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We use observations of ultrafaint dwarf (UFD) galaxies to constrain the particle mass of ultralight dark
matter. Potential fluctuations created by wave interference in virialized “fuzzy” dark matter (FDM) halos
dynamically heat stellar orbits in UFDs, some of which exhibit velocity dispersions of ≲3 km=s and sizes
≲40 pc. Using simulations of FDM halos, and existing measurements of sizes and stellar radial velocities
in Segue 1 and Segue 2 UFDs, we derive a lower limit on the dark matter particle mass of mFDM >
3 × 10−19 eV at 99% confidence, marginalized over host halo circular velocity. This constraint is
conservative as it is derived under the assumption that soliton heating is negligible, and that no other
sources of non-FDM dynamical heating of stars operate to increase velocity dispersion. It can potentially
be strengthened by future spectroscopic observations of additional stars in ultrafaint galaxies and by
tightening theoretical constraints on the soliton size-halo mass relation. However, even the current
conservative lower limit on the ultralight dark matter mass makes it indistinguishable from cold dark matter
at the scales probed by existing astronomical observations.
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I. INTRODUCTION

The cold dark matter (CDM) model successfully
describes a wide range of observations on scales larger
than galaxies, but on subgalactic scales, deviations from
CDM predictions remain viable. One particularly interest-
ing class of dark matter (DM) scenarios involves ultralight
particle masses, m ∼ 10−22–10−20 eV, called fuzzy dark
matter (FDM) [1–4]. In this regime, the de Broglie wave-
length of DM particles, λ ¼ h=mv, can be large enough to
produce observable wave effects on galactic scales [5].
For example, a mass of m ¼ 10−22 eV and a DM velocity
dispersion of v ¼ 200 km=s would give λ ∼ 600 pc.
FDM models can nontrivially modify the small-scale

linear power spectrum compared to CDM, leading to either
suppression or enhancement of small-scale structure [1,6],
which in principle can be used to constrain FDM param-
eters in a manner similar to constraints on warm dark matter
from the halo mass function (e.g., [7]). FDM halos also
exhibit unique signatures distinct from warm dark matter
halos. One example is the formation of dense solitons at the
centers of FDM halos [8], which can lead to corelike
density profiles, rather than cuspy behavior.
Early work using FDM simulations found a tight scaling

relation between the soliton mass and the virial mass of the

host halo [8], leading to a number of papers attempting to
constrain the FDM particle mass by finding evidence for
either the presence or absence of massive solitons in nearby
galaxies [9–13]. More recent FDM simulations covering
larger cosmological volumes, however, discount the exist-
ence of a tight scaling relation between soliton mass and
host halo mass, and instead indicate a large scatter in the
correlation [14,15]. Recent work has shown that FDM
solitons can stably persist with mass either greatly exceed-
ing [15] or far below [16] the original scaling relation [8].
This casts doubt on whether reliable bounds on the FDM
mass can be derived using the soliton-host scaling relation
in the small number of nearby galaxies found in the local
volume. Note that this does not preclude some constraints to
be placed on FDMmasses using other scaling relations [17].
Another distinctive signature of FDM is that wave

interference effects produce ubiquitous fluctuations in
the local density and gravitational potential throughout
FDM halos with contrast of order unity, δρ ∼ ρ, and
coherence lengths r ≈ λ=2π ¼ ℏ=mv [3,5]. These fluctua-
tions resemble transient granules of mass δM ∝ ρ=v3 that
can gravitationally heat stellar systems (e.g., [2,18–24]).
This prediction of density and potential fluctuations from

wave interference is robust, since it relies on simple, well-
understood physics, namely the relation between the de
Broglie wavelength and momentum: λ ¼ h=mv. This effect
is therefore independent of other DM properties besides*ndalal@pitp.ca

PHYSICAL REVIEW D 106, 063517 (2022)

2470-0010=2022=106(6)=063517(11) 063517-1 © 2022 American Physical Society

https://orcid.org/0000-0001-9180-9726
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.063517&domain=pdf&date_stamp=2022-09-15
https://doi.org/10.1103/PhysRevD.106.063517
https://doi.org/10.1103/PhysRevD.106.063517
https://doi.org/10.1103/PhysRevD.106.063517
https://doi.org/10.1103/PhysRevD.106.063517


mass, like self-interactions. This stands in contrast to earlier
FDM probes relying on poorly understood soliton scaling
relations. Unlike the scatter found in soliton masses, there
is no scatter in Planck’s constant among different galaxies.
This means that a single galaxy can be used to derive tight
constraints on the FDM particle mass, if that galaxy can be
shown to be inconsistent with the effects of dynamical
heating expected for light FDM masses.
It is easy to see what galaxies would be most useful for

constraining FDM heating in this way, using the following
argument. The total enclosed halo mass at some radius R is
approximatelyM ∝ ρR3, with a corresponding gravitational
acceleration a ¼ GM=R2 ∝ ρR, while in comparison, the
gravitational acceleration caused by a mass perturbation
δM ∝ ρ=v3 at distance λ ∝ v−1 is δa ¼ GδM=λ2 ∝ ρ=v,
giving a fractional fluctuation in the gravitational acceler-
ation δa=a ∝ R−1v−1. The heating effects of the fluctuations
should therefore be strongest at the smallest radii R and for
the halos with the smallest internal velocities v.
At very small radii, the solitons discussed above can

produce additional, strong dynamical heating. Fluctuations
in the soliton’s size, amplitude, and centroid location, due
to wave interference effects [25,26], can dominate the
heating of central stars compared to the more diffusive
effect described above [27]. Stellar self-gravity can sup-
press this effect [28,29], but in systems where gravity is
completely dominated by dark matter, FDM heating can be
extremely efficient.
These considerations point to the ultrafaint dwarf (UFD)

