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We give a detailed exposition of the formalism of kinetic field theory (KFT) with emphasis on the
perturbative determination of observables. KFT is a statistical nonequilibrium classical field theory based
on the path integral formulation of classical mechanics, employing the powerful techniques developed in
the context of quantum field theory to describe classical systems. Unlike previous work on KFT, we
perform the integration over the probability distribution of initial conditions in the very last step. This
significantly improves the clarity of the perturbative treatment and allows for physical interpretation of
intermediate results. We give an introduction to the general framework, but focus on the application to
interacting N-body systems. Specializing the results to cosmic structure formation, we reproduce the linear
growth of the cosmic density fluctuation power spectrum on all scales from microscopic, Newtonian
particle dynamics alone.
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I. INTRODUCTION

In a 1988 paper [1], Gozzi outlined how the successful
path integral formalism of quantum field theory can be used
to describe classical systems as well. In the following years,
Gozzi further developed and studied this approach in
collaboration with Reuter and Thacker [2,3] and others
[4,5]. Relatively recently, Mazenko and Das [6,7] devel-
oped a perturbation scheme and applied the formalism
to phase transitions in glass. Based on this, the group of
Bartelmann began to apply the path integral approach of
classical mechanics to the study of cosmic structure
formation [8]. Since then, the approach has been subject
to significant further development [9–13] and is now
known as kinetic field theory (KFT) [14].
Conceptually, KFT mimics the approach of numerical

simulations to describe the time evolution of an interacting
N-particle system. Via use of path integrals over phase
space trajectories, one keeps track of the positions and
momenta of all particles over time. Mathematically, this

information is stored in the generating functional Z of the
theory. Collective quantities such as the density field can be
extracted via functional derivatives of Z. Explicit expres-
sions for the generating functional are obtained either via a
perturbative approach [8] or through the use of suitable
approximations [9].
There is one significant difference between the formal-

ism of KFT and numerical N-body simulations. Namely,
the latter always has to start out with some explicit initial
conditions, i.e., initial positions and momenta for all
particles. A priori this is also true for KFT. However, in
an analytic setting we can abstractly integrate over a
probability distribution of initial conditions to obtain
expectation values. This would be prohibitively expensive
for numerical N-body simulations that therefore have to
resort to other methods of extracting macroscopic quan-
tities. The integration over initial conditions in KFT yields
an ensemble average which in many applications is the
observable we are interested in.
In this article we revisit the initial perturbative approach

to KFT in [8]. We give a self-contained and pedagogical
introduction to the framework of KFT in a general setting
and then specialize it to interactingN-body systems. Unlike
the perturbative treatment in [8], we perform the integration
over the initial conditions not on the level of the generating
functional, but on the level of observables. This allows us to
interpret intermediate results describing observables of a
system with explicit initial conditions. Upon integrating
them over a suitable probability distribution, we obtain
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statistically averaged expectation values, i.e., macroscopic
observables describing the collective system. While ulti-
mately mathematically equivalent, this change in procedure
makes the perturbative treatment significantly more trans-
parent and simpler.
Our ultimate aim is to supply a simple and consistent

procedure for obtaining observables in cosmic structure
formation, in particular the nonlinear density fluctuation
power spectrum. The initial probability distribution for this
particular application is relatively complicated. For the
sake of self-containedness and clarity, we repeat the
discussion from Appendix A of [8]. In particular, we
explain how the integration over initial conditions fits
together with the perturbative treatment. Having done so,
we will be able to obtain analytic parameter-free pertur-
bative expressions for the nonlinear density fluctuation
power spectrum. These expressions are expanded in both
the initial correlations and the interactions. More precisely,
on the one hand, we expand the density and momentum
correlations imprinted in the initial conditions of the
N-particle system and, on the other hand, we treat the
particle interactions perturbatively by expanding the forces
relative to the free particle trajectories.
Surprisingly, we find that the expansion in the initial

correlations is significantly more difficult than the expan-
sion in the interactions. Indeed, for higher-order correla-
tions our expressions acquire integrals over wave vectors
that are challenging to solve even numerically. Conversely,
each interaction order merely supplies a simple time
integral. To conclude this article, we calculate the density
fluctuation power spectrum in first order (i.e., linear)
correlations and up to very high interaction order.
Combining the contributions for linear correlations and
arbitrarily high interaction orders precisely reproduces the
linear growth of the power spectrum at all scales. This
reveals that any nonlinearities in the power spectrum are
solely due to higher-order correlations in the initial con-
ditions and thus can be studied completely independently
of the linear evolution. Results for higher-order correlations
will be presented in a future article [15].

II. KFT FRAMEWORK

Let us consider a generic classical physical system.
Denote its space of possible states by X, such that any point
x ∈ X uniquely characterizes a state of this system.1 In
practice, we usually take X to be phase space consisting of
all (generalized) coordinates and associated momenta. Any
evolution of such a system can be described as a map
φ∶R → X that associates with any point in time t ∈ R a
state of the system φðtÞ ∈ X. However, the vast majority of
such maps describe unphysical evolution. We are only
interested in the maps that satisfy the equations of motion

that we symbolically write as EðφðtÞÞ ¼ 0. In almost all
cases, the equations of motion are differential equations
which require that the change of the state is determined
only by the state of the system at the same instance in time.
For classical systems, given a state x ∈ X at initial time ti,
there is exactly one solution of the equations of motion
φ̃ðt; xÞ which satisfies φ̃ðti; xÞ ¼ x.
In a more general setting, we might not precisely know

the initial state x ∈ X, but instead our knowledge of the
system at initial time ti may be encoded in the form of a
probability distribution PðxÞ on the space X. In case
PðyÞ ¼ δDðy − xÞ is given by a Dirac δ-function, we
recover the deterministic setting above. However, if the
probability distribution is more complicated, the state of the
system is stochastic for all times t. This means that for
any time t there is a unique probability distribution Pðx; tÞ
describing the system. In fact, it is simple to give an explicit
expression for this probability distribution by using the
solution to the equations of motion,

Pðx; tÞ ¼ Pðφ̃ð−t; xÞÞ; ð1Þ

where on the right-hand side we have the initial probability
distribution. Obviously it is Pðx; tiÞ ¼ PðxÞ.
The probability distribution Pðx; tÞ allows us to extract

expressions for observables at any point in time. As an
observable we regard in this context any function
O∶X → R, i.e., a map that assigns to a state of a system
some number (this can easily be generalized to tensor-
valued observables). For such an observable, we define its
expectation value at time t as

hOiðtÞ ¼
Z
X
dxOðxÞPðx; tÞ: ð2Þ

In the deterministic case PðyÞ ¼ δDðy − xÞ, we simply
have

hOiðtÞ ¼ Õðt; xÞ ≔ Oðφ̃ðt; xÞÞ: ð3Þ

Here we defined the notation Õðt; xÞ for the observable
evaluated along the solution of the equations of motion for
initial value x at time t.
From the discussion above one may arrive at a seemingly

simple recipe to calculate observables: determine the
solution φ̃ and use it to express any quantity of interest.
However, as is well known, even for seemingly simple
classical systems one can prove that there is no elementary
expression for φ̃ðt; xÞ. In many cases one can determine φ̃
numerically instead, but this can become computationally
costly for systems with a high-dimensional space of
states X. A prime example for this is an interacting
N-particle system. The formalism of KFT provides an
alternative approach for calculating observables by ana-
lytical methods, which we want to introduce below.

1All boldface symbols take values in X; i.e., they are generally
some high-dimensional vectors or tensors.
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A. Path integral formulation of classical mechanics

The formalism of KFT is based on the path integral
formulation of classical mechanics, which to the best of
our knowledge was first proposed by Gozzi [1]. Readers
familiar with the path integral approach to quantum field
theory (QFT) will notice many similarities between KFT
and QFT. In fact, these similarities are one of the main
theoretical motivations to use KFT, as one can use the
powerful tools developed in the framework of QFT to
describe the evolution of a classical physical system.
Let us consider a classical physical system which at

initial time ti is in a state x ∈ X. Denote the solution of the
equations of motion EðφÞ ¼ 0 subject to these initial
conditions by φ̃ðt; xÞ. Further, let y ∈ X be some possible
state of the system at a later time t > ti. Then the transition
probability Tfiðy; t; x; tiÞ, i.e., the probability of observing y
at t > ti given initial conditions x at t ¼ ti, is given by

Tfiðy; t; x; tiÞ ¼
Z

φðtÞ¼y

φðtiÞ¼x
DφδD½φðtÞ − φ̃ðt; xÞ�: ð4Þ

The interpretation of this quantity is rather simple:
While the path integral adds contributions from all possible
paths in state space X from x to y, the δD-functional (a
generalization of the Dirac δ-function) picks out a single
one of these. This is reminiscent of taking the classical limit
in the path integral formulation of quantum mechanics,
where the classical path supplies the dominant contribution
as ℏ → 0.
Clearly, the transition probability Tfiðy; t; x; tiÞ is one if

y ¼ φ̃ðt; xÞ and zero otherwise. This is not surprising given
that the evolution of classical systems with explicitly
specified initial conditions is deterministic. Using the fact
that the path selected by the δD-functional is the solution
of the equations of motion, we can replace condition
φðtÞ ¼ φ̃ðt; xÞ encoded in its argument by the condition
EðφÞ ¼ 0which avoids explicit reference to the solution φ̃.
Generally, such a change in the argument of a δD-functional
changes the normalization according to

δD½EðφÞ� ¼
���� det

�
δE
δφ

ðφ̃Þ
�����−1δD½φ − φ̃�: ð5Þ

This is a generalization of the identity

δDðfðxÞÞ ¼
���� det

�
∂f
∂x

ðx̃Þ
�����−1δDðx − x̃Þ ð6Þ

for the usual Dirac δ-function which is valid if the function
f has exactly one root x ¼ x̃. However, as proven in
Eq. (3.51) of [2], the determinant in Eq. (5) is constant in
the case of Hamiltonian equations of motion. This may be
understood in terms of Liouville’s theorem, which states
that the Hamiltonian flow in phase space preserves
volumes. The numerical value of the determinant is

irrelevant and can be absorbed into the normalization
of the path integral.
While it is possible to keep the determinant in Eq. (5), it

would unnecessarily complicate our treatment. Therefore,
we shall restrict ourselves to the case of Hamiltonian
dynamics; i.e., the space of states X actually is phase
space and the equations of motion EðφÞ ¼ 0 are of
Hamiltonian form

EðφÞ ¼ ∂tφ −J ∂φHðφÞ ¼ 0: ð7Þ

Here, J is the usual symplectic matrix and H is the
Hamiltonian. Using Eq. (5), the transition probability can
be expressed as

Tfiðy; t; x; tiÞ ¼
Z

φðtÞ¼y

φðtiÞ¼x
DφδD½EðφÞ� ð8Þ

¼
Z

φðtÞ¼y

φðtiÞ¼x
Dφ

Z
Dχ exp

�
i
Z

t

ti

dt0χ ðt0Þ · Eðφðt0ÞÞ
�
:

ð9Þ

In the second line, we used a standard functional Fourier
transform to write the δD-functional as an exponential
function. The object χ is a purely auxiliary abstract
mathematical function and does not have an obvious
physical interpretation. In analogy to the path integral
approach to QFT, we may regard the exponent as the
action of the system under consideration.
Further building on the analogy to QFT, we now define

the so-called generating functional that is the central
mathematical object of KFT. Integrating over the final
state y of the system [or, equivalently, setting y ≔ φ̃ðx; tÞ]
to get rid of the end point of the path integral over φ and
introducing a source field J for φ, it is

Z½J; x� ¼
Z
φðtiÞ¼x

Dφ
Z

Dχ exp

�
i
Z

∞

ti

dt0χ ðt0Þ · Eðφðt0ÞÞ

þ i
Z

∞

ti

dt0Jðt0Þ · φðt0Þ
�
: ð10Þ

The generating functional contains complete information
about the physical system under consideration. Any
observable depending on the phase space position at a
single time t can be derived from it by means of functional
derivation with respect to JðtÞ.2 Indeed, for a given
observable O∶X → R it is

2In principle, it is also possible to construct observables
depending on the phase space variables on a time interval
(e.g., a backward light cone). While this may become relevant
in the future, here we restrict ourselves to the simpler case.
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Õðt; xÞ ¼ O

�
δ

iδJðtÞ
�
Z½J; x�

����
J¼0

ð11Þ

¼
Z
φðtiÞ¼x

Dφ

×
Z

DχOðφðtÞÞ exp
�
i
Z

t

ti

dt0χ ðt0Þ · Eðφðt0ÞÞ
�

ð12Þ

¼
Z
φðtiÞ¼x

DφOðφðtÞÞδD½EðφÞ� ð13Þ

¼ Oðφ̃ðt; xÞÞ: ð14Þ

We used the notation Õ introduced in Eq. (3) to denote
the observable as evaluated along the solution of the
equations of motion φ̃ðt; xÞ for initial value x—which
evidently is exactly what we obtain via this differentiation.
In fact, this can also be seen by performing the integration
over χ directly in the generating functional that yields

Z½J; x� ¼
Z
φðtiÞ¼x

Dφ exp

�
i
Z

∞

ti

dt0Jðt0Þ · φðt0Þ
�
δD½EðφÞ�

ð15Þ

¼ exp

�
i
Z

∞

ti

dt0Jðt0Þ · φ̃ðt0; xÞ
�
: ð16Þ

We remark that we implicitly assume that the observable
O is an analytic function of the state x ∈ X; i.e., it is
possible to write O as a convergent power series in x [to
make Eq. (11) mathematically rigorous].
As a simple example for an observable, take the phase

space position OðyÞ ¼ y for y ∈ X. It has values in phase
space X itself (as opposed to being real valued), but this is
no issue at all. Using the prescription (11), we obtain

Õðt; xÞ ¼ O
�

δ

iδJðtÞ
�
Z½J; x�

����
J¼0

ð17Þ

¼ δ

iδJðtÞ exp
�
i
Z

∞

ti

dt0Jðt0Þ · φ̃ðt0; xÞ
�����

J¼0

ð18Þ

¼ φ̃ðt; xÞ: ð19Þ

Thus, the observable O precisely extracts the phase space
trajectory, which is, indeed, the phase space position as
evaluated along the solution of the equations of motion.

B. Free generating functional

If we are able to find an explicit analytical expression
for the generating functional, i.e., express Z½J; x� as an
elementary functional of J, we would know everything
about the physical system under consideration. Indeed,
we could simply obtain the phase space trajectory of the
system by functional derivation. Hence, it is expected that
in any nontrivial case the path integrals in the generating
functional cannot be evaluated analytically without explic-
itly referring to the solution of the equations of motion. As
such, the formalism as developed so far is not all that useful
for obtaining explicit results for observables of a classical
physical system.
To remedy this, we make the crucial assumption that the

equations of motion can be split into a free part and an
interaction part, i.e.,

EðφÞ ¼ E0ðφÞ þ EIðφÞ ¼ 0; ð20Þ

where we demand that the free part E0ðφÞ is given by a
linear differential operator acting on φ. A simple example
would be E0ðφÞ ¼ ∂tφ, which shows that this decompo-
sition is always possible for Hamiltonian equations of
motion. Ultimately, we will perform a perturbative expan-
sion of the interaction part EIðφÞ, such that it is advanta-
geous to include as many terms as possible in the free part
of the equations of motion.
Any linear differential operator admits Green’s function

(also known as a propagator) which can be used to write
down a solution to the associated differential equation. In
the specific case of E0ðφÞ ¼ 0, it is

φ̄ðt; xÞ ¼ Gðt; tiÞx; ð21Þ

where we denote the free solution by φ̄ and Green’s
function by Gðt; t0Þ. Note that the free solution usually
describing straight paths has been overset by a bar and
should not be confused with the phase space trajectory φ̃
generally describing curved paths and accordingly featur-
ing a tilde.
Using the decomposition of the equation of motion,

we can simplify the generating functional significantly.
Suppressing the time dependence for compactness of
notation, we find
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Z½J; x� ¼
Z
φðtiÞ¼x

Dφ
Z

Dχ exp

�
i
Z

dt0ðχ · E0ðφÞ þ χ · EIðφÞ þ J · φÞ
�

ð22Þ

¼
Z
φðtiÞ¼x

Dφ
Z

Dχ exp

�
i
Z

dt0χ · EIðφÞ
�
exp

�
i
Z

dt0ðχ · ðE0ðφÞ þ KÞ þ J · φÞ
�����

K¼0
ð23Þ

¼
Z
φðtiÞ¼x

Dφ
Z

Dχ exp

�
i
Z

dt0
δ

iδK
· EI

�
δ

iδJ

��
exp

�
i
Z

dt0ðχ · ðE0ðφÞ þ KÞ þ J · φÞ
�����

K¼0
ð24Þ

¼ exp
�
i
Z

dt0
δ

iδK
· EI

�
δ

iδJ

��
Z0½J;K; x�

����
K¼0

: ð25Þ

We introduced another auxiliary functionK which acts as a source field for χ in order to move the interaction term in front
of the path integrals. In the last line we isolated the so-called free generating functional

Z0½J;K; x� ¼
Z
φðtiÞ¼x

Dφ
Z

Dχ exp

�
i
Z

dt0ðχ · ðE0ðφÞ þ KÞ þ J · φÞ
�

ð26Þ

¼
Z
φðtiÞ¼x

DφδD½E0ðφÞ þ K� exp
�
i
Z

dt0J · φ

�
ð27Þ

¼ exp

�
i
Z

∞

ti

dt0Jðt0Þ · φ̄ðt; xÞ − i
Z

∞

ti

dt0
Z

∞

ti

dt00J⊺ðt0ÞGðt0; t00ÞKðt00Þ
�
: ð28Þ

The second term in the last line is to be understood as a
matrix product and precisely cancels the additional factor K
in the equationE0ðφÞ þ K ¼ 0. We remark that in perform-
ing the integration over φ we assumed that this equation
has symplectic structure such that the associated functional
determinant is unity. This is generically the case for
Hamiltonian equations of motion.
Using the explicit form obtained for the free generating

functional, we can immediately perform the functional
derivatives with respect to K in Eq. (25).3 This yields

Z½J; x� ¼ exp

�
−i
Z

∞

ti

dt0
Z

∞

ti

dt00J⊺ðt0ÞGðt0; t00Þ

× EI

�
δ

iδJðt00Þ
��

Z0½J; x� with ð29Þ

Z0½J; x� ¼ exp

�
i
Z

∞

ti

dt0Jðt0Þ · φ̄ðt0; xÞ
�
: ð30Þ

Evidently, there are no path integrals left in these
expressions, and there is no explicit reference to the
solution of the equations of motion. Instead, only the free
trajectory appears, which can easily be calculated using
Green’s function. The free generating functional takes
exactly the same form as the generating functional (15)
with φ̃ replaced by φ̄.

