curvature tensor of g̃ab, and Λ̃ is a
constant which we keep different from the physical
cosmological constant Λ for the moment (this is for
bookkeeping purposes; the constancy of Λ̃ follows, of
course, from the “twiddled version” of the contracted
Bianchi identity satisfied by g̃ab). Since g̃ab is a confor-
mally flat Einstein metric satisfying all symmetries of gab,
it is fairly easy to show that g̃ab is a maximally symmetric
metric whose curvature is dictated by Λ̃.
To determine now the functions Ω and Φ, we simply

need to relate the Ricci curvatures of the two metrics (see,
e.g., [17]) and impose the equations of motion (6), (8), and

(12)–(14). We wish to stress here that our results in this
section do not depend on whether or not the matter follows
an equation of state of the form (9). Rather, they hold as
long as the matter flow lines are orthogonal to the
homogeneous hypersurfaces and the matter stress tensor
is describable in terms of an energy density ρ and a pressure
p (but no anisotropy term is allowed in the stress tensor).
The aforementioned operations then yield relations

involving Ω and Φ which can be solved to determine
these functions. It turns out that these relations are sensitive
to whether or not the quantity h − 1

3
ks vanishes. However,

the only solution which satisfies the condition h − 1
3
ks ¼ 0

everywhere is the exact solution (17). However. since this is
also a non–de Sitterizing solution, we will henceforth
assume

h −
1

3
ks ≠ 0 ð21Þ

without sacrificing any generality. Under such conditions,
Ω can be shown to satisfy the following second order linear
differential equation:

d2Ω
dt2

−
1

τ0

�
hþ 2

3
ks

�
dΩ
dt

þ ðρþ pÞ
2

Ω ¼ 0: ð22Þ

Quite remarkably, the most general solution of the above
equation can be presented in the following compact form:

Ω ¼ aγ
τ0

ðc1 þ c2FÞ; ð23Þ

where the (dimensionless) function F is defined through
the equation

dF
dt

¼ −
τ0az
a2γ

; ð24Þ

while c1 and c2 are (dimensionless) constants of integration.
Note that if Ω is a solution of (22) then so is any constant
timesΩ. This is ultimately due to the fact that the initial value
of Ω is physically irrelevant, as it represents a constant
conformal transformation of g̃ab and hence can be factored
out. This redundancywill be exploited below.We should also
note that the functionF is only defined above up to a constant
(of integration). We will fix this constant by requiring that F
vanishes as one approaches the de Sitter fixed point.
The above analysis also yields a linear algebraic equation

for Φ, whose solution is

Φ ¼ −a2z þ
1

c22

�
Λ̃a2γ
3

− cγΩ2

�
: ð25Þ

This, alongwith the general solution forΩ above, constitutes
the complete solution of the Kerr-Schild representation

4Research on (generalized) Kerr-Schild representations has a
rather long history, and is itself a pretty mature subject. A good
entry point to this topic is the book [10]; see especially Chap. 32.
While we have obtained the results in Eqs. (23) and (25)
independently (following the route outlined in the main text),
it is quite likely that these results have already appeared in the
literature in the past; unfortunately, we have not been able to
locate such a source. It also seems highly plausible that one may
be able to modify the results of Ref. [16] to derive ours, but we
have not verified this.
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problem. Stated differently, we have shown that with the sole
exception of the exact solution (17), any solution of Eqs. (6),
(8), and (12)–(14) can be expressed in a generalized Kerr-
Schild form (1) in terms of anΩ given as in (23) and aΦ given
as in (25). We emphasize once more that our derivations do
not assume any relationship between the matter’s pressure
and energy density, let alone an equation of state of the form
(9). Therefore, the above results are applicable to a much
broader class of matter than perfect fluids (as long as there is
no anisotropy term in the matter stress tensor).
Of course, ourmain interest lies in solutionswhich exhibit

de Sitterization. To find their appropriate Kerr-Schild rep-
resentations, we need to set Λ̃ ¼ Λ so that Ω and Φ depend
only on the physical cosmological constant, as well as make
the choice c1 ¼ 0 which is required to attain the correct
asymptotic behavior of these functions. Furthermore, the
freedom to scale Ω by a constant can be exploited to set
c2 ¼ 1. With these choices, the expression for Ω reduces to

