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Gravitational waves from a phase transition associated with the generation of the masses of elementary
particles are within the reach of future space-based detectors such as LISA. A key determinant of the
resulting power spectrum, not previously studied, is the lifetime of the acoustic turbulence which follows.
We study decaying acoustic turbulence using numerical simulations of a relativistic fluid in two
dimensions. Working in the limit of nonrelativistic bulk velocities, with an ultrarelativistic equation of
state, we find that the energy spectrum evolves toward a self-similar broken power law, with a high wave
number behavior of k−2.08�0.08, cut off at very high k by the inverse width of the shock waves. Our model
for the decay of acoustic turbulence can be extended to three dimensions using the universality of the high-
k power law and the evolution laws for the kinetic energy and the integral length scale. It is used to build an
estimate for the gravitational wave power spectrum resulting from a collection of shock waves, as might be
found in the aftermath of a strong first order phase transition in the early universe. The power spectrum has
a peak wave number set by the initial length scale of the acoustic waves, and a new secondary scale at a
lower wave number set by the integral scale after a Hubble time. Between these scales a distinctive new
power law appears. Our results allow more accurate predictions of the gravitational wave power spectrum
for a wide range of early universe phase transition scenarios.
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I. INTRODUCTION

The first direct observation of gravitational waves in
2015 [1] started a new revolutionary era in gravitational
wave astronomy. For the first time, it was possible to make
observations without the limitations brought by detecting
electromagnetic radiation or particles. Gravitational waves
travel at the speed of light, and unlike electromagnetic
radiation, interact extremely weakly with matter, traveling
mostly undisturbed through the universe, carrying with
them unfiltered information of their origins. These proper-
ties make them an outstanding probe of the prerecombi-
nation era universe [2]. Sources of gravitational waves in
the very early universe produce a stochastic gravitational
wave background [3,4] that could be detectable with future
gravitational wave detectors [5,6], like the upcoming Laser
Interferometer Space Antenna (LISA) [7].
One potential source of contributions to the stochastic

gravitational background of the very early universe is
a first order cosmological phase transition [8–11].

Such transitions proceed via the nucleation, expansion,
and merger of bubbles containing the new low temperature
phase [12–16]. The phase transition comes to an end when
all bubbles have merged with the neighboring bubbles so
that the old phase has been replaced by the new one
everywhere in the fluid, leaving behind a characteristic
spectrum of sound waves [17–20] and if the transition is
strong enough, significant vorticity [21]. The sound waves
are an important source of gravitational waves. They persist
in the fluid long after the phase transition has completed,
until dissipated away by the viscosity. Over time, these
sound waves can steepen into shock waves. Such a sta-
tistically random field of shocks moving in various direc-
tions is known as acoustic turbulence [22,23], and is the
focus of this article.
Over the years the shock-containing compressional

modes have received some study but to a much lesser
degree when compared to vortical turbulence. Perhaps the
most famous of such studies is that of the relatively simple
Burgers’ equation [24,25], which shares many of the
properties seen in the Navier-Stokes equations, apart from
the chaotic behavior and randomness rising from small
perturbations in the initial conditions. This is because it is
possible to integrate Burgers’ equation explicitly. Burgers’
equation appears in the asymptotic limit in many physical
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situations, and has been extensively studied due to its
simplicity.
As for the Navier-Stokes equations, there have been

some earlier studies that deal with the compressional modes
in fluids with a nonrelativistic equation of state. Numerical
simulations of the two- and three-dimensional Navier-
Stokes equations with a longitudinal velocity component
were performed by Porter, Pouquet and Woodward in
Ref. [26] in the supersonic limit. They pay attention to
the power laws seen in the energy spectra and the kinetic
energy fractions between the longitudinal and transverse
modes. The interactions between the compressible and
rotational modes in a three-dimensional case were studied
in the 1990s in Refs. [27,28] with resolutions up to 10243.
Of the more cosmologically oriented papers using relativ-
istic fluid equations, one worth highlighting is a paper by
Pen and Turok [29] that contains one-, two- and three-
dimensional simulations of shock formation in primordial
acoustic oscillations.
In this paper we study two-dimensional decaying acous-

tic turbulence using numerical simulations with relativistic
fluid equations and random initial conditions. The empha-
sis is on the profile of the generated shock waves, their
effect on the shape of the energy spectrum, and the decay
properties of the kinetic energy and the integral length
scale. Using the obtained results, we also make an estimate
for the gravitational wave power spectrum resulting from
shocks in a three-dimensional fluid flow.
We have chosen to conduct the simulations in two

dimensions for several reasons. The most important of
these is that based on the existing literature, the shocks—
among other phenomena—have the same properties, like
the inertial range power laws in the energy spectrum, in two
and three dimensions. However, the two-dimensional case
is simpler to analyze: for example, it is easier to locate the
shocks in two dimensions; some quantities, like the
vorticity, are simpler (it being a scalar in 2D); and there
are additional conserved quantities compared to 3D. In
addition, there is the clear advantage of 2D being more
computationally efficient, allowing for the use of larger grid
sizes, increasing the dynamic range of the simulations. This
makes it easier to study nonlinear phenomena like turbu-
lence and shocks. In 3D, the largest simulations to date
have lattice sizes of 42003 [19], and have not yet simulated
sufficiently fast fluid flows for long enough to show the
development of turbulence after a cosmological phase
transition. Here, we simulate on grid sizes up to 100002,
for long enough to easily see the development and decay of
shocks.
We also save some compute time by starting simulations

with the velocity and density perturbations as a random
field with given power spectra, rather than simulating the
whole phase transition. This allows us to conclude that
the effects we observe are not special to phase transitions.
This is similar to the approach of Ref. [30], studying

gravitational wave production by vortical turbulence,
which starts its simulations with the Kolmogorov spectrum.
The contents of this article are as follows: Section II

contains information about the fluid equations, details of
the numerical simulations and the initial conditions, and
lists some useful quantities used in characterizing the state
of the fluid. Section III concerns the results of our
numerical simulations and is divided into several subsec-
tions. In Sec. III A, an analytical form for the shock shape is
derived using the fluid equations. Section III B focuses on
the energy spectrum and its evolution over time, and in
Sec. III C the decay of kinetic energy and the integral length
scale is studied. The last subsection, Sec. III D, takes a
closer look at the transverse kinetic energy that arises from
the longitudinal only initial conditions under these fluid
equations. In Sec. IV an estimate is built for the gravita-
tional wave power spectrum resulting from a collection of
sound waves seen in our simulations. Two appendices are
also included, Appendix A being about testing the results
obtained in Sec. III A by conducting runs in a shock tube.
Appendix B provides a more in depth look at the initial
conditions and some more technical aspects of the simu-
lations. Also listed are the runs used to obtain the tables and
figures presented in this paper, and the initial conditions
for each of the runs. In this paper we take the speed of
light c ¼ 1.

II. METHODS

In this paper we study the evolution and properties
of two-dimensional decaying acoustic turbulence using
numerical simulations of a relativistic fluid. The equations
we have employed are obtained from the relativistic fluid
equations by expanding them to second order in first order
small quantities that we have taken to be the nonrelativistic
bulk velocity v, and the bulk and shear viscosities. We also
relate the pressure p and energy density ρ via the ultra-
relativistic equation of state p ¼ c2sρ, where cs is the speed
of sound parameter, which has the value 1=

ffiffiffi
3

p
in the case

of a radiation fluid. The derivation of the inviscid part of
these equations is discussed in more detail in [31]. They can
be written as

∂ρ

∂t
þ ð1þ c2sÞ∇ · ðρvÞ ¼ 0 ð1Þ

∂v
∂t

þ v ·∇v − c2svð∇ · vÞ þ c2s
ρð1þ c2sÞ

∇ρ

¼ 1

1þ c2s

�
η∇2v þ

�
1

3
ηþ ν

�
∇ð∇ · vÞ

�
; ð2Þ

where η and ν are the kinematic shear and bulk viscosity
respectively. They enter the equations via the additions of
the anisotropic stress tensor and the viscous bulk pressure
to the energy momentum tensor. In the very early universe
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the Reynolds number is expected to be large and the shear
viscosity to be dominant; its magnitude can be expressed in
terms of the temperature and the electromagnetic gauge
coupling parameter [32]. With our choice of scheme,
viscosity is required to keep the numerical solution stable
in cases where there is significant power in the longitudinal
modes. In the longitudinal case shear and bulk viscosities
also act in effectively the same way. The lack of an external
forcing term means that the kinetic energy in the system
decays over time, as it is being dissipated into internal
energy by the viscosity at small length scales.
We define the spectral density PðkÞ through the two-

point correlation function of a homogenous and isotropic
velocity field as

hviðkÞviðk0Þi ¼ ð2πÞ2PðkÞδðk − k0Þ ð3Þ

with viðkÞ being the Fourier components of the velocity,
related through the Fourier transform pair

viðkÞ ¼
Z

viðrÞe−ir·kd2r ð4Þ

viðrÞ ¼
1

ð2πÞ2
Z

viðkÞeir·kd2k; ð5Þ

where k is the wave vector. We define a quantity EðkÞ
through

EðkÞ ¼ k
4π

PðkÞ; ð6Þ

where PðkÞ is the spectral density, such that

1

2
hv2i ¼

Z
∞

0

EðkÞ dk; ð7Þ

from which we directly obtain the root mean square (rms)
value of the velocity vector field. In a system with a
nonrelativistic equation of state, EðkÞ is also the linear
spectrum of the kinetic energy per unit mass, so we will
refer to it as the energy spectrum. The true specific kinetic
energy in our system is ð1þ c2s Þhv2i.
The velocity field is decomposed into longitudinal and

transverse components so that

v ¼ vk þ v⊥; ð8Þ

where the components fulfill the properties

∇ · v⊥ ¼ 0; ∇ × vk ¼ 0: ð9Þ

This decomposition also splits the energy spectrum into
two parts, EðkÞ ¼ EkðkÞ þ E⊥ðkÞ, where the longitudinal
spectrum contains the contribution from acoustic turbu-
lence, and the transverse part the vortical contributions

associated with traditional fluid turbulence that consists of
vortices of various sizes.
The fluid equations are integrated numerically using finite

difference methods. Time integration is performed using the
fourth orderRunge-Kutta scheme, and spatial derivatives are
evaluated with a second order central difference scheme.1

The spatial grid is a square with N2 points and unit spacing.
The time step size is chosen as Δt ¼ 0.2Δx, providing a
stable numerical solution. Periodic boundary conditions are
enforced on all edges of the grid. The corresponding
reciprocal lattice is spanned by the wave vectors ki, whose
elements obtain values in the range ½−π; πÞ with a spacing
of Δk ¼ 2π=ðNΔxÞ.
The initial conditions are given for the longitudinal and

transverse components using an initial spectral density of
the form

PðkÞ ¼ A
ðk=kpÞβ0

½1þ ðk=kpÞα0=γ�γ
e−ðk=kdÞ2 : ð10Þ

The parameters α0 and β0 set the initial values for the
inertial range and low-k power laws, γ affects the shape
around the peak of the spectrum, and kp is the initial wave
number around which the peak is located. The inverse of kp
determines the integral length scale L characterizing the
length scale at which most of the energy is located. We have
also introduced an exponential suppression factor in order
to reduce discretization effects at high wave numbers. This
suppression is controlled by the parameter kd. Since we are
interested in acoustic turbulence only, we set P⊥ðkÞ ¼ 0
initially, i.e., the initial velocity field is purely compress-
ible. The Fourier components obtained from PkðkÞ are
given random phases in such a way that the resulting initial
velocity field is real and statistically random. The energy
density is initialized by writing it out as

ρðr; tÞ ¼ ρ0 þ δρðr; tÞ ð11Þ

where the density perturbation δρ is initialized in the same
way as the velocity components. More information about
the execution of the simulations and their initial conditions
can be found in Appendix B.
Next, we define some quantities that are useful in

analyzing the flows. We write the rms velocity of the

longitudinal component as v̄ ¼
ffiffiffiffiffiffiffiffi
hv2ki

q
, and define the

integral length scale of the longitudinal component as

L ¼ 2

v̄2

Z
∞

0

1

k
EkðkÞdk: ð12Þ

1We have checked that no significant changes to our results
would be introduced by a fourth order scheme. For more
information about the scheme and its viability, see Appendix A.
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From the initial values of these two quantities we can define
a timescale,

ts ¼ L0=v̄0 ð13Þ

where v̄0 is the initial value of the rms longitudinal velocity,
and L0 is the initial value of the integral scale. In addition to
the integral scale, there are other relevant length scales
constructed from the effective viscosity μ ¼ 4η=3þ ν, the
rms velocity v̄, and the quantity

D ¼ hð∇ · vÞ2i; ð14Þ

the compressional part of the enstrophy, which can be used
to quantify “shockiness” in the system. First, we have

δs ¼ μ=v̄; ð15Þ

which we shall see characterizes the shock width. We also
have the longitudinal counterparts of the Kolmogorov and
Taylor microscales LK and LT . We define the Kolmogorov
microscale as

LK ¼
�
μ3

ϵ

�
1=6

; ð16Þ

where ϵ ¼ − _D is the dissipation rate of D. From the
equations of motion it follows that

ϵ ¼ 4μ

1þ c2s

Z
∞

0

k4EkðkÞdk: ð17Þ

As in the case of vortical fluid turbulence, the Kolmogorov
microscale specifies the length scale at which viscosity is
dominant and dissipates kinetic energy into internal energy.
The Taylor microscale is an intermediate length scale
located between the integral and Kolmogorov length
scales at which viscous effects become significant, and
is defined by

LT ¼
ffiffiffiffiffi
v̄2

D

r
: ð18Þ

The Taylor and Kolmogorov wave numbers are defined as
inverses of the corresponding length scales. We also define
the longitudinal counterpart of the Reynolds number

Re ¼ v̄L
μ

; ð19Þ

that, as in the vortical only case, characterizes the strength
of nonlinear effects in the flow, which in the longitudinal
case means shocks. In other words, large values of the
longitudinal Reynolds number lead to a formation of very
strong and sharp shocks.

III. RESULTS

We have performed numerical simulations of acoustic
turbulence with grid sizes of N ¼ 4080 and N ¼ 10080
with various initial power spectra (10) for the longitudinal
component, leading to various shock formation times, and
initial longitudinal Reynolds numbers in the range 16–223.
We call runs with an initial Reynolds number that lies at the
end of this range high Reynolds number runs. These kind of
runs are obtained by increasing the initial rms velocity and
also by increasing the initial integral length scale, which
moves the top of the energy spectrum to lower wave
numbers. We have run for about 60 shock formation times
in all of our runs to give the system enough time to show
sufficient decay characteristics. A table listing each run and
their initial conditions is found in Appendix B. In this
section we shall present our findings from these runs
focusing on the shape of the shocks, their impact on the
energy spectrum, the decay of the longitudinal kinetic
energy and the integral length scale, and the generation of
transverse kinetic energy under these equations from the
longitudinal only initial conditions.

A. Shock shape

In order to study the shape of the shock waves, we solve
Eqs. (1) and (2) for a single shock moving toward the
positive x-axis using the ansatz

ρðr; tÞ¼Lðksðx−utÞÞ; v⃗ðr; tÞ¼Vðksðx−utÞÞe⃗x: ð20Þ

Here u denotes the shock velocity. The resulting differential
equation is then written in terms of χ ¼ ksðx − utÞ for VðχÞ
and is simplified by assuming that VðχÞ ≪ u. Its solution is

Vðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2bC

p

b
tanh ½ksðx − x0 − utÞ� − a

b
; ð21Þ

where the parameters a and b can be written as:

a ¼ u

�
1 −

c2s
u2

�
ð22Þ

b ¼ ð1þ c2sÞ
�
c2s − 1

c2s þ 1
−
c2s
u2

�
: ð23Þ

The integration constant C is fixed using the conditions that
on the right side of the shock V approaches the value Vþ,
and on the left side the value V− while the derivative of V
approaches zero on both sides. For a right-moving shock
we also have V− > Vþ. These conditions fix C as

C ¼ aVþ þ b
2
V2þ ¼ aV− þ b

2
V2
−: ð24Þ

The shock velocity is solved from this equation and can be
written in the form

DAHL, HINDMARSH, RUMMUKAINEN, and WEIR PHYS. REV. D 106, 063511 (2022)

063511-4



u¼ cs

�
1−

2

1þc2s
ξ

�
−1
2

; ξ¼
�
1þ 2

δ̃ρþþ δ̃ρ−

�
−1

ð25Þ

where δ̃ρþ and δ̃ρ− are the values of the fractional density
perturbation on the left and right sides of the shock,
obtained by replacing Vþ and V− using the relation
between V and the fractional density perturbation

Vðx; tÞ ¼ u
1þ c2s

δ̃ρðx; tÞ; δ̃ρðx; tÞ ¼ δρðx; tÞ
ρ0

: ð26Þ

Equation (25) gives us the expected result of the shock
velocity always being larger than the speed of sound for a
right-moving shock with δ̃ρþ ¼ 0, since the smallest value
ξ can obtain is zero in the limit of the shock wave amplitude
going to zero. It is also evident that the shock velocity
increases with increasing amplitude.
The width of the shock is controlled by the parameter ks

that can be written in terms of the above quantities as

ks ¼
3ð1þ c2sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2bC

p

8μ
ð27Þ

and whose inverse is of the same order of magnitude as the
shock width δs. The parameters a, b and C all increase with
increasing shock velocity, which indicates that steep shocks
are obtained when the amplitude of the shocks is large.
Here the effects of the viscosities are clearly seen, with
small viscosity values leading to steep shocks. We have
conducted shock tube runs to study and verify the results

obtained here by investigating shocks in a very narrow and
long grid. These are discussed in Appendix A.
In our 2D simulations the initially smooth density and

velocity fields generate multiple shock waves moving in
various directions, after a time of order ts. This can be seen
in Fig. 1, which on the left shows a contour plot of the
density perturbation shortly after the shocks have formed.
In the second plot on the right, the divergence of the
velocity field has been plotted to highlight the shocks.
Figure 2 shows zoomed in slices of the fractional density
perturbation both in the high and low Reynolds number
cases. In the case of the former, oscillations can be seen
near the top of the shock, similar to the Gibbs phenomenon
[33]. This limits the obtainable Reynolds numbers, as
reducing the viscosity too much causes these oscillations
to grow, eventually ruining the solution. This also has an
effect on the shape of the energy spectrum around the
Kolmogorov microscale, creating a bump in the spectrum at
this wave number range.

B. Shocks and the energy spectrum

Based on our simulations that use various different initial
spectral densities (10), we find that as the initial conditions
steepen into shocks, the features induced by the initial
conditions near the peak of the energy spectrum are erased,
and that the energy spectrum obtains a universal broken
power law form whose power law values differ from those
of the initial conditions. After a single shock formation
time, the inertial range power law located between the
integral length scale and the Taylor microscale settles into
the well-known value of -2, first proposed and obtained by

(a) (b)

FIG. 1. The density perturbation δρ of a 40802 resolution run that has the same initial conditions as run 9 (a), and the divergence of the
corresponding velocity field ∇ · v (b), showing the locations of the shocks at t ≈ 6.5ts.

DECAY OF ACOUSTIC TURBULENCE IN TWO DIMENSIONS … PHYS. REV. D 106, 063511 (2022)

063511-5



Burgers [34] for the one-dimensional Burgers equation,
and later generalized to multiple dimensions in the case of
the Euler and the continuity equation by Kadomtsev and
Petviashvili [35].
The evolution of the inertial range power law in one of

our runs has been plotted in Fig. 3 as a function of the
number of shock formation times. Due to strong oscilla-
tions in the spectrum at early times, the data for the plot has
been obtained by fitting a power law k−φ to two intervals;
between the Taylor and half the Kolmogorov wave number
at early times when t=ts < 0.6, and between the integral
wave number and the Taylor wave number otherwise. Early
on, obtaining decent fits of the inertial range is obstructed
by these oscillations, so we have tracked the evolution of
the power law range of the initial conditions instead, which
initially develops toward a similar power law value but at a
higher wave number range. At t=ts ¼ 0.6 the oscillations
haveweakened and the two ranges coincide, to a reasonable

accuracy, so we have opted to change the limits of the fit at
this particular time.
In order to study and determine the universal shape of the

spectrum, we extract the time dependence from the spec-
trum. Figure 4 shows the time evolution of the spectrumwith
dark lines corresponding to late times. Over time the integral
length scale L, introduced in Sec. II, increases as evidenced
by the shift of the peak of the spectrum toward small wave
numbers. Thus we fix the location of the peak by scaling the
wave number by L, so that the spectrum becomes a function
of κ ¼ LðtÞk. The other time dependent feature of the
spectrum is the decay of the compressional kinetic energy
Ek, which causes the magnitude of the spectrum to decrease.
Thus, we write the spectrum in the form

Ekðκ; tÞ ¼ LðtÞEkðtÞΨðκÞ; κ ¼ LðtÞk: ð28Þ

The function ΨðκÞ is plotted in Fig. 5 at even time intervals
after the shocks have formed, and we see the spectra
collapsing onto a single function on all but the very smallest
length scales.

(a) (b)

FIG. 2. Zooms of the fractional density perturbation slices of the same 40802 resolution run as in Fig. 1(a), and a similar moderate
Reynolds number run (b) that has identical initial conditions to those of run 2. Both figures show the shocks after about 6.5 shock
formation times.

FIG. 3. Evolution of the inertial range power law index
obtained by fitting a power law k−φ to the data of run 9. The
bounds of the fit are the Taylor and half times the Kolmogorov
wave numbers when t=ts < 0.6 (dashed curve) and the integral
wave number and the Taylor wave number otherwise.

FIG. 4. The scaled energy spectrum of run 2 plotted every 10ts
from 3ts onwards. Dark colors correspond to late times.
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In the range where the spectra collapse well, we model
the function Ψ by a broken power law form. We assume
that this form holds at wave numbers corresponding to
length scales larger than the Taylor microscale, so that

ΨðκÞ ¼ Ψ0

ðκ=κpÞβ
1þ ðκ=κpÞα

; κ ≪ L=LT; ð29Þ

where β is the low-k power law index, and the inertial range
power law is given by β − α. From Eq. (28) it follows that
the integral of Ψ over all values of κ must equal unity, and
another condition follows from substituting (28) into the
definition of the integral length scale in Eq. (12). For both
of these conditions to be satisfied simultaneously, the
parameters Ψ0 and κp must fulfill

Ψ0 ¼
α

π
sin

�
πβ

α

�
ð30Þ

and

κp ¼ sinðπðβþ1Þ
α Þ

sinðπβα Þ
; ð31Þ

when β − α < −1, meaning that these parameters get fixed
by the normalization condition and the choice of L as the
integral scale. In the high-κ region where the collapse is not
as good, and the function still changes a little over time. We
ascribe this temporal behavior to the changing shape of
the shocks caused by the viscous dissipation. Thus, we
expect the function Ψ to be a broken power law modulated
by a function that depends on the width of the shocks. To
quantify the dilatation of the shocks, we use the dimen-
sionless quantity DL2=Ek to measure shockiness in the
system, where D is defined through Eq. (14). The quantity
∇ · v, often called the dilatation, obtains large values at the

locations of the shock waves briefly after shock formation
in comparison to the values seen in the initial conditions,
which leads to an increase in its rms value

ffiffiffiffi
D

p
. The

dimensionless quantity is plotted in Fig. 6, and a sharp
increase in its value can be seen around one shock
formation time, after which the quantity decreases, as
the shocks deteriorate.
In order to determine what impact the shocks have on the

energy spectrum, we follow the method presented in
Ref. [36] to find the form of the two-dimensional energy
spectrum using the one-dimensional spectrum. The one-
dimensional energy spectrum of a tanh shock is obtained
using the Fourier transform and has the form

E1ðkÞ ¼ jF ðtanhðksxÞÞj2 ¼
π2

k2s
csch2

�
πk
2ks

�
; ð32Þ

which can be related to the D-dimensional spectrum by
separating the wave vector k into two parts; k1 and its
transverse projection k⊥ and then by integrating over the
latter

E1ðk1Þ ¼
Z

EDðjkjÞdk⊥ ð33Þ

¼ 1

2
ΩD−1

Z
∞

k2
1

EDðsÞðs2 − k21Þ
D−3
2 ds2: ð34Þ

where k ¼ k⊥ þ k1 and ΩD−1 is the solid angle of the
(D − 2)-sphere. For D ¼ 2 the equation can be written as

E1ðk1Þ ¼
Z

∞

k2
1

E2ð
ffiffiffi
u

p Þffiffiffiffiffiffiffiffiffiffiffiffiffi
u − k21

p du: ð35Þ

Now we can use the property, that E1 is a first order
Liouville-Weyl fractional integral [37] of E2 to solve for the
two-dimensional spectrum, yielding

FIG. 5. The energy spectra of Fig. 4 collapsing into the function
ΨðLkÞ. The black