C. Interactions

The expression in Eqs. (29) and (30) for the generating
functional strongly suggests a perturbative treatment of the
interactions by means of a Taylor expansion. We pursue
this strategy momentarily, but as a preparatory step we need
to investigate the term EIð δ

iδJðt00ÞÞ in slightly more detail. As

usual, the derivative in the argument is to be understood by
the virtue of an analytic power series for the function EI. As
such, we have the identity

EI

�
δ

iδJðt00Þ
�
exp

�
i
Z

dt0Jðt0Þ · φ̄ðt0; xÞ
�

¼ EIðφ̄ðt00; xÞÞ exp
�
i
Z

dt0Jðt0Þ · φ̄ðt0; xÞ
�
: ð31Þ

3Note that the term J⊺ðt0ÞGðt0; t00Þ obtained from the differ-
entiation can be moved past the functional derivative in EIð δ

iδJðt00ÞÞ.
Indeed, Gðt0; t00Þ ¼ 0 if t0 ≤ t00 such that the following procedure
is possible: We write the exponential as a power series, and in
each term we sort the products by their time variable t00 (this is
accomplished by splitting the integral into time-ordered regions
and considering each of them separately). In each product, we
move all the functional derivatives with respect to K to the right
and let them act on the free generating functional. The resulting
terms then can be moved back to the original positions of the
corresponding functional derivatives, allowing the power series to
be converted back into an exponential.
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This comes as no surprise as this is exactly the purpose
for which we introduced the functional derivative in
Eq. (24)—it extracts the trajectory from the free generating
functional. This identity can be generalized to the case we
will be facing in the perturbative treatment. There, in
addition to the generating functional, the derivative in EI
can also act on single factors of J. We can use

EI

�
δ

iδJðt00Þ
�
ðiJ · AÞ � � �

¼
�
ðiJ · AÞEI

�
δ

iδJðt00Þ
�
þ ðA · ∇ÞEI

�
δ

iδJðt00Þ
��

� � � ;

ð32Þ
where A is a placeholder for terms of the form
Gðt0; t00ÞEIð δ

iδJðt00ÞÞ and � � � denotes further terms on which

the derivatives may act. The appearance of two terms on the
right-hand side is due to the product rule. The second term
warrants some further remarks as it may seem counterin-
tuitive that we obtain a derivative acting on EI. However,
this can once again be understood by virtue of power series.
Indeed, for a monomial

ð∂xÞnðaxÞ � � � ¼ ððaxÞð∂xÞn þ anð∂xÞn−1Þ � � � ; ð33Þ

where the factor n in the second term accounts for the
choice of which of the derivatives acts on the term ax.
Observe that the resulting expression has the form of the
derivative of the monomial. The generalization to a power
series is straightforward as the same procedure can be
applied term by term.
It is possible to proceed in full generality. In higher

orders we obtain higher derivatives of the interaction
term EI, and it is possible to devise a diagrammatic
representation of terms order by order to keep track of
how the derivatives (which mathematically are tensors)
are contracted with the remaining terms. We are happy
to supply such a prescription upon request, but refrain
from detailing it here. Instead, we momentarily specify
our physical system to be an interacting N-body system
in an attempt to sacrifice generality for clarity.
Nonetheless, below we give the explicit expressions
for the generating functional in full generality up to
second order in a Taylor expansion of the exponential
in Eq. (29):

Z0½J; x� ¼ exp

�
i
Z

dt0Jðt0Þ · φ̄ðt0; xÞ
�
; ð34Þ

Z1½J; x� ¼ −i
ZZ

dt01dt
00
1J

⊺ðt01ÞGðt01; t001ÞEIðφ̄ðt001; xÞÞZ0½J; x�; ð35Þ

Z2½J;x� ¼ −
ZZZZ

dt01dt
00
1dt

0
2dt

00
2J

⊺ðt01ÞGðt01; t001Þ½EIðφ̄ðt001;xÞÞJ⊺ðt02Þ− iδDðt001 − t02Þ∇EIðφ̄ðt001;xÞÞ�Gðt02; t002ÞEIðφ̄ðt002;xÞÞZ0½J;x�:

ð36Þ

Note that we denote with Z1 and Z2, respectively, the
additional contributions from first and second orders. The
full second order generating functional is given by the sum
Z0 þ Z1 þ Z2. Observables may be obtained via functional
derivatives with respect to the source field J. As an
example, the contributions to the phase space trajectory
φ̃ðt; xÞ up to second order is obtained by acting with δ

iδJðtÞ
(evaluated at J ¼ 0) on the expressions above. We obtain

φ̃0ðt; xÞ ¼
δ

iδJðtÞZ0½0; x� ¼ φ̄ðt; xÞ ¼ Gðt; tiÞx; ð37Þ

φ̃1ðt; xÞ ¼ −
Z

dt001Gðt; t001ÞEIðφ̄ðt001; xÞÞ; ð38Þ

φ̃2ðt; xÞ ¼
ZZ

dt001dt
00
2Gðt; t001Þ∇EIðφ̄ðt001; xÞÞ

× Gðt001; t002ÞEIðφ̄ðt002; xÞÞ: ð39Þ
Note that the term containing two factors of J at second

order vanishes for this particular observable because the
leftover factor J is set to zero (for the same reason, the

functional derivative cannot act on Z0 at any positive
order). The first order phase space trajectory, given by
φ̃0ðt; xÞ þ φ̃1ðt; xÞ, coincides with the so-called Born
approximation, which adds the interactions as evaluated
along the free trajectory and is a common ad hoc approxi-
mation used, e.g., in scattering problems.4 Here it is derived

4Note that if we replace the free trajectory φ̄ inside EI on the
right-hand side of Eq. (38) by the actual phase space trajectory φ̃,
the sum of the resulting term and the free trajectory reproduce φ̃
exactly. Indeed, we have the well-known integral equation

φ̃ðt; xÞ ¼ φ̄ðt; xÞ −
Z

t

ti

dt1Gðt; t1ÞEIðφ̃ðt1; xÞÞ:

The Born approximation is the first step in solving this integral
equation iteratively (this process is sometimes referred to as
iterative Born approximation). We remark that the result of this
iteration in second order [where one inserts the (first order) Born
approximation for the trajectory on the right-hand side] does not
coincide with the second order KFT trajectory—infinitely many
terms of second order iterative Born approximation are assigned
to higher orders in KFT. We elaborate on this in footnote 7 using
the diagrammatic treatment of KFT perturbation theory.

HEISENBERG, HEMMATYAR, and ZENTARRA PHYS. REV. D 106, 063513 (2022)

063513-6



as the first order perturbative approximation in the KFT
framework.

D. Choice of free motion

As a last topic for the general treatment, wewant to briefly
discuss the splitting of the equations into a free and an
interaction part. It should be stressed that this is a choice
which is to a certain degree arbitrary. Indeed, one can always
take the trivial splitting E0 ¼ 0 and EI ¼ E regarding the
entirety of the equations of motion as interactions. This way,
Green’s function is the identity and the free trajectory is
constant φ̄ðt; xÞ ¼ x. However, this is a poor choice because
the interaction part of the equations of motion is only treated
perturbatively, while the free part is solved exactly. Hence, it
is advantageous to include as many terms of the equations of
motion as possible into the free part E0. The ability to do so
is, of course, limited by the requirement of the existence of
Green’s function for the free motion. Nonetheless, minimiz-
ing the interaction part EI generally is expected to improve
the accuracy and convergence of the perturbative treatment.
This situation is familiar from many other areas of

physics. Fundamentally, what we consider as free (or
background) evolution and what we regard as interactions
(or perturbations) on top of it are choices. As an example,
given a density field ρðqÞ we may regard it as the sum of a
background component ρ̄ðqÞ and a perturbation δρðqÞ, i.e.,
ρðqÞ ¼ ρ̄ðqÞ þ δρðqÞ. However, there is a large freedom in
performing this split, and depending on the situation
different choices might be advantageous. In the example,
the most natural split is obtained by introducing a condition
such as 1

V

R
dqρðqÞ ¼ ρ̄. But if we, e.g., describe the density

field of gas in a galaxy, one might want to consider the dark
matter halo as part of the background density.
Likewise in our situation, there is a natural choice for the

free motion. Newton’s first law asserts that the reference
motion is uniform along straight lines. His second law can
then be used to determine the acceleration relative to this
reference motion. Commonly we would claim that this
acceleration is due to a force caused by interactions.
However, in some situations it may be advantageous to
include part of this acceleration in the free motion. For
example, on an expanding background, we usually prefer
to use comoving coordinates. In doing so, the physical
trajectories of the particles are no longer straight lines.
While this makes the free motion a bit more complicated, it
has the advantage that the forces between particles are no
longer sourced by the density field, but only by the density
excess over the mean density (cf. Appendix A).
There is an even more sophisticated choice. It is possible

to use the Zel’dovich approximation for the free motion and
model the interactions relative to it [16,17]. In this case it is
less clear what the interaction potential should be, and, in
fact, it is not even clear whether a simple two-body
interaction can reproduce the forces between the particles.
Recent work suggests, however, that this is indeed possible

and demonstrates that a Yukawa-like interaction potential
describes the force relative to Zel’dovich trajectories
well [18]. Here, we limit ourselves to the more conven-
tional case of using uniform motion along straight paths in
comoving coordinates as our free motion.
We emphasize that the choice of free motion does not

have any effect on observables. The trajectory φ̃ and all
other observables are exactly the same for any split of the
equations of motion E ¼ E0 þ EI. The free trajectory φ̄ and
the interaction part EI can be altered significantly, though,
which can have significant effects on computational com-
plexity and the validity of approximations. For example, the
perturbative treatment of interactions presented in this work
may have very different convergence properties and speed
depending on the choice of free motion. It might be an
interesting task for future works to formalize and study the
symmetry ðE0;EIÞ ↦ ðE0 þ ξ;EI − ξÞ and find optimal
choices for ξ.

III. INTERACTING N-BODY SYSTEMS

The discussion above was completely general, but also
rather abstract. The only assumption we made was that the
equations of motion are of Hamiltonian form and split
into a free part and an interaction part. We needed their
symplectic structure to omit a functional determinant which
otherwise would have been a bit of a nuisance. As such, we
have been studying a Hamiltonian system governed by an
equation E0ðφÞ þ EIðφÞ ¼ 0 evolving from initial con-
ditions x ∈ X along a phase space trajectory φ̃ðt; xÞ.
In this section we specialize our abstract treatment and

notation to interacting N-body systems. We stress that it is
possible, albeit notationally laborious, to keep the entire
perturbative expansion abstract and general. In particular, it
is possible to define Feynman rules for the general setting
which yield the Feynman rules derived below as special
cases. We refrain from listing them here or even in a
dedicated appendix as this would require the introduction
of an excessive amount of nontrivial notation or, alter-
natively, work with equations featuring a zoo of indices.

A. Generating functional

Let us consider a system of N interacting particles
in three-dimensional Euclidean space. The state of this
physical system can be described by a point in phase space
x ∈ X ≅ R6N . Let us take one such point as our initial
condition and define

φ̃∶ R × X → X with

φ̃ðt; xÞ ¼ ðφ̃1ðt; xÞ; φ̃2ðt; xÞ;…; φ̃Nðt; xÞÞ⊺ ∈ X ð40Þ

to be the phase space trajectory of the system. Here, φ̃jðt; xÞ
is a six-dimensional vector describing the position and
momentum of the jth particle at time t. As we have to be
able to access the position and momentum parts of this and
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other objects frequently below, let us introduce the follow-
ing notation: For any point x in single-particle phase space
X ≅ R6 we write xðqÞ for its position and xðpÞ for its
momentum; i.e., it is x ¼ ðxðqÞ; xðpÞÞ⊺ ∈ X. Similarly, the
3N-dimensional vector containing all the positions is given

by xðqÞ ¼ ðxðqÞ1 ; xðqÞ2 ;…; xðqÞN Þ⊺.
Using this notation and particularizing to an interacting

N-body system, the equations of motion for the jth particle
are given by

∂tφjðtÞ −
 

1
mφ

ðpÞ
j ðtÞ

−m∂
φðqÞ
j
Vðt;φðqÞÞ

!
¼ 0: ð41Þ

The potential V is given by

Vðt;φðqÞÞ ¼ 1

2

X
j

X
l≠j

vðφðqÞ
j ðtÞ − φðqÞ

l ðtÞ; tÞ ð42Þ

featuring the two-particle interaction potential v. We allow
for an explicit time dependence of this potential for later
convenience. It is useful to perform a Fourier transform
resulting in

Vðt;φðqÞÞ ¼ 1

2

X
j

X
l≠j

Z
d3k0

ð2πÞ3 vðk
0; tÞ

× exp ðik0ðφðqÞ
j ðtÞ − φðqÞ

l ðtÞÞÞ; ð43Þ

where we use the symbol v for the Fourier transform of the
two-particle interaction potential, too. We abuse notation in
this way throughout and distinguish functions and their

Fourier transforms only via their arguments. For Newtonian
gravitational interactions in Newtonian gauge we have
vðk0Þ ∝ − 1

kk0k2, and the splitting of the equations of motion

is given by

ðE0Þj ¼ ∂tφjðtÞ −
 

1
mφ

ðpÞ
j ðtÞ
0

!
; ð44Þ

ðEIÞj¼
 

0P
l≠j

R
d3k0
ð2πÞ3 imk0vðk0;tÞexpðik0ðφðqÞ

j ðtÞ−φðqÞ
l ðtÞÞÞ

!
:

ð45Þ

Green’s function for the free equations of motion is
given by

Gðt; t0Þ ¼
 
θðt − t0ÞI3 gqpðt; t0ÞI3

0 gppðt; t0ÞI3

!
ð46Þ

with gqpðt; t0Þ ¼ 1
m ðt − t0Þθðt − t0Þ and gqpðt; t0Þ ¼ θðt − t0Þ

in Newtonian gauge on a static background. We keep the
propagators gqpðt; t0Þ and gppðt; t0Þ as well as the inter-
action potential vðk0; t0Þ general below to allow for gauge
changes in the final results. Moreover, this leaves sufficient
freedom to transfer our results to an expanding background
necessary for the cosmological case (cf. Appendix A).
Using the explicit forms for the free and interaction parts

of the equations of motion, we can simplify the expressions
in Eqs. (29) and (30) for the generating functional. Indeed,
we obtain

Z½JðqÞ;x�¼ exp

�X
j

X
l≠j

ZZ
dt0dt00

Z
d3k0

ð2πÞ3mgqpðt0;t00Þvðk0;t00ÞJðqÞj ðt0Þ ·k0exp
�
ik0
�

δ

iδJðqÞj ðt00Þ
−

δ

iδJðqÞl ðt00Þ

���
Z0½JðqÞ;x�;

ð47Þ

Z0½JðqÞ; x� ¼ exp

�
i
X
j

Z
dt0JðqÞj ðt0Þ · φ̄ðqÞ

j ðt0; xÞ
�

with ð48Þ

φ̄ðqÞ
j ðt0; xÞ ¼ xðqÞj þ gqpðt0; tiÞxðpÞj : ð49Þ

Note that we have set the momentum part of the source
field JðpÞ to zero as we are exclusively interested in
observables featuring positions of particles. We remark
for later reference that this avoids any appearance of the
function gppðt; t0Þ here and below.

