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We consider a general choice of integration constants in the resolution of the dynamical equations
derived from a recently proposed effective model that describes black hole spacetimes in the context of loop
quantum cosmology. The interest of our analysis is twofold. On the one hand, it allows for a study of the
entire space of solutions of the model, which is absent in the literature and is fundamental for understanding
the relation with any underlying quantum theory. On the other hand, choices of integration constants that
generalize the type of solutions considered so far may lead to exotic behaviors in the effective black hole
geometry, as well as modified thermodynamical properties. With these motivations in mind, we discuss the
interior and exterior geometries, and present the conditions that a satisfactory matching at the horizons
imposes. Then, we turn our attention to the Hawking temperature associated with the black horizon of the
model, which we find to be affected by the freedom of choice of integration constants. Finally, we briefly
comment on the asymptotic structure of the general solution and compare different notions of mass.

DOI: 10.1103/PhysRevD.106.063516

I. INTRODUCTION

Ashtekar, Olmedo, and Singh (AOS) [1,2] have put
forward a new effective model that aims to describe non-
rotating, uncharged black holes within the context of loop
quantum cosmology (LQC) [3–6]. This model stands out
among previous related works (see e.g. Refs. [7–28]) for a
number of reasons. On the one hand, it is claimed to be free
from pathological properties such as the dependence on
fiducial structures and the appearance of local quantum
effects in regions of low spacetime curvature. On the other
hand, it leads to an effective quantum extension of the entire
Kruskal spacetime where the curvature invariants remain
finite, even across the spatial hypersurface that replaces the
classical central singularity, which is interpreted tomediate a
transition between a trapped region and an antitrapped one.
Notwithstanding its appealing features, the model has
received a certain degree of criticism, mainly concerning
possible problems with its asymptotic structure [29,30],
covariance properties [31], and the relation between the
proposed effective Hamiltonian and the studied dynamics
[32]. This last point is intimately related to the fact that the
polymerization parameters (which regulate the introduction
of quantum effects in the system, in the sense that the

effective Hamiltonian reduces to that of general relativity
when the parameters vanish), while claimed to be Dirac
constants of motion, are nonetheless treated as constant
numbers in the derivation of the Hamiltonian equations of
motion. This strategy was supported in Ref. [2] by argu-
ments basedon an extension of phase space.Alternatively, in
order to try and reconcile the physical results of the AOS
model with a more standard treatment of the polymerization
parameters as constants of motion, a two-time description
has been recently proposed [33,34].
Since this effective model is attracting a considerable

attention owing to its good physical properties (in spite of
the commented caveats), a next logical step would be to
proceed to construct a quantum version along the lines of
LQC. It is well known that there is a close relation between
quantizing a system and characterizing its space of sol-
utions. In the case at hand, this requires an understanding of
the full extent of the dynamics of the AOS model. In the
original works where this model was discussed [1,2], the
constants that arise in the integration of the dynamical
equations were fixed in a particular way such that one
recovers the classical solutions of general relativity when
the polymerization parameters vanish. This choice confines
the analysis to a subspace of the space of solutions of the
model. However, a careful inspection proves that requiring
a satisfactory classical behavior may at most fix the
dominant part of the integration constants in a suitable
asymptotic regime. This observation opens the possibility
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of a more general choice of integration constants while
retaining a sensible classical limit. Such a less restrictive
choice is interesting not only from the point of view of
exploring the full space of admissible solutions of the AOS
dynamical equations, but also because deviations from the
previously considered values may leave a physical imprint,
e.g. in the thermodynamical properties of the black hole or
in the form of the shadow cast by it (see Ref. [35] for an
analysis of the shadow of an AOS black hole, which does
not show important quantum effects for large black hole
masses in Planck units). Thus, the motivation to consider a
general choice of integration constants is twofold. On the
one hand, it allows us to analyze the whole space of
solutions of the AOS model, which is of a fundamental
importance if we wish to carry out its quantization. On the
other hand, it clarifies the physical role of the integration
constants and how they affect, for instance, the thermo-
dynamical properties or the different notions of mass for the
spacetime. Throughout this paper, we focus our study
exclusively on the AOS equations of motion and their
associated space of solutions, bearing in mind that our aim
is to set a groundwork that facilitates the quantization of the
model in future works.
The present paper is structured as follows. In Sec. II, we

write down the dynamical equations and solve them for a
general choice of integration constants. This analysis is
performed both in the interior and exterior regions (see
Secs. II A and II B, respectively), showing that an accept-
able matching of solutions at the black and white horizons
is possible. Then, we investigate the thermodynamics of the
general solution in Sec. III, putting a special emphasis on
the Hawking temperature and the relation between the
analog of the Schwarzschild radius and the Hamiltonian
mass. In Sec. IV, we comment on the behavior of the
general solution at spatial infinity and relate the
Hamiltonian mass with other definitions of the mass
directly associated with the black hole spacetime.
Finally, in Sec. V, we summarize the main results of this
work and discuss their consequences. Throughout this
article, we adopt natural units, setting the speed of light
and the reduced Planck constant to one.