Ω ¼ aγF

τ0
; ð26Þ

while that for Φ becomes

Φ ¼ a2γ
τ20

− a2z − cγΩ2: ð27Þ

Our final task then is to demonstrate that these functions
indeed posses the correct asymptotic behavior as required of
de Sitterizing solutions.
To achieve that goal, we need to have some description

of the de Sitterizing solutions and subsequently evaluate Ω
and Φ on them. This becomes a trivial exercise as far as the
class of exact solutions (15) is concerned, and for them one
ends up with

Ω ¼ 1; Φ ¼ −
2μτ0
τ

: ð28Þ

These expressions clearly show that for the exact solutions,
the above functions do indeed have the right behavior about
the de Sitter fixed point, as expected.
For more general de Sitterizing solutions with matter,

the asymptotic behavior of the Hubble parameter dictates
that the function F, as defined in (24), must go as a−1

asymptotically. This sets the asymptotic limit for Ω to 1,
according to (26). Unfortunately, for the function Φ, this
exercise becomes a little more complicated, since it is not
immediately obvious that the expression on the right-hand
side of (27) must vanish asymptotically for all kinds of
matter consistent with our choices. Rather, we need to look
at explicit properties of solutions to see this happen.
However, such solutions can only be constructed either
through some approximation technique, or numerically. We
will explore the former possibility in the next section.

IV. GENERALIZED KERR-SCHILD
REPRESENTATIONS OF

DE SITTERIZING SOLUTIONS

Our plan in this section is to construct suitable asymp-
totic expansions of de Sitterizing solutions of the
Kantowski-Sachs family about the de Sitter fixed point.
To be able to do that, we need to make explicit choices for
the matter’s energy density and pressure. We thus adopt the
perfect fluid model here and henceforth, and assume an
equation of state of the form (9).
Since the solutions in the neighborhood of interest are all

expanding, we may be inclined to use the scale factor as a
possible time function and represent everything else as
functions of it. This idea is actually lucrative given that the
matter terms in Eqs. (12)–(14) are explicit functions of the
scale factor. Unfortunately, it is easy to show that a series
analysis in inverse integral powers of a is not consistent
unless wm is a multiple of 1

3
(although, for all physically

interesting kinds of fluid matter, including dust and
radiation, wm is a multiple of 1

3
). Instead, if we are willing

to restrict ourselves only to rational values of wm [subject to
the bounds (10) as dictated by the assumed energy
conditions], then we can use the quantity ã defined as

ã ¼ a1=ν; ν ¼ n − 1

3ð1þ wmÞ
ð29Þ

as a viable alternative, where n ≧ 3 is the smallest integer
such that the exponent ν ≧ 1 is also an integer. Clearly,
ã is a monotonic function of the scale factor and is
therefore qualified to serve as a time function in a
neighborhood of the de Sitter fixed point. We should
also note that when (and only when) wm is a multiple of 1

3
,

we have ã ¼ a.
We can now rewrite Eqs. (8), (12), and (13) with ã as the

time function such that they read

das

dã
¼ νksas

hã
;

dh
dã

¼ ν

hã

�
1 − h2 −

2k2s
9

�
−
ð1þ 3wmÞνm0

6hãn
;

dks

dã
¼ 3ν

hã

�
1 − hks − h2 þ k2s

9

�
þ νm0

hãn
: ð30Þ

The initial value constraint equation (14), on the other
hand, should remain as is since there are no derivatives
involved there. We then postulate series expansions for
each one of the three functions h, as, and ks in inverse
integral powers of ã, and solve for the corresponding
coefficients order by order. The required asymptotic
behavior of each function can be achieved by appealing
to the exact solutions (15) and demanding as → 1, h → 1,
and ks → 0 as the de Sitter fixed point is approached.
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The upshot of the analysis can be summarized through the
following expressions for these functions5

h ¼ 1 −
cγ
6a2

þ m0

6a3ð1þwmÞ

þ
7c2γ þm0ð2cγ −m0Þδwm;−1

3

72a4
þ � � � ;

as ¼ 1 −
cγ
2a2

þ μþ 1
12
m0δwm;0

a3
þ c2γ
24a4

þ � � � ;

ks ¼
cγ
a2

−
3μþ 1

4
m0δwm;0

a3

þ
c2γ þ cγm0δwm;−1

3

6a4
þ � � � ; ð31Þ

which approximate each of them accurately up to Oða−4Þ.
Note that the above series makes mathematical sense only
after replacing each occurrence of the scale factor awith ãν,
in accordance with (29). This is especially true due to the
appearance of theOða−3ð1þwmÞÞ term in the series for h (i.e.,
when wm is not a multiple of 1