B. Density correlation functions

Aside from the trajectories themselves, the density and
its r-point correlation functions are the most interesting
observables for an interacting N-body system. In fact, the
collective information encoded in the density correlation
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functions tends to be much more useful in practice
compared to the microscopic information encoded in the
specific positions of the individual particles. In our appli-
cations we integrate the observables over a probability
distribution of initial conditions making the specific reali-
zation of the system irrelevant. Instead, we are interested in
statistical quantities such as the density fluctuation power
spectrum. In this section we explain how density r-point
functions can be obtained from the generating functional.
The particle number density at position q, given the

positions of particles φðqÞðtÞ at time t, is

ρðq;φðqÞðtÞÞ ¼
X
j

δDðq − φðqÞ
j ðtÞÞ: ð50Þ

Performing a Fourier transformation that introduces a
wave vector k conjugate to q, the density takes the form

ρðk;φðqÞðtÞÞ ¼
X
j

exp ð−ik · φðqÞ
j ðtÞÞ: ð51Þ

We remark that these equations are valid for both the
comoving and the Eulerian densities (cf. Appendix A)
because the normalization of the Dirac δ-function, respec-
tively, the wave vectors, compensate tacitly the factors of
the scale factor. Thus, the equations written down here and
below are valid for both a static and an expanding back-
ground as long as we regard the wave vector as comoving in
the expanding case.
One of the advantages of working in Fourier space is that

it is very easy to construct the density correlation functions.
Indeed, the (Fourier space) density r-point correlation
function simply is

Gρ � � � ρ|fflffl{zfflffl}
r times

ðk1;…; kr;φðqÞðtÞÞ ¼
Yr
s¼1

ρðks;φðtÞÞ: ð52Þ

Written out, this yields

Gρ���ρðk1;…; kr;φðqÞðtÞÞ

¼
X

fj1;…;jrg
exp

�
−i
Xr
s¼1

ks · φ
ðqÞ
js
ðtÞ
�
; ð53Þ

where the sum in front of the exponential runs over all
r-tuples of particle indices 1 ≤ js ≤ N.
The observables defined above are all given in terms

of the positions of the ensemble of particles φðqÞðtÞ. To
calculate these observables for the specific system under
consideration, we ought to replace these positions by the
solution of the equations of motion φ̃ðqÞðt; xÞ for initial
values x. However, we do not attempt to find this solution
explicitly, but instead use the identity in Eq. (11), i.e.,

Õðt; xÞ ¼ Oðφ̃ðt; xÞÞ ¼ O
�

δ

iδJðtÞ
�
Z½J; x�

����
J¼0

: ð54Þ

Explicitly, we replace the positions φðqÞðtÞ by a func-
tional derivative with respect to JðqÞðtÞ in the expressions
for the density and the r-point correlation function above.
This yields the operator

Ĝρ���ρðk1;…; kr; tÞ ¼
X

fj1;…;jrg
exp

�
−i
Xr
s¼1

ks ·
δ

iδJðqÞjs
ðtÞ

�

ð55Þ

with which we can act on the generating functional Z½J; x�
to obtain the r-point correlation function. The density
operator ρ̂ðk; tÞ is obtained for the special choice r ¼ 1.

IV. KFT PERTURBATION SCHEME

In this section we present a perturbation scheme for
obtaining the density correlation functions for an interacting
N-body system. We stress again that the entire procedure can
be done for any Hamiltonian system allowing for a sepa-
ration of free motion and interactions. For clarity, concrete-
ness, and simplicity of notation we focus on interacting
N-body systems here, which are also our main application.
Above we already hinted at the possibility of performing

a Taylor expansion of the exponential containing the
interaction part of the equations of motion in the generating
functional (29). In doing so, we obtain a polynomial
expression containing in each term factors of the source
field J and functional derivatives with respect to it. To the
very right-hand side of the expression is the free generating
functional which also contains J. Evidently, in each term a
certain amount of combinatorics is required to keep track
of all the ways the derivatives could act on the various
factors of J.
These combinatorics can easily be done algorithmically

via successive product rules, but this is neither enlighten-
ing, nor efficient. Instead, we take inspiration from the path
integral formulation of QFT which arrives at very similar
expressions for observables. There, the method of dia-
grammatically representing mathematical expressions has
been applied with great success. While our expressions are
somewhat unusual from a QFT point of view—most of our
functional derivatives come inside Fourier phase factors—it
is nonetheless possible to obtain a diagrammatic represen-
tation in our case, too. Below we derive our Feynman rules
and use them to find perturbative expressions for the
observables we are interested in.

A. Taylor expansion

Let us consider the generating functional for interacting
N-body systems given in Eq. (47). Replacing the expo-
nential by its Taylor expansion we have the expression
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Z½JðqÞ; x� ¼
X∞
n¼0

1

n!

�X
j

X
l≠j

ZZ
dt0dt00

Z
d3k0

ð2πÞ3mgqpðt0; t00Þvðk0; t00Þ

×JðqÞj ðt0Þ · k0 exp
�
ik0 ·

�
δ

iδJðqÞj ðt00Þ
−

δ

iδJðqÞl ðt00Þ

���
n
Z0½JðqÞ; x� ð56Þ

with the free generating functional as given in Eq. (48). It is
worthwhile to point out that up to this point the entire
treatment has been exact. Perturbatively, the nth order
contribution, denoted below by Zn, is simply given by the
nth term in this sum. The full expression for the generating
functional to nth order is the sum of the first n terms in the
sum. Evidently, this truncation constitutes an approxima-
tion which may have a limited validity. Taylor’s theorem
comes with estimates of the truncation error, but it is not
trivial to apply them to our case of a derivative operator
present in the expansion. We intend to investigate this in
future works.
Just as one would do in QFT, we intend to derive

Feynman rules to diagrammatically represent the perturbative

expressions for observables. The class of observables we
want to focus on are density correlation functions as
introduced in Sec. III B. The usefulness of the Fourier
transform becomes evident now, as the phase factors
coming from the interaction are similar to the ones coming
from the observables. This allows for a unified and hence
simplified treatment. We remark that similar Feynman
rules can be obtained for, e.g., the trajectories of particles
yielding a general recipe for the expressions in Eqs. (37)
to (39).
Let us write down the expression for the nth order

density r-point correlation function. It is obtained by acting
with the operator Ĝρ���ρ given in Eq. (55) on the nth term of
the sum in Eq. (56). We obtain

ðGρ���ρÞnðk1;…; kr; t; xÞ ¼
1

n!

X
fm1;…;mrg

exp
�
−i
Xr
s¼1

ks ·
δ

iδJðqÞms ðtÞ

��X
j

X
l≠j

ZZ
dt0dt00

Z
d3k0

ð2πÞ3mgqpðt0; t00Þvðk0; t00Þ

× JðqÞj ðt0Þ · k0 exp
�
ik0 ·

�
δ

iδJðqÞj ðt00Þ
−

δ

iδJðqÞl ðt00Þ

���
n
Z0½JðqÞ; x�

����
JðqÞ¼0

: ð57Þ

Despite the seeming complexity, this expression actually has quite a pleasant structure. The key mathematical identity to
use is

exp
�
k ·

δ

δJðqÞm ðtÞ

�
JðqÞj ðt0Þ · k0 � � �Z0½JðqÞ; x� ¼ ðJðqÞj ðt0Þ · k0 þ δjmδDðt − t0Þk · k0Þ exp

�
k ·

δ

δJðqÞm ðtÞ

�
� � �Z0½JðqÞ; x�; ð58Þ

which can be seen as a special case of the discussion around
Eq. (33). Again the dots � � � denote further terms on which
the derivative may act. Given that the phase factors are not
modified, they ultimately act in this form on the free
generating functional Z0. Hence, in the final expression
we can replace all the functional derivatives by the free
trajectory φ̄ðqÞ. The only difficulty is to keep track of which
of the factors of JðqÞj is acted upon by which of the phase
factors. Note that this action happens exactly once as any

remaining factors of JðqÞj would cause the entire term to
vanish upon setting the source field to zero.

B. Feynman rules

We want to find a diagrammatic representation of
Eq. (57). The first step in achieving this is to understand
the term in the square bracket which is taken to the

nth power. It contains both factors of the source field
JðqÞ as well as derivatives with respect to it. Hence, the
ordering of the individual factors is crucial. Back in
Eq. (25) the ordering was irrelevant because the two
derivatives commute. But as soon as we performed the
functional derivative with respect to K in Eq. (29), we had
to be careful with this issue. In fact, in footnote 3, we
explained in detail how it is even possible to perform these
derivatives—by time ordering all terms and exploiting the
fact that Green’s function is causal. This allowed us to
move the factors of J back to the left past some of the
functional derivatives.
We can postpone the step in which we move the factors

of J back past the functional derivatives for the moment.

Then all these factors—here in the form of JðqÞj —are toward
the very right of the expression just next to the free
generating functional from which they were obtained via
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differentiation. All Fourier phase factors containing
the functional derivatives are left of it. Hence, a priori
the situation is such that any phase factor could act on

any JðqÞj .
We choose this as the starting point for formulating our

Feynman rules. Let us use the phase factors as the vertices
of our diagrams:

ð59Þ

×

ð60Þ

We call the first of them density vertex and the second
interaction vertex. Note that we replaced the functional
derivatives with the free trajectory in accordance with our
earlier comments. The remaining parts of the expression
in Eq. (57) are encoded in the edges of the diagrams.
These are

ð61Þ

ð62Þ

where the uncolored vertices mean that the corresponding
vertex factors are not yet included.
We claim the following5: The expression (57) is given by

the sum over all possible forests formed from the vertices
and edges defined above. Each forest consists of r trees
of which each has one root given by a density vertex. All
other vertices are interaction vertices. We comment on our
notion of equivalence of diagrams in Sec. IV C below. The
mathematical expression encoded by a diagram is the
product of all vertices times the product of all edges (this
way all the factors coming from the edges appear under the
sums and integrals as they should). The nth order con-
tribution to the r-point density correlation function is the set
of diagrams with exactly n interaction vertices and r density
vertices.
The crucial ingredient for proving this claim is the

time ordering due to causality. Mathematically this is
encoded in the Heaviside function θðt − t0Þ inside the
propagator gqpðt; t0Þ which ensures that functional

derivatives may only act on factors JðqÞj with earlier time
argument. This prevents loops and is also the reason why
the density vertices (which come with the highest
possible time coordinate t) are the roots of the trees.
Upon time ordering the diagram, all interaction vertices
have exactly one outgoing edge due to the fact that each

factor JðqÞj is acted upon exactly once—yet another way
of seeing that we obtain collections of trees with density
vertices as roots. As a final remark, the lower bound for
the time integration is due to our initial conditions x
being set at t ¼ ti.

6

For concreteness, we list the diagrams and expressions
for the density, i.e., the case r ¼ 1, up to first order below.
In zeroth order we have zero interaction vertices and
therefore simply obtain the free density

ð63Þ

As this corresponds to the interactions being completely
absent, it is no surprise that we evaluate the (Fourier
transform) of the density function along the free trajectory.
The first order correction is given by the diagram

ð64Þ

¼ −
X
m1

exp ð−ik · φ̄ðqÞ
m1
ðt; xÞÞ

X
l1≠m1

Z
∞

ti

dt01gqpðt; t01Þ

×
Z

d3k01
ð2πÞ3 mvðk01; t01Þk01

· k exp ðik01 · ðφ̄ðqÞ
m1
ðt01; xÞ − φ̄ðqÞ

l1
ðt01; xÞÞÞ: ð65Þ

In addition, let us list the diagrams that appear in second
and third order. The corresponding expressions follow from
the Feynman rules and become rather lengthy quite
quickly:

ð66Þ

5We use graph-theoretical language here: A tree is a connected
and acyclic graph, i.e., a connected diagram without loops. A
forest is the disjoint union of trees.

6We arguably have been somewhat cavalier with integration
boundaries above which we excuse with the aim of keeping
equations compact. In Eq. (9) a lower bound t ≥ ti applies to
the time integration which carries through. In fact, there is
technically also an upper bound which we simply denoted by t
in Eq. (9) and which needs to be at least as large as the time
coordinate at which we calculate observables. Here we have
simply sent it to infinity.
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ð67Þ

We explain in detail why these are the correct sets of
diagrams momentarily. Note that there is a certain amount
of freedom in defining the equivalence of diagrams which
in turn induces some symmetry factors. The convention we
choose here avoids symmetry factors altogether and allows
for easy numerical evaluation of the resulting expressions.
There is a minimal change in the Feynman rules to achieve
this. If one were to use the rules as written down above,
symmetry factors 1

2
and 1 for the diagrams of ρ̃2 and factors

1
6
, 1
3
, 1
3
, 1
3
, 1
2
, and 1 for ρ̃3 would have to be put into the

expressions.

C. Symmetry factors and shot noise

As pointed out above, any discussion of symmetry
factors needs to start out with defining what we mean
by the equivalence of diagrams. We shall use here the
simple notion that two diagrams are equivalent if and only
if they only differ by the labels of the vertices. In particular,
we distinguish between topologically equal graphs with
different horizontal ordering of the vertices [examples are
diagrams two to four in (67)]. Equivalent diagrams only
need to be listed once in the sum over all diagrams. Naively,
the cardinality of each such equivalence class appears to n!,
where n is the number of vertices. This seems to conven-
iently cancel the factor 1

n! coming from the Taylor expan-
sion. However, one has to be slightly more careful.
As an example, consider the first diagram in Eq. (66).

This graph actually only appears once in the Taylor
expansion, because there is only one way of connecting
all interaction vertices to the density vertex. As a conse-
quence, the cardinality of the corresponding equivalence
class is less than n! in such cases. However, this can
precisely be compensated for by a minor change in the
Feynman rules. Namely, we demand that all vertices are
time ordered; i.e., the time coordinates should satisfy ti ≤
t1 ≤ t2 ≤ � � � ≤ tn ≤ t for diagrams of order n. This can
easily be accomplished by adjusting the integral boundaries

in the rule for the interaction vertex. The combinatorial
factor from the equivalence of diagrams is exactly the same
as the one from the possible time orderings.
In summary, we obtain observables through the sum of

all different time-ordered diagrams of the respective order.
No symmetry factors are necessary. Note that the time
ordering for vertices connected via edges is redundantly
encoded by the propagator gqpðt0; tÞ. Hence, we can omit
the Heaviside function in gqpðt0; tÞ in the following without
altering the result which can be advantageous when
numerically integrating the expressions—instead of a
discontinuous function over a large domain ta ∈ ½ti; t�,
we now integrate a continuous function over a smaller
domain ta ∈ ½ti; taþ1�.
There is a second issue which suggests another slight

change to our Feynman rules. Namely, the discrete nature of
the system yields shot noise termswhich do not automatically
vanish once we integrate over a probability distribution of
initial conditions. Instead, theywould require one to explicitly
perform the thermodynamic limit N → ∞. This is discussed
in detail in [8][Sec. V. 2]. It is convenient to remove these
ultimately irrelevant terms right away by demanding that
density correlation functions are taken only for different
particles. Hence, instead of Eq. (53), we should use

Gρ���ρðk1; k2;…; kr;φðqÞðtÞÞ

¼
X

fj1 ;j2 ;…;jrg
js≠jt

exp

�
−i
Xr
s¼1

ks · φ
ðqÞ
js
ðtÞ
�
; ð68Þ

where the sum runs over all combinations of different indices.
Note that the terms removed are precisely the shot noise terms
found in [8].

D. Particle trajectories and interpretation

It is possible to obtain a very similar set of Feynman
rules for the particle trajectories, i.e., the observable given
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by Oj ¼ δ
iδJðqÞj ðtÞ. Indeed, compared to the case of the

density, the only thing to change is to replace the density
vertex by the result of acting with the operator on a single

factor JðqÞj . It can easily be verified that the Feynman rules
for the interaction vertex and the edges between them
remain unchanged. The discussion of symmetry factors and
time ordering remains unchanged, too. The density vertex
is gone, and instead all diagrams are trees ending in an
outgoing edge

ð69Þ

There is a special case in zeroth order, where we only
have an outgoing edge. There (and only there) the operator
Oj can act on the free generating functional Z0 directly and

hence yields the free trajectory φ̄ðqÞ
j ðt; xÞ.