galaxies [30] as optimal systems to probe such heating.
The UFDs are DM-dominated, with mass to light ratios of
≳300 inside the 3D half-light radius r1=2, which can be
as small as r1=2 ∼ 50 pc ≪ rvir in some of these galaxies.
The observed stellar velocity dispersions in these systems
are correspondingly small, with σv ≈ 2–5 km=s in many
systems [30], while their stellar populations are predomi-
nantly very old [31–33].
Two examples of such systems are the nearby ultrafaint

dwarfs Segue 1 [34] and Segue 2 [35], which are among the
smallest and darkest galaxies known. The projected (2D)
half light radii of Segue 1 and Segue 2 are R1=2 ¼ 24.2�
2.8 pc and R1=2 ¼ 40.5� 3.0 pc, respectively. Here we use
the Plummer model R1=2 estimates of [36], with the values
for Segue 2 corrected by a factor of 1.057 to account for the
updated RR Lyrae-based distances of 37 kpc to Segue 2
[37], compared to the distance of 35 kpc used in [36].
Spectroscopic surveys of stars in these galaxies indicate
extremely low velocity dispersions, with σv¼3.9�0.8km=s
in Segue 1 [34], and only an upper limit σv < 2.6 km=s
(95% confidence) in Segue 2 [35].
The stellar populations in UFDs are generically quite

old, with ages of ≳10 Gyr [33]. For Segue 1, population
modelling indicates that most stars were formed at z > 7 or
≳13 Gyrs ago [38,39], while modeling of Segue 2 [35]
suggests a star formation history similar to that of the dwarf

Ursa Minor, with typical age of ≳9–10 Gyr [33,40]. This
implies that these stellar populations should have been
exposed to the FDM-induced dynamical heating for cor-
respondingly long (∼10 Gyr) time.
We can approximately estimate the sensitivity of UFD

galaxies to FDM heating using the following argument. Let
us approximate FDM fluctuations as granules of density
fluctuation δρ ∼ ρ and size r ¼ λ=2π ¼ ℏ=ðmσdmÞ, where ρ
is the local mass density, and σdm is the velocity dispersion
of dark matter, which may be different than the stellar
velocity dispersion σ⋆, since the DM halo size is generally
larger than the galaxy size. Since δρ ∼ ρ, then the mass
perturbation associated with a granule at location R is
δM ≈ ðr=RÞ3M, where M ≈ ð4π=3ÞρR3 is the enclosed
mass at radius R, and we will consider locations of order
the galaxy size, R ≈ r1=2, where r1=2 is the 3D half-light
radius. We will focus on the regime where the galaxy size is
larger than the reduced de Broglie wavelength, r1=2 > r,
since DM-dominated galaxies with r1=2 < r cannot survive
for more than a few dynamical times [41] and this regime is
therefore already excluded (see also discussion in Sec. V).
In equilibrium, the stellar velocity dispersion σ⋆ is

related to the galaxy size and enclosed mass by M ≈
3σ2⋆r1=2=G [42], so the gravitational potential perturbation
from this granule is δΦ ≈GδM=r ≈ 3σ2⋆ðr=r1=2Þ2. A gran-
ule passing by a star at a relative velocity of ∼σdm will
perturb the star’s velocity by δv ∼ δΦ=σdm, and over a
duration of time t, the star will encounter N ∼ σdmt=r such
granules. Therefore, after time t the variance in stellar
velocities should increase by an amount Δσ2⋆ ≈ Nδv2, and
using r ¼ ℏ=ðmσdmÞ gives

Δσ2⋆ ≃ 9

�
σ⋆
σdm

�
4
�
ℏ
m

�
3 t
r41=2

: ð1Þ

We can therefore solve for the FDM massm that will cause
the stellar velocity variance to double, Δσ2⋆ ≈ σ2⋆, after time
t. Plugging in t ¼ 10 Gyr, r1=2 ¼ 50 pc, σ⋆ ¼ 3 km=s, and
σdm ¼ 6 km=s gives a massm ∼ 10−19 eV. This means that
UFDs like Segue 1 and Segue 2 should be sensitive to
the entire range of FDM masses, m ∼ 10−22–10−20 eV, and
potentially could detect or exclude this model.
Motivated by this estimate, in this study we use

kinematic and structural measurements of Segue 1 and
Segue 2 galaxies to derive constraints on the FDM particle
mass. We simulate the motion of stars moving in the FDM
halos and compare to measurements of these two UFDs.
We will see that the above estimate is confirmed by our
detailed numerical simulations, allowing us to place strin-
gent bounds on ultralight particle dark matter.

II. SIMULATIONS

We simulate the motions of test stellar particles that are
evolved in FDM halos, using an approximate perturbative
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treatment of the effects of FDM wave interference fluctua-
tions presented in Ref. [23]. Briefly, we construct the
FDM wave function as a sum over eigenfunctions of the
Hamiltonian for a static gravitational potential; Fig. 1
shows examples (see discussion below on the rationale
behind static potential assumption). This approach is
accurate to first order in perturbation theory and neglects
the nonlinear interactions between different modes, which
should be sufficient for our calculations, although it may be
worthwhile to study whether greater accuracy can be
achieved by going to higher order in time-dependent
perturbation theory [26].
FDM simulations have found that halo profiles are well

described by the NFW profile, except for the presence of a
central soliton [8]. We describe the mean halo potential
using the NFW profile [43] with the soliton profile added,
however we have explicitly checked that our results are
insensitive to the exact form of the halo profile (e.g., NFW,
cored isothermal, etc.), and depend principally on the mass
enclosed within the stellar half-light radius r1=2 [42].
The NFW profile is described by two independent