3
; note, however, that this term

is irrelevant when wm > 1
3
, since it contributes at an order

which is higher than the accuracy of the series). That being
said, the above expressions bring out the universal leading
order behavior of the functions for all values of wm and cγ ,
and therefore are more informative this way. We should
also point out that some of the coefficients in the above
series are sensitive to the value of wm through their
dependence on the Kronecker delta functions (which are
nonzero only for the specified values of wm).
These series thus represent de Sitterizing solutions of the

Kantowski-Sachs family for given values of wm, cγ , and the
constant of integration μ [the latter being associated with
the Killing symmetry of ∂z; recall the discussion in the
paragraph following Eq. (16)], up to the specified accuracy.
In order to understand the dependence of the solutions on

a more “conventional time function” [e.g., the function τ as
defined in Eq. (16)], we may construct the time function
itself as a series in a. In particular, for τ we may combine
Eqs. (6) and (16) to form a differential equation for τ as a
function of a (and hence, of ã). The resulting analysis
yields

τ

τ0
¼ aþ cγ

6a
−
μþ 1

12
m0δwm;0

3a2

þ m0

6ð2þ 3wmÞa2þ3wm

þ
c2γ þ 1

3
m0ð23 cγ −m0Þδwm;−1

3

24a3
þ � � � ; ð32Þ

which is accurate up to Oða−3Þ. In particular, the
Oða−ð2þ3wmÞÞ term is again irrelevant when wm > 1

3
. The

above expression also explicitly shows a ∼ ðτ=τ0Þ as
expected; hence, the metric functions az and aγ also have
similar asymptotic behavior.
Finally, we may determine the functions Ω and Φ by

evaluating their expressions (26) and (27), respectively,
with the help of the series (31). We thus end up with

Ω ¼ 1 −
m0

6ð4þ 3wmÞa3ð1þwmÞ

−
m0ð4cγ − 9m0Þδwm;−1

3

1080a4
þ � � � ; ð33Þ

which is accurate up to Oða−4Þ and

Φ ¼ −
2μþ 1

6
m0δwm;0

a
þ
cγm0δwm;−1

3

9a2
þ � � � ; ð34Þ

which is accurate up to Oða−2Þ. We should also note that
theOða−3ð1þwmÞÞ term in Ω is irrelevant when wm > 1

3
. The

above asymptotic expansions clearly demonstrate that
Ω → 1 and Φ → 0 as the de Sitter fixed point is
approached. As a nontrivial check of our results, we also
note that in the limit m0 → 0, the above expressions
approach their counterparts in Eq. (28).
We have thus established, as promised, that the gener-

alized Kerr-Schild representations (1) of de Sitterizing
solutions of the Kantowski-Sachs family of spacetimes
accurately capture the de Sitterization process. Further
discussion of our results and their ramifications will be
taken up in our concluding remarks in the following
section.

V. SUMMARY AND DISCUSSION

Homogeneous cosmological models in the presence of a
positive cosmological constant (and subject to some addi-
tional minor restrictions) are known to de Sitterize, i.e.,
evolve toward the de Sitter spacetime. In this paper, we
have proposed a procedure to demonstrate the evolution
of a subset of such homogeneous models which admit
generalized Kerr-Schild representations. Our overall pro-
cedure can be summarized through the follows steps:

(i) Start with a generalized Kerr-Schild ansatz of the
form (1), i.e.,

gab ¼ Ω2g̃ab − 2Φlalb;

where gab is the metric on the homogeneous
cosmological model of interest (i.e., the physical
metric), and g̃ab is a conformally flat Einstein metric
whose curvature is governed by the physical cos-
mological constant. Needless to say, we are assum-
ing here that gab admits a generalized Kerr-Schild

5The results in Eq. (31) have been verified using SageMath, a
free and open source computer algebra system.

SHARMA, BANERJEE, and BHATTACHARYYA PHYS. REV. D 106, 063518 (2022)

063518-8



representation like above. In this work, we have
chosen gab to be the metric on the Kantowski-Sachs
family of spacetimes (2) to illustrate our proposal.

(ii) Impose all the Killing symmetries of gab on the
functions Ω and Φ.

(iii) Pick la to be one of the principal null 1-forms of the
conformal curvature of gab (that la must be one such
principal null 1-form dictated by general properties
of such representations [10]).

(iv) Use the relation between the Ricci curvatures of the
two metrics and the Einstein equations to obtain
equations for Ω and Φ in terms of the parameters of
the physical metric and of the matter stress energy
tensor.

(v) Analytically, numerically, or perturbatively find
solutions for Ω and Φ.