We thus obtain the contributions to the trajectory of the
jth particle up to third order as

ðφ̃0ÞðqÞj ðt; xÞ ¼ φ̄ðqÞ
j ðt; xÞ; ð70Þ

ð71Þ

¼ −i
X
l1≠j

Z
t

ti

dt01gqpðt; t01Þ
Z

d3k01
ð2πÞ3mk01vðk01; t01Þ exp ðik01 · ðφ̄ðqÞ

j ðt01; xÞ − φ̄ðqÞ
l1
ðt01; xÞÞÞ; ð72Þ

ð73Þ

¼ −i
X
l2≠j

X
j1

X
l1≠j1

Z
t

ti

dt02gqpðt; t02Þ
Z

t0
2

ti

dt01gqpðt02; t01Þ
ZZ

d3k02
ð2πÞ3

d3k01
ð2πÞ3m

2k02vðk02; t02Þðk02 · k01Þvðk01; t01Þ

× exp ðik02 · ðφ̄ðqÞ
j ðt02; xÞ − φ̄ðqÞ

l2
ðt02; xÞÞÞðδj1j − δj1l2Þ exp ðik01 · ðφ̄ðqÞ

j1
ðt01; xÞ − φ̄ðqÞ

l1
ðt01; xÞÞÞ; ð74Þ

ð75Þ

Again we only gave the diagrams for third order as the expressions become rather lengthy. The expressions up to second
order are more transparent once we perform the integrations over k0a. Indeed, the first order trajectory obtained from
summing the contributions of zeroth and first order,

ðφ̃0ÞðqÞj ðt; xÞ ¼ φ̄ðqÞ
j ðt; xÞ and ð76Þ

ðφ̃1ÞðqÞj ðt; xÞ ¼ −
X
l1≠j

Z
t

ti

dt01gqpðt; t01Þm∇vðφ̄ðqÞ
j ðt01; xÞ − φ̄ðqÞ

l1
ðt01; xÞ; t01Þ; ð77Þ

respectively, is just the Born approximation. This is in complete agreement with our considerations in the general case, and
this expression is a special case of Eq. (38). For the second order contribution we can perform the integrations, too, and
arrive at

ðφ̃2ÞðqÞj ðt; xÞ ¼
X
l2≠j

X
j1

X
l1≠j1

Z
t

ti

dt02gqpðt; t02Þ
Z

t0
2

ti

dt01gqpðt02; t01Þm2ðδj1j − δj1l2Þ

×H½v�ðφ̄ðqÞ
j ðt02; xÞ − φ̄ðqÞ

l2
ðt02; xÞ; t02Þ∇vðφ̄ðqÞ

j1
ðt01; xÞ − φ̄ðqÞ

l1
ðt01; xÞ; t01Þ: ð78Þ
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Here, H½v� is the Hessian matrix of the two particle
interaction potential v. Again, we reproduce one of our
general expressions, namely Eq. (39), specialized to an
interacting N-body system.
For the interpretation of these expressions and in particular

the associated diagrams, consider first the outgoing edge (69).
Here, we want to extract the trajectory of the jth particle,
which is accomplished bypropagating the particle ja from the
interaction vertex a at time t0a to the final time t. The fact that
we use δjja for this suggests taking the particle with index ja
as the outgoing particle from the interaction vertex. Then, the
formof the expression for the interactionvertex (60) becomes
transparent: We consider the interaction of particle ja with all
other particles la at possible times ta. To calculate this
interaction, we consider the force as evaluated along the free
trajectories of the particles. Consequently, in first order we
obtain the Born approximation.
Matters become more interesting once we have two

interaction vertices connected together by an edge (61).
Now, the outgoing particle ja from the left-hand interaction
vertex a is identified with one of the particles taking part in
the right-hand interaction vertex b. More precisely, the
factor ðδjajb − δjalbÞ yields two terms. The first corresponds
to the case where the outgoing particle jb is acted upon by
the other particles twice at times ta and tb. The second term
takes into account the possibility that one of the particles lb
taking place in the interaction of jb at time tb had been
acted upon already at time ta by all other particles la. In this
case right-hand interaction vertex b determines the forces
acting on particle jb at time tb by adding the contributions
of all particles lb as if all but one of them would be moving
on a free trajectory, while this one particle ja is moving on a
Born trajectory.7

While this is quite an instructive interpretation, it is
slightly oversimplified. Indeed, all diagrams only give
corrections to the free trajectory. Hence, interaction vertices
give corrections to free particle trajectories—such that, e.g.,
in the case of the interaction vertex b what we actually
calculate is the difference between the force as given by all
particles lb moving freely and the force given by one of the
particles moving on a Born trajectory. Only upon adding
in the diagrams of lower orders are we in the situation
described above.
The interpretation of diagrams involving density vertices

is similar. The key difference is that the density vertex
collects the density contributions of all incoming particles
similar to an interaction vertex. Depending on the precise
form of the diagram, there might be one or multiple such
incoming particles, and they might have different orders (in
the sense that the subdiagrams have a different number of
interaction vertices). As such, the nth order density calcu-
lated in KFT perturbation theory is not the density of a
system of particles moving on nth order KFT trajectories as
one would naively expect. Instead, contributions are added
more gradually.

E. Density correlation functions and power spectra

The sections above contain all necessary ingredients to
derive expressions for density r-point correlation functions.
However, since these are the key observables in the
cosmological applications we are aiming at, we want to
discuss them explicitly here. As stated above, the diagrams
to consider for the r-point correlation function in nth order
KFT perturbation theory are the ones with n internal
vertices and r density vertices. In accordance with our
discussion in Sec. IV C we avoid symmetry factors and shot
noise terms by enforcing a time ordering ta ≤ taþ1 ∀ a
and remove tuples with common indices from the sums in
the density vertices.
Then, the contributions to the density two-point corre-

lation functions up to second order are given by

ð79Þ

ð80Þ

7Continuing the comparison with the iterative Born approxi-
mation from footnote 4: In the second order iterative Born
approximation we would have that all other particles move on
(first order) Born trajectories, not just the particle ja. Again we can
see that KFT is adding in these contributions slower—order by
order more particles on Born trajectories are considered for the
calculation of the force acting on the outgoing particle. Diagram-
matically, the second order iterative Born approximation corrects
the first order trajectory by the sum over all diagrams of the form

for a ∈ N. Conversely, KFT only adds the diagram with a ¼ 1.
The remaining diagrams appear at arbitrarily high order in the KFT
perturbation series. Higher-order iterative Born trajectories can
likewise be expressed by infinite sums of KFT diagrams.
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ð81Þ

Let us write down the mathematical expression encoded by one of the diagrams to provide a further example of the usage
of our Feynman rules. It is

ð82Þ

For our applications we are specifically interested in
the density fluctuation power spectrum P̃δ. Given a
probability distribution of initial conditions PðxÞ which
is spatially homogeneous, the power spectrum is defined
implicitly via

Z
d6NxPðxÞG̃ρρðk1; k2; t;xÞ

¼ ð2πÞ6ρ̄2δDðk1ÞδDðk2Þ þ ð2πÞ3ρ̄2δDðk1 þ k2ÞP̃δðk1; tÞ;
ð83Þ

where ρ̄ is the mean density. As evident from this
equation, the power spectrum fully describes the density
two-point correlation function. If the distribution PðxÞ is
also statistically isotropic, the power spectrum P̃δðk1; tÞ
only depends on the norm kk1k. We discuss the process of
integrating observables over initial conditions in the
following section.
For three-point functions we would consider three

density vertices and hence obtain three diagrams in the
first and twelve diagrams in the second order. In the
corresponding expressions, the sums over indices m1,
m2, m3 would be such that m2 ≠ m1 and m3 ≠ m1; m2.
For four-point functions the diagrams become even more
numerous, particularly at higher orders. As such, the
manual usage of the Feynman rules becomes quite tedious
rather quickly. Therefore we automated the generation of
diagrams and the transcription into mathematical expres-
sions as well as their numerical evaluation.

V. INTEGRATION OVER INITIAL CONDITIONS

The KFT formalism and the associated perturbation
theory as presented in the previous sections can be used
to study classical Hamiltonian systems with explicit initial
conditions x ∈ X. However, in applications we rarely have
access to, nor are interested in, the specific initial con-
ditions of the system. Rather, we often prefer to deduce
statistical properties of a system. KFT allows for this
generalization in a natural way. Indeed, instead of having
our generating function depend explicitly on initial phase
space coordinates x, we can integrate it over a probability
distribution PðxÞ of them. We define the averaged gen-
erating functional

hZ½J�i ≔
Z
X
dxZ½J; x�PðxÞ: ð84Þ

It has been common practice to use this object as the
starting point in KFT [8,14,18]. If one performs the
integration in Eq. (84), the observables obtained via func-
tional derivatives with respect to J are averaged over initial
conditions, i.e.,

hÕiðtÞ≔
Z
X
dxÕðt;xÞPðxÞ¼O

�
δ

iδJðtÞ
�
hZ½J�ijJ¼0: ð85Þ

Without doubt it is convenient to have a single object
hZ½J�i describing the averaged system and being able to
deduce observables from it. However, it is quite difficult
to perform the integration in Eq. (84) for a nontrivial
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probability distribution PðxÞ—after all, the generating
functional Z½J; x� contains all information of our system
and hence is the most difficult object of the theory. In
comparison, it is significantly easier to perform this
integration over an observable obtained via the perturbative
approach presented above.
Mathematically, of course, we obtain the same result

regardless of whether we perform the integration or the
functional derivatives first. More precisely, if we have an
expression for the nth order generating functional Zn½J; x�
and intend to find the nth order expectation value of an
observable O, we can use either

hÕniðtÞ ¼ O
�

δ

iδJðtÞ
�
hZn½J�i

����
J¼0

¼ O
�

δ

iδJðtÞ
��Z

X
dxZ½J; x�PðxÞ

�����
J¼0

or ð86Þ

hÕniðtÞ ¼ hÕnðt; xÞi

¼
Z
X
dx

�
O
�

δ

iδJðtÞ
�
Zn½J; x�

����
J¼0

�
PðxÞ: ð87Þ

We opt for the latter option here, which in our opinion is
advantageous for the perturbative treatment. In this section
we apply this strategy to increasingly complicated physical
systems.

A. Toy model: Gaussian distribution

In describing physical systems with KFT there are two
independent aspects of complexity: Firs, if we have a
complicated Hamiltonian with nontrivial interactions,
obtaining perturbative expressions for observables may
be laborious. Second, if we have complicated initial
conditions, the final integration in Eq. (87) may become
rather challenging. While the first aspect generally is less of
a problem in itself (the Feynman rules only require
derivatives), the more complicated the perturbative expres-
sions become, the more difficult is the integration over

initial conditions. Hence, even if we have a relatively
simple probability distribution PðxÞ, it might be infeasible
to perform this integration. The second aspect is more
direct: If PðxÞ is a difficult distribution, averaging any
nontrivial function over it requires some effort.
To get used to the procedure and to introduce some

calculational techniques, we consider a series of toy
models. The physical system we want to investigate is
an ensemble of particles of mass m moving in one
dimension and interacting via a two-particle interaction
potential vðkÞ without time dependence. We can regard this
as a one-dimensional interacting N-body system on a static
background and use the one-dimensional analogs of the
expressions derived above. For the initial values at time
ti ¼ 0 let us use the probability distribution

PðxÞ ¼
YN
j¼1

PðxjÞ with

PðxjÞ ¼
1

2πσξ
exp

�
−
ðxðqÞj − μÞ2

2σ2

�
exp

�
−
ðxðpÞj − λÞ2

2ξ2

�
;

ð88Þ

i.e., a Gaussian distribution in both position and momen-
tum. An elementary calculation shows that the expectation
value for the zeroth order KFT trajectory for any particle j
reproduces the center of mass trajectory

hðφ̃0ÞðqÞj iðtÞ ¼
Z

dxφ̄ðqÞ
j ðt; xÞPðxÞ

¼
Z

dxjðxðqÞj þ gqpðt; 0ÞxðpÞj ÞPðxjÞ

¼ μþ gqpðt; 0Þλ ð89Þ

as it should. None of higher-order perturbative contribu-
tions to the trajectory alter that result. We show this
explicitly for the diagram coming from first order KFT
perturbation theory, taken from Eq. (70):

ð90Þ

¼ −i
X
l1≠j

Z
t

0

dt01gqpðt; t01Þ
Z

dk01
2π

m
ZZ

dxjdxl1

× PðxjÞPðxl1Þk1vðk01Þ expðik01 · ðφ̄ðqÞ
j ðt01; xÞ − φ̄ðqÞ

l1
ðt01; xÞÞÞ: ð91Þ

In the last line we already performed the integration over all components of x except xj and xl1 . This is one key
simplification of performing the integration of perturbative observables compared to integrating the generating functional
directly—the latter necessarily contains all particle indices that prevent this step. Inserting the expression of the free

trajectory for φ̄ðqÞ
j ðt01; xÞ and φ̄ðqÞ

l1
ðt01; xÞ in Eq. (90), we obtain a term
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Z
dxjPðxjÞ exp ðik01 · xðqÞj Þ exp ðigqpðt01; 0Þk01 · xðpÞj Þ ð92Þ

and a similar factor with indices l1. This clearly yields
Fourier transforms of the position and momentum distribu-
tions. In the present case, these Fourier transforms are again
Gaussians multiplied with some conveniently canceling
phase factors, and therefore their product is an even function.
Together with the tacit assumption that the interaction
potential v is symmetric, the integration over k1 yields zero.
Above we have encountered a generic feature of the

averaging process for perturbative observables. Because
the free trajectory and hence the initial values only appear
inside Fourier phase factors, the integration over x always
yields Fourier transforms of the initial probability distribution

PðxÞ. In probability theory, such Fourier transforms of a
probability distributionPðxÞ of a random variable x is known
by the name of characteristic function and is usually denoted
by Φx. It can be defined in terms of expectation values via

ΦxðfÞ ¼ hexp ðif · xÞi ¼
Z

dx exp ðif · xÞPðxÞ; ð93Þ

where we point out the unusual sign convention for the
Fourier transform. We use the letter f for the conjugate
variable for x instead of the letter t usually used in this context
to avoid confusion with time coordinates.
In terms of characteristic functions, the expression in

Eq. (90) can be compactly written as

ð94Þ

where we abbreviated f ≔ ðk01; gqpðt01; 0Þk01Þ⊺. Given that in
our toymodel thedistributions forpositionandmomentumare
uncorrelated, the characteristic functions factorize into char-
acteristic functions for position and momentum, respectively.
Inourapplicationsthis isgenerallynotpossible,andweneedto
work with the characteristic functions of x or even x.
As a more quantitative example, we consider the same

Gaussian initial distributions, but determine the expectation
value of the density. In zeroth order perturbation theory, the
expectation value of the density is simply

ð95Þ

Let us immediately perform a Fourier transform to obtain
the density as a function of position q:

hρ̃0iðq; tÞ ¼
Z

dk
2π

hρ̃0iðk; tÞ expðik · qÞ

¼
X
j

Z
dxðpÞj Pðq − gqpðt; 0ÞxðpÞj ; xðpÞj Þ: ð96Þ

Using the definition of the initial probability distribution
from Eq. (88), we obtain

hρ̃0iðq; tÞ ¼
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðσ2 þ gqpðt; 0Þξ2Þ
q
× exp

�
−
ðq − ðμþ gqpðt; 0ÞλÞÞ2
2ðσ2 þ gqpðt; 0Þξ2Þ

�
; ð97Þ

i.e., a Gaussian with the mean given by the center of mass

position hðφ̃ðqÞ
0 ÞjiðtÞ and variance σ2 þ gqpðt; 0Þξ2, which

is monotonically increasing (for standard choices for the
propagator gqp). While this is the expected result, the free
density could have been obtained directly without using
KFT perturbation theory.
For an actual test of the predictions of KFT perturbation

theory, let us consider the first order contribution to the
density given by

ð98Þ

The expression encoded in the diagram can again be
simplified and integrated mostly analytically. For simplicity
and transparency, we assume a static background, for which
the propagator takes the simple form gqpðt; t0Þ ¼ 1

m ðt −
t0Þθðt − t0Þ as derived in Eq. (46). Then, the resulting
evolution of the density for zeroth and first order is shown
in Fig. 1. Clearly, attractive interaction encoded by the first
order correction counteracts the diffusion. Going to higher
orders, this behavior is enhanced and prolonged.8

Note that not all physical properties of observables
are preserved at finite interaction orders. In the specific

8Since the interaction is evaluated along free trajectories, at no
finite order can a bound system be modeled; i.e., diffusion always
eventually wins in this example. With respect to our intended
application to cosmic structure formation, this means that at any
finite order of perturbation theory we are unable to accurately
describe objects below a certain size. Specifically, we expect that
for any finite order the resulting nonlinear density fluctuation
power spectrum falls below the observed one above a certain
wave number.
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example, there can be regions where the density is negative
in the first order approximation. This is to be expected
because the first order correction needs to be negative in
some regions in order not to change the normalization. By
increasing the interaction strength, the negative terms can
then dominate over the positive zeroth order contribution.
However, higher-order terms correct for this and restore
positivity of the density.