parameters, such as virial mass and concentration
(Mvir; cvir), or central density and scale radius (ρs, rs),
and we are free to use any pair of independent parameters.
Since the results depend mainly on the parameter combi-
nation that holds fixed v1=2 ≡ ½GMðr1=2Þ=r1=2�1=2, we
adopt v1=2 as one of the parameters, and choose the
maximum circular velocity vmax as the other independent
NFW parameter. Modeling of the abundance of Milky Way
dwarf satellites indicates that galaxies with ultrafaint
luminosity are typically hosted by halos of mass M200 ∈
108–109 M⊙ or maximum circular velocity of vmax ∈
10–25 km=s [44,45], but in the analysis described below,
we do not restrict the host halo parameters to this range. We
account for the central soliton by adding a soliton to the
halo density, with a profile following the functional form

found in Schrödinger-Poisson simulations [29]. This gives
time-averaged density profiles that agree reasonably well
with the desired input profile.
The density fluctuations in the soliton region resemble

those found in full Schrödinger-Poisson simulations [29],
in agreement with previous work that found that soliton
fluctuations can be explained by wave interference between
the lowest eigenmodes [25,26]. Our simulations find that
including the soliton can enormously enhance heating of
stellar orbits, depending on the soliton mass, in agreement
with previous work [27].
Uncertainty in the expected sizes and masses of solitons

will complicate any attempt to constrain the FDM particle
mass using soliton effects, as noted above. Due to
extremely efficient heating from the soliton, the uncertainty
in soliton mass leads to uncertainty in the expected heating
rates. We therefore adopt a conservative approach, and
compute constraints on the FDM mass using simulations
without solitons. This significantly weakens our derived
constraints, and below we use simulations including
solitons to indicate how much more strongly the FDM
mass can be bounded if the theory uncertainty on the core-
halo mass scaling can be reduced.
We evolve test particles in these FDM potentials for

10 Gyr. The test particles are initialized in a spherically
symmetric distribution with the projected surface density
profiles that decrease exponentially in radius consistent
with a typical surface density profile in observed dwarf
spheroidal galaxies of this luminosity [e.g., [36,46,47] ].
Such profile corresponds to the deprojected 3D density
profiles ∝ K0ðr=r0Þ, where r0 is the exponential scale
length, and K0 is a modified irregular Bessel function. The
initial velocities of the test particles are locally Maxwellian
distributed, with a variance given by the solution to the
static isotropic Jeans equation [48]. Different choices for r0
give different initial velocity dispersions, so we treat r0 as a
nuisance parameter and marginalize over it as a means of

FIG. 1. Example FDM density snapshots for NFW halos. The left panel shows a simulation with mFDM ¼ 2 × 10−19 eV, while the
right panel has mFDM ¼ 8 × 10−19 eV. Length units are parsecs, and the color scale is logarithmic in density ρ. As noted in the text,
characteristic amplitude of density fluctuations is of order of the local density, δρ ∼ ρ. For comparison, the galaxies that we analyze have
half-light radii R1=2 ≃ 25–40 pc.
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marginalizing over uncertain effects of star formation and
baryonic heating.
We initialize using isotropic velocity distributions, and

this neglect of velocity anisotropy makes our derived
constraints even more conservative, for the following
reason. In models with low mFDM, FDM scattering rapidly
isotropizes the velocity distribution, making any initial
anisotropy irrelevant. In contrast, for smooth potentials,
or those with large mFDM, heating is less efficient, and
so the initial anisotropy can be preserved. By neglecting
anisotropy, we therefore are underestimating the parameter
space over which smooth potentials can fit the observed
data, in comparison to models with low mFDM. This
artificially lowers the likelihood for large mFDM, making
our constraints even more conservative.
Likewise, our assumption of the static halo potential

represents the conservative choice. The changes of the
potential due to mass growth and mergers would provide
additional sources of heating which would only strengthen
our constraints. Additionally, if the halo mass was signifi-
cantly smaller in the past, then the DM velocity dispersion
would be smaller, giving a larger de Broglie wavelength
and therefore more FDM heating for the same FDM
particle mass. We note, however, that formation time of
small mass halos that are expected to host such galaxies are
expected to form early and their inner potential is expected
to be changing little over the past 10 Gyrs.
In summary, we simulate stars as test particles moving in

the FDM halos for 10 Gyr using the method of Ref. [23],
with mean density profiles that follow the NFW profile
with a given normalization treated as a nuisance parameter,
and with stars initialized using isotropic Maxwellian
velocity distributions that satisfy the Jeans equation. We
derive bounds on the FDM mass by marginalizing over
the nuisance parameters: the halo mass (v1=2, circular
velocity within the stellar half-light radius) and the stellar
size parameter r0, using a suite of simulations that span
the parameter space relevant for the Segue 1 and Segue 2
galaxies used in our constraint.
Figure 2 shows examples of how the stellar distribution

evolves over time in these simulations. The velocity
dispersion and half-light radius grow steadily over time,
depending on themFDM value. For some values, the heating
rate is so strong that the evolved dispersion is inconsistent
with observed kinematics, regardless of the assumed initial
velocity dispersion.

III. ANALYSIS

Using this suite of simulations, we constrain the FDM
mass using simulation-based Bayesian inference. For each
simulation, we first measure the line-of-sight velocity
distribution of the test particles as a function of projected
radius, psimðvrjrÞ by using 500 random projections of a
given simulation snapshot and approximating the resulting
mean distribution by a 2D spline. We then use the

likelihood to observe velocities fvig for stars at projected
radii frig

pvel ¼
Y
i

Z
dvi psimðvijriÞpobs;iðviÞ; ð2Þ

where pobs;iðviÞ is a Gaussian of mean and width given by
the observed values reported by Refs. [34,35], and the
index i runs over all the observed stars for a given galaxy.
Note that the conditional PDF of the velocity,

psimðvjrÞ ¼ psimðv; rÞ=psimðrÞ, is undefined at locations
where no test particles are found, which can be an issue for
very small initial r0. Since we do not know the spatial
dependence of the selection function of spectroscopic
targets, we use only the line-of-sight velocity measurements
in constructing the likelihood, i.e., we do not also model the
likelihood to observe a star at radius ri, which in principle is
another prediction of each model.