A generalized Kerr-Schild relation can be viewed as a
transformation of one metric into another one. Typically,
the goal is to represent a more “complicated” metric
(say, the physical metric gab) in terms of a “simpler”metric
(e.g., the de Sitter metric g̃ab). However, such relations are
purely mathematical in nature. In particular, the physical
significance of the quantities that go into a representation
like (1) depends on additional inputs and restrictions; i.e.,
they are not necessarily built into the representation itself.
The most general solutions for Ω and Φ that one could

obtain at the end of the process summarized above offer an
excellent illustration of this point. Even though they satisfy
all the symmetry requirements, the general solutions do not
automatically represent de Sitterization unless we make
appropriate choices for the parameters that appear in the
general solutions for Ω and Φ. Said differently, if we were
to use the most general solutions forΩ andΦ in the relation
(1), the metric g̃ab would not have been the asymptotic limit
of the physical metric. Such general solutions are usually
helpful when Kerr-Schild representations are used for a
solution generating purpose (as they often are). Here, on the
other hand, we are using such representations to describe
the time evolution of the physical metric, and for that, one
has to “tune” the functions Ω and Φ appropriately. This
“tuning” is achieved such that they represent de Sitterizing
solutions, i.e., satisfy the asymptotic conditions Ω → 1 and
Φ → 0. With the help of these “properly tuned” versions of
these functions, it may be possible to extend the domain of
the Kerr-Schild representation “far away” from the de Sitter
fixed point.
We have stressed that our results, and especially the

expressions (26) and (27), hold as long as the matter flow
lines are orthogonal to the homogeneous hypersurfaces and
the stress tensor does not include any anisotropy term.
However, to establish de Sitterization conclusively, we have
had to specialize to perfect fluid matter satisfying some
simple equation of state, because without this specializa-
tion, we have been unable to solve the equations of motion
and evaluate the asymptotic behavior, especially of the

function Φ. It will be interesting to study our proposal by
considering other types of matter (including dynamical
fields, e.g., scalar fields) and verify that our claims
still hold.
It has also been pointed out that we randomly picked one

of the two repeated principal null 1-forms of the Weyl
curvature of the physical metric to construct the represen-
tation (1). Hence, there is not a unique Kerr-Schild
representation of the physical metric, since we can also
construct a similar representation using the other principal
null 1-form. Such a relation would then give rise to a new
pair of functions, say,Ω0 andΦ0, which are analogous to but
distinct from Ω and Φ, respectively (although their respec-
tive asymptotic limits must agree). This new representation
must describe the de Sitterizing process slightly differently,
since the limits of the physical metric in the two repre-
sentations are not equal to each other (even though in both
cases the limits are maximally symmetric conformally flat
Einstein metrics whose curvatures are determined by the
physical cosmological constant). Hence, these representa-
tions describe slightly different ways to approach the
asymptotic region of the spacetime. Consequently, the
functions Ω0 and Φ0 must also contain valuable information
about the asymptotics of de Sitterizing solutions. This
makes it an interesting future endeavor to work out the
expressions for these new functions, as well as figure out
their precise relationships with the functions Ω and Φ.
Our choice of using the Kantowski-Sachs family of

spacetimes to illustrate our proposal has been largely
motivated by two factors. First of all, Kantowski-Sachs
family of spacetimes are of Petrov type D (i.e., algebrai-
cally special) and are likely to admit Kerr-Schild repre-
sentations like (1). Second, other algebraically special
homogeneous cosmological models which may potentially
admit Kerr-Schild representations are all of Bianchi type,
and therefore are guaranteed to de Sitterize by Wald’s
theorem [3]. The proper Kantowski-Sachs models (i.e., the
cγ ¼ 1 cases of the Kantowki-Sachs family), on the other
hand, do not respect Wald’s theorem (since they are closed
models, i.e., satisfyR > 0), and hence are more interesting
from the perspective of our proposal.
Of course, we need to test our proposal beyond the

Kantowski-Sachs family of spacetimes to broaden its
scope further and make it more useful. This offers a strong
motivation to study other algebraically special homo-
geneous cosmological models along the lines presented
in this paper. In particular, it will be interesting to explore
all LRS Bianchi models in this approach. However, since
all such models must necessarily de Sitterize, thanks to
Wald’s theorem, it seems very likely that our proposal will
hold for any model which admits a generalized Kerr-Schild
representation like (1).
We wish to end our concluding remarks speculating on

one possible application of our proposal. The relation (1), as
it stands, is not restricted by the assumption of homogeneity.

