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For a flat ΛCDM universe, the dipole of the luminosity distance can be utilized to measure the Hubble
parameter. It is here shown that this is not the case in more general settings where curvature and cosmic
backreaction is permitted. This implies that a discordance betweenHðzÞmeasurements obtained using such
dipole luminosity distance data and “true”=actual HðzÞ data obtained from e.g., cosmic chronometers is a
signal of curvature and/or cosmic backreaction. By considering mock future gravitational wave
measurements of the Hubble parameter obtained through the dipole luminosity distance, it is shown
that already a 1% curvature could in principle just barely show up in the determination. However, for
realistic mock data generation using models with as much as 5% curvature, parameter estimates do not
yield reliable measures of inconsistency between the false HðzÞ measurements and true measurements of
HðzÞ. At the same time, cosmic backreaction is hard to detect even if it makes up 10% of the “energy
budget” in the current Universe, even when considering a highly idealized situation with low errors.
The results concerning backreaction are based on specific “scaling solutions” to the backreaction problem
and the study shows that the possibility of detecting a signal of backreaction through the dipole of the
luminosity distance depends strongly on the particular backreaction model.
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I. INTRODUCTION

Direct measurements of the Hubble parameter, HðzÞ, are
a valuable tool in cosmology, not the least because HðzÞ
depends strongly on the dark energy density and hence
on dark energy phenomenology, but also e.g., because
measurements of HðzÞ may hold key insights into the
H0-tension [1–3] as studied in e.g., [4,5] (see e.g., the
introduction of [6] for a summary of the Hubble-tension
and possible solutions). Currently, the Hubble parameter
has been measured directly by using baryon acoustic
oscillations (BAO) [7–10] and cosmic chronometers
[11–14] data and the data is usually combined when used
for constraining model parameters. The measurements of
especially the latter type are still in their infancy and more
data as well as a better understanding of uncertainties and
systematics are needed for the probes to become useful for
a precise determination of HðzÞ. Other future direct probes
of the Hubble parameter are also known, such as redshift
drift measurements [15,16] and measurements of the dipole
of the luminosity distance [17].
These probes have all mainly been developed within

the framework of Friedmann-Lemaître-Robertson-Walker
(FLRW) models which describe universes that are exactly
spatially homogeneous and isotropic. However, the real
Universe has structures which can affect the large scale

“average” evolution of the Universe through cosmic back-
reaction [18–20] (see e.g., [21–23] for reviews and [24,25]
for further considerations on generalizations of the original
scheme). It is not clear to what extent backreaction actually
affects the dynamics of our Universe; while it may be
entirely negligible, it is also possible that backreaction is
important at percent level and it may even lead to accelerated
expansion and hence mimic dark energy [26–29].
As discussed in [30], multiple probes of the Hubble

parameter may help us understand what role backreaction
plays in our Universe because the different probes actually
measure different things if we are not in a universe that
behaves as an FLRWuniverse on large scales. In particular,
the results of [31–33] imply that redshift drift determina-
tions of the Hubble rate will not measure the volume
averaged expansion rate in a universe with non-negligible
backreaction (or any other significant deviation of FLRW
geometry which has been illustrated using various models
[34–37]). Indeed, as pointed out in [30], the only currently
known probe of the Hubble parameter which clearly yields
a measurement of the actual volume averaged/large scale
expansion rate in a spatially statistically homogeneous and
isotropic spacetime with non-negligible backreaction is that
based on cosmic chronometers. It seems unlikely that the
dipole luminosity distance and BAO measurements of
the Hubble parameter actually measure the volume aver-
aged expansion rate but a definite answer is not given by
the current literature. The work presented here seeks to*koksbang@cp3.sdu.dk
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partially remedy this by studying the dipole luminosity
distance determination of the Hubble parameter.
In [17] it was shown that under certain conditions, the

dipole of the luminosity distance can be used to directly
measure the Hubble parameter. Specifically, if the Universe
is well-described by a perturbed flat FLRWmodel, then the
monopole luminosity distance is the well-known relation

d0LðzÞ ¼ ð1þ zÞ
Z

z

0

dz0

Hðz0Þ ð1Þ

and the main contribution to the dipole will be due to our
peculiar motion. In that case, the dipole is given by

d1LðzÞ ¼
jv0jð1þ zÞ2

HðzÞ ; ð2Þ

where v0 is the peculiar velocity of the observer relative to a
cosmological reference frame. Assuming that v0 is the main
source of the dipole seen in the CMB as well as in the mean
luminosity distance, we can infer jv0j from the CMB
dipole. In that case, the dipole of the luminosity distance
directly yields the Hubble parameter. Although it is usually
assumed that our peculiar velocity can be deduced from the
dipole of the CMB, it should be noted that there are some
indications in observational data that this expectation is
violated [38–40]. Nonetheless, it will here be assumed that
jv0j can be extracted from other data than that used for
obtaining the luminosity distance.
While [17] considered supernova data, it was in [41]

noted that a percent-level determination of HðzÞ would
require ∼106 supernova observations, which is not realistic.
Gravitational waves can be used as standard sirens though
[42,43] and have already been used for measuring the
Hubble constant [44,45]. With the expected high number of
detected gravitational wave signals in the near future,
luminosity distance measurements based on these standard
sirens are expected to yield estimates of the Hubble
parameter at percent precision [41,46]. However, if the
Universe is not well-described by a flat FLRW spacetime
on large scales, the expression in Eq. (2) is not correct.
A comparison of HðzÞ measurements obtained from
standard siren dipole luminosity distances with true mea-
surements based on cosmic chronometers, should therefore
reveal a discordance between the measurements. Moreover,
the expression used for obtaining HðzÞ through measure-
ments of the dipole of the luminosity distance is only
correct for a flat FLRW universe. If we live in a curved
universe, erroneously using Eq. (2) will lead to HðzÞ
measurements in discordance with HðzÞ measurements
from e.g., cosmic chronometers and future redshift drift
measurements. This discordance can e.g., be measured
through the “index of consistency”, IOI, defined in [47].
In the following sections the expression for the dipole

component of the luminosity distance is studied for general

spacetimes with spatial statistical homogeneity and isot-
ropy. After presenting the theoretical considerations, a
numerical investigation is used to estimate how large
deviations from flat FLRW are required for obtaining a
signal in the HðzÞ measurement. The investigation is first
done qualitatively, whereafter a quantitative analysis is
conducted with the final goal being computing the IOI.