FIG. 2. Evolution of galaxy properties in response to FDM
heating. In both panels, the 4 curves correspond to two different
FDM masses and two different initial r0, for host halo with
v1=2 ¼ 3 km=s. The upper panel shows growth in the projected
half-light radius over time, while the bottom panel shows the
growth in the velocity dispersion for stars within 3D radius
r ¼ 100 pc. For comparison, the gray bands indicate the ob-
served 68% and 95% confidence regions estimated in observa-
tions for these quantities.
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Instead of modeling the locations of the stars, we
evaluate the likelihood for the observed half-light radius
to agree with the half-light radius found in each simulation,

psize ¼
1ffiffiffiffiffiffi

2π
p

σ1=2
exp

�
−
ðR1=2;sim − R1=2;obsÞ2

2σ21=2

�
; ð3Þ

where R1=2;obs and σ1=2 are the observed value and error of
the projected 2D half-light radius. We define the likelihood
of each model as the product

ptotðmodelÞ ¼ pvel × psize: ð4Þ

We evaluate ptot for each model, where the model param-
eters consist of the FDM mass mFDM, the host halo
maximal circular velocity vmax, the circular velocity at
the observed half-light radius v1=2, and the initial scale
length r0 of the test particles. Our simulations find that, at
fixed v1=2, the posterior ptot in Eq. (4) is nearly independent
of the other NFW parameter vmax: varying vmax over a large
range while holding fixed the other parameters produces no
discernible difference in ptot. Therefore, for simplicity we
set vmax ¼ 2v1=2, to avoid marginalizing over an uncon-
strained, irrelevant parameter. We treat v1=2 and r0 as
nuisance parameters and marginalize over them, to give the
posterior distribution of mFDM,

pðmFDMÞ ¼
Z

dv1=2 dr0 ppriorðv1=2; r0Þ

× ptotðmFDM; v1=2; r0Þ: ð5Þ

We use a flat (uniform) prior on v1=2 and r0 as our fiducial
choice, but in practice we find ptot to be so strongly peaked
that the specific choice of prior does not significantly affect
the resulting constraints, as discussed below (see Table I).
For the initial stellar scale length r0, we use a uniform

prior over the range 0 < r0 < 37.5 pc for Segue 1, and
0 < r0 < 50 pc for Segue 2. In both cases, these cover
more than the physically plausible range of r0 values, since
the upper end already gives an initial R1=2 larger than the
observed value, even without FDM heating, while the
lower end of this range would imply that star formation
takes place across a volume even smaller than the size of a
single star cluster, which is difficult to reconcile with the
observed wide spread in stellar metallicities in these

galaxies. For v1=2, we adopt a uniform prior over the range
1 km=s < v1=2 < 12.5 km=s for Segue 1, corresponding
to the enclosed mass 104 M⊙ < Mðr1=2Þ < 1.4 × 106 M⊙.
For Segue 2, we assume a uniform prior 1 km=s <
v1=2 < 5 km=s. For both Segue 1 and Segue 2, the posterior
pdf falls off sharply near the upper end of the v1=2 range
(see Fig. 3), meaning that we have covered the relevant
ranges for the nuisance parameters.
The data that we fit in Eqs. (2) and (3) are therefore the

projected half-light radii, R1=2 ¼ 24.2� 2.8 pc and R1=2 ¼
40.5� 3.0 pc for Segue 1 and Segue 2, respectively (see
Sec. I), along with the line-of-sight velocities for individual
stars reported by Refs. [34,35]. We use stars classified as
members in these studies (namely, stars labeled as Yor B in
the Member? K13 column of Table 4 in [35]). We have also
excluded one known RR Lyrae star in Segue 2 (namely, star
J021900.06þ 200635.2 [49]) and two RR Lyrae stars
and one strong outlier in the radial velocity distribution
in Segue 1 (namely, stars SDSSJ100704.35þ 160459.4,
SDSSJ100644.58þ155953.9, SDSSJ100652.33þ160235.8,
see Section 4.2 in [34]). This is because RR Lyrae stars
have large pulsational contribution to the radial velocity,
which makes their true velocity much more uncertain than
their formal velocity error; their inclusion thus overesti-
mates the true velocity dispersion of stars. The member
samples after removal of these stars consists of 68 members
in Segue 1 and 25 members in Segue 2.
For stars with a single velocity measurement, we adopt

the quoted measurement error as the uncertainty. This
neglects the effect of binary motions in the singly-observed
stars, which likely leads to an overestimate of the inferred
velocity dispersion, thereby making our constraints on
mFDM even more conservative.
For Segue 1, a subset of stars were observed repeatedly,

and for those stars we use the weighted average of the
measurements. Given that repeated observations of binary
stars may reflect velocities in different parts of the orbit,
one cannot use standard inverse-variance weighted average
that assumes that measurements are drawn from the same
parent distribution. To this end, we use the estimators of the
weighted mean and its variance proposed by DerSimonian
and Laird [50], as given by Eqs. (12) and (13) in [51]. This
estimator provides an estimate of the weighted mean and its
variance equivalent to the standard one if multiple mea-
surements are consistent with each other, but properly
accounts for the variance when they are not. That variance
will reflect the different radial velocities in the different
parts of an orbit of a star in a binary system and this
estimator thus will result in uncertainty that will reflect the
dispersion of velocities for binary stars and these stars will
thereby contribute relatively less to statistical constraint of
the velocity distribution.
Note that we do not make any statistical correction for

the effects of binaries. This is because such correction is
uncertain and instead of allowing for the possibility for