II. GENERAL SOLUTION OF THE AOS
DYNAMICAL EQUATIONS

Let us derive the general solution of the equations of
motion obtained in Refs. [1,2]. We will address the case of
the interior region in Sec. II A, and study the exterior region
and the matching at the horizons in Sec. II B.

A. Interior region

We consider the interior region of a nonrotating,
uncharged black hole, which can be foliated by homo-
geneous but anisotropic spacelike Cauchy hypersurfaces.
We can formulate a Hamiltonian description of the

relativistic system on a finite dimensional phase space.
Following the standard procedure in LQC, the dynamical
degrees of freedom are captured in a gravitational suð2Þ
connection and a densitized triad. Once the symmetries of
the system are taken into account, all the dynamical
information contained in these fields is encoded in a total
of four basic variables: the so-called connection variables b
and c, and the triad variables pb and pc. They form two
canonical pairs, fb; pbg and fc; pcg. In the AOS model,
their dynamics is governed by the following equations [2]:

c0 ¼ −2
sinðδccÞ

δc
; ð2:1Þ

p0
c ¼ 2pc cosðδccÞ; ð2:2Þ

b0 ¼ −
1

2

�
sinðδbbÞ

δb
þ γ2δb
sinðδbbÞ

�
; ð2:3Þ

p0
b ¼

1

2
pb cosðδbbÞ

�
1 −

γ2δ2b
sin2ðδbbÞ

�
; ð2:4Þ

where the prime denotes the derivative with respect to the
coordinate time t, γ is the Immirzi parameter [36], and δb
and δc are the polymerization parameters that control the
inclusion of quantum effects in the system (indeed, the
classical, general relativistic equations of motion are
recovered if both parameters tend to zero). Originally,
these dynamical equations were motivated starting with an
effective Hamiltonian. With the choice of lapse function
N ¼ γδb

ffiffiffiffiffiffiffiffijpcj
p

= sinðδbbÞ, the product of the effective
Hamiltonian constraint Heff and the lapse can be written
as [1,2]

NHeff ¼
Lo

G
ðOb −OcÞ;

Ob ¼ −
1

2γ

�
sinðδbbÞ

δb
þ γ2δb
sinðδbbÞ

�
pb

Lo
;

Oc ¼
1

γ

sinðδccÞ
δc

pc

Lo
; ð2:5Þ

where Lo is a fiducial length related to the radial direction
of the spatial sections and G is the Newton gravitational
constant. However, it is worth making clear that we
concentrate here exclusively on the investigation of the
space of solutions of Eqs. (2.1)–(2.4), regardless of the way
in which they are obtained.
The considered dynamical equations can be solved in a

straightforward manner following the same strategy as in
Ref. [2]. The effective solutions resulting from the inte-
gration of Eqs. (2.1) and (2.2) are
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tan

�
δccðtÞ
2

�
¼ C1e−2t ¼ sgnðC1ÞxcðtÞ;

pcðtÞ ¼
1

2
p̄0
c

�
xcðtÞ þ

1

xcðtÞ
�
; ð2:6Þ

where C1 and p̄0
c are nonzero, real integration constants,

and xcðtÞ ¼ jC1je−2t is strictly positive. Similarly, the
solution to the equation of motion corresponding to b
(2.3) reads

cos ½δbbðtÞ� ¼ bo tanh

�
1

2
botþ C2

�
; ð2:7Þ

where bo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2δ2b

q
and C2 is a real integration con-

stant. Finally, in order to obtain pbðtÞ, it is not necessary to
integrate Eq. (2.4). Indeed, since the system under consid-
eration is gravitational in nature, it inherits from general
relativity the property that it is fully constrained. Once we
have selected a spacetime foliation in homogeneous hyper-
surfaces and chosen our set of canonical variables, these are
only subject to one nontrivial constraint, namely, that the
effective Hamiltonian in Eq. (2.5) vanishes. Plugging the
effective solutions derived so far into this constraint leads to

pbðtÞ ¼ −2
δb
δc

sin ½δbbðtÞ�
γ2δ2b þ sin2 ½δbbðtÞ�

pcðtÞ sin ½δccðtÞ�

¼ −
2γLoδbm

b2o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2o tanh2 ½12 botþ C2�

q
1 − tanh2 ½1

2
botþ C2�

× sgnðsin ½δbbðtÞ�Þ; ð2:8Þ

where m ¼ sgnðC1Þp̄0
c=ðγLoδcÞ is the coincident on-shell

value of Ob and Oc. The absolute value of this constant of
motion is proportional to the ADM mass of the black hole
in the AOS model (see Ref. [30]). We will call it the
Hamiltonian mass and investigate its precise relation to the
mass of the black hole for a general choice of integration
constants in Sec. IV.
Thus, the interior solution is determined by three real

integration constants (C1, C2, and p̄0
c) and two positive

polymerization parameters (δb and δc) that are restricted to
display a concrete dependence on jmj for large black hole
masses (see Ref. [2]). We have already seen that p̄0

c is
directly related with the Hamiltonian mass [namely
p̄0
c ¼ sgnðC1ÞγLoδcm]. Let us briefly comment on the

interpretation of the two remaining integration constants,
C1 and C2. In terms of the triad and connection variables,
the effective spacetime metric can be written as