B. Toy model: Shell crossing

In the previous toy model, the distributions for position
and momentum were completely independent. Here we
study an example where the momenta and positions of
the particles are correlated in the sense that the momentum
assigned to particles depends on their position. This is a
preparation for the upcoming section on correlated initial
conditions which generalizes this. However, the toy model
calculations are also of interest in their own right because
they show that KFT is not affected by the notorious shell-
crossing problem one encounters in cosmic structure for-
mation. Common hydrodynamic approaches break down
when streams of dark matter particles cross due to the
assumption of the existence of a (single-valued) velocity
field. KFT considers the particle dynamics in phase space
where this conceptual limitation is circumvented.
Let us consider an interacting N-body system in one

dimension subject to the probability distribution

PðxÞ ¼
YN
j¼1

1ffiffiffiffiffiffi
2π

p
σ
exp

�
−
ðxðqÞj Þ2
2σ2

�
δDðxðpÞj þ xðqÞj Þ ð99Þ

of initial values x at time ti ¼ 0. Evidently, the particle
positions initially form a Gaussian distribution, but their
momenta are assigned such that a particle at initial position

xðqÞj has momentum xðpÞj ¼ −xðqÞj . This linear relationship
implies that there is a time tc, where simultaneously the free
trajectory of each particle

φ̄ðqÞ
j ðtc; xÞ ¼ xðqÞj þ gqpðtc; 0ÞxðpÞj ¼ ð1 − gqpðtc; 0ÞÞxðqÞj

ð100Þ

is zero. Hence, ignoring interactions, at time tc all particles
are at position q ¼ 0 as the streams of left-moving particles

starting out at xðqÞj > 0 and right-moving particles starting

out at xðqÞj < 0 cross. In this instance of time, the density is
a δD-function making a description using conventional
hydrodynamic methods impossible.
Starting from Eq. (95), an elementary calculation yields

hρ̃0iðq; tÞ ¼
Nffiffiffiffiffiffi

2π
p j1 − gqpðt; 0Þjσ

× exp

�
−

q2

2ð1 − gqpðt; 0ÞÞ2σ2
�
: ð101Þ

This is a Gaussian distribution with variance
ð1 − gqpðt; 0ÞÞσ which transitions through a δD-distribution
as t → tc. Note that the density evolution for t > tc is
completely unaffected by the singularity at tc in the KFT
formalism. As can be seen in Fig. 2 (again evaluated for
static background), the singularity in the density is a result
of the projection of the phase space distribution of the
system onto the spatial axis and therefore does not con-
stitute a problem when working in phase space.

C. Correlated initial conditions

As our next step, we want to consider a case of initial
conditions where all particle positions and momenta are
correlated with each other. More precisely, we sample a
(statistically homogeneous and isotropic) density field and
assign velocities according to an associated velocity field.
This is no longer a mere toy model, but rather is the way in
which standard cosmological N-body simulations set up
their initial conditions [21]. Indeed, standard cosmological
perturbation theory is applicable in the early stages of
cosmic structure formation in good accuracy.9 Stopping
the evolution prior to shell crossing we obtain a density
and a velocity field which we can then discretize and
follow the particle dynamics as structure formation

t=0

t=1

t=2

t=3

5 10 15
q

0.5

1.0

1.5

2.0

2.5

FIG. 1. The density evolution for zeroth and first order
perturbation theory in blue and red curves, respectively. The
initial spatial distribution at t ¼ 0 has mean value μ ¼ 2 and
standard deviation σ ¼ 2 (leftmost Gaussian). The momentum
distribution has mean value λ ¼ 2 and standard deviation ξ ¼ 1,
such that in every unit of time the density distribution moves to
the right by two units and broadens. This is precisely the behavior
in zeroth order perturbation theory (blue curves). The first order
correction counteracts the diffusion due to the encoded attractive
interaction (red curves) [19].

9Note that we can set the initial conditions very early without
major downsides (unlike, e.g., N-body simulations, where this
increases computational cost and accumulated errors). Hence,
some of the criticism of this method in [21] can be sidestepped.
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becomes nonlinear. This way, we use the hydrodynamic
picture in its range of validity and switch to a description
viaN-body dynamics as this becomes necessary. We follow
Appendix A of [8] here, but adapt it somewhat.
Let us attempt to formalize the ideas of the previous

section. We want that the initial positions of our particle
ensemble sample a (number) density field ρðqÞ at initial
time ti. This can be encoded in the equation

PðxðqÞj jρÞ ¼ 1

N
ρðxðqÞj Þ: ð102Þ

The meaning of this equation can be read off: Given the
density field, the probability of finding a particle j at the

position xðqÞj should be given by the density at that precise
point. The prefactor 1

N accounts for the fact that in a given
volume V we deposit a total particle number N. Having
assigned a position to a particle, we want to equip it with a
momentum. Again, we can write this down in a rather
transparent equation

PðxðpÞj jvÞ ¼ δDðxðpÞj −mvðxðqÞj ÞÞ: ð103Þ

Here, vðqÞ is the velocity field at the initial time ti. It can
clearly be seen from this equation that individually for each
particle its momentum is correlated with its position.
So far, we have treated the density and velocity fields

completely independently. However, in our case of cosmic
structure formation, we can regard them as the result of a
hydrodynamic description valid for times t < ti. Then, the
equations of standard cosmic perturbation theory yield a
relationship between the two. As a first step, we assert that
the velocity field is irrotational. Even if the primordial
perturbations have a vector component in the usual scalar-
vector-tensor decomposition (which for standard inflation-
ary scenarios they have not), it decays during cosmic
expansion. Therefore there exists a velocity potential ψ
such that the velocity field is its gradient, vðqÞ ¼ ∇ψðqÞ.

Assuming that the density and velocity fields indeed
arise via a hydrodynamic description, they are related via
the equations of standard cosmic perturbation theory. The
relevant equation is

−κ∇2ψðqÞ ¼ δðqÞ ≔ ρðqÞ − ρ̄

ρ̄
; ð104Þ

which is the final result of the discussion in Appendix B.
Here, δðqÞ is the density contrast, ρ̄ the mean density, and κ
a constant that depends on the choice of time variable.
Using this equation as well as the definition of ψ as the
velocity potential, we can replace the density and velocity
fields in Eqs. (102) and (103). This way, we promote the
velocity potential ψ to the fundamental object controlling
the statistics of our initial particle distribution. Indeed, the
initial positions and momenta of our particles are subject to
the conditional probability distributions

PðxðqÞj jψÞ ¼ ρ̄

N
ð1 − κ∇2ψðxðqÞj ÞÞ and

PðxðpÞj jψÞ ¼ δDðxðpÞj −m∇ψðxðqÞj ÞÞ: ð105Þ

Formally, to combine these conditional probabilities into
a probability distribution PðxÞ, we have to average them
over PðψÞ. Written as an equation, it is

PðxÞ ¼
Z

dψ

�YN
j¼1

PðxðqÞj jψÞPðxðpÞj jψÞ
�
PðψÞ; ð106Þ

where the integration runs over all possible smooth field
configurations ψ .
On the surface, the integration in Eq. (106) seems rather

difficult. However, our task is simplified substantially by
the fact that the velocity potential ψ is a Gaussian random
field if we choose our initial time ti sufficiently early. A
good choice for ti is the release of the cosmic microwave
background (CMB) at redshift z ≈ 1090. This is well in the

FIG. 2. Evolution of the toy model system over time (left to right). The upper row shows the distribution in phase space (density
indicated by color), and the lower row the corresponding spatial density function. The singular density function at tc (middle column) is
a result of the spatial projection rather than an inherent singularity of the system [19].
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linear regime of cosmic structure formation, and CMB
measurements give us very precise statistics for the density
contrast δðqÞ. In particular, we know that the density
contrast at time ti is very well described by a Gaussian
random field [22]. Hence, the velocity potential ψðqÞ
likewise is a Gaussian random field, and therefore its
statistics are solely described by its power spec-
trum Pψ ðkÞ ¼ κ−2kkk−4PδðkÞ.
In addition to this, the conditional probabilities only

depend on the derivatives of ψ at the particle positions xðqÞj .
Since ψ is a Gaussian random field, whenever we pick a

set of positions xðqÞ ¼ ðxðqÞ1 ; xðqÞ2 ;…; xðqÞN Þ⊺, the values

ψ ≔ ðψðxðqÞ1 Þ;ψðxðqÞ2 Þ;…;ψðxðqÞN ÞÞ⊺ follow a multivariate
Gaussian distribution. More precisely,

PðψÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞN det ðCψψðxðqÞÞÞ

q
× exp

�
−
1

2
ψ⊺ðCψψÞ−1ðxðqÞÞψ

�
with ð107Þ

Cψψ
jl ðxðqÞÞ ¼

Z
d3k00

ð2πÞ3 Pψðk00Þ exp ð−ik00 · ðxðqÞj − xðqÞl ÞÞ:

ð108Þ

It is a standard result that the statistics of the derivatives
of a Gaussian random field are related to the statistics of
the field itself in a simple manner. Indeed, it is

Pð∇ψ;∇2ψÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ4N det ðCðxðqÞÞÞ

q exp

�
−
1

2

�
∇2ψ

∇ψ

�⊺
C−1ðxðqÞÞ

�
∇2ψ

∇ψ

��
with ð109Þ

CjlðxðqÞÞ ¼
 

Cδδ
jl ðxðqÞÞ Cδp

jl ðxðqÞÞ
ðCδp

jl Þ⊺ðxðqÞÞ Cpp
jl ðxðqÞÞ

�
ð110Þ

¼
Z

d3k00

ð2πÞ3
�

−kk00k4 ik00⊺kk00k2
ik00kk00k2 k00k00⊺

�
Pψðk00Þ exp ð−ik00 · ðxðqÞj − xðqÞl ÞÞ: ð111Þ

Here we abbreviated the velocity field ∇ψ ≔ ð∇ψðxðqÞ1 Þ;∇ψðxðqÞ2 Þ;…;∇ψðxðqÞN ÞÞ⊺ and the (negative) density contrast

∇2ψ ≔ ð∇2ψðxðqÞ1 Þ;∇2ψðxðqÞ2 Þ;…;∇2ψðxðqÞN ÞÞ⊺. The correlation matrix C is of size 4N × 4N and contains initial density-
density, density-momentum, and momentum-momentum correlations. Using the joint probability Pð∇ψ;∇2ψÞ, we can
rewrite Eq. (106) into

PðxÞ ¼
ZZ

d3N∇ψdN∇2ψ

�YN
j¼1

PðxðqÞj j∇2ψÞPðxðpÞj j∇ψÞ
�
Pð∇ψ;∇2ψÞ: ð112Þ

Equation (112) is the initial phase space probability distribution we use for the cosmic structure formation. The initial
positions and momenta of the particles are correlated via density and momentum correlations. Instead of the probability
distribution PðxÞ, we work with its characteristic functionΦxðf Þ below. Therefore, let us derive a compact expression for it:

Φxðf Þ ¼
Z

d6Nx expðif · xÞPðxÞ ð113Þ

¼
Z

d6Nx
Z

dN∇2ψ

�YN
j¼1

ρ̄

N
ð1 − κð∇2ψÞjÞ

�
m−3Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ4N det ðCðxðqÞÞÞ
q

× ðexp ðimξ · ∇2ψÞjξ¼0Þ exp
�
−
1

2

� ∇2ψ

m−1xðpÞ

�⊺
C−1ðxðqÞÞ

� ∇2ψ

m−1xðpÞ

�
þ if · x

�
ð114Þ
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¼
Z

d6Nx
Z

dNðm∇2ψÞ
�YN

j¼1

ρ̄

N

�
1 −

κ

m
∂

i∂ξj

��
m−4Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ4N det ðCðxðqÞÞÞ
q exp ðif ðqÞ · xðqÞÞ

× exp

�
−

1

2m2

�
m∇2ψ

xðpÞ

�⊺
C−1ðxðqÞÞ

�
m∇2ψ

xðpÞ

�
þ if ðpÞ · xðpÞ þ imξ · ∇2ψ

�����
ξ¼0

ð115Þ

¼
Z

d3NxðqÞ
�YN

j¼1

ρ̄

N

�
1 −

κ

m
∂

i∂ξj

��
exp

�
−
m2

2

�
ξ

f ðpÞ

�⊺
CðxðqÞÞ

�
ξ

f ðpÞ

��
exp ðif ðqÞ · xðqÞÞ

����
ξ¼0

: ð116Þ

In the second equality we inserted Eqs. (112), (109), and (105) and immediately used the Dirac δ-function to cancel the
integral over ∇ψ. We also inserted a factor equal to 1 which allows one to perform the Gaussian integral by introducing an
auxiliary Fourier conjugate ξ for m∇2ψ. Note that in practice the form of f can be read off from the exponential factors in
our expressions for observables. A simple example is the expectation value of the zeroth order density

hρ̃0iðk; tÞ ¼
Z

d6NxPðxÞ
X
m

exp ð−ik · ðxðqÞm þ gqpðt; tiÞxðpÞm ÞÞ: ð117Þ

After exchanging the sum with the integration, each term with index m is precisely given by the characteristic function
Φxðf Þ, where the mth component of f is

fðqÞm ¼ −k and fðpÞm ¼ −gqpðt; tiÞk; ð118Þ

while all other components are zero. Inserting this into Eq. (115), we obtain

hρ̃0iðk; tÞ ¼
X
m

Φxðf Þ ¼
X
m

Z
d3NxðqÞ

�YN
j¼1

ρ̄

N

�
1 −

κ

m
∂

i∂ξj

��
exp

�
−
m2

2

�
ξ

f ðpÞ

�⊺
CðxðqÞÞ

�
ξ

f ðpÞ

��
exp ð−ik · xðqÞm Þ

����
ξ¼0

:

ð119Þ

The Gaussian exponential factor remains difficult even in this simple example.

D. Correlation hierarchy

We have seen in the previous section that the
zeroth order density expectation value already yields a
complicated expression (119). If we go to higher-order
perturbation theory or consider higher-point density
correlation functions, the expressions become even more
intimidating. However, structurally they are quite similar.
Therefore, in this section, we study in detail how the
expression in Eq. (119) can be simplified. Afterwards, we

show how to deal with the general case of r-point density
correlation functions in higher-order perturbation theory.
Ultimately, we are interested in the density fluctuation
power spectrum.
We start our analysis by simplifying the derivatives with

respect to ξ in Eq. (119). Using the decomposition of the
correlation matrix C in Eq. (110) into density-density,
density-momentum, and momentum-momentum correla-
tions, we have

YN
j¼1

�
1 −

κ

m
∂

i∂ξj

�
exp

�
−
m2

2

�
ξ

f ðpÞ

�⊺
C
�

ξ

f ðpÞ

��

¼ exp
�
−
m2

2
ðf ðpÞÞ⊺Cppf ðpÞ

�YN
j¼1

�
1þ iκ

m
∂

∂ξj

�
exp

�
−
m2

2
ξ⊺Cδδξ −m2ξ⊺Cδpf ðpÞ

�
: ð120Þ

Here and in the following we refrain from explicitly writing the dependence of C and its components on xðqÞ. The
products of ð1þ iκ

m
∂

∂ξj
Þ applied to the exponential can be expressed as
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�
1þ iκ

m

X
j

∂

∂ξj
þ 1

2!

�
iκ
m

�
2X

j;k
j≠k

∂
2

∂ξj∂ξk
þ 1

3!

�
iκ
m

�
3X

j;k;l
j≠k≠l

∂
3

∂ξj∂ξk∂ξl
þ � � �

�
exp

�
−
m2

2
ξ⊺Cδδξ −m2ξ⊺Cδpf ðpÞ

�
: ð121Þ

Since we have a quadratic expression in the exponential in Eq. (121) and ξ is set to zero after taking the derivative,
derivatives act either alone

iκ
m

∂

∂ξj
exp

�
−
m2

2
ξ⊺Cδδξ −m2ξ⊺Cδpf ðpÞ

�����
ξ¼0

¼
X
n

ð−imκCδp
jnf

ðpÞ
n Þ ð122Þ

or in pairs�
iκ
m

�
2 ∂

2

∂ξj∂ξk
exp

�
−
m2

2
ξ⊺Cδδξ −m2ξ⊺Cδpf ðpÞ

�����
ξ¼0

¼ κ2Cδδ
jk þ

X
n1;n2

ð−imκCδp
jn1

fðpÞn1 Þð−imκCδp
kn2

fðpÞn2 Þ: ð123Þ

We used Cδδ
jl ¼ Cδδ

lj to cancel the factor of 1
2
[we implicitly assume that Pψð−kÞ ¼ PψðkÞ, which is justified in a

statistically isotropic setting]. In the second term, we wrote the products on the right-hand side in brackets to remind
ourselves that they are actually scalar products since Cδp

jk are 1 × 3 matrices for all particle indices j, k. By combining the
terms from Eqs. (122) and (123) appropriately, one can construct the expressions for higher derivatives with respect to ξ in a
systematic manner. As an example, for the third order derivative in Eq. (121) we obtainX

n

κ2Cδδ
jkð−imκCδp

ln f
ðpÞ
n Þ þ

X
n

κ2Cδδ
kl ð−imκCδp

jn f
ðpÞ
n Þ þ

X
n

κ2Cδδ
lj ð−imκCδp

knf
ðpÞ
n Þ

þ
X

n1;n2;n3

ð−imκCδp
jn1

fðpÞn1 Þð−imκCδp
kn2

fðpÞn2 Þð−imκCδp
ln3
fðpÞn3 Þ: ð124Þ

To treat the momentum-momentum correlations Cpp on
the same footing as Cδδ and Cδp, we can perform a Taylor
expansion of the exponential containing them in Eq. (120).
This way we obtain a product of two infinite sums in which
we order terms in powers of the initial power spectrum or,
equivalently, the number of C•• for • ∈ fδ; pg. This is in
contrast to the treatment in [8], where the different kinds of
correlations are treated differently.10 In our case, the corre-
lation hierarchy is build up from the three types of terms

Dδδ
jl ≔ κ2Cδδ

jl ; Dδp
jl ≔ −imκCδp

jl f
ðpÞ
l ;

Dpp
jl ≔ −

m2

2
ðfðpÞj Þ⊺Cpp

jl f
ðpÞ
l : ð125Þ

At mth order in the correlation expansion, we take a
product of m of these terms. Each such product acquires

a prefactor 1
r!, where r is the number of momentum-

momentum correlation factors, coming from the Taylor
expansion of the exponential. Moreover, there is a prefactor
1
s!, where s is the number of indices not paired with a factor
fðpÞ· . Finally, we sum over all appearing indices (of which
there are 2m), demanding that the set formed by both
indices of factorsDδδ

jl and first indices of factorsD
δp
jl has no

duplicates (the cardinality of this set is s). This is due to the
way the derivatives appear in Eq. (121) with distinct indices
in each sum. Equivalently, all indices that are not contracted

with a factor of fðpÞl must not be equal.
A priori, all indices in the correlation terms constructed

above are summed over the total number of particles N.
Once again, if we were to integrate the generating func-
tional Z over the initial probability distribution PðxÞ, this
would be the best we could do. However, given that we are
considering observables, we can reduce the number of
terms substantially. Let us consider the expectation value
hρ̃0iðk; tÞ, which has been our example throughout. There
we know that f ðpÞ has exactly one nonvanishing component

fðpÞm , wherem is the index being summed over to obtain the
contributions of each particle to the density. Thus, we
immediately see that all the sums in our correlation
expansions over indices appearing in Dpp

jl or as the second

index in Dδp
jl collapse into a single term. Generally, for any

10In particular, in [8] the authors treat the auto- and cross-
correlations between the particles differently. This leads to a
damping term QD ¼ 1

2

P
jðfðpÞj Þ⊺Cpp

jj f
ðpÞ
j which subsequently

needs to be treated with special care. We do not see a strong
reason for treating particle autocorrelations differently and there-
fore do not obtain a separate damping term. Instead, the
contribution QD is kept as part of the momentum-momentum
correlation matrix Cpp and automatically appears at the appro-
priate orders of our correlation hierarchy.
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density r-point correlation functions, these sums receive
contributions only for indices that already appear in the
expression prior to integration over the initial conditions.
Perhaps surprisingly, the same statement is true for the

remaining sums. Note that generally components of f ðqÞ are
nonzero if and only if the corresponding component of f ðpÞ
is nonzero. This is because they originate from Fourier
factors of the form

exp ð−ik · ðxðqÞm þ gqpðt; 0ÞxðpÞm ÞÞ: ð126Þ

Thus, the general form for density r-point correlation
functions in Eq. (115) depends on the position variables

xðqÞl with indices other than the ones with nonzero fðpÞl only
via the correlation factors C••ðxðqÞÞ. However, this depend-
ence can only be via any index of Dδδ

jl or via the first index
of Dδδ

jl due to the reasoning in the previous paragraph.
Crucially, the set formed by the indices of Dδδ

jl and the
first indices of Dδδ

jl must not contain duplicates. Therefore,

in any product of correlation terms, position variables xðqÞl

with fðpÞl ¼ 0 can appear at most once. This, however,
implies that these variables cannot appear at all. To see this,
recall that the correlation factors have the form

C••
jl ¼

Z
d3k00

ð2πÞ3 α
••ðk00Þ exp ð−ik00 · ðxðqÞj − xðqÞl ÞÞ ð127Þ

for certain functions α••ðk00Þ and • ∈ fδ; pg. If the variable
xðqÞl does not appear elsewhere in the expectation value,
then the integral over it results in

Z
d3k00

ð2πÞ3 α
••ðk00ÞδDðk00Þ exp ð−ik00 · xðqÞj Þ ¼ α••ð0Þ; ð128Þ

which vanishes for usual choices for the initial density
fluctuation power spectrum PδðkÞ.
Summarizing this discussion, we cannot have any

indices in the correlation expansion that are not present
in the expression for the density r-point correlation
function prior to integration over the initial conditions.
This is a substantial simplification, because it means that
we can perform the integration over almost all components
of xðqÞ in Eq. (115) immediately. Specifically for the zeroth
order density expectation value in Eq. (119) we find that
only the zeroth order correlation gives a contribution:

hρ̃0iðk; tÞ ¼
ρ̄

N

X
j

Z
d3xðqÞj exp ð−ik · xðqÞj Þ

¼ ð2πÞ3δDðkÞρ̄: ð129Þ

E. Correlations vs interactions

We have seen above that for the expectation value of a
general density r-point correlation function all the integrals
over initial phase space coordinates except for the position

variables xðqÞl , which explicitly appear in the expression for
the diagrams, are trivial. In the following, we consider the
remaining integrals in more detail. This will lead us to the
surprising observation that initial correlations between
particles are much more difficult to treat computationally
than the interactions during the evolution of the system.
Once again, we use the density function as an example in

order to make the discussion more concrete. This time, we
consider the first order correction

ð130Þ

¼ −
X
j

exp ð−ik · φ̄ðqÞ
m ðt; xÞÞ

X
l1≠j

Z
∞

ti

dt01gqpðt; t01Þ
Z

d3k01
ð2πÞ3mvðk01; t01Þk01 · k exp ðik01 · ðφ̄ðqÞ

j ðt01; xÞ − φ̄ðqÞ
l1
ðt01; xÞÞÞ

ð131Þ

and focus on the contribution coming from the density-momentum correlation Dδp
l1j
. Recall that the free trajectory is given

by φ̄ðqÞ
j ðt; xÞ ¼ xðqÞj þ gqpðt; tiÞxðpÞj , such that once we combine the exponential factors, we obtain

ρ̃1ðk; t; xÞ ¼ −
X
j;l1
l1≠j

Z
∞

ti

dt01gqpðt; t01Þ
Z

d3k01
ð2πÞ3mvðk01; t01Þk01 · k exp ðix · f Þ; ð132Þ

where the only nonvanishing components of f are the position and momentum parts with indices j and l1. Hence, the
expectation value of the first order correction to the density can be written compactly as
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hρ̃1iðk; tÞ ¼ −
X
j;l1
l1≠j

Z
∞

ti

dt01gqpðt; t01Þ

×
Z

d3k01
ð2πÞ3 mvðk01; t01Þk01 · kΦxðf Þ; ð133Þ

where we used the characteristic function Φxðf Þ. We
remark that this procedure is generally possible for all
density r-point correlation functions for any perturba-
tion order.
As the next step, we rewrite the characteristic function as

in Eq. (115) and expand in the correlations. Leveraging the
discussion in the previous subsections, we know that we
obtain an infinite sum of contributions with certain corre-
lation factors (125). Crucially, the possible particle indices
for the correlation factors are severely restricted, as they
must be picked from the set fl1; jg. Therefore, the possible
contributions are proportional to Dδδ

l1j
; Dδp

l1j
; Dδp

jl1
; Dδp

l1l1
; Dδp

jj ;
Dpp

l1m
;Dpp

l1l1
, or Dpp

jj in first correlation order. Here, we used
the symmetry of Dδδ

·· and Dpp
·· to combine contributions.11

In the second correlation order, the list is already quite
lengthy, consisting of Dδp

l1j
Dδp

jl1
, Dδp

l1j
Dδp

jl1
, Dδp

jl1
Dδp

l1l1
, and

Dδp
l1l1

Dδp
jj as well as all products of two terms of first order

involving at least oneDpp
·· factor. The restriction that the set

formed by the indices of Dδδ
·· and the first indices of Dδp

··
must not have duplicates removes two contributions in first
and roughly halves the number of contributions in second
correlation order.
Let us return to our example, where we specifically

wanted to analyze the contributions coming from Dδp
l1j

which is given by

−
�
ρ̄

N

�
2X

j;l1
l1≠j

Z
∞

0

dt01gqpðt; t01Þ
Z

d3k01
ð2πÞ3 mvðk01; t01Þk01 · k

×
Z

d3xðqÞl1
d3xðqÞj ð−imκCδp

l1j
fðpÞj Þ exp ðixðqÞ · f ðqÞÞ:

ð134Þ

Note that the position variables only appear in Fourier
phase factors, and thus the integrals over them can be
performed analytically. Using the definition

Cδp
l1j
¼
Z

d3k001
ð2πÞ3kk

00
1k2ðik001Þ⊺Pψ ðk001Þexpð−ik001 ·ðxðqÞl1

−xðqÞj ÞÞ;

ð135Þ

each of the two integrals yields a Dirac δ-function. These
encode the linear system of equations

fðqÞl1
− k001 ¼ 0

fðqÞj þ k001 ¼ 0
⇔

−k01 − k001 ¼ 0

−kþ k01 þ k001 ¼ 0
: ð136Þ

Adding these two equations, we immediately see that the
condition k ¼ 0 is implied. However, the entire contribu-
tion (134) is proportional to k and thus vanishes. In fact, it
can be shown that for any perturbation and correlation
orders, the expectation value of the density function does
not receive corrections.12 Consequently, the expectation
value of the density hρ̃iðk; tÞ ¼ hρ̃0iðk; tÞ ¼ ð2πÞ3δDðkÞρ̄ is
the (Fourier transform of the) mean density as it should
be for statistically homogeneous and isotropic initial
conditions.
The appearance of such a system of linear equations is a

generic feature. In fact, its form can be read off quite easily
from the diagram and the indices of the correlations. Let us
consider the general case of a density r-point correlation

function GðrÞ
ρ ðk1;…; krÞ at nth order perturbation theory

and at mth order in the expansion in the initial correlations.
We temporarily ignore any initial particle autocorrelations,
i.e., terms C••

jj with repeated indices j. For those we do not
have any exponential factor such that they do not contribute
to the system of linear equations, and the corresponding
integrals over wave vectors can be evaluated independently.
Generally, the number of equations is given by rþ n,

as this is the number of particle indices appearing in the
expression for the diagrams. Note that while any interaction
vertex has two indices la and ja, the latter is always
identified with another index by the Kronecker deltas in the
edges. The number of variables in the equations is equal to
rþ nþm. Specifically, these are the arguments k1;…; kr
of the correlation function, the wave vectors integrated over
in the interactions k01;…; k0n and those coming from the
initial correlations k001;…; k00m. Because our diagrams are
acyclic, the system of linear equations always has full rank.
Indeed, the (rþ n) columns corresponding to ðk1;…; kr;
k01;…; k0nÞ are linearly independent.13 Consequently, we
have rþ n independent Dirac δ-functions, which can be

11Note that while Cδp
·· itself is symmetric in the indices, only

the second index is contracted with a factor fðpÞ· , as can be seen
in (125). Thus the contribution for exchanged indices is generally
different.

12For zeroth correlation order, one needs to employ Eq. (A22)
to see that the contributions from positive perturbation orders are
zero. Depending on the choice of initial density-fluctuation power
spectrum Pδ, this subtlety might also come to the rescue at higher
correlation orders, especially if one considers a contribution
involving exclusively momentum-momentum correlations.

13One easy way of proving this is to order the variables as they
appear from right to left in the diagram. The columns corre-
sponding to ðk1;…; krÞ have exactly one nonvanishing entry and
thus form the negative of the unit matrix. The remaining n
columns also have entries −1 on the diagonal and in addition a
single other entry 1 above it. The determinant of the ðrþ nÞ ×
ðrþ nÞ matrix thus is ð−1Þrþn, which implies the linear inde-
pendence of the rows of the entire system.
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used to cancel rþ n integrals over wave numbers k0j and k
00
l .

Of these integrals there are nþm such that naively the
remaining number of integrals is m − r. In practice,
however, it is possible that after solving the linear system
of equations some of the Dirac δ-functions only contain the
arguments ðk1;…; krÞ. This is the case, e.g., for the zeroth
order density expectation value hρ̃0iðk; tÞ as we saw above.
In these cases an equal number of additional integrals
remains. Thus, denoting the number of remaining Dirac
δ-functions by p, the actual number of remaining integrals
is m − rþ p. As an explicit example, the density fluc-
tuation power spectrum Pδ has r ¼ 2 and p ¼ 1 [corre-
sponding to a factor δDðk1 þ k2Þ, where k1 and k2 are the
wave vectors coming from the density vertices], and hence
there are m − 1 integrals remaining. In particular, there is
no contribution coming from the zeroth order term in the
correlation expansion.
Even in the case of a maximum of r remaining Dirac

δ-functions, there is only m integrals over wave vectors
remaining. In particular, it is always the case that all
integrals coming from the interactions can be canceled.
Conversely, in general the integrals over wave vectors
coming from the correlations remain and need to be solved
numerically. In practice, this makes the expansion in the
initial correlations significantly more difficult than the
expansion in the interactions. Indeed, generically we expect
one additional simple time integral for any interaction
order, but one additional difficult multidimensional wave
vector integral for any correlation order.

VI. REPRODUCING LINEAR COSMIC
STRUCTURE GROWTH

We have seen above that going to high orders in the
expansion in the correlations is difficult in practice.
Generically, in the resulting expressions there are multidi-
mensional integrals over wave vectors remaining that are
numerically challenging to solve. It is beyond the scope of
this paper to discuss these computational issues in detail.
Instead, we restrict ourselves to the first order in the
correlation expansion in the following. We will see
momentarily that this way we reproduce exactly the linear
growth of perturbations as predicted by standard hydro-
dynamic cosmic perturbation theory. The nonlinear growth
of structures is exclusively encoded in the higher-order
initial correlations and will be studied in detail in a follow-
up paper [15]. Below we study the density two-point
correlation function from which we extract the density
fluctuation power spectrum—an important observable in
the context of cosmic structure formation. In an analogous
fashion, one can derive higher correlation functions and
obtain, e.g., the density fluctuation bi- and trispectra.
Before we can interpret the results we obtain for the

power spectrum, we need to lay the groundwork by

specifying the form of the propagator gqpðt; t0Þ and the
two-particle interaction potential vðk; tÞ in the context of
cosmic structure formation. In particular, this requires us to
transfer our construction of KFT on an expanding back-
ground. Similar to numerical simulations of cosmic struc-
ture formation, Einstein’s theory of general relativity is
only incorporated on the background level, while the
particle interaction is given by Newtonian gravity, ignoring
baryonic, radiative, and relativistic effects at t > ti. This is
a well-established approximate treatment on subhorizon
scales and can be justified both theoretically and numeri-
cally (cf., e.g., [23]).

A. Free linear power spectrum

In our quest for the linear power spectrum, we start with
the expression for the density two-point correlation func-
tion in zeroth order perturbation theory given by

ð137Þ

The aim of this subsection is to obtain the expectation
value of this observable and to extract the density fluc-
tuation power spectrum from it. To do so, we integrate the
expression in Eq. (137) over the probability distribution
given in Eq. (112). As explained above, we limit ourselves
to the contributions up to first order in the expansion in the
initial particle correlations. Specifically, these contributions
are proportional to 1, Dδδ

m1m2
, Dδp

m1m2
, and Dpp

m1m2
as well as

the corresponding (and here in all cases equal) contribu-
tions for swapped indices. Contributions with repeated
indices such as Dpp

m1m1
vanish due to the appearance of

factors such as k1δDðk1Þ.
The calculations of these contributions are analogous

to the ones in the previous section. First, we rewrite the
integral over ðG̃ρρÞ0ðk1; k2; t; xÞ in terms of the character-
istic function φxðf Þ and utilize its expansions in the
correlations. Then we consider each contribution individu-
ally. As an example, for the correlation contribution Dδp

m1m2

it is14

14Our notation in the first line is somewhat cavalier. In
particular, we use the summation indices within G̃ρρ also outside
of it. Moreover, we cancel by hand the exponential factors
involving xðpÞ even though technically they go away through
integration.
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�
ρ̄

N

�
2
Z

d3xðqÞm1
d3xðqÞm2

ðG̃ρρÞ0ðk1; k2; t; xÞ exp ð−if ðpÞ · xðpÞÞð−imκCδp
m1m2

fðpÞm2
Þ

¼ −imκ

�
ρ̄

N

�
2X
m1 ;m2
m1≠m2

Z
d3xðqÞm1

d3xðqÞm2
exp ð−iðk1 · xðqÞm1

þ k2 · x
ðqÞ
m2
ÞÞ

×
Z

d3k001
ð2πÞ3 ðik

00
1kk001k2Þ · ð−gqpðt; tiÞk2ÞPψ ðk001Þ exp ð−ik001 · ðxðqÞm1

− xðqÞm2
ÞÞ ð138Þ

¼ mκ

�
ρ̄

N

�
2

gqpðt; tiÞ
X
m1 ;m2
m1≠m2

Z
d3k001
ð2πÞ3 kk

00
1k2k001 · k2Pψðk001ÞδDðk1 þ k001ÞδDðk2 − k001Þ ð139Þ

¼ ð2πÞ3ρ̄2mκgqpðt; tiÞ
NðN − 1Þ

N2
kk1k4Pψ ðk1ÞδDðk1 þ k2Þ: ð140Þ

In the limit of large particle numbers N → ∞, the
fraction in the last line approaches unity. Moreover, we
can replace the initial power spectrum of the velocity
potential PψðkÞ by the initial density fluctuation power
spectrum PδðkÞ ¼ κ2kkk4Pψ ðkÞ.
The full list of nonzero contributions is given by

1∶ ð2πÞ6ρ̄2δDðk1ÞδDðk2Þ; ð141Þ

Dδδ
m1m2

; Dδδ
m2m1

∶ ð2πÞ3 ρ̄
2

2
Pδðk1ÞδDðk1 þ k2Þ; ð142Þ

Dδp
m1m2

; Dδp
m2m1

∶ ð2πÞ3ρ̄2mgqpðt; tiÞ
κ

Pδðk1ÞδDðk1 þ k2Þ;
ð143Þ

Dpp
m1m2

; Dpp
m2m1

∶ ð2πÞ3 ρ̄
2

2

�
mgqpðt; tiÞ

κ

�
2

Pδðk1ÞδDðk1 þ k2Þ:

ð144Þ

We remark that the factor of 1
2
in the expression from

contributions proportional to Dδδ
·· is the prefactor of the

second order term in the expansion in Eq. (121).
Combining these four contributions, the expectation value
for the density two-point correlation function is given by

hðG̃ρρÞ0iðk1; k2; tÞ
¼ ð2πÞ6ρ̄2δDðk1ÞδDðk2Þ

þ ð2πÞ3ρ̄2δDðk1 þ k2Þ
�
1þmgqpðt; tiÞ

κ

�
2

Pδðk1Þ

þOðC2Þ: ð145Þ

This is precisely the form of a general two-point
correlation function of a statistically homogeneous density
field as given in Eq. (83). In particular, we can extract the
density fluctuation power spectrum

ðP̃δÞ0ðk1; tÞ ¼
�
1þmgqpðt; tiÞ

κ

�
2

Pδðk1Þ þOðC2Þ: ð146Þ

The subscript 0 in ðP̃δÞ0ðk1; tÞ indicates that we are
working in zeroth order perturbation theory for the inter-
actions between the particles. The term OðC2Þ symbolizes
that we are working up to first order in the expansions in the
initial correlations between the particles. We observe that
the power spectrum in Eq. (146) is proportional to the
initial power spectrum. This should come as no surprise
given that we argued earlier that the first order correlation
contributions to the power spectrum do not come with any
integrals over k.

B. Higher-order linear power spectrum

Our next step is to compute the first order correction to
the two-point density correlation function. It is given by
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ð147Þ

¼
X
m1

X
m2≠m1

exp ð−iðk1 · φ̄ðqÞ
m1
ðt; xÞ þ k2 · φ̄

ðqÞ
m2
ðt; xÞÞÞ

X
l1≠m1

Z
t

ti

dt01gqpðt; t01Þ

×
Z

d3k01
ð2πÞ3mvðk01; t01Þk01 · k1 exp ðik01 · ðφ̄ðqÞ

m1
ðt01; xÞ − φ̄ðqÞ

l1
ðt01; xÞÞÞ þ ð1 ↔ 2Þ ð148Þ

for explicit initial conditions x. The expression for the
second diagram is the same as for the first diagram, but the
wave vectors k1 and k2 as well as the indicesm1 andm2 are
swapped. We have already familiarized ourselves with the
procedure of integrating such expressions over our prob-
ability distribution of initial values PðxÞ. As a first step, we
read off the nonzero components of f ðpÞ, which are given by

fðpÞm1
¼ −gqpðt; tiÞk1 þ gqpðt01; tiÞk01;

fðpÞm2
¼ −gqpðt; tiÞk2;

fðpÞl1
¼ −gqpðt01; tiÞk01 ð149Þ

for the first diagram. Then, we rewrite the entire expression
for hðG̃ρρÞ1i in terms of the characteristic function and
expand to first order in the correlations.
We know already that the only contributions D••

jl are
those where indices j and l already appear in the expression

of ðG̃ρρÞ1. However, there is a very useful further condition.
Namely, any indexm corresponding to the leftmost vertices
of the diagram must appear as an index of some correlation
factor D••

jl. This is because these leftmost vertices always
come with a single exponential phase factor containing the

particle position xðqÞm which upon integration yields a Dirac
δ-function containing the corresponding wave vector. Since
this wave vector always appears as an overall factor (or as
the argument of the initial power spectrum), the expression
results in zero. Examples are the indices l1 and m2 for the
first diagram in Eq. (147). Since we have only two indices
of the correlation factors available in our first order
expansion, the only nonzero contributions come from
Dδδ

m2l1
, Dδp

m2l1
, and Dpp

m2l1
as well as their counterparts with

exchanged indices.
To provide an example for the calculation, let us consider

the contribution of Dδδ
m2l1

from the first diagram. It is given
by (cf. footnote 14)

1

2

�
ρ̄

N

�
3
Z

d3xðqÞm1
d3xðqÞm2

d3xðqÞl1
ðG̃ρρÞ1ðk1; k2; t; xÞ exp ðif ðpÞ · xðpÞÞðκ2Cδδ

m2l1
Þ

¼ κ2

2

�
ρ̄

N

�
3X

m1 ;m2
m1≠m2

X
l1≠m1

Z
d3xðqÞm1

d3xðqÞm2
d3xðqÞl1

exp ð−iðk1 · xðqÞm1
þ k2 · x

ðqÞ
m2
ÞÞ
Z

t

ti

dt01gqpðt; t01Þ

×
Z

d3k01
ð2πÞ3mvðk01; t01Þk01 · k1 exp ðik01 · ðxðqÞm1

− xðqÞl1
ÞÞ
Z

d3k001
ð2πÞ3 ð−kk

00
1k4ÞPψðk001Þ exp ð−ik001 · ðxðqÞm2

− xðqÞl1
ÞÞ ð150Þ

¼ −
κ2

2

�
ρ̄

N

�
3X

m1 ;m2
m1≠m2

X
l1≠m1

Z
t

ti

dt01gqpðt; t01Þ
Z

d3k01
ð2πÞ3mvðk01; t01Þk01 · k1

×
Z

d3k001
ð2πÞ3 kk

00
1k4Pψ ðk001Þð2πÞ9δDðk1 − k01ÞδDðk2 þ k001ÞδDðk01 − k001Þ ð151Þ

¼ −ð2πÞ3 κ
2

2

�
ρ̄

N

�
3

NðN − 1Þ2
Z

t

ti

dt01gqpðt; t01Þmvðk1; t01Þkk1k6Pψðk1ÞδDðk2 þ k1Þ: ð152Þ
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As for the zeroth order case, we take the limit of the particle number N going to infinity and replace the power spectrum
for the initial velocity potential Pψ by the initial density fluctuation power spectrum Pδ. Then, the nonzero contributions are
given by

Dδδ
m2l1

; Dδδ
l1m2

∶ − ð2πÞ3 ρ̄
3

2
Pδðk1ÞδDðk1 þ k2Þ

Z
t

0

dt01gqpðt; t01Þmkk1k2vðk1; t01Þ; ð153Þ

Dδp
m2l1

∶ − ð2πÞ3ρ̄3Pδðk1ÞδDðk1 þ k2Þ
Z

t

0

dt01gqpðt; t01Þ
m2gqpðt01; tiÞ

κ
kk1k2vðk1; t01Þ; ð154Þ

Dδp
l1m2

∶ − ð2πÞ3ρ̄3Pδðk1ÞδDðk1 þ k2Þ
Z

t

0

dt01gqpðt; t01Þ
m2gqpðt; tiÞ

κ
kk1k2vðk1; t01Þ; ð155Þ

Dpp
m2l1

; Dpp
l1m2

∶ − ð2πÞ3 ρ̄
3

2
Pδðk1ÞδDðk1 þ k2Þ

Z
t

0

dt01gqpðt; t01Þ
m3gqpðt01; tiÞgqpðt; tiÞ

κ2
kk1k2vðk1; t01Þ: ð156Þ

Combining the contributions listed above, we obtain the first order correction to the expectation value to the density
fluctuation power spectrum

ðP̃δÞ1ðk1; tÞ ¼ −2
Z

t

ti

dt01gqpðt; t01Þ
�
1þmgqpðt01; tiÞ

κ

��
1þmgqpðt; tiÞ

κ

�
mρ̄kk1k2vðk1; t01ÞPδðk1Þ þOðC2Þ; ð157Þ

where the factor of 2 in front accounts for the contribution
of the second diagram. To identify the two contributions
we assumed that the two-particle interaction potential
vðk1; t01Þ is symmetric in the wave vector; i.e., it is
vð−k1; t01Þ ¼ vðk1; t01Þ. We observe that if the potential is
of Newtonian form, i.e., vðk1; t01Þ ∝ kk1k−2, we again only
obtain a rescaling of the initial density fluctuation power
spectrum.
Going to higher orders, there is a crucial simplification

when we only consider the first order contributions in the
correlation expansion. Let us consider the diagram

ð158Þ

which is part of the second order two-point density
correlation function ðG̃ρρÞ2ðk1; k2; t; xÞ. We argued
above that all leftmost vertices must have their respective
particle indices appear as indices of the correlation

contributions D••
·· . This is because these vertices—here

both interaction vertices and the lower density vertex—
feature a Fourier phase factor of a particle position (with
indices l1, l2, and m2, respectively) which does not appear
elsewhere in the expression. However, in linear order of the
correlation expansion, we have only two slots for indices;
hence there always is one of these phase factors left, which
subsequently sets the corresponding wave vector to zero
and leads to a vanishing result for the entire term. The same
is even true if we consider the contributions proportional to
δjajb in the Feynman rule for the propagator given in

Eq. (61), because then a Fourier phase factor involving xðqÞlb
remains. Hence, there are yet more contributions that may
be ignored when considering linear initial particle corre-
lations only.
Since all diagrams for the density two-point function are

forests consisting of two trees with density vertices as their
roots, these trees must never branch out to make sure that
there are only two leftmost vertices. Hence, the nth order
contribution to the density two-point correlation function is
given by

ð159Þ

where the sum over the orderings includes all the possible ways the interaction vertices in the upper and lower trees can be
horizontally positioned relative to each other (which might require relabeling to abide by time ordering). However, recalling
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our discussion of time ordering in Sec. IV C, this sum can be completely avoided by demanding time ordering only within
each tree instead of for the entire diagram. As an example, the two diagrams

ð160Þ

combine (after relabeling 1 ↔ 2 in, e.g., the second diagram) into a single expression in which both t01 and t
0
2 are integrated

from ti to t.
Let us examine the contributions to the power spectrum in zeroth and first interaction orders given in Eqs. (146) and (157)

once more. In both cases, the combined contributions from Dδδ
·· , Dδp

·· , and Dpp
·· can be written as a product of two terms of

which one depends on the time variables of the upper and the other on the time variables of the lower tree.15 This remains
valid at higher orders and allows us to completely decouple the two trees in the diagrams contributing to the power
spectrum. Indeed, we arrive at

ðP̃δÞnðk1; tÞ ¼
Xn
r¼0

frðk1; tÞfn−rðk1; tÞPδðk1Þ þOðC2Þ; where ð161Þ

frðk; tÞ ¼
8<
:
	
1þ mgqpðt;tiÞ

κ



; r ¼ 0;

−
R
t
ti
dt0rgqpðt; t0rÞfr−1ðk; t0rÞmρ̄kkk2vðk; t0rÞ; r > 0:

ð162Þ

Note that the quantity frðk; tÞ is defined iteratively. As an example, it is

f2ðk; tÞ ¼
Z

t

ti

dt02

Z
t0
2

ti

dt01gqpðt; t02Þgqpðt02; t01Þ
�
1þmgqpðt01; tiÞ

κ

�
m2ρ̄2kkk4vðk; t02Þvðk; t01Þ: ð163Þ

For the calculation of frðk; tÞ on an expanding background, we use the expressions derived in Appendix A. In this
case, it is

f0ðk; aÞ ¼ 1þ
Z

a

ai

da00
ma2i HðaiÞfðaiÞ

meffða00Þ
and ð164Þ

frðk; aÞ ¼ −
Z

a

ai

da0rfr−1ðk; a0rÞ
Z

a

a0r
da00

1

meffða00Þ
θða − a0rÞmeffða0rÞρ̄kkk2

3Ωmða0rÞ
2ða0rÞ2ρ̄kkk2

ð165Þ

¼ −
3

2

Z
a

ai

da0rfr−1ðk; a0rÞ
Z

a

a0r
da00

meffða0rÞΩmða0rÞ
ða0rÞ2meffða00Þ

ð166Þ

for r > 0 and k ≠ 0.16 Aside from exposing that frðk; aÞ is dimensionless and scale invariant for the case of Newtonian
gravitational interaction, this also shows that the particle mass m and the mean density ρ̄ do not affect the result of this
calculation. The numerical evaluation of this expression can be done iteratively, such that the computational complexity is
linear in the perturbation order. Depending on the desired numerical accuracy, the calculation takes about two minutes per
perturbation order on a laptop.
In Fig. 3 we plot the growth of the amplitude of the power spectrum using Eq. (161) up to 15th order in perturbation

theory as a function of the scale factor for the standard cosmological model. The colorful curves correspond to the orders in
perturbation theory, starting from zeroth order with the lowest blue curve. The orange curve above adds the first order

15This is somewhat concealed in these cases by the fact that both density vertices are evaluated at the same time t. We can write these
contributions from the different kinds of initial correlations as a product because it happens to hold that 2Dδδ

jl D
pp
jl ¼ Dδp

jl D
δp
lj upon

integrating over xðqÞj and xðqÞl (the integrals identify the wave vectors and cancel the integrals in the correlation factors C••
·· ).

16Note that on an expanding background, the factorm in Eq. (162) needs to be replaced bymeffða0rÞ, as is evident from comparing the
equations of motion in Eq. (41) with the Hamiltonian in Eq. (A11).
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correction, the green curve additionally the second order
correction, and so forth. Visually, the curves converge
against the dashed black line, which is simply the square of
the linear growth factor. Going to high enough orders in
KFT perturbation theory for linear initial correlations, we
fully recover the linear growth of the power spectrum.
This is quantitatively verified by Fig. 4. Its left panel

shows the residuals of the previous plot, i.e., the relative
difference between the expected linear growth and the
perturbative approximations. The zeroth order curve
(leftmost blue) is accurate to the percent level only up to
scale factor a ≈ 0.0010, which is almost immediately after
the scale factor at which we set our initial conditions
aðtiÞ ≈ 0.0009. However, as we include more and more
orders in perturbation theory, our approximation remains
accurate for longer. If we go up to about 12th order,
we retain percent-level accuracy for the entire evolution.

The right panel of Fig. 4 shows the relative mismatch at
scale factor a ¼ 1, i.e., at the end of evolution, plotted
against the order of perturbation. It can clearly be seen that
the perturbation series converges toward the correct value.

VII. CONCLUSIONS AND OUTLOOK

Based on the path integral approach to classical mechan-
ics, KFT provides a framework to obtain observables of a
classical physical system subject to probabilistic initial
conditions. In this work we have disentangled the deter-
ministic evolution and the averaging over the initial con-
ditions. In particular, we have written down the generating
functional with explicit dependence on the initial conditions
in Eqs. (29) and (30). These general expressions—valid for
any Hamiltonian system that allows for a split into free
evolution and interactions—can be taken as a starting point
for obtaining perturbative expressions for observables.
Indeed, it is possible to generalize the Feynman rules we
derived in Sec. IV B to this general setting.
For the sake of concreteness, we presented the perturba-

tive approach to KFT specialized to interacting N-body
systems. Conceptually, the perturbative approach expands in
the force between particles and thus, effectively, in the
deviation from the free trajectories. We have argued that the
perturbative expansion of KFT adds the interactions in a
relatively slow fashion. Therefore, in systems for which the
free evolution yields a good approximation to an observable,
we expect that the perturbation expansion of KFT provides
stable convergence to this observable. We point out that our
main application, cosmic structure formation, has precisely
this property—free evolution already provides a reasonable
estimate of the density fluctuation power spectrum.
The main result of our work is the systematic perturba-

tion scheme presented in Sec. IV. Using our Feynman rules
we can write down the mathematical expressions for any
density r-point correlation functions for arbitrary order in
the perturbative expansion. They also have a clear physical

FIG. 3. Evolution of the amplitude of the power spectrum
against scale factor a for the cosmological standard model. The
lowest curve is the zeroth order approximation, and the curves
above add incrementally the higher-order corrections. Shown are
the curves up to 15th order in perturbation theory. The highest-
order curves are visibly indistinguishable from the expected
linear growth given by the dashed black line [19].

FIG. 4. Left panel: Relative difference between the expected linear growth of the power spectrum and the perturbative approximations
for up to 15th order. The x axis is scale factor a. Hence this panel effectively shows the residuals of Fig. 3. Right panel: As the left panel,
but the relative difference is plotted against the perturbation order at final scale factor a ¼ 1. Percent-level accuracy (indicated by the
gray dashed curve) is achieved by going to at least 12th perturbation order [19].
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interpretation: At interaction vertices the outgoing particle is
perturbed by the entire system via the two-particle inter-
action potential. If there are any ingoing edges, some of the
particles participating in this interaction might already have
been perturbed by earlier interactions. The expansion
parameter is the interaction potential such that the nth order
contribution to an observable accounts for all combinations
of n-fold perturbation of particles of the system.
Up to this point, the entire scheme was explicitly

dependent on a specific initial phase space position for
the system x. The true potential of KFT lies in the averaging
process of observables over a probability distribution of the
initial values PðxÞ. Crucially, this averaging can be done in
large part analytically. In particular, even in the limit of the
particle number becoming infinite, all integrals over initial
particle positions and momenta can be performed analyti-
cally for the observables of interest. This is due to the fact
that the initial values x only appear inside Fourier phase
factors in our Feynman rules, which allows us to express
expectation values for observables in terms of the character-
istic functionΦxðf Þ of the probability distribution PðxÞ. We
explained this using a toy model in Sec. VA.
The initial conditions for cosmic structure formation

feature a Gaussian random field ψ which acts as the
velocity potential and determines the density contrast δ
via its Laplacian. This gives rise to density-density, density-
momentum, and momentum-momentum correlations C••

between different particles. The complicated nature of this
probability distribution and its characteristic function
[given in Eq. (115)] suggests an expansion in the initial
correlations C••. In doing so, the particle positions appear
exclusively inside Fourier phase factors and thus can be
integrated analytically. In fact, these integrations yield
Dirac δ-functions that cancel the wave vector integrals
from the expansion in the interactions.
We have given a general recipe to deduce the form of any

r-point density correlation function in mth order in the
expansions in initial correlations and in nth order in the
expansion in the interactions. Combining the expressions
for explicit initial conditions obtained from the Feynman
rules with appropriate combinations of the correlation
factors given in Eq. (125), we obtain the relevant terms.
We have automated these processes and are able to produce
all terms of any order in our two expansions. The remaining
difficulties are in, first, the rapidly growing number of
diagrams and correlation combinations at higher orders
and, second, the numerical evaluation of the remaining
integrals in their mathematical expressions. In Sec. V E we
provided a precise count of the remaining integrals in our
expressions for expectation values of density r-point
functions in cosmology.
From this count we observe that for any interaction order

there remains one time integral, while for any correlation
order we have one leftover integral over a wave vector. The
precise count of the wave vectors we need to integrate over

is lower if we calculate higher-point correlation functions,
but higher if there are leftover Dirac δ-functions. Some
simple algebra reveals that if we consider linear correla-
tions, then the terms contributing to the density fluctuation
power spectrum do not feature any integrals over wave
vectors. In fact, we have seen that the power spectrum can
be calculated via an iterative method in this case which
makes the numerical evaluation rather efficient.
One key feature of the case of linear initial correlations is

that the density fluctuation power spectrum receives an
enhancement that is independent of wave number; i.e., we
obtain linear growth. By computing the relevant contribu-
tions, we show that KFT fully reproduces the expected
linear growth of the power spectrum. Setting up initial
conditions at redshift z ¼ 1090, expanding these up to
linear order in the initial density and momentum correla-
tions, and solving the Hamiltonian dynamics perturbatively
up to 12th order in the particle interactions reproduces the
amplitude of the power spectrum to percent accuracy.
In Fig. 3 we show how the various perturbation orders
approximate the expected linear growth Pδðk; aÞ ∝ DþðaÞ2
up to increasingly low redshift. Given that the perturbative
expansion is essentially in the number of interactions per
particle, this means that surprisingly few gravitational
encounters are sufficient to accurately reproduce linear
structure growth.
The fact that linear initial correlations fully reproduce

linear growth of the power spectrum also implies that the
entire nonlinear growth of the power spectrum is due to
nonlinear initial correlations. In particular, this implies that
the momentum autocorrelations appearing at higher corre-
lation orders are exactly canceled, most likely order by
order in the expansion. We therefore caution against
treating these autocorrelations separately as a damping
term. The formalism we have presented can be used to
study nonlinear correlations, too, and we will present the
results in a future paper [15]. We also intend to study the
relationship of our perturbative approach to the resummed-
KFT (RKFT) formalism [13].
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APPENDIX A: PARTICLES ON AN EXPANDING
BACKGROUND

When incorporating an expanding background into
KFT, the first decision to make is whether our coordinates
x ∈ X are comoving or absolute. While both choices are
viable, there are a couple of advantages of working with
comoving coordinates. First, in comoving coordinates free
motion is along straight paths and, second, we immedi-
ately obtain the commonly used comoving wave vectors
via Fourier transform. Therefore, let x be comoving
coordinates and φðtÞ the comoving phase space trajectory,
i.e., the physical coordinates of the jth particle are given

by rjðtÞ ¼ aðtÞφðqÞ
j ðtÞ.

We remark that by using a uniformly expanding universe
described by a scale factor aðtÞ, we implicitly assumed
homogeneity and isotropy of our N-particle system when
averaged over large enough volumes. Since we are working
in a flat and thus infinite universe, this necessitates taking the
limit of the particle numberN going to infinity. Preferring to
work with a finite dimensional phase space for the moment,
we postpone taking this limit. We note, however, that
working with finite N can also be viewed as considering a
finite volumeV of an infinite universe filled with statistically
homogeneously and isotropically distributed particles.When
we later sendN to infinity for constant average density ρ̄, we
implicitly take simultaneously the limit V → ∞.
Labeled by physical coordinates, the particles are subject

to the Lagrangian

Lðr;∂tr;tÞ¼
m
2
∂trðtÞ ·∂trðtÞ−

m
2

X
j

X
k≠j

νEðrkðtÞ−rjðtÞ;tÞ;

ðA1Þ

where we introduced the Eulerian two-particle interaction
potential νE. We can rewrite the second term of L as

m
2

X
j

X
k≠j

νEðrkðtÞ − rjðtÞ; tÞ ¼ mVEðt; rÞ; ðA2Þ

where the Eulerian potential VEðt; rÞ is defined in analogy
to Eq. (42). This expression should be thought of as the
potential energy of the N-particle system. If we regard one
of the particle positions r ≔ rlðtÞ as a free variable, we can
write down the cosmological Poisson equation

∇2
rVEðt; rÞ ≔

�
δ

δrlðtÞ
·

δ

δrlðtÞ
�
VEðt; rÞ

����
rlðtÞ≕ r

¼ 4πGmρEðr; rðtÞÞ − Λ: ðA3Þ

Here, G is the gravitational constant and Λ the
cosmological constant. The (Eulerian) particle number
density field ρEðr; rðtÞÞ is simply given by a sum of
Dirac δ-functions,

ρEðr; rðtÞÞ ¼
X
j

δDðr − rjðtÞÞ: ðA4Þ

Proceeding similarly to [17] and Sec. 7 of [24] we
translate the above to comoving coordinates φ. Up to a total
derivative, the above Lagrangian is equal to

LðφðqÞ; ∂tφðqÞ; tÞ
¼ m

2
aðtÞ2∂tφðqÞðtÞ · ∂tφðqÞðtÞ −mVLðt;φðqÞÞ; ðA5Þ

where the peculiar Lagrangian potential

VLðt;φðqÞÞ ≔ VEðt; aφðqÞÞ þ 1

2
aðtÞð∂2t aðtÞÞφðqÞðtÞ · φðqÞðtÞ

ðA6Þ

appears. Using Eq. (A3) as well as the cosmic acceleration
equation, one can show that the Lagrangian potential VL
satisfies

∇2
qVLðt;φðqÞÞ ≔

�
δ

δφðqÞ
l ðtÞ

·
δ

δφðqÞ
l ðtÞ

�
VLðt;φðqÞÞ

����
φðqÞ
l ðtÞ≕ q

¼ 4πGm
aðtÞ ðρðq;φðqÞðtÞÞ − ρ̄Þ: ðA7Þ

In this equation we introduced the comoving number
density ρðq;φðqÞðtÞÞ ≔ aðtÞ3ρEðaðtÞq; aðtÞφðqÞðtÞÞ which
henceforth, as well as in the main document, is used
exclusively. Note that the mean comoving number density
ρ̄ is time independent.
Returning to the Lagrangian (A5) a central goal of this

section is to perform a Legendre transformation to obtain
the Hamiltonian. However, it is convenient to first change
our time coordinate from t to scale factor a. Let us rewrite
the comoving Lagrangian (A5) in terms of this time
parameter. First, observe that

da ¼ da
dt

dt ¼ aHðaÞdt ðA8Þ

such that LðtÞ ¼ ðaHðaÞÞLðaÞ to ensure invariance of the
action. As usual, H ¼ a−1∂ta is the Hubble function. In
addition, we need to replace the time derivatives of φðqÞ
with derivatives with respect to a. Then the Lagrangian
becomes

LðφðqÞ; ∂aφðqÞ; aÞ ¼ meffðaÞ
2

∂aφðqÞðaÞ · ∂aφðqÞðaÞ

−
m

aHðaÞVLða;φðqÞÞ; ðA9Þ

where we defined the time-dependent effective particle
mass
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meffðaÞ ≔ ma3HðaÞ: ðA10Þ

Next, we perform the Legendre transform of the
Lagrangian (A5) and arrive at the Hamiltonian

HðφðqÞ;φðpÞ; aÞ ¼ φðpÞðaÞ · φðpÞðaÞ
2meffðaÞ

þmeffðaÞVða;φðqÞÞ

ðA11Þ

featuring the conjugate momentum

φðpÞðaÞ ¼ ∂LðφðqÞ; ∂aφðqÞ; aÞ
∂ _φðqÞðaÞ ¼ meffðaÞ∂aφðqÞðaÞ: ðA12Þ

Moreover, we redefined the potential

Vða;φðqÞÞ ≔ 1

a4HðaÞ2 VLða;φðqÞÞ ðA13Þ

such that the Hamiltonian equations of motion are precisely
given by Eq. (41) upon replacing t ↦ a and m ↦ meffðaÞ.
Next, we want to derive the form of Green’s function and
the two-particle interaction potential for this Hamiltonian.
The free equations of motion take the form

∂aφ
ðqÞ
j ðaÞ¼ 1

meffðaÞ
φðpÞ
j ðaÞ and ∂aφ

ðpÞ
j ðaÞ¼ 0 for all j:

ðA14Þ

One can easily verify that a suitable Green’s function for
these equations is given by

Gða; a0Þ ¼
�
θða − a0ÞI3 gqpða; a0ÞI3

0 θða − a0ÞI3

�
with ðA15Þ

gqpða; a0Þ ¼
Z

a

a0

da00

meffða00Þ
θða − a0Þ: ðA16Þ

Note that the expression gqpðt; t0Þ ¼ 1
m ðt − t0Þθðt − t0Þ

derived in the special case of a static background in Eq. (46)
is recovered upon replacing a ↦ t and meffðaÞ ↦ m.
The second object we are interested in is the two-particle

interaction potential. The potential V satisfies the Poisson
equation

∇2
qVða;φðqÞÞ ¼ 4πGm

a5HðaÞ2 ðρðq;φ
ðqÞðaÞÞ − ρ̄Þ: ðA17Þ

We can define the (comoving) two-particle interaction
potential ν implicitly via a decomposition of the potential
V as

Vða;φðqÞÞ≕ 1

2

X
j

X
k≠j

νðφðqÞ
k ðaÞ − φðqÞ

j ðaÞ; aÞ: ðA18Þ

Similarly, the density field can be written as a sum
of Dirac δ-functions, analogous to Eq. (A4). Using these,
the Poisson equation decomposes into contributions for
individual particles

∇2
qνðq; aÞ ¼

4πGm
a5HðaÞ2

�
δDðqÞ −

ρ̄

N

�
: ðA19Þ

Performing a Fourier transform q ↦ k, this equation
becomes

−kkk2νðk; aÞ ¼ 4πGm
a5HðaÞ2

�
1 −

ð2πÞ3δDðkÞ
V

�
; ðA20Þ

where we used that ρ̄ ¼ N
V. For k ≠ 0, this simply yields the

familiar Newtonian scaling as νðkÞ ∝ kkk−2. Specifically,
it is

νðk; aÞ ¼ −
4πGm

a5HðaÞ2kkk2 ¼ −
3ΩmðaÞ
2ρ̄a2kkk2 for k ≠ 0;

ðA21Þ

where in the last step we introduced the matter density
parameter ΩmðaÞ. Interestingly, however, the Dirac δ-
function originating from the mean density does have an
effect for k ¼ 0. In that case, we observe that

δDðkÞkkk2νðk; τÞ

¼ −
3ΩmðaÞ
2ρ̄a2

�
δDðkÞ −

ð2πÞ3δDðkÞδDðkÞ
V

�
¼ 0 ðA22Þ

using the identity ð2πÞ3δDðkÞδDðkÞ¼VδDðkÞ. This subtlety
is actually of importance when calculating certain expect-
ation values.17 Indeed, naively using Eq. (A21) to calculate
the expectation value for the density would yield

hρiðq; aÞ ¼ ρ̄ exp

�Z
a

ai

da0gqpða; a0Þ
�

ðA23Þ

instead of the correct result hρiðq; aÞ ¼ ρ̄.

17We remark that in Sec. 7.3 of [24] this issue is dealt with by
demanding that the Fourier transform of the potential should be
well-defined, obtaining a more general condition than Eq. (A22).
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APPENDIX B: POISSON EQUATION FOR THE
INITIAL DENSITY CONTRAST

To set up cosmological initial conditions, we need a
relationship between the density and the velocity potential.
This can be achieved by using the continuity equation of
hydrodynamics which is given by

∂ρEðr; tÞ
∂t

þ∇r · ðρEðr; tÞvEðr; tÞÞ ¼ 0: ðB1Þ

Here, the subscript E for the number density field ρE and
the velocity field vE indicates that this equation is valid in
the Eulerian description of hydrodynamics which relies
on the physical coordinates r. We can go over to the
Lagrangian description by splitting the velocity and density

fields into a background and a perturbative component.
Specifically, we write

vEðr; tÞ ¼ HðtÞrþ vðr; tÞ and ðB2Þ
ρEðr; tÞ ¼ ρ̄EðtÞð1þ δðr; tÞÞ; ðB3Þ

where HðtÞ ¼ aðtÞ−1∂taðtÞ is the Hubble function. We
assume that the Lagrangian peculiar velocity field vðr; tÞ
and the density contrast δðr; tÞ are small compared to the
Hubble flow and unity, respectively.
Defining the total time derivative

d
dt

¼ ∂

∂t
þHðtÞr · ∇r; ðB4Þ

the continuity equation (B1) assumes the form

�
d
dt

−HðtÞr · ∇r

�
ðρ̄EðtÞð1þ δðr; tÞÞÞ þ∇r · ððρ̄EðtÞð1þ δðr; tÞÞÞðHðtÞrþ vðr; tÞÞÞ ¼ 0 ðB5Þ

⇔

�
1

ρ̄EðtÞ
dρ̄E
dt

ðtÞ þ 3HðtÞ
�
ð1þ δðr; tÞÞ þ dδ

dt
ðr; tÞ þ∇r · vðr; tÞ þOðδðr; tÞvðr; tÞÞ ¼ 0: ðB6Þ

In the last term in the second line we collected all terms
quadratic in the perturbation. In accordance with the usual
treatment in linear hydrodynamic perturbation theory—
which is valid in the very early universe where we set up
our initial conditions—we will neglect these terms in the
following. Furthermore, the first term in the second
line yields zero by means of the Friedmann equation.
Indeed, it is

dρ̄E
dt

ðtÞ þ 3HðtÞρ̄EðtÞ ¼ 0 ðB7Þ

for pressureless cold dark matter even in a universe filled by
a mixture of noninteracting fluids. Finally, we introduce
comoving coordinates by rðtÞ ¼ aðtÞqðtÞ and obtain the
Lagrangian version of the continuity equation

dδ
dt

ðq; tÞ þ 1

aðtÞ∇q · vðq; tÞ ¼ 0: ðB8Þ

As is common in linear hydrodynamic perturbation
theory, we choose a product ansatz for the density contrast;
i.e., we assume that δðq; tÞ ¼ DþðtÞδðqÞ. The objectDþðtÞ
is the so-called linear growth factor which we normalize via
the condition DþðtiÞ ¼ 1. This implies that δðqÞ ¼ δðq; tiÞ
is simply the initial density contrast. Moreover, we recall
that we made the assumption that the velocity field is

irrotational at initial time ti; i.e., we can write
vðq; tiÞ ¼ ∇rψðqÞ ¼ aðtiÞ−1∇qψðqÞ, where ψ is the veloc-
ity potential. Last, we change our time parameter from
cosmic time t to scale factor a and obtain

δðqÞ ¼ −κ∇2
qψðqÞ with

κ ¼
�
aðtiÞ2

dDþ
dt

ðtiÞ
�

−1
¼ 1

a2i HðaiÞfðaiÞ
: ðB9Þ

Here we introduced the logarithmic derivative fðaÞ ¼
d lnDþ
d ln a ðaÞ and used DþðaiÞ ¼ 1.
The derivation of the Poisson equation for the initial

density contrast relied on a number of assumptions that we
want to collect here. First, we assumed the validity of linear
hydrodynamic perturbation theory at (and only at) the
initial time ti. This includes the assumption of the existence
of a velocity field v. Moreover, we assumed that this
velocity field is ir-rotational at initial time ti such that there
exists a velocity potential ψðqÞ. For the density contrast we
assumed that we can at initial time factorize the spatial and
temporal dependencies, making use of the linear growth
factorDþðaÞ. Quantitatively, we only need the inputs fðaiÞ
and HðaiÞ. We stress that we only need to know these
quantities at initial scale factor ai.
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