TABLE I. Constraints on the FDM particle mass (in units of
10−19 eV) for different choices of the pðv1=2Þ prior pdf.
mFDM limit Constant ∝v1=2 ∝1=v1=2
1σ 5.87 6.52 6.16
2σ 4.15 4.54 4.57
3σ 2.86 3.22 3.35

EXCLUDING FUZZY DARK MATTER WITH SIZES AND … PHYS. REV. D 106, 063517 (2022)

063517-5



overcorrection, we make a conservative choice of neglect-
ing the correction that will overestimate the width of the
velocity dispersion somewhat, thereby weakening our
constraint on the FDM mass.

IV. RESULTS

As explained in the previous section, we define the
posterior likelihood as a product of terms corresponding
to stellar kinematics [Eq. (2)] and the radial distribution of
stars [Eq. (3)]. In Fig. 3, we show examples of how these
terms behave as a function of the nuisance parameters r0
and v1=2. First let us consider the results for simulations in
smooth potentials without FDM heating, corresponding to
mFDM → ∞. In the absence of FDM heating, the initial
stellar distribution is essentially unchanged in the evolved
distribution, except for small initial transients that arise
because the locally Maxwellian velocity distribution is
not exactly an equilibrium distribution, even when the
Jeans equations are satisfied. Therefore, the evolved R1=2

simply scales linearly with the initial r0, and psizeðr0Þ is a
Gaussian function of r0, peaking where r0 ≈ R1=2;obs=1.68
(recall that R1=2 is the half-light radius of the projected 2D
surface density, which is related to the 3D half-light radius
r1=2 as R1=2;obs ¼ r1=2=1.34). Note that psize is independent
of the assumed halo profile for smooth potentials with no
FDM heating, i.e., it depends only on r0 and is indepen-
dent of v1=2. In contrast, pvel does depend on the halo
profile (parameterized by v1=2), and only weakly depends
on r0. The product, ptot ¼ pvel × psize, therefore is peaked
in both r0 and v1=2, and recovers the standard result
that M1=2 ¼ 3σ2vr1=2=G [42], or equivalently in terms of
our parametrization, v1=2 ¼

ffiffiffi
3

p
σv. For smooth potentials

without FDM heating, our analysis therefore boils
down to a cumbersome approach of the standard Jeans
analysis.

For simulations with a finite mFDM, FDM heating
allows the final evolved R1=2 to be different from the
initial R1=2 ≈ 1.68r0, giving somewhat different behavior
from what is found in smooth potentials. For very light
masses, FDM heating is so strong that stars diffuse out to
large distances, causing the final R1=2 to exceed the
observed value, for any initial r0. This depends somewhat
on v1=2, since the local de Broglie wavelength itself
depends on v1=2. Namely, the larger values of v1=2 can
reduce FDM heating for a given value of mFDM. This is
illustrated by the middle panel of Fig. 3, which shows that
psize increases as v1=2 increases. However, as we saw with
the smooth potentials, not all v1=2 are consistent with the
kinematic data, i.e., we cannot make v1=2 arbitrarily large
without eventually decreasing pvel. This is illustrated by
the left panel, which shows that pvel decreases as v1=2
increases.
The product ptot therefore has a peak, and when we

marginalize over r0 and v1=2, we can see that the margin-
alized posterior pdf will be significantly smaller for
mFDM ¼ 2 × 10−19 eV than it is for mFDM → ∞. This
illustrates how the combination of structural and kinematic
data allows us to constrain the FDM mass: the kinematic
data basically constrains the potential depth, and the
measurement of R1=2 then constrains the allowed range
of mFDM.
In Fig. 4 we show the cumulative probability distribution

pð>1=mFDMÞ obtained after marginalization over r0 and
v1=2. As expected from the estimate given in Eq. (1), these
galaxies appear to be inconsistent with FDM masses of
order 10−19 eV. We show individual constraints for Segue 1
and Segue 2, and because the observations of these galaxies
are independent with uncorrelated uncertainties, we also
show the combined posterior pdf shown by the solid
line. Since CDM corresponds to mFDM → ∞, we show

FIG. 3. Posterior likelihoods as a function of nuisance parameters r0 and v1=2, for Segue 2 simulations. From left to right the panels
show the likelihoods pvel, psize, and ptot, as defined in Eqns. (2)–(4). Each panel shows 6 curves, for 3 different values of v1=2 shown by
different colors, and for 2 models: CDM (mFDM → ∞, solid lines) and FDMwithmFDM ¼ 2 × 10−19 eV (dashed lines). Note that for the
CDM (smooth potential) models, psize is independent of v1=2, while in the middle and right panels, psizeðv1=2 ¼ 1Þ and ptotðv1=2 ¼ 1Þ
have such low values that they are far below the plotted range.
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constraints as a function ofm−1
FDM, assuming a uniform prior

onm−1
FDM. Note that this corresponds to a prior ∝ m−2

FDM, i.e.,
we adopt a prior that heavily favors light FDM masses and
strongly disfavors CDM. Once again, this makes our
constraints conservative.
The posterior pdf gives mFDM > 3 × 10−19 eV at

99% confidence for the fiducial choice of the prior pdf
for v1=2. Results are not sensitive to the choice of the prior
pdf, as shown in Table I.