ds2int ¼ −
γ2δ2bjpcj
sin2ðδbbÞ

dt2 þ p2
b

L2
ojpcj

dx2 þ jpcjdΩ2; ð2:9Þ

where we have employed the choice of lapse function N
given above Eq. (2.5), x is a radial coordinate in the interior
region, and dΩ2 ¼ dθ2 þ sin2 θdϕ2 is the metric of the unit
2-sphere in terms of the polar and azimuthal angles, θ and
ϕ. It is straightforward to realize that the instants when
pb ¼ 0, or cos2ðδbbÞ ¼ 1 according to Eq. (2.8), corre-
spond to Killing horizons related to the Killing vector ∂x,
beyond which pb becomes imaginary [1,2]. In previous
works, the section corresponding to cosðδbbÞ ¼ 1 has been
interpreted as a black horizon, whereas the one correspond-
ing to cosðδbbÞ ¼ −1 has been related to a white horizon
instead.1 With a general choice of integration constants,
these horizons, which constitute the boundaries of the
interior region, are easily seen to be located at

tBH ¼ 2

bo
ðarctanhb−1o − C2Þ;

tWH ¼ −
2

bo
ðarctanhb−1o þ C2Þ

¼ tBH −
4

bo
arctanhb−1o : ð2:10Þ

Therefore, the choice of C2 fixes the position of either the
black or the white horizon (the other being immediately
fixed as well). For instance, we can express C2 as

C2 ¼ arctanhb−1o −
1

2
botBH: ð2:11Þ

As regards the integration constant C1, let us begin by
commenting that pc (its first derivative with respect to time
being proportional to the expansion of null vector fields
normal to the metric 2-spheres of constant t and x) plays a
key role in the analysis of the causal structure of the
effective interior geometry [1,2]. Along any dynamical
trajectory, there is (at most) one instant where p0

c vanishes
(in other words, where pc attains its minimum value). This
instant has been argued to correspond to a hypersurface that
is the nonsingular effective analogue of the classical
singularity and that separates a trapped region from an
anti-trapped one: the so-called transition surface T . A
trivial calculation shows that it is located at

tT ¼ 1

2
ln jC1j: ð2:12Þ

Hence, C1 (or, rather, its absolute value) can be understood
as determining where this transition surface lies. Notice that
we can choose our origin of time to coincide e.g. with the

1This interpretation is a matter of convention. Without loss of
generality, we follow Refs. [1,2] and assign times smaller than the
value corresponding to the black horizon to the interior region.
Further specifications will be made when discussing the matching
of the interior and exterior solutions in Sec. II B.
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black horizon, or with the transition surface, fixing in this
way either the constant C2 or jC1j, but not both of them.
Before concluding this section, let us briefly comment on

the choice of integration constants that lead to the AOS
model as presented in Refs. [1,2]. In those works, very
concrete choices of the integration constantsC1 andC2 were
made. On the one hand, the black horizon was identified
with the hypersurface t ¼ 0, a possibility that we contem-
plated above. This fixes CAOS

2 ¼ arctanhb−1o . On the other
hand, the remaining integration constant was fixed as
CAOS
1 ¼ γLoδc=ð8jmjÞ. This choice reproduces the classical

relation between the black horizon area and the Hamiltonian
mass when jmj ≫ Loδc. As we will comment in the next
section, restricting the analysis to this value of the integra-
tion constant C1 is excessive, because the requirement of a
certain classical limit should at most fix its dominant
contribution when the polymerization parameters tend to
zero. Note that the choice made in the original AOS solution
is such that 8jp̄0

cjCAOS
1 ¼ ðγLoδcÞ2. Thus, any choice that

fails to satisfy this relation immediately lies beyond the
scope of previous works. This leaves a door open to the
existence of unexplored behaviors in the effective geometry.
We will comment on this issue in Sec. II B, where we will
discuss the extension of the model to the exterior region and
examine the matching with the interior one.

B. Exterior region and matching at the horizon

Aswehave seen, there exist two instants of time along any
dynamical trajectory in the interior regionwherepb vanishes
and beyond which this variable becomes imaginary. Their
spacetime counterparts have been argued to be horizons that
play the role of boundaries of the interior geometry. Their
existence raises the question of the extension of the
formalism beyond those horizons. This was discussed in
Refs. [1,2], introducing an approach that circumvents the
problems to foliate the exterior region with homogeneous
hypersurfaces, which become timelike in fact. One can
then carry out a treatment analogous to that developed for
the interior region, except that the Hamiltonian constraint
on the canonical variables defined outside (which we will
call b̃, c̃, p̃b, and p̃c) generates an evolution in the radial
direction [2]. In practice, the counterpart of the dynamical
equations (2.1)–(2.4) in the exterior turns out to be obtained
with the following replacements: b → ib̃, c → c̃,pb → ip̃b,
andpc → p̃c (we encourage the reader to consult Ref. [2] for
further details).
The corresponding solutions for the exterior region can

be obtained in a manner that is totally analogous to that
discussed in the previous subsection, resulting in2

tan

�
δ̃cc̃ðtÞ
2

�
¼ C̃1e−2t ¼ sgnðC̃1Þx̃cðtÞ;

p̃cðtÞ ¼
1

2
sgnðC̃1ÞγLoδ̃cm̃

�
x̃cðtÞ þ

1

x̃cðtÞ
�
; ð2:13Þ

cosh ½δ̃bb̃ðtÞ� ¼ b̃o tanh

�
1

2
b̃otþ C̃2

�
;

p̃bðt̃Þ¼−2
δ̃b
δ̃c

sinh ½δ̃bb̃ðtÞ�
γ2δ̃2b− sinh2½δ̃bb̃ðtÞ�

p̃cðtÞsin ½δ̃cc̃ðtÞ�;