APPROACHING DE SITTER SPACETIMES VIA A KERR-SCHILD … PHYS. REV. D 106, 063518 (2022)

063518-9



Therefore, we may employ such a relation to study homog-
enization along with isotropization of an initially nonho-
mogeneous and anisotropic cosmological spacetime (albeit
of very special kinds). In fact, it is likely that special kinds
Gowdy-type [18] inhomogeneous and anisotropic models
will fit the bill, and it will be interesting to derive properties
of such models through the corresponding Ω and Φ
functions. We reserve this and other possible applications
of our proposal for future work.
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APPENDIX A: OUTLINE OF THE PROOF
OF WALD’S THEOREM

Our goal in this appendix is to briefly summarize the
main arguments in [3]. As already noted in the main text, as
long as the assumptions hold, we need not care about the
details of the matter present or about most of the dynamical
equations governing the overall evolution of the system.
Rather, we only rely on the “initial value constraint”
equation and the Raychaudhuri equation to deduce the
appropriate asymptotic behavior of the mean curvature (i.e.,
the trace of the extrinsic curvature) of the homogeneous
hypersurfaces. In particular,

(i) The initial value constraint equation bounds the
mean curvature from below by

ffiffiffiffiffiffi
3Λ

p
as long as

the assumed conditions hold.
(ii) The Rauchaudhuri equation shows that under the

same conditions the evolution of the mean curvature
is always bounded from above by a monotonically
decreasing function which also asymptotes to the
value

ffiffiffiffiffiffi
3Λ

p
.

These two conditions thus force the mean curvature to
attain its asymptotic limiting value, namely,

ffiffiffiffiffiffi
3Λ

p
.

Furthermore, the constraint equation and the energy con-
ditions also imply that the trace-free part of the extrinsic
curvature (a measure of anisotropy), as well as the matter
stress tensor, both vanish in the same limit, leaving us with
a void, homogeneous, and isotropic spacetime permeated
by a positive cosmological constant Λ. These are all
characteristics of a locally de Sitter spacetime, and it only
takes a little more arguing to establish that the spatial metric
also approaches its required asymptotic form under the
above conditions, thereby finalizing the proof. We note in
passing that Ref. [1] arrives at similar conclusions, but
under more specialized conditions and also following a
very different route.

APPENDIX B: DE SITTERIZATION
OF FLRW SPACETIMES

It is natural to wonder whether there is an analog of the
relation (1) for FLRW spacetimes, especially for de
Sitterizing solutions. Of course, FLRW spacetimes being
conformally flat, a generalized Kerr-Schild-type relation is
impossible to hold. However, one could easily anticipate
expressing a de Sitterizing FLRW metric gab as follows:

gab ¼ Ω2g̃ab; ðB1Þ
where g̃ab is a conformally flat maximally symmetric
Einstein metric whose curvature is governed by the
physical cosmological constant Λ, and Ω is the appropriate
conformal factor which is expected to go to 1 asymptoti-
cally. It then becomes pretty straightforward to verify that
for a relation like the above to hold, Ω must satisfy a linear
second order differential equation given by

d2Ω
dt2

−
h
τ0

dΩ
dt

þ ðρþ pÞ
2

Ω ¼ 0; ðB2Þ

where our notations, conventions, and definitions of the
various quantities involved run parallel to those presented
in the main text. In particular, τ0 is the scale set by the
cosmological constant according to (5), h is the dimension-
less Hubble parameter defined in terms of the scale factor a
as in Eq. (6), and ρ and p are the energy density and
pressure of the matter which source the Einstein equations
(in addition to the cosmological constant). In fact, we only
require the following equations of motion for our purpose:

da
dt

¼ ha
τ0

; h2 ¼ 1 −
cγ
a2

þ ρτ20
3

; ðB3Þ

the first one being the definition of the dimensionless
Hubble parameter, the second one being one of the
Friedmann equations (the initial value constraint equation,
to be precise), and cγ being a constant which is equal to −1,
0, and 1 for open, flat, and closed FLRW models,
respectively. The solutions for Ω which yield the correct
asymptotic behavior are given by

Ω ¼

8>><
>>:

a sinhF; cγ ¼ −1;
aF; cγ ¼ 0;

a sinF; cγ ¼ 1;

ðB4Þ

where the function F is defined through the relation

τ0
dF
dt

¼ −
1

a
: ðB5Þ

The asymptotic behavior of the Hubble parameter for de
Sitterizing FLRW solutions dictates that F goes as a−1

asymptotically, thereby demonstrating that Ω goes to unity
as the de Sitter solution is approached.
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