V. IS FDM RULED OUT?

We have presented constraints on the mass of ultralight
dark matter particles using kinematic and structural obser-
vations of the nearby ultrafaint dwarf galaxies Segue 1
and Segue 2. Our analysis has made a number of simplify-
ing assumptions that act to make our constraint more
conservative, including the neglect of heating effects from
a central soliton, the neglect of any initial velocity
anisotropy, and the neglect of any binary correction to
the kinematic measurements of stars observed only once. In
addition, we have also adopted a prior p ∝ m−2

FDM that
favors smaller mFDM values. In spite of these conservative
assumptions, we find that stars of Segue 1 and Segue 2
impose a stringent lower limit on the FDM particle mass of
mFDM > 3 × 10−19 eV at 99% confidence.
The calculations presented in this paper have focused on

the regime where the galaxy stellar extent is larger than the
soliton size: r1=2 ≳ rsoliton. Simulations in this regime alone
are sufficient to exclude the entire fuzzy regime of the
ultralight DM as the primary dark matter candidate (with
ΩFDM ≈ Ωm −Ωb). The argument is twofold: first we argue
that the regime r1=2 < rsoliton ≲ Rvir in DM-dominated
galaxies is already excluded by previous results; second

we show that even if one ignores previous results and
allows rsoliton > r1=2 for the Segue 1 and Segue 2 galaxies,
there are still other UFDs with larger sizes that can be used
to exclude FDM mass ranges that would give rsoliton > r1=2
for Segue 1 and 2.

A. The regime r1=2 < rsoliton
As we have noted in Section I, previous numerical

studies showed that soliton location randomly fluctuates
over a region of size ∼rsoliton on the dynamical time [27,41].
In DM-dominated UFDs these soliton fluctuations dynami-
cally heat embedded stars, which spread out to distances of
order rsoliton on a timescale of≲10 soliton oscillation times.
Therefore, as long as the dynamical time is fast compared
to the ages of these galaxies, then they cannot persist with
sizes r1=2 ≪ rsoliton. For the Segue 1 and Segue 2 UFDs, the
dynamical time can be gauged using density estimated from
the observed stellar velocity dispersion and half-light
radius, and is ∼a few × 107 yrs. Therefore, if rsoliton was
larger than r1=2 in these galaxies initially, the stars would
spread out to rsoliton in ≪ 1 Gyr.
This heating can in principle become inefficient if the

host DMhalo is tidally stripped down to the soliton, because
in the absence of other modes besides the ground state, wave
interference and associated heating are suppressed [41].
However, stellar populations of Segue 1 and Segue 2 and
other UFDs (M⋆ ≲ 105 M⊙) and some larger galaxies such
as Andromeda VII are>10 Gyr old [52]. These galaxies are
expected to evolve for several Gyrs in isolated halos before
accreting onto the Milky Way and being stripped. As noted
above, this is far longer than the timescale for soliton
fluctuations to inflate the stellar distribution, generically
resulting in r1=2 ≳ rsoliton. Therefore, the mere existence of
galaxies as small as Segue 1 and 2 immediately rules out the
lightest mFDM values that would give rsoliton > r1=2. Our
simulations further extend this constraint to even higher
masses. This is why we can confidently exclude FDM
masses below 3 × 10−19 eV, using only simulations that
cover the upper end of this mass range.
Interestingly, even ifwedonot consider solitonheating, but

consider the heating by ordinary interference fringes them-
selves, heating is also fast in the regime of r1=2 ≪ rsoliton, as
can be seen in the upper panel of our Fig. 2, where lines
showing evolution of r1=2 for themodels which start at r1=2 ≈
1 pc increase much faster in the initial stages than in the
diffusive heating regime later, in which r1=2 ∝ t1=2. In this
case heating is not due to scattering off granules, but due to
Oð1Þ potential fluctuations on the halo dynamical timescale.
Note also that in the regimewhen rsoliton ∼ Rvir we expect

soliton density, ρsoliton, to be ρsoliton ∼ 200ρmðzÞ ∼ 5 ×
104 M⊙ kpc−3ð1þ zfÞ3 where zf is the redshift at which
the bulk of the final halo mass is assembled. In Segue 1 and
Segue 2, howeverMð<r1=2Þ∼105M⊙ and r1=2∼25–40 pc,

FIG. 4. Marginalized posterior likelihood of mFDM. Each curve
shows the cumulative posterior pdf of m−1

FDM, while the arrow-
heads at top indicate the derived 1, 2, and 3-σ exclusion regions
for joint constraints combining Segue 1 and Segue 2.
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which corresponds to ρð<r1=2Þ ∼ 109 M⊙ kpc−3. Thus, the
case of rsoliton ∼ Rvir for Segue 1 and Segue 2 is excluded by
the densities of dark matter within r1=2 estimated from
observations of these galaxies.

B. Using only r1=2 > rsoliton regime

Even if we ignore the exclusion of the r1=2 < rsoliton case
in Segue 1 and Segue 2, the entire FDM mass range
(10−22–10−20 eV) can still be excluded using only our
heating argument in the regime r1=2 > rsoliton in other
UFD galaxies of larger size. We can do so because dwarf
galaxies with old stellar populations are observed with a
range of sizes, spanning almost two orders of magnitude.
This large range of sizes allows us to find galaxies that
satisfy r1=2 > rsoliton for any particle mass in the FDM range
of 10−22–10−20 eV. We can do so using the tight scaling
relation between soliton size and central density, which is
reproduced consistently in different simulations with low
scatter (≲30%, see Figs. 2 and 3 in [15]). Since the mean
central density in each galaxy can be directly inferred from
observed stellar kinematics, we can use the known mass
density to determine the range of FDMmasses that will give
r1=2 > rsoliton for each galaxy. Combining constraints from
multiple galaxies, we can then cover the entire FDM range.
Below we list the ranges of mFDM excluded by 4 specific

dwarf galaxies with old stellar populations.
(i) Segue 1 (σ ≈ 3 km=s, r1=2 ≈ 40 pc) excludes