ð2:14Þ

where C̃1, C̃2, and m̃ are real integration constants (C̃1 and
m̃ being nonzero), and x̃cðtÞ ¼ jC̃1je−2t. Furthermore, δ̃b
and δ̃c are two polymerization parameters, that might differ

from their interior counterparts, and b̃o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2δ̃2b

q
.

A priori, the interior and exterior solutions are indepen-
dent. Nevertheless, in order to provide them with a physical
interpretation and construct a smooth “black hole” geom-
etry, one performs the followingmatching. Consider the two
values tBH and t̃BH such that pbðtBHÞ ¼ 0 ¼ p̃bðt̃BHÞ. By
setting them equal to each other, which in particular leads to
C̃2 ¼ arctanhb̃−1o − 1

2
b̃otBH, we may match the solutions at

the hypersurface t ¼ tBH. This hypersurface separates the
interior region, corresponding to tWH < t < tBH, from the
black hole exterior, corresponding to t > tBH.
Let us illustrate the main properties of the geometry

resulting from the proposed matching across the black
horizon. This requires a change of coordinates to remove
the apparent singularity that arises owing to our use of
standard Schwarzschild coordinates. Let us focus, for
instance, on the effective metric in the exterior region,
which can be written as ds2ext;2 ¼ −f̃1ðtÞdx2 þ f̃2ðtÞdt2
with

f̃1 ¼
p̃2
b

L2
ojp̃cj

; f̃2 ¼
γ2δ̃2bjp̃cj
sinh2ðδ̃bb̃Þ

; ð2:15Þ

and where we have omitted the angular part of the metric,
because it does not play an important role in the analysis
of the near-horizon geometry. Introducing the ingoing
Eddington-Finkelstein coordinate v, we can reexpress
the exterior metric as ds2ext;2 ¼ −f̃1dv2 þ 2ðf̃1f̃2Þ1=2dvdt.
Although f̃1 vanishes at the horizon, this metric remains
well defined as long as its determinant differs from zero,
condition that amounts to require that the product f̃1f̃2 be
strictly positive in a neighborhood of the black horizon. It is
easy to check that f̃1f̃2 equals 4m̃2 at this horizon, a fact that
ensures the nondegeneracy of the metric if m̃ ≠ 0 (property
that holds by definition). Additionally, the integration
constants in the exterior region can be chosen in such a
way that the effective metric components are at least C2

2Even though the interior and exterior regions are in general
described in terms of different coordinate patches, for simplicity
we do not change the notation for their coordinates. It should be
clear from the discussion which region we are referring to at any
time.
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(i.e., they possess continuous second derivatives). This can
be seen with a direct calculation. For the exterior metric, the
derivatives at the black horizon are given by

f̃1
0 →

8jm̃j
γLoδ̃c

x̃cðtBHÞ
1þ x̃2cðtBHÞ

;

f̃1
00 →

8jm̃j
γLoδ̃c

x̃cðtBHÞ
1þ x̃2cðtBHÞ

�
1

2
γ2δ̃2b þ 3 − 4

1 − x̃2cðtBHÞ
1þ x̃2cðtBHÞ

�
;

ð2:16Þ
� ffiffiffiffiffiffiffiffiffiffi

f̃1f̃2

q �0
→ 2jm̃j;� ffiffiffiffiffiffiffiffiffiffi

f̃1f̃2

q �00
→ 2jm̃j

�
1þ 1

2
γ2δ̃2b

�
: ð2:17Þ

The corresponding expressions for the interior metric are
identical except for the replacement of the tilded constants
and polymerization parameters with untilded ones.
Therefore, we obtain a metric that is (at least) twice
continuously differentiable and nondegenerate by setting
δb ¼ δ̃b, δc ¼ δ̃c, jC1j ¼ jC̃1j, and jm̃j ¼ jmj ≠ 0.
A similar matching can be carried out between another

exterior solution, defined for t < tWH, and the interior
geometry at the white horizon. This yields for the integra-
tion constant C̃2 the value arctanhb̃−1o − 1

2
b̃otWH. The

remaining integration constants are again fixed by requiring
that the geometry be nondegenerate and at least twice
continuously differentiable.
In summary, a general choice of integration constants for

the AOS model leads to a smooth and nondegenerate
effective geometry described by:

(i) An exterior solution for t > tBH, determined by
two polymerization parameters and the three inte-
gration constants jm̃j ¼ jmj, jC̃1j ¼ jC1j, and C̃2 ¼
arctanhb−1o − 1

2
botBH.

(ii) An interior solution for tWH < t < tBH, labeled
by two polymerization parameters and the three
integration constants jmj, jC1j, and C2 ¼
arctanhb−1o − 1

2
botBH.

(iii) An exterior solution for t < tBH − 4b−1o arctanhb−1o ,
described by two polymerization parameters and the
three integration constants jm̃j ¼ jmj, jC̃1j ¼ jC1j,
and C̃2 ¼ 3arctanhb−1o − 1

2
botBH.

The two polymerization parameters can be fixed by
minimum area arguments, as it was done in Refs. [1,2],
where the authors gave an expression of δb and δc in terms
of jmj for sufficiently massive solutions. The other con-
stants, as we have seen, have different interpretations. First,
m is a constant of motion related to the mass of the black
hole under consideration (see Sec. IV for a more detailed
view on this matter). Second,C2 is related to the freedom to
select the instant of time corresponding to, e.g., the black
horizon. Third,C1 is related to the position of the only local

minimum of the triad variables pc and p̃c. At this stage of
the discussion, we can provide an argument to constrain the
physically admissible values of the integration constant C1.
As the form of the effective metric (2.9) suggests, jpcj (and
similarly jp̃cj) is related to the physical area of the metric
2-spheres defined by constant values of t and x. For finite
values of the polymerization parameters, jpcj is found to be
bounded from below, reaching at most a single minimum in
the interior region for a certain value of t. If this minimum
does not occur, the fact that jC1j ¼ jC̃1j implies that jp̃cj
will reach a minimum in one (and only one) of the exterior
regions. Notice that, as it stands, ln jC1j can adopt any real
value and, therefore, so can the position of the transition
surface, tT . If, following physical criteria, we want to
localize the surface with minimum area of the metric
2-spheres in the interior region, we need to restrict the
admissible values of jC1j. This requirement directly trans-
lates into the condition

2tBH −
8

bo
arctanhb−1o < ln jC1j < 2tBH; ð2:18Þ

which provides at least an upper bound on the value of
jC1j expð−2tBHÞ.
Further restrictions can be derived upon inspecting the

classical limit of the model and requiring that it is
compatible with the predictions of general relativity, at
least for large black holes. If we want to identify the square
of the Schwarzschild radius with jpcðtBHÞj in the limit
jmj ≫ Loδc, it is straightforward to realize that we must
have jC1j expð−2tBHÞ ∼ γLoδc

8jmj at leading order.3 This dom-

inant term reduces to CAOS
1 when we set tBH ¼ 0. However,

we can choose a much more general jC1j, allowing for
corrective terms in the limit of very large masses,

jC1je−2tBH ¼ γLoδc
8jmj þ o

�
Loδc
jmj

�
; ð2:19Þ

where oð·Þ denotes terms that are subdominant with respect
to the quantity in parenthesis. Moreover, in general these
corrections might even dominate away from the large mass
regime as long as the bounds (2.18) are satisfied.

III. THERMODYNAMICAL PROPERTIES

Once we have shown that the interior and exterior
solutions can be satisfactorily matched at the black and
white horizons, we can proceed to examine some of the
physical properties of the resulting model. In this section,
we will focus on the thermodynamical properties of the

3As we show in Sec. IV, the ADM mass of the spacetime for
any solution of the AOS equations is exactly given by jmj=G. It
follows that the Schwarzschild radius, standardly defined as the
product of 2G and the ADM mass, is simply equal to 2jmj.
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black horizon, carrying out an analysis similar to that
of Ref. [30].
The vector field ∂x is a Killing vector of the metric, with a

norm in the exterior region equal to −f̃1. Therefore, ∂x is
timelike away from the horizon and becomes null only at
the very horizon. This property characterizes the hyper-
surface defined by t ¼ tBH as a Killing horizon. To
investigate the associated thermodynamical behavior, let
us perform a Wick rotation x → xE ¼ −ix to the exterior
spacetime metric. We obtain

ds2ext ¼ f̃1ðtÞdx2E þ f̃2ðtÞdt2 þ jp̃cjdΩ2: ð3:1Þ

Since this metric has Riemannian signature and the norm of
∂xE vanishes at the horizon, we conclude that this Killing
vector field vanishes there. As a consequence, in a
neighborhood of the horizon, ∂xE resembles the generator
of a rotation in the t − xE plane. Ignoring the angular part of
the metric and performing the change of variable
R ¼ ½f̃1ðtÞ�1=2, we immediately get

ds2ext;2 ¼ R2dx2E þ 4f̃1f̃2
ðf̃10Þ2

dR2: ð3:2Þ

To make sure that this metric does not present a conical
singularity at the horizon, i.e. at R ¼ 0, let us examine the
ratio between the physical length L of a circumference of
coordinate radius R ¼ δR and its physical radius r as δR
tends to zero. Assuming periodicity of the coordinate xEwith
period P, we obtain4

lim
δR→0

L
r
¼ lim

t→tBH

Pf̃1
0ðtÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f̃1ðtÞf̃2ðtÞ

q : ð3:3Þ

It is straightforward to check that this limit is well
defined and nonzero, since limt→tBH f̃1f̃2 ¼ 4m2 > 0 and
limt→tBH f̃1

0 ≠ 0 for m ≠ 0, as we saw in Sec. II B.
Employing the explicit formulas of that section and
requiring that the limit of the considered ratio be 2π, we
find that the period P must adopt a very concrete, nonzero
value for the Wick-rotated exterior metric to be regular at
the horizon. Owing to this periodicity, test quantum fields
that propagate on the effective exterior geometry display
features of a thermal state with temperature [37]

TH ¼ 1

kBP
¼ 1

8πkBjmj
	

8jmjx̃cðtBHÞ
γLoδc½1þ x̃2cðtBHÞ�



; ð3:4Þ

where kB is the Boltzmann constant. With the choice of
integration constants made in Refs. [1,2], one recovers

TAOS
H ¼ 1

8πkBjmjð1þ ϵmÞ
; ð3:5Þ

where ϵm ¼ γ2L2
oδ

2
c=ð64m2Þ, which is the result obtained in

Ref. [30]. Note, however, that a more general choice of
integration constants does affect the temperature of the
quantum fields on the effective geometry of the model,
resulting in a relative variation

jTH − TAOS
H j

TAOS
H

¼ x̃cðtBHÞ
1þ x̃2cðtBHÞ

ðϵ1=2m þ ϵ−1=2m Þ − 1: ð3:6Þ

In the limit Loδc ≪ jmj considered at the end of Sec. II, a
relativistic behavior imposes that x̃cðtBHÞ and ϵ1=2m be small
and approach each other, as illustrated by Eq. (2.19).
A good estimation of the relative variation (3.6) in the
mentioned regime is then given by ϵ−1=2m x̃cðtBHÞ − 1, i.e. by
the relative change in x̃cðtBHÞ with respect to ϵ1=2m . The
value adopted by this quantity naturally depends on how
the integration constants are fixed. Although the resulting
contribution should generally be small with respect to the
unit in the discussed limit, we emphasize that it may be
larger than ϵm and, thus, larger than the corrections to the
general relativistic Hawking temperature arising in the
original AOS solution [see Eq. (3.5)].
We can see in a straightforward manner that the temper-

ature (3.4) depends on the relation between the physical
area of the black horizon and the mass jmj, relation that
depends in turn on the integration constants. Let us call this
area 4πr2S, with r

2
S ¼ jp̃cðtBHÞj. Direct comparison with the

Schwarzschild metric in general relativity shows that rS
must tend to the value 2jmj in the classical limit, which is
the reason behind the notation chosen to denote this
quantity. Solving a simple second order polynomial equa-
tion, we can rewrite x̃cðtBHÞ, which appears in jp̃cðtBHÞj, in
terms of r2S. Out of the two possible solutions, which are
related by means of a simple inversion, the one with the
appropriate classical limit is

x̃cðtBHÞ ¼ jC1je−2tBH

¼ r2S
4m2

4jmj
γLoδc

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
4m2

r2S

�
2
�
γLoδc
4m

�
2

s �
:

ð3:7Þ

Using this expression, the Hawking temperature can be
rewritten as

TH ¼ ℏ
8πkBjmj

4m2

r2S
: ð3:8Þ

Thus, the quantum effects are encoded in the quotient
4m2=r2S, which we do not force to be equal to the unit. The
fact that this quotient can be, in general, different from one

4We assume that f̃1
0=ðf̃1f̃2Þ1=2 is approximately constant in

the interval of integration that provides the physical radius when
δR → 0.

BEATRIZ ELIZAGA NAVASCUÉS et al. PHYS. REV. D 106, 063516 (2022)

063516-6



for finite values of the mass is a consequence of the fact
that, generally, jmj=G need not agree with MH ¼ rS=2G,
which we will call the horizon mass. Indeed, the precise
relation between these two masses is a function of C1 and
C2 (or tBH),

MH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γLoδc
8jmj

�
jC1je−2tBH þ

e2t
BH

jC1j
�s
jmj
G

: ð3:9Þ

This does not mean that jmj=G does not coincide with other
notions of mass for the considered solutions, such as the
ADM mass, as we will see in Sec. IV. Rather, the situation
that we have found shows that alternative definitions of the
mass that are known to coincide in general relativity need
not lead to the same result in more general scenarios, e.g.,
when quantum gravitational effects are taken into account.
Bearing in mind our comments below Eq. (3.6), one can
convince oneself that the departure from the value of the
horizon mass in the original AOS model is intimately
related to the previously discussed deviation in the
Hawking temperature. Actually, a straightforward calcu-
lation shows that, in the aforementioned limit Loδc ≪ jmj,
the dominant term in GMH=jmj − 1 is either of order ϵm or
of the same order as the relative difference between
temperatures given in Eq. (3.6), whichever one is larger
in the regime under consideration for a given choice of
admissible integration constants.

IV. ASYMPTOTIC BEHAVIOR AND NOTIONS
OF MASS

Let us turn now our attention to the analysis of the effects
of a general choice of integration constants on the asymp-
totic behavior of the geometry and on different definitions
of the mass.
The asymptotic behavior of the original AOS model was

studied in Refs. [29,30], with the conclusion that the
effective exterior geometry is asymptotically flat only in
an elementary sense. Indeed, the exterior metric approaches
a flat metric at spatial infinity, as proven in Ref. [30], but it
does not do so at a sufficiently fast rate so as to satisfy
certain conditions on the fall-off of its derivatives [29,30].
The result for our general setting turns out to be analogous.
After recasting the effective metric in a form that is better
suited to the analysis at spatial infinity, we can perform an
asymptotic expansion to identify the dominant terms in
each metric component. As is the case of the original AOS
solution, we find that, provided that the polymerization
parameters are different from zero, the time component of
the metric diverges at spatial infinity. Let us recall that,
given the physical interpretation of the polymerization
parameters, this implies that there appears a divergence
in the metric if there are quantum effects in the system, no
matter how small. Following the same procedure as in
Ref. [30], we can reabsorb the divergent factor through an

appropriate time redefinition. After this change of time, the
effective metric at spatial infinity manifestly approaches a
flat metric. However, this change also introduces certain
terms that are relevant for the derivatives of the metric
tensor, which then fails to satisfy the conditions necessary
for a standard notion of asymptotic flatness [38,39].
On the other hand, a concept of great relevance for black

hole spacetimes is their mass. In general relativity, there
exist several proposals to define the mass associated with a
certain geometry, many of which involve its asymptotic
regions. This is the case of, e.g., the ADM mass. For the
sake of comparison, it is also interesting to consider other
notions of mass for black hole geometries. Another
definition that has been employed in recent analyses
involves the Ricci tensor of the spatial metric (for more
details, see Ref. [40]). It is well known that, in the case of
the Schwarzschild metric (when the geometry under con-
sideration is asymptotically flat in the standard sense), both
definitions of the mass yield the same result. However, this
need not be true in scenarios such as the one in hand, where
effects of quantum origin have been captured through the
introduction of polymerization parameters.
Let us consider the ADM mass first, which is defined in

terms of the spatial part q̃ab of the effective metric in the
exterior. In order to express it in a convenient form, we
introduce the change of coordinates r̃ ¼ r̃Seðt−t

BHÞ, where
r̃2S ¼ γLoδcjmje2tBH=ð2jC1jÞ. Note that, for choices of jC1j
that lead to solutions with an acceptable classical behavior
in the limit of large masses, this constant coincides to
leading order with the quantity r2S introduced in the
previous section [see Eq. (2.19) and the paragraph below
Eq. (3.5)]. In terms of the new radial coordinate r̃ and the
parameter ϵ ¼ bo − 1, the spatial part of the exterior metric
can be written as

q̃abdxadxb ¼
ð2þ ϵþ ϵξ1þϵÞ2ð1þ jC1j2e−4tBHξ4Þ

ð1 − ξ1þϵÞ½ð2þ ϵÞ2 − ϵ2ξ1þϵ� dr̃2

þ r̃2ð1þ jC1j2e−4tBHξ4ÞdΩ2; ð4:1Þ

where fxaga¼1;2;3 ¼ fr̃; θ;ϕg and ξ ¼ r̃S=r̃. On the other
hand, the square of the lapse function in the exterior region
Ñ is given by

Ñ2 ¼ 4m2

r̃2S

ð1−ξ1þϵÞ½ð2þ ϵÞ2− ϵ2ξ1þϵ�ð2þ ϵþ ϵξ1þϵÞ2
16ð1þ ϵÞ4ð1þjC1j2e−4tBHξ4Þ

ξ−2ϵ:

ð4:2Þ

With these expressions, we can calculate the ADM mass,
which can be defined as [41]

MADM¼ 1

16πG
lim
r̃→∞

I
r̃
dSd

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðq̃Þ

p
Ñq̃acq̃bdð∂cq̃ba−∂bq̃caÞ;

ð4:3Þ
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where the integration must be performed over a 2-sphere of
constant radius r̃, and the partial derivatives must be taken
with respect to the Cartesian coordinates fyag of the
asymptotic flat metric to which the spatial effective metric
q̃ab tends at spatial infinity. Besides, yadSa ¼ r̃d2V, where
d2V is the area element of the considered 2-sphere. A direct
computation finally yields

MADM¼jmj
G

r̃S1þϵð2þϵÞ2
4ð1þϵÞ2 lim

r̃→∞

r̃2q̃r̃ r̃ðr̃Þ− r̃∂r̃q̃θθðr̃Þþ q̃θθðr̃Þ
r̃3þϵ

¼jmj
G

: ð4:4Þ

The last equality holds for ϵ < 3, whereas for ϵ > 3 the
asymptotic limit diverges. Note that ϵ < 3 by definition for
macroscopic black holes [2]. Moreover, this bound must be
satisfied if the quantum gravitational effects are reasonably
small. Focusing on situations of this type, we conclude that
the parameter that we have been calling the Hamiltonian
mass is indeed proportional to the ADM mass, jmj ¼
GMADM. Notice that this result is identical to the one found
in Ref. [30]. This is an immediate consequence of the fact
that the ADM mass is independent of the choice of the
integration constants C1 and C2. We recall that this was not
the case when we defined the horizon mass by measuring
the analog of the Schwarzschild radius, resulting into a
dependence on the value of jC1j expð−2tBHÞ [see Eq. (3.9)].
Let us study now the second definition of the mass

that we mentioned above, namely the one constructed with
the Ricci tensor of the spatial metric R̃ð3Þ

ab . This mass is
defined as

MRicci ¼
1

8πG
lim
r̃→∞

I
r̃
d2Vr̃ Ñ R̃ð3Þ

ab r̂
ar̂b; ð4:5Þ

where the integration is again over a 2-sphere of constant
radius r̃, and r̂a is a unit radial vector field. Since there is no
integration in the radial direction, it suffices to compute the
dominant term of the r̃ r̃-component of the Ricci tensor,
which is a simple task given that the spatial effective metric
q̃ab is diagonal. With these considerations, it is easy to
show that

MRicci ¼ ð1þ ϵÞ jmj
G

¼ ð1þ ϵÞMADM

¼ ð1þ ϵÞ
	
γLoδc
8jmj

�
jC1je−2tBH þ

e2t
BH

jC1j
�
−1=2

MH:

ð4:6Þ

Hence, the three studied definitions of mass, which
are known to coincide when applied to a classical
Schwarzschild spacetime, differ in our solutions. In the
case of theADMandRiccimasses, the difference is given by
a global factor that incorporates quantum gravitational

effects (it is proportional to ϵ) and vanishes when these
effects disappear. Again, this is the same result that was
found inRef. [30]. It is worth remarking that these notions of
mass continue to be well defined (at least for small quantum
effects), even in the absence of standard asymptotic flatness,
and the resulting values only disagree slightly for massive
black holes. The case of the horizon mass is somewhat
different, since its value depends on the choice of the
integration constants C1 and C2 (or rather, on the combi-
nation jC1je−2tBH).

V. CONCLUSIONS

The AOS model [1,2] to describe Schwarzschild black
holes within the context of LQC has appealing features that
have attracted considerable attention. The central singu-
larity that appears in general relativity is replaced with a
transition surface connecting a trapped region with an
antitrapped one. These regions are bounded by black and
white horizons, respectively, beyond which the formalism
can be extended to account for the entire Kruskal space-
time, leading to an effective geometry that is smooth and
nonsingular. Its curvature invariants are bounded from
above by quantities that are independent of the black hole
mass. Given these interesting properties, the next logical
step would be to proceed to the quantization of the black
hole spacetime along the lines of LQC. In order to do this, it
is fundamental to have a neat understanding of the space of
solutions of the dynamical equations. Nonetheless, in
Refs. [1,2] the constants that appear in the integration of
the equations of motion were chosen in a very particular
way, and an investigation of the full space of solutions is
absent in the literature. The aim of this article is to fill this
gap and explore the consequences of the most general
choice of integration constants that can be allowed. This
study provides a firm groundwork to construct a fully
quantum description of Schwarzschild black holes within
the LQC framework. In addition, it also clarifies how the
choice of the integration constants affect physical features
of the model such as its thermodynamical properties or
different definitions of the black hole mass.
In Sec. II, we have discussed the general solution to the

dynamical equations, both in the interior and the exterior
regions (see Secs. II A and II B, respectively). Each of these
solutions depends on three integration constants and two
positive polymerization parameters (that are functions of the
mass with an asymptotic behavior that is fixed by minimum
area conditions). We have then addressed the matching of
the interior and exterior solutions at the horizons, requiring a
nondegenerate and sufficiently smooth geometry. In this
way, we have related the integration constants inside and
outside the horizon. As a consequence, the determination of
a solution, valid in the interior as well as in the exterior,
amounts to the choice of three constants (other than
the polymerization parameters), which are related to three
physical quantities, namely, the Hamiltonian mass, the
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position of the black horizon, and the position of the
transition surface replacing the singularity. We have com-
mented on the values of the integration constants that
reproduce the results of Refs. [1,2], as well as on how to
restrict the physically acceptable values of one of the
constants by demanding that the transition surface belong
to the interior region. In Sec. III, we have computed the
Hawking temperature associated with the black horizon,
which we have found to depend on the choice of integration
constants. Indeed, we have shown that the temperature
depends on the relation between the black horizon area
and the Hamiltonian mass. This relation does not need to be
the same as in general relativity, so that the choice of
integration constants leaves an imprint in the thermody-
namics of the model. In Sec. IV, we have seen that the
asymptotic structure of the model is similar to that studied in
Ref. [30]. Finally, we have examined different definitions
for the mass of the spacetime that are known to coincide in
the Schwarzschild case. For instance, we have computed
the ADM and Ricci masses, which turn out to be indepen-
dent of the choice of the position of the horizon and of the
transition surface. We have shown that for any solution they
just differ by a term that vanishes in the absence of quantum
effects, just like it happened in Ref. [30].

Having gained this knowledge of the space of solutions
of the AOS dynamics, it would be especially interesting to
explore whether the studied dynamical equations can be
reconciled with a canonical treatment where the polymeri-
zation parameters are fixed as constants of motion, provid-
ing a clear connection between these equations and the
proposed effective Hamiltonian (therefore surpassing the
problems described in Ref. [32]). With this goal in mind,
the way forward involves a careful examination of the
procedures presented in Ref. [1], considering in particular a
suitable extension of the phase space and its subsequent
reduction. These issues will be addressed in a future
investigation.
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