II. THE DIPOLE LUMINOSITY DISTANCE
BEYOND FLAT FLRW SPACETIMES

This section serves to present the computation of the
dipole of the luminosity distance in a general spacetime
exhibiting statistical spatial homogeneity and isotropy.
If the considered spacetime is only statistically and

not exactly spatially homogeneous and isotropic, even a
Copernican (i.e., random) observer will see some direc-
tional dependence of the redshift-distance relation.
Although the spacetimes considered here are not neces-
sarily close to a specific FLRW model, it will be assumed
that the statistical homogeneity and isotropy still leads the
observed dipole of the luminosity distance to be induced by
the peculiar motion of the observer, as it was shown to be
the case in standard perturbed FLRW spacetimes in [48].
In that case, the expression for the dipole can be obtained
using a derivation similar to that used in [17,41] for the flat
FLRW case.
In order to most easily take the peculiar velocity of the

observer into account, it is prudent to start by considering
the angular diameter distance which is defined as

d2A ≔
δA
δΩ

; ð3Þ

where δA is the area of the light beam at the emitter and
δΩ is the solid angle of the beam. For an observer with
peculiar velocity jv0j ≪ 1 (setting c ¼ 1) on the spatial
hypersurfaces of statistical homogeneity and isotropy, the
observed angular diameter distance will (through the
special relativistic transformation of δΩ) be modified by a
factor of ð1þ nivi0Þ, where ni is the direction of observa-
tion. In addition, the redshift is modified by a Doppler term
according to (first order in vi)

zobs ¼ zmonopole − ð1þ zmonopoleÞ · nivi0; ð4Þ

where zobs is the observed redshift and zmonopole is the
redshift which would be observed by an observer comoving
on the hypersurfaces of statistical homogeneity and isotropy.
Introducing the luminosity distance by the distance

duality relation and combining with the above consider-
ations and a Taylor expansion of dL around zmonopole, the
luminosity distance is seen to be given by

dLðzÞ ¼ d0LðzÞ þ
�
ð1þ zÞ d

dz
d0LðzÞ − d0LðzÞ

�
· nivi0: ð5Þ
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For an FLRW metric, this implies

d1LðzÞ ¼
jv0jð1þ zÞ2

HðzÞ ·

8<
:

cos ðR−1
0

R
z
0

dz0
Hðz0ÞÞ if K ¼ 1

1 if K ¼ 0

cosh ðR−1
0

R
z
0

dz0
Hðz0ÞÞ if K ¼ −1

;

ð6Þ
where R0 is the curvature radius and

d1L=jv0j ≔ ð1þ zÞ d
dz

d0LðzÞ − d0LðzÞ ð7Þ

is the size of the dipole contribution to the luminosity
distance.
While Eq. (6) requires the monopole contribution of the

luminosity distance to be given by that of an FLRWuniverse,
the derivation up to and including Eq. (5) is more general.
Equation (5) is valid under the assumptions that the universe
is spatially statistically homogeneous and isotropic for a
random observer with peculiar velocity v0 in the hyper-
surfaces of statistical homogeneity and isotropy. It is also
assumed that structure evolution is slow compared to the
time it takes a light ray to traverse the homogeneity scale so
that effects of inhomogeneity on dL and z other than those
due to the peculiar velocity of the observer can be ignored
when considering mean observations. Under these same
assumptions, the mean redshift-distance relation—i.e., the
redshift-distance relation obtained by averaging over many
random lines of sight—is given by [49,50]

d2

dz2
d0A ¼ −

4πGρD
ðð1þ zÞHDÞ2

d0A −
d
dz

d0A

�
2

1þ z
þ dHD

dz
HD

�
;

ð8Þ
whereHD is a third of the spatially averaged expansion rate
and ρD is the spatially averaged energy density of the content
of the universe. Spatial averages are defined according to
Buchert’s averaging scheme [18] such that1

hxiD ¼ xD ≔

R
D x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gð3Þj

q
R
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gð3Þj

q ð9Þ

for a scalar x and where the spatial domain D is assumed
larger than the homogeneity scale in order for the average
quantities to describe the large scale universe. In order to
connect spatial averages with observations as done with the
angular diameter distance above, it is crucial that spatial
averages are computed on the spatial hypersurfaces of
statistical homogeneity and isotropy.
It was also argued in [49,50] that the relation between the

redshift and the volume scale factor, aD, upon averaging
over many lines of sight is

1þ zD ¼ 1

aD
; ð10Þ

where aD is defined through the proper volume, VD, of the
domain D according to aD ≔ ðVD=VD;0Þ1=3. The relations
(8) and (10) have been tested in various inhomogeneous
cosmological models and generally seem robust as long as
opaque regions are not introduced and the above mentioned
assumptions of statistical homogeneity and isotropy and
slowly evolving inhomogeneities are fulfilled [31,32,51,52].
As discussed in [49], Eq. (8) does not generally reduce to a

simple integral expression; this only happens in the FLRW
limit. As the superscript ond0A in Eq. (8) indicates, the angular
diameter distance obtained from that equation corresponds to
the monopole contribution. Solving the equation and apply-
ing the distance-duality relation thus gives z; d0L; dd

0
L=dz

from which the dipole can be computed using Eq. (5).
Although it is not immediately apparent how the resulting
dipole will depend onHD, it is apparent that the relation will
not be as simple as for the flat FLRWmodels. Indeed, already
for nonflat FLRW models, the relation becomes more
complicated. Thus, if we do not live in a universe which is
well described by a single flat FLRW model on large scales,
using Eq. (2) on luminosity distance data will not actually
yield a measure of the large scale expansion rate. This will be
illustrated below for models with modest curvature and
modest signatures of inhomogeneities through cosmic back-
reaction. Before this, the concept of cosmic backreaction will
be elaborated in the next section togetherwith an introduction
to specific models of cosmic backreaction.

III. MODELS OF COSMIC BACKREACTION

By employing Buchert’s averaging scheme on
Raychaudhuri’s equation and the Hamiltonian constraint,
the equations (setting G ¼ 1)

3HD
2 ≔

1

3
ΘD

2 ¼ 3

�
aD;t

aD

�
2

¼ 8πρD −
1

2
RD þ Λ −

1

2
Q

ð11Þ
and

3
aD;tt

aD
¼ −4πρD þ ΛþQ; ð12Þ

1This average is strictly only valid when assuming a dust
content of the Universe comoving on those hypersurfaces which
are here taken to be those of statistical homogeneity and isotropy.
Here the interest is specifically observers with a noncomoving
velocity field. The physical picture is, however, similar to what is
assumed in standard cosmology based on FLRW backgrounds:
While the local observer may have peculiar velocity, it is assumed
that the content of the Universe can be described as a comoving
dust on the hypersurfaces of statistical homogeneity and isotropy
on sufficiently large scales, still small enough for averaging over
inhomogeneities to be relevant. See e.g. also [50] for consid-
erations of how to include peculiar velocity of the observer.
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are obtained. Θ is the local dust expansion rate and σ2 ≔
1
2
σμνσ

μν is the shear scalar of the dust. The term Q ≔
2
3
ðhΘ2iD − hΘiD2Þ − 2hσ2iD is the kinematical backreac-

tion. The two equations above describe the large-scale/
average evolution of an inhomogeneous universe. The
equations are reminiscent of the Friedmann equations
but the kinematical backreaction drives the large scale
evolution away from FLRW dynamics. When Q is non-
vanishing, it is coupled to the spatially average spatial Ricci
scalar RD according to the integrability condition

aD−6
∂tðaD6QÞ þ aD−2

∂tðaD2RDÞ ¼ 0; ð13Þ

which ensures consistency between the two previous
equations. When the kinematical backreaction vanishes
identically, the averaged Ricci scalar is proportional to
aD−2 and the averaged dynamical equations reduce to the
Friedmann equations.
The above set of equations does not form a closed set.

Families of solutions can nonetheless be found by intro-
ducing ansatzes on e.g., the form of Q and RD. One simple
family of solutions is the scaling solutions of [53]. The
scaling solutions is a family of solutions to the integrability
condition given by

RD ¼ RD0
aDnD

Q ¼ −
nD þ 2

nD þ 6
RD; ð14Þ

where nD ≠ −6;−2.
It should be stressed that the scaling solutions are not

a priori based on physical justifications but rather on
mathematical simplicity. However, the particular solution
with nD ¼ −1 has some limited physical motivation since
various types of perturbation theory [54,55] indicate this
as the dominant behavior of Q. In the study based on
numerical relativity in [56] it was found that nD ¼ −1 for
small initial perturbations around an FLRW background,
while nD ¼ 1 when larger initial perturbations are used.
This latter result indicates that the perturbative result
yielding nD ¼ −1 should probably not be taken too
seriously and that if one insists on considering nD ¼ −1
physically motivated, then nD ¼ 1 should perhaps be
considered equally motivated.
For the goal of the following section concrete models for

Q and RD are needed. Thus, for the lack of better options,
nD ¼ �1 will be considered in order to quantify the size of
backreaction necessary for generating a signal through the
dipole determination of the luminosity distance. By con-
sidering two values of nD rather than just one, the
importance of the specific form versus the numerical size
of Q can be estimated and hence used to evaluate the
reliability of the obtained results.

For quantifying the “size” of backreaction in the con-
sidered models, it is convenient to introduce the density

parameters Ωm ≔ 8π
3HD0

2 ρD0
, ΩΛ ≔ Λ

3HD0
2, ΩR ≔ −RD0

6HD0
2 and

ΩQ ≔ − Q0

6HD0
2. With these, the averaged Hamiltonian con-

straint can be written as (note that ρD ∝ aD−3 [18])

HD
2

HD0

2
¼ ΩmaD−3 þ ΩΛ þ 4

nD þ 6
ΩRaDnD ð15Þ

which evaluated at present time simply reads

1 ¼ Ωm þ ΩΛ þ 4

nD þ 6
ΩR: ð16Þ

Assuming that all curvature stems from Q being nonzero,
the size of backreaction will then be used to mean the size
of 4

nDþ6
ΩR which indicates the percentile of the present

time “energy budget” that can be attributed to cosmic
backreaction.

IV. NUMERICAL INVESTIGATION

In this section the luminosity distance including its dipole
will be computed for different nonflat and/or non-FLRW
models. This will then be used together with Eq. (2) to
extract measurements of “HðzÞ”. Since the considered
models are not actually flat FLRW models, the extracted
HðzÞwill not be equal to the trueHðzÞ. In other words, there
is a discordance between HðzÞ extracted from the dipole
luminosity distance measurements and the true HðzÞ.
The first subsection below serves to present an initial

qualitative investigation of the expected discordance.
Afterwards, a quantitative investigation with mock HðzÞ
data is presented.

A. Qualitative investigation

In this section the size of the difference between the
inferred and actual HðzÞ is compared with expected
uncertainties of the measurements. This uncertainty is
estimated based on the computations of [41], where the
error in HðzÞ measurements up to z ¼ 1 were found to be
0.75%–1.5% for 10 years of observation with the proposed
Japanese gravitational wave observatory DECIGO [57].
At z ¼ 2 the error has increased to 6%. These estimates
ignore errors from lensing which can significantly
affect the precision of the total error as shown in
[46]. Lensing will also be ignored here though, under
the expectation that it will be possible to remove system-
atics from lensing in the near future (errors from lensing
will be considered in the next subsection). Note also that
the error estimates of [41,46] are in principle model
dependent. This model dependence is neglected throughout
under the expectation that the order of magnitude would be
the same for an estimate based on the particular individual
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models—this is justified by the fact that the studied models
aim at considering only small deviations from flat FLRW.
Lastly, note that although the errors used here are specifically
for DECIGO, the errors are expected to be the same order of
magnitude for LISA and the Einstein telescope [58].
The results are shown using jv0j¼369.8km=s as inferred

with Planck [59].
Although the common expectation is that the Universe is

flat, some studies indicate that the Universe may be slightly
curved [60,61]. It is therefore interesting to see if a small
amount of curvature will appear as a measurable deviation
between the actual large scale expansion rate and that
inferred by erroneously using Eq. (2). Figure 1 shows HðzÞ
measurements in the redshift interval z ∈ ½0; 2� for FLRW
models with small amounts of curvature generated by
either increasing Ωm or ΩΛ compared to the default values
of Ωm ¼ 0.3 and ΩΛ ¼ 0.7. H0 ¼ 70 km=s=Mpc is used
throughout. The results are shown for a 5% curvature. With
this curvature, the precision is good enough to detect a
difference between the actual HðzÞ and that inferred by
wrongly employing Eq. (2) (the expression for the dipole of
the luminosity distance in a flat FLRW model) to the data.
Note that 1.5% errors are used all the way to z ¼ 2 even
though the error at this value of the redshift is expected to
have increased to around 6%. A 6% error is large enough to
hide the difference between the true HðzÞ and the one
inferred from the measurement. However, even with the
high estimate of the error in the low-z (z < 1) region, it
becomes possible to identify the curvature if it is
around 5%.
Figure 1 only shows the results for two particular ways of

obtaining a positive 5% curvature. The results do not
depend strongly on this though. It is also notable that a

curvature of 1% (not shown) is just on the verge of being
detectable with a precision of 0.75% at z ¼ 1.
Figure 2 showsHðzÞmeasurements obtained by applying

Eq. (2) to data in a universe with non-negligible cosmic
backreaction. The figure shows results for nD ¼ �1 and
with ΩR determined from Eq. (16) by setting Ωm ¼ 0.3,
ΩΛ ¼ 0.6, and with H0 ¼ 70 km=s=Mpc. The choice of
reducingΩΛ from 0.7 to 0.6 rather than, say, reducingΩm is
made based on cosmic backreaction mainly being discussed
in terms of its ability to mimic a dark energy component.
For the two considered models, the difference between

the inferred and actual large scale Hubble parameter is very
modest and can only for the nD ¼ −1 case barely be
detected with the 1.5% error at z ¼ 1. While this result
should be evaluated remembering that 1.5% is the higher
bound on the estimated precision, it must also be remem-
bered that the size of the backreaction contribution is at
10% in these models and thus quite large.
It is also noteworthy that the closeup in Fig. 2 shows a

quite significant difference in the deviation between true
and inferred HðzÞ depending on the two choices nD ¼ �1.
Since there is only little physical justification for these
particular scaling models (and none for the scaling models
in general), the significant difference between the results of
the two models means that the results cannot be trusted in
terms of quantifying to what extent backreaction will lead
to signatures in the determination of the Hubble parameter
using the dipole of the luminosity distance. The signifi-
cance of the signature will depend on the specific back-
reaction model and must therefore be computed separately
for any given model one wishes to study.

FIG. 1. Hubble parameter for curved FLRW models with
curvature induced by increasing either Ωm og ΩΛ as indicated
in the figure labels. Lines labeled “HðzÞ from dipole” represent
the measured quantity when combining the measured luminosity
distance dipole with the expression for the dipole in flat FLRW
models. Error bars represent 1.5% errors on the measurement.

FIG. 2. Hubble parameter for scaling models with backreaction
introduced throughEq. (16) by decreasingΩΛ to 0.6with fixedH0.
Labels indicate whether nD ¼ �1 was used. Lines labeled “HðzÞ
from dipole” represent the measured quantity when combining the
measured luminosity distance dipole with the expression for the
dipole in flat FLRW models. Error bars represent 1.5% errors on
the measurement. The lines lie nearly on top of each other and can
only really be distinguished closeup.
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The qualitative investigation of this section shows that
the possibility of revealing cosmic backreaction by com-
paring HðzÞ measurements obtained from the luminosity
distance with true values of HðzÞ depends strongly on the
particular backreaction parametrization. In addition, for the
models used here, it is clear that a significant amount of
backreaction (of order 10%) is necessary for the resulting
signal to be measurable even using ideal data as above.
With significant backreaction, it is reasonable to speculate
that effects of inhomogeneity will affect gravitational wave
propagation in ways not taken into account here. Indeed,
this topic was recently studied in [62] where it was found
that backreaction affects gravitational wave observables.
Therefore, the quantitative analysis presented below is
restricted to curved FLRW models.

B. Quantitative investigation of data
in a curved FLRW universe

As shownabove, theHðzÞdata inferred fromobservational
data obtained with standard sirens does not actually represent
HðzÞ. On the other hand, as shown in [30], cosmic chro-
nometers data does indeed yieldHðzÞ. In addition, in a curved
FLRWmodel redshift drift will also yield true measurements
of HðzÞ. While redshift drift measurements are expected
achieved within a few decades (see e.g., [63–67]) cosmic
chronometers data is already available but at this point the
data has too large errors to be useful here (and this is despite
the fact that recent investigations indicate that the errors on
some cosmic chronometers datamay be too optimistic [68]—
see e.g., also the discussion in Sec. 7.11 of [69]). However,
since cosmic chronometers data is still in its infancy, it is
reasonable to expect that the technique will yield much more
precise estimates ofHðzÞwithin a few decades. To be able to
construct concrete mock data of the true HðzÞ value (envi-
sioned obtained with e.g., cosmic chronometers and redshift
drift), the errors on this mock datawill here be set equal to the
error on the standard siren data.

1. Generating mock data

Mock DECIGO data is constructed using the procedure
presented in [41] and more recently also used in e.g., [46].
Error estimates include a lensing contribution, σlens, an
instrumental contribution, σinst, as well as an error induced
by the peculiar velocities of host galaxies, σpv. The
instrumental error associated with DECIGO is detailed
in [41], while the other two errors are given by

σlens ¼ 0.066 ·

�
1 − ð1þ zÞ−1=4

0.25

�
1.8

ð17Þ

and

σpv ¼
����1 − ð1þ zÞ2

HðzÞd0L

����σgal; ð18Þ

where σgal ¼ 300 km=s is due to galaxy velocity dispersion
and given in [70].
Combining the three errors yields an error estimate for

the monopole measurement of the luminosity distance,

�
Δd0L
d0L

�
2

¼ σ2lens þ σ2inst þ σ2pv: ð19Þ

From this, the relative error on HðzÞ inferred from the
DECIGO standard siren dipole luminosity distance data is
[17,41,46]

ΔH
H

¼
ffiffiffi
3

p d0L
d1L

Δd0L
d0L

: ð20Þ

The redshift distribution of the mock data follows a
probability (see e.g., [46,71])

P ∝
4πd2LR

ð1þ zÞ3H ; ð21Þ

where

R ¼
8<
:

1þ 2z if 0 < z < 1

3
4
ð5 − zÞ if 1 ≤ z < 5

0 otherwise

: ð22Þ

Using this distribution, mock data representing the expected
[57] number of 106 events is produced by adding errors to
ideal measurements based on a Gaussian random distribu-
tion with standard deviation equal to ΔH. Afterwards, the
measurements are binned into redshift bins of width 0.1.

2. Model fitting and cosmological discordance

Figure 3 shows two sets of mock data. The left figure has
a low error with standard deviation of 1.5% to draw a
parallel to the qualitative results of Sec. IVA. The mock
data presented in the figure to the right was instead
generated using the full error described above. Data is
only shown up to z ¼ 1 and this is also the only data which
is used in the following since the precision of data at higher
redshift is not high enough to be useful for the analysis.
When generating the data with 1.5% error only 10 data
points are used and these are evenly distributed in the
redshift range z ∈ ½0; 1� to mimic the binning necessary to
reduce the error to this value.
It is evident already from the plots of the mock data, that

the mock data generated with the full error cannot possibly
be used to reveal a discordance between the true HðzÞ and
that extracted by (wrongly) employing Eq. (2) to the
DECIGO data. Similarly, an inspection of Fig. 3 makes
it clear that it will be difficult to reveal a discordance
between the data sets even with the low error. However,
Fig. 3 does not represent the true situation; Eq. (2) is
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assumed employed on the DECIGO data because cosmo-
logical data is mostly studied using the assumption that the
Universe behaves as a flat ΛCDM universe. Therefore, the
assumption here is that any parameter determinations based
exclusively on the HðzÞ measurements will base parameter
estimates on the flat ΛCDM model. In a curved universe,
this will also lead to a wrong inference of cosmological
parameters from true HðzÞ measurements. This point is not

encapsulated in Fig. 3. The inferred parameter values
should nonetheless be in agreement if comparing cosmic
chronometers and redshift drift data—although the param-
eter estimations will agree on wrong values. However,
when comparing with parameter estimates based on dipole
luminosity data, a discordance should show up—if the data
is precise enough.
Based on the above logic, the mock data is used to

constrain the flat ΛCDM model. Assuming that H0 is
measured by other means (and ignoring any errors there
may be on its measurement), this means that the model only
has one adjustable parameter, namely Ωm ¼ 1 −ΩΛ. Using
emcee [72], mock data based on a curved ΛCDM model
with Ωm ¼ 0.35, ΩΛ ¼ 0.7, and H0 ¼ 70 km=s=Mpc (i.e.,
the data to the left in Fig. 3) is used to constrain Ωm. The
two data sets—one based on wrongly employing Eq. (2) to
dipole luminosity distance data and one set based on true
HðzÞ values—are treated separately.2

Figure 4 shows the distribution of Ωm obtained from the
MCMC chains. Since both data sets are analyzed assuming
a flat ΛCDM model, neither of the estimated parameter
values are correct. This is apparent already from the figure

FIG. 3. (Binned) mock DECIGO data using 1.5% and full error estimates. The mock DECIGO data (“ss”) is plotted together with
mockHðzÞmeasurements based on cosmic chronometers (“cc”), redshift drift (“δz”) or similar measurement yielding the true expansion
rate measurement. The mock data is plotted together with curves representing the exact values—in the case of the DECIGO data,
computed by (wrongly) employing Eq. (2). The data is based on a curved ΛCDM model with H0 ¼ 70 km=s=Mpc, Ωm ¼ 0.35 and
ΩΛ ¼ 0.7.

FIG. 4. Distribution of Ωm in MCMC chains obtained with
emcee [72] using 1.5% error on mock data. The distribution
marked “ss” represents results obtained with the standard siren
data, i.e. by wrongfully employing Eq. (2) on mock dipole
luminosity distance data from DECIGO. The distribution marked
“cc, δz” represents mock data yielding the true HðzÞ, such as
cosmic chronometers or redshift drift data.

2At this point, it should perhaps also be emphasized that the two
mock data sets are still in principle inconsistent if parameter
estimates are based on a curved ΛCDM model, but in this case
the data lacks constraining power and the IOI does not indicate
inconsistency. This can be remedied by adding more data points in
which case the IOI can be driven to higher values. This interpre-
tation is somewhat contrived though; presumably onewould not use
the data to do a parameter determination permitting curvature
without also remembering to include the effect of curvature in the
data reduction process, inwhich case the dipole luminosity distance
data does not generate HðzÞ data as Eq. (6) shows.
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but is also shown in Table I which presents mean values and
1σ errors3 of Ωm as well as the computed IOI based on data
generated with 10 different random seeds. Since only a
single parameter is constrained by the data set, the IOI is
simply computed according to

IOI ¼ 1

2

δ2

σ2ð1Þ þ σ2ð2Þ
; ð23Þ

where δ is the difference between the mean values of Ωm
and σðiÞ is its standard deviation obtained with the two
data sets.
The first entry in Table I represents the distributions

depicted in Fig. 4. As seen, the IOI of this data fit it 6.8. As
suggested in [47], this number should be compared to
Jeffrey’s scale summarized in Table II based on Table III in
[47]. From the table it is seen that IOI > 5 should be
interpreted as a strong indication of inconsistency.
However, as is also seen from Table I, using different
random seeds when generating the mock data leads to
different values of IOI because the data is so sparse. With
10 different data sets (shown in the table), the IOI varies
between 0.63 and 6.8; i.e., depending on the specific
random generation of the data set, the IOI ranges from
indicating “negligible inconsistency” to “strong inconsis-
tency” and only half the data sets indicate moderate or

strong inconsistency. To illustrate that the problem is that
only 10 data points are used (with a precision of 1.5%), the
analysis has been redone using 10 different random seeds to
generate 20 data points with a precision of 1.5%. The
results from the MCMC analysis on these mock data sets
are shown in Table III. Now, the 10 different parameter
determinations agree better with generally quite high values

TABLE I. IOI (index of inconsistency) and mean and error on Ωm using different mock data sets, all with an error of 1.5% and redshift
bin width of 0.1, corresponding to 10 data points in the redshift interval z ∈ ½0; 1�.
IOI: 6.8 6.5 1.2 6.7 2.8 0.63 0.93 0.009 4.5 1.5

Ωm (ss): 0.338þ0.0035
−0.0035 0.337þ0.0035

−0.0035 0.332þ0.0035
−0.0034 0.335þ0.0035

−0.0035 0.339þ0.0035
−0.0035 0.329þ0.0034

−0.0035 0.333þ0.0035
−0.0035 0.329þ0.0035

−0.0035 0.342þ0.0035
−0.0035 0.326þ0.0034

−0.0034
Ωm (cc, δz): 0.321þ0.0034

−0.0034 0.319þ0.0034
−0.0034 0.324þ0.0034

−0.0034 0.318þ0.0034
−0.0034 0.328þ0.0034

−0.0034 0.324þ0.0034
−0.0034 0.326þ0.0034

0.0034 0.328þ0.0034
−0.0034 0.327þ0.0034

−0.0034 0.334þ0.0034
−0.0035

TABLE III. IOI (index of inconsistency) and mean and error on Ωm using different mock data sets, all with an error of 1.5%, and
redshift bin width of 0.05, corresponding to 20 data points in the redshift interval z ∈ ½0; 1�.
IOI: 3.1 2.8 1.2 2.1 11.2 4.6 2.7 12.3 10.5 10.8

Ωm (ss): 0.337þ0.0024
−0.0024 0.336þ0.0024

−0.0024 0.334þ0.0024
−0.0024 0.334þ0.0024

−0.0024 0.336þ0.0024
−0.0024 0.336þ0.0024

−0.0024 0.337þ0.0024
−0.0024 0.347þ0.0024

−0.0024 0.342þ0.0024
−0.0024 0.338þ0.0023

−0.0024

Ωm (cc, δz): 0.328þ0.0023
−0.0023 0.328þ0.0023

−0.0023 0.329þ0.0024
−0.0024 0.328þ0.0023

−0.0023 0.320þ0.0024
−0.0023 0.326þ0.0023

−0.0023 0.329þ0.0024
−0.0023 0.330þ0.0023

−0.0024 0.327þ0.0023
−0.0024 0.323þ0.0023

−0.0023

TABLE II. Jeffrey’s scale for interpreting IOI. Based on Fig. III of [47].

Range: IOI < 1 1 < IOI < 2.5 2.5 < IOI < 5 IOI > 5

Inconsistency: Negligible Weak Moderate Strong

FIG. 5. Distribution of Ωm in MCMC chains obtained with
emcee [72] using the full error when generating mock data. The
distribution marked “ss” represents results obtained with the
standard siren data, i.e., by wrongfully employing Eq. (2) on
mock dipole luminosity distance data from DECIGO. The
distribution marked “cc, δz” represents mock data yielding the
true HðzÞ, such as cosmic chronometers or redshift drift data.

3The mean was computed as the 50th percentile of the data
while the standard deviations were computed through the 15.9th
and 84.1st percentiles. This corresponds to the usual definition of
mean and standard deviation if the data is Gaussian which Fig. 4
reveals is a good approximation.

S. M. KOKSBANG PHYS. REV. D 106, 063514 (2022)

063514-8



of ITI. There is still some variation in the IOI values
though, but only two of the IOI values are below 2.5, while
the remaining eight values indicate either strong or mod-
erate discordance.
The expectation is, however, not that DECIGO or other

planned gravitational wave detectors will yield this number
(20) of effective/binned data points with such high pre-
cision (at least not within a 10-year survey). Indeed, the
precision of 1.5% for 10 (binned) data points is already
quite optimistic. Using the full error described in Sec. IV B
1 yields the distribution shown in Fig. 5 (using the same
random seed as that used for generating mock data for
Fig. 4). The resulting IOI and Ωm estimates are shown in
Table IV with a comparison to results from one of the data
sets with a 1.5% precision. The most important point with
this comparison is that the constraining power of the data
set with the full error is significantly lower than when the
error is 1.5%. With the full error, around a factor of 10,000
more data points are required to reduce the error (which
scales as ∝1=

ffiffiffiffi
N

p
, with N the number of data points)

enough to be able to obtain reliable IOI estimates that
consistently reflect discordance between the two types of
data sets (standard siren/luminosity distance dipole versus
true measurements with e.g., cosmic chronometers and
redshift drift). Detecting such a high number of merger
events does not currently seem realistic (within a 10-year
period). Thus, techniques to remove the lensing error must
be introduced in order for the IOI to signal a discordance
between d1L-based and true measurements of HðzÞ. Even
if this can be achieved, a reliable IOI measure will
require better/more data than what is currently expected.
Alternatively, HðzÞ data from cosmic chronometers or
redshift drift need to become more precise and ample than
what was (in a somewhat ad hoc manner) assumed here.

V. DISCUSSION AND CONCLUSIONS

An expression for the dipole of the luminosity distance
was derived under the assumptions of spatial statistical
homogeneity and isotropy but without requiring the uni-
verse to be FLRW and/or flat on large scales. From this
derivation, it is clear that the dipole of the luminosity
distance, d1L, does not in general directly yield a measure of
the large scale expansion rate, even in cosmologies which
are statistically homogeneous and isotropic and assuming a
Copernican observer. If the universe is not well described
by a single flat FLRWmodel, this fact will in principle lead

to a discordance between the HðzÞ measurements obtained
by using the usual flat FLRW relation between HðzÞ and
d1LðzÞ on the one hand, andHðzÞ obtained from e.g., cosmic
chronometers and redshift drift measurements on the other
hand. Using concrete examples of curved FLRW models
and backreaction models based on the scaling solution, it
was studied if estimates of the large scale expansion rate
obtained with DECIGOmeasurements of d1L will be precise
enough to reveal a deviation from the true large scale
expansion rate. In a qualitative analysis it was first
illustrated that the HðzÞ measured with DECIGO is in
principle distinguishable from the true HðzÞ if the error is
optimistically set to 1.5% and the curvature is above 1%.
For the studied scaling solutions, the backreaction effect
instead has to be about 10% before it becomes detectable
using two particular values of the scaling parameter nD of
the scaling solutions. However, the value of nD has a large
impact on the possibility of detecting the difference. Since
the scaling solutions are not particularly well motivated on
physical grounds, this quantification can thus not be
considered too reliable. The results nonetheless show that
cosmic backreaction, in principle, shows up as a signal in
the HðzÞ measurements based on the dipole luminosity
distance because backreaction affects the expression of d1L
so that it is no longer given by the usual Eq. (2). Whether or
not the signal will be detectable through the data discord-
ance discussed here has to be determined on a model-by-
model basis.
A quantitative analysis was carried out with 10-year

mock DECIGO data generated with an FLRW model with
Ωm increased to 0.35 to generate a 5% curvature. It was
found that even with the optimistic 1.5% error on the data,
it is not possible to reliably use the index of inconsistency,
IOI, to determine that the HðzÞ measurement from d1L is in
discordance with true measurements of HðzÞ. This is likely
because the high precision of 1.5% requires binning of data
which means that only 10 effective data points are left. If
the precision of 1.5% is kept and the number of data points
is increased to 20, 8 out of 10 computed IOI values indicate
moderate or strong inconsistency between Ωm estimates
based on the two different types of data sets—i.e., the data
set corresponding to HðzÞ wrongly being obtained using
the flat FLRW relation between d1L and HðzÞ versus the
correct HðzÞ obtained using mock data from e.g., cosmic
chronometers or redshift drift.
A crucial point that should be stressed is that the

possibility of detecting signatures of curvature and/or
cosmic backreaction with measurements of the dipole of
the luminosity distance depends not only on the precision
of the measurement of the dipole itself. It also depends on
the precision with which the true Hubble parameter can be
measured. Measuring this currently only seems to be
possible using cosmic chronometers and the errors on
cosmic chronometers data are quite large—often several
tens of percent. But the method of using cosmic

TABLE IV. Parameter determination and IOI (index of incon-
sistency) from mock data generated with an error of 1.5% or
using the full expression for the error.

Error Ωm from ss Ωm from cc, δz IOI

1.5% 0.338þ0.00347
−0.00348 0.321þ0.00338

−0.00341 6.8

Full 0.313þ0.0376
−0.0383 0.335þ0.0377

−0.0390 0.082
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chronometers is also still fairly new, so there is hope that
the method will lead to more precise determinations of
HðzÞ in the future. Future redshift drift measurements will
also be able to directly probe the Hubble parameter in
curved FLRW spacetimes, but this does not seem to be the
case in more general spacetimes such as those with
significant cosmic backreaction. Since the future prospects
of obtaining true measurements ofHðzÞwith these methods
is currently unclear, mock data was here generated using
the same distribution and error on true HðzÞ measurements
as on d1L-based estimates of HðzÞ.
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shift-drift in Λ ¼ 0 quasi-spherical Szekeres cosmological
models and the effect of averaging, Phys. Rev. D 105,
063520 (2022).

[36] Adam Balcerzak and Mariusz P. Dabrowski, Redshift drift
in a pressure-gradient cosmology, Phys. Rev. D 87, 063506
(2013).

[37] Pierre Fleury, Cyril Pitrou, and Jean-Philippe Uzan, Light
propagation in a homogeneous and anisotropic universe,
Phys. Rev. D 91, 043511 (2015).

[38] Nathan Secrest, Sebastian von Hausegger, Mohamed
Rameez, Roya Mohayaee, Subir Sarkar, and Jacques
Colin, A test of the cosmological principle with quasars,
Astrophys. J. Lett. 908, L51 (2021).

[39] Charles Dalang and Camille Bonvin, On the kinematic
cosmic dipole tension, Mon. Not. R. Astron. Soc. 512, 3895
(2022).

[40] Nathan Secrest, Sebastian von Hausegger, Mohamed
Rameez, Roya Mohayaee, and Subir Sarkar, A challenge
to the standard cosmological model, arXiv:2206.05624.

[41] Atsushi Nishizawa, Atsushi Taruya, and Shun Saito, Tracing
the redshift evolution of Hubble parameter with gravitational-
wave standard sirens, Phys. Rev. D 83, 084045 (2011).

[42] Daniel E. Holz and Scott A. Hughes, Using gravitational-
wave standard sirens, Astrophys. J. 629, 15 (2005).

[43] R. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), GW170817: Observation of Gravitational
Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett.
119, 161101 (2017).

[44] B. P. Abbott et al., A gravitational-wave standard siren
measurement of the Hubble constant, Nature (London) 551,
85 (2017).

[45] M. Fishbach et al., A standard siren measurement of the
Hubble constant from GW170817 without the electromag-
netic counterpart, Astrophys. J. Lett. 871, L13 (2019).

[46] Jing-Zhao Qi, Shang-Jie Jin, Xi-Long Fan, Jing-Fei Zhang,
and Xin Zhang, Using a multi-messenger and multi-
wavelength observational strategy to probe the nature of
dark energy through direct measurements of cosmic ex-
pansion history, J. Cosmol. Astropart. Phys. 12 (2021) 042.

[47] Weikang Lin and Mustapha Ishak, Cosmological discor-
dances: A new measure, marginalization effects, and appli-
cation to geometry vs growth current data sets, Phys. Rev. D
96, 023532 (2017).

[48] Camille Bonvin, Ruth Durrer, and M. Alice Gasparini,
Fluctuations of the luminosity distance, Phys. Rev. D 73,
023523 (2006).

[49] S. Rasanen, Light propagation in statistically homogeneous
and isotropic dust universes, J. Cosmol. Astropart. Phys. 02
(2009) 011.

[50] S. Rasanen, Light propagation in statistically homogeneous
and isotropic spacetimes with general matter content,
J. Cosmol. Astropart. Phys. 03 (2010) 018.

[51] S. M. Koksbang, Understanding the Dyer-Roeder approxi-
mation as a consequence of local cancellations of projected
shear and expansion rate fluctuations, Phys. Rev. D 104,
043505 (2021).

[52] S. M. Koksbang, Towards statistically homogeneous and
isotropic perfect fluid universes with cosmic backreaction,
Classical Quantum Gravity 36, 185004 (2019).

[53] T. Buchert, J. Larena, and J.-M. Alimi, Correspondence
between kinematical backreaction and scalar field
cosmologies—the ‘morphon field’, Classical Quantum
Gravity 23, 6379 (2006).

[54] Nan Li and Dominik J. Schwarz, On the onset of cosmo-
logical backreaction, Phys. Rev. D 76, 083011 (2007).

[55] Thomas Buchert, Charly Nayet, and Alexander Wiegand,
Lagrangian theory of structure formation in relativistic
cosmology II: Average properties of a generic evolution
model, Phys. Rev. D 87, 123503 (2013).

[56] Eloisa Bentivegna and Marco Bruni, Effects of Nonlinear
Inhomogeneity on the Cosmic Expansion with Numerical
Relativity, Phys. Rev. Lett. 116, 251302 (2016).

[57] S. Kawamura et al., Current status of space gravitational
wave antenna DECIGO and B-DECIGO, Prog. Theor. Exp.
Phys. 2021, 05A105 (2021).

[58] Rong-Gen Cai, Tong-Bo Liu, Xue-Wen Liu, Shao-Jiang
Wang, and Tao Yang, Probing cosmic anisotropy with
gravitational waves as standard sirens, Phys. Rev. D 97,
103005 (2018).

[59] Y. Akrami, F. Arroja et al. (Planck Collaboration), Planck
2018 results I. Overview and the cosmological legacy of
Planck, Astron. Astrophys. 641, A1 (2020).

[60] Will Handley, Curvature tension: Evidence for a closed
universe, Phys. Rev. D 103, L041301 (2021).

QUANTIFYING EFFECTS OF INHOMOGENEITIES AND … PHYS. REV. D 106, 063514 (2022)

063514-11

https://doi.org/10.1088/1361-6382/aaebce
https://doi.org/10.1088/1361-6382/ab0618
https://doi.org/10.1088/1361-6382/ab0618
https://arXiv.org/abs/gr-qc/0001056
https://doi.org/10.1103/PhysRevD.67.043513
https://arXiv.org/abs/astro-ph/0209584
https://doi.org/10.1088/1475-7516/2004/02/003
https://doi.org/10.1088/1475-7516/2004/02/003
https://doi.org/10.1103/PhysRevLett.126.231101
https://doi.org/10.1088/1475-7516/2019/10/036
https://doi.org/10.1088/1475-7516/2019/10/036
https://doi.org/10.1093/mnrasl/slaa146
https://doi.org/10.1093/mnrasl/slaa146
https://doi.org/10.1103/PhysRevD.103.023537
https://doi.org/10.1103/PhysRevD.86.083520
https://doi.org/10.1103/PhysRevD.105.063520
https://doi.org/10.1103/PhysRevD.105.063520
https://doi.org/10.1103/PhysRevD.87.063506
https://doi.org/10.1103/PhysRevD.87.063506
https://doi.org/10.1103/PhysRevD.91.043511
https://doi.org/10.3847/2041-8213/abdd40
https://doi.org/10.1093/mnras/stac726
https://doi.org/10.1093/mnras/stac726
https://arXiv.org/abs/2206.05624
https://doi.org/10.1103/PhysRevD.83.084045
https://doi.org/10.1086/431341
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1038/nature24471
https://doi.org/10.1038/nature24471
https://doi.org/10.3847/2041-8213/aaf96e
https://doi.org/10.1088/1475-7516/2021/12/042
https://doi.org/10.1103/PhysRevD.96.023532
https://doi.org/10.1103/PhysRevD.96.023532
https://doi.org/10.1103/PhysRevD.73.023523
https://doi.org/10.1103/PhysRevD.73.023523
https://doi.org/10.1088/1475-7516/2009/02/011
https://doi.org/10.1088/1475-7516/2009/02/011
https://doi.org/10.1088/1475-7516/2010/03/018
https://doi.org/10.1103/PhysRevD.104.043505
https://doi.org/10.1103/PhysRevD.104.043505
https://doi.org/10.1088/1361-6382/ab376c
https://doi.org/10.1088/0264-9381/23/22/018
https://doi.org/10.1088/0264-9381/23/22/018
https://doi.org/10.1103/PhysRevD.76.083011
https://doi.org/10.1103/PhysRevD.87.123503
https://doi.org/10.1103/PhysRevLett.116.251302
https://doi.org/10.1093/ptep/ptab019
https://doi.org/10.1093/ptep/ptab019
https://doi.org/10.1103/PhysRevD.97.103005
https://doi.org/10.1103/PhysRevD.97.103005
https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1103/PhysRevD.103.L041301


[61] Eleonora Di Valentino, Alessandro Melchiorri, and Joseph
Silk, Planck evidence for a closed Universe and a possible
crisis for cosmology, Nat. Astron. 4, 196 (2020).

[62] Shashank S. Pandey, Arnab Sarkar, Amna Ali, and A. S.
Majumdar, Effect of inhomogeneities on the propagation
of gravitational waves from binaries of compact objects,
J. Cosmol. Astropart. Phys. 06 (2022) 021.

[63] J. Liske et al., Cosmic dynamics in the era of Extremely
Large Telescopes, Mon. Not. R. Astron. Soc. 386, 1192
(2008).

[64] F. Aharonian et al., Pathway to the square kilometre array—
The German white paper -, arXiv:1301.4124v1.

[65] H.-R. Klockner et al., Real time cosmology—A direct
measure of the expansion rate of the Universe, Proc. Sci.
AASKA14 (2015) 027 [arXiv:1501.03822v1].

[66] Hao-Ran Yu, Tong-Jie Zhang, and Ue-Li Pen, Method for
Direct Measurement of Cosmic Acceleration by 21-cm
Absorption Systems, Phys. Rev. Lett. 113, 041303 (2014).

[67] K. Jiao, J.-C. Zhang, T.-J. Zhang, H.-R. Yu, M. Zhu, and D.
Li, Toward a direct measurement of the cosmic acceleration:

Roadmap and forecast on FAST, J. Cosmol. Astropart. Phys.
01 (2020) 054.

[68] Anders Ahlstrom Kjerrgren and Edvard Mortsell, On the use
of galaxies as clocks and the universal expansion, arXiv:
2106.11317v1.

[69] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C.
Hirata, A. G. Riess, and E. Rozo, Observational probes of
cosmic acceleration, Phys. Rep. 530, 87 (2013).

[70] L.Silberman,A.Dekel,A.Eldar, and I.Zehavi, Cosmological
density and power spectrum from peculiar velocities: Non-
linear corrections and PCA, Astrophys. J. 557, 102 (2001).

[71] C. Cutler and J. Harms, BBO and the neutron-star-binary
subtraction problem, Phys. Rev. D 73, 042001 (2006).

[72] Daniel Foreman-Mackey, David W. Hogg, Dustin Lang, and
Jonathan Goodman, emcee: The MCMC hammer, Publ.
Astron. Soc. Pac. 125, 306 (2013).

[73] https://github.com/peterewills/itsample.
[74] Stefan Czesla et al., PyA: Python astronomy-related

packages, 2019, [ascl:1906.010], https://github.com/sczesla/
PyAstronomy.

S. M. KOKSBANG PHYS. REV. D 106, 063514 (2022)

063514-12

https://doi.org/10.1038/s41550-019-0906-9
https://doi.org/10.1088/1475-7516/2022/06/021
https://doi.org/10.1111/j.1365-2966.2008.13090.x
https://doi.org/10.1111/j.1365-2966.2008.13090.x
https://arXiv.org/abs/1301.4124v1
https://arXiv.org/abs/1501.03822v1
https://doi.org/10.1103/PhysRevLett.113.041303
https://doi.org/10.1088/1475-7516/2020/01/054
https://doi.org/10.1088/1475-7516/2020/01/054
https://arXiv.org/abs/2106.11317v1
https://arXiv.org/abs/2106.11317v1
https://doi.org/10.1016/j.physrep.2013.05.001
https://doi.org/10.1086/321663
https://doi.org/10.1103/PhysRevD.73.042001
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://github.com/peterewills/itsample
https://github.com/peterewills/itsample
https://github.com/sczesla/PyAstronomy
https://github.com/sczesla/PyAstronomy
https://github.com/sczesla/PyAstronomy