9 × 10−21 eV≲mFDM ≲ 10−19 eV.
(ii) Boötes I (σ ≈ 5 km=s, r1=2 ≈ 200 pc) excludes

10−21 eV≲mFDM ≲ 10−20 eV.
(iii) DDO 210 (σ ≈ 10 km=s, r1=2 ≈ 400 pc) ex-

cludes 3 × 10−22 eV≲mFDM ≲ 2 × 10−21 eV.
(iv) Andromeda VII (σ ≈ 13 km=s, r1=2 ≈ 731 pc) ex-

cludes 10−22 eV≲mFDM ≲ 9 × 10−22 eV.
The upper end of the mFDM exclusion range is determined
by our heating constraint, which can be roughly estimated
from our Eq. (1), while the lower end is determined by the
condition rsoliton ∼ r1=2, where rsoliton is estimated using the
soliton size–density relation as described above. To stress
again, the lower end of the range is not where FDM
constraints fail, but instead where rsoliton ≈ r1=2. Masses
above that lower limit have rsoliton < r1=2, and masses
below have rsoliton > r1=2.
This shows that this set of 4 galaxies excludes the entire

relevant FDM mass range 10−22–10−20 eV. Note also that
FDM masses below 10−21 eV are already excluded by the
mere existence of halos hosting the smallest Milky Way
satellites [7], as well as the small-scale Lyman-α forest
power spectrum [3].

C. Implications

In a practical sense, the constraint derived here effec-
tively excludes the “fuzzy” regime of ultralight dark matter.

Using the linear transfer function given in Ref. [1], the
linear power spectrum in ultralight DM models satisfying
this constraint on mFDM will be identical to the ΛCDM
linear power spectrum out to k ∼ 200 hMpc−1.1 This
means that ultralight dark matter will be indistinguishable
from CDM in the Lyman-α forest, which can probe the
linear matter power spectrum to k≲ 10 Mpc−1. Similarly,
the FDM correction to the halo mass function [53] for this
particle mass is small for M ≳ 2 × 105 h−1 M⊙, which
means that FDM models are constrained to be indistin-
guishable from the CDM using probes of halo substructure
like strong lensing or tidal streams [54,55]. To our knowl-
edge, there are no existing galactic observations that can
distinguish ultralight dark matter from CDMwith the limits
imposed by Segue 1 and Segue 2 observations.
Note that our exclusion applies not only to scalar FDM,

but also for vector (or even higher-spin) ultralight DM. The
bounds derived here translate straightforwardly for arbi-
trary spin s, as long as we can consider FDM with spin s to
be equivalent to 2sþ 1 incoherent fields of identical mass
[56]. At fixed total mass density, this reduces the heating
rate by a factor 2sþ 1, and since heating scales with
particle mass m like m−3, this weakens the constraint on m
by a factor of ð2sþ 1Þ−1=3. For vector DM, with s ¼ 1, this
would weaken our scalar (s ¼ 0) constraint from
m > 3 × 10−19 eV, to m > 2 × 10−19 eV.

VI. DISCUSSION

In the previous section, we argued that Segue 1 and
Segue 2 exclude the entire range of fuzzy dark matter
masses. Below, we discuss some of the potential caveats to
our analysis and compare our constraints to several recent
FDM constraints that used different methods and UFD
observations. Lastly, we conclude by considering possible
avenues for future work.
Galaxies or star clusters? To derive this constraint, we

have assumed that these galaxies reside in dark matter
halos, i.e., we have assumed Segue 1 and 2 are both
galaxies, and not star clusters. For Segue 1, this assumption
appears clearly justified, since the inferred dynamical mass
vastly exceeds the observed stellar mass. For Segue 2,
however, this assumption may be questioned, since the
observed kinematics in Segue 2 are consistent with σv ¼ 0.
Indeed, the low dispersion in Segue 2 is the reason why it
provides such strong bounds on mFDM. Although stellar
velocities in this galaxy provide only an upper limit on v1=2,
the large spread in metallicity of Segue 2 stars is typical for
dark matter dominated dwarf galaxies [35], and is not
observed in star clusters. Thus, we adopt an assumption that
Segue 2 is a dwarf galaxy embedded in a dark matter halo
and use it for the combined constraints.

1Note, however, that with sufficient fine-tuning, the large
misalignment mechanism [6] can modify this conclusion.
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For the fiducial choice of priors, the 1σ, 2σ, and 3σ limits
on mFDM for the Segue 1 alone are >4.16 × 10−19 eV,
>2.03 × 10−19 eV, >1.36 × 10−19 eV, correspondingly.
As the combined constraints presented in Table I, these
results are not sensitive to the assumed prior.
Tidal stripping. Dynamical heating of stars due to wave

interference fringes can be suppressed if a galaxy’s DM
halo is tidally stripped down to the soliton size. This is
because wave interference requires multiple states to be
occupied, so when no excited states are present in the wave
function then FDM heating will be absent [41].
We do not think this is a concern for Segue 1 and

Segue 2. At their current locations, the tidal radii of both
satellites are far larger than the observed galaxy sizes
[30]. Gaia observations of their proper motions indicate
that both galaxies are near the pericenters of their orbits
[57], where tides are strongest. Therefore, at their
present locations, the tidal radii should be close to the
smallest they have ever been, and the current tidal radii
are far larger than each galaxy’s size. Additionally, the
relatively high metallicity of Segue 2, which was viewed
as a possible indication of significant tidal stripping
by [35], turned out to be typical for UFDs of similar
luminosity [30]. Similar arguments hold true for Segue 1
as well [58].
At the same time, the soliton size in Segue 1 and 2 cannot

be much larger than the observed r1=2 of the stars. This is
because the size of a DM-dominated stellar system located
within a soliton in an isolated halo quickly grows to
become comparable to the soliton size after ≲10 dynamical
times, due to strong dynamical heating by soliton fluctua-
tions [27,41]. In Segue 1 and Segue 2, the dynamical time is
short enough that this process should occur in ∼108 yrs, as
long as wave interference is present.
Although these galaxies are currently satellites of the

Milky Way and their DM halos could be tidally stripped,
cosmological simulations of Milky Way sized halos show
that nearly all such satellites have been accreted within the
past 8 Gyrs (e.g., [59]). Note also that it would take at least
an orbital period (≈1 Gyr for Segue 1 and 2 [57]) to
significantly strip their parent halos. Given that stars in
these galaxies were born ≳10 Gyrs ago, they were present
when parent halo did not suffer significant tidal stripping
for at least ∼2–3 Gyrs, and their sizes should therefore have
been inflated to the soliton size during this time.
These considerations indicate that soliton size can be at

most comparable to the current extent of the galaxy’s stellar
system. Given that the tidal radii of Segue 1 and Segue 2 are
estimated to be much larger than this extent, then wave
interference fringes and soliton oscillations should be
present in the halos of these galaxies, validating the
constraints derived in this paper.
Soliton effects. As mentioned above, our analysis

neglects soliton effects. It is worthwhile to consider how
our constraints would change if we included solitons in our

simulations. As noted in Sec. II, it is straightforward to add
solitons to our simulated halos, simply by adding them to
the input density profile. This method gives fluctuations in
the soliton density and centroid location similar in size to
what is found in self-consistent Schrödinger-Poisson sim-
ulations [16,25], and therefore should provide an estimate
of the effect of the soliton heating.
We have not simulated the entire parameter range covered

by our nonsoliton simulations, but the results of a limited
number of soliton simulations that we have performed
indicate that solitons significantly enhance FDM heating
in the central regions of halos, as expected from previous
work [27]. In Segue 1 and Segue 2, this enhanced heating
acts to further worsen the fit to the measured data. We find
that the posterior likelihood for mFDM ¼ 10−19 eV is
reduced by an order of magnitude, compared to our no-
soliton simulations, when solitons of mass and size given by
the scaling relation of Ref. [8] are included.
Comparisons with other FDM constraints that use

UFDs. This result appears to be inconsistent with a recent
analysis of 18 UFDs (including Segue 1 and Segue 2) which
place upper limit onmFDM in each of those 18 galaxies [11]
and thus formally exclude CDM model. The basis for this
result is a Jeans analysis that apparently finds significant
evidence for a massive soliton in each galaxy, which is then
translated into a measurement of mFDM using the soliton
core-halo scaling relation (see their Fig. 1). One significant
issue is that their analysis is not self-consistent, due to
neglect of the FDM heating effects that we discuss in this
paper. As noted above, inclusion of soliton effects (meaning
both the effect on the average gravitational potential and
also the heating effect) significantly worsens the fit to
observations of Segue 1 and 2 for mFDM ∼ 10−19 eV. It is
possible that neglect of heating might explain why Ref. [11]
reach such different conclusions analyzing the same data
used here. We do note, however, that it is difficult to
understand how in their analysis solitons were statistically
detected in each of the 18 analyzed galaxies, while the
soliton properies and hence mFDM were poorly constrained
with uncertainties on the latter of orders of magnitude (see
their Fig. 1). It is thus possible that some other systematic
feature of their analysis biases their result.
A more recent Jeans analysis of 5 UFDs [60] (including

some also present in the sample of [11]) finds no evidence
of solitons in any of the 5, in contradiction to the results of
Ref. [11]. For these reasons, we do not currently believe the
inconsistency with Ref. [11] is a reason to doubt our
derived lower limit on mFDM.
Future directions. This bound on the FDM mass can be

potentially improved. For the diffusive heating effect
studied here, observing additional galaxies would be
unlikely to provide significant improvements, unless those
galaxies have sizes or velocity dispersions significantly
smaller than Segue 1 and 2 [see Eq. (1)]. A more promising
way to strengthen these constraints would be to account for
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the effects of central solitons, which were ignored in our
analysis due to the uncertainty in the scaling between
soliton mass and halo mass.
As noted above, our simulations indicate that solitons

of mass given by the scaling relation of Ref. [8] can
significantly enhance FDM heating effects. These simu-
lations also point to a distinctive signature of soliton
heating, namely a sharp increase in stellar velocity
dispersion in the vicinity of the soliton. This suggests that
future observations could significantly strengthen bounds
on ultralight DM by measuring kinematics of stars at the
very centers of UFDs, if future theoretical work does firmly
establish that all FDM halos should have solitons suffi-
ciently massive to enhance stellar heating.
Another avenue to explore in future work is to constrain

multicomponent DM models, in which ultralight DM
comprises only a fraction of the total dark matter mass. In
string axiversemodels [61],multiple axionlike particleswith
logarithmically distributedmasses can have energy densities
comprising significant fractions of the critical density. If
FDM particles of massm comprise fraction fFDM of the DM
density within a halo, then we would expect the FDM
heating rate to scale as f2FDM=m

3. Previous work has used
large-scale structure to bound fFDM ≲ 1–10% for masses
m < 10−26 eV [62], and using galaxy kinematics we expect
that this mass range can be increased to m ∼ 10−20 eV.
Besides galaxies, observations of supermassive black

holes could further strengthen the bound on ultralight
bosonic particles. The FDM mass range probed by the

UFDs is similar in magnitude to the mass range that can
generate superradiance in the largest known black holes
[63–65]. Detection of large spins in these black holes, as
well as in lower mass black holes, could be used to further
narrow the range of allowed dark matter particle masses by
many orders of magnitude beyond what we derived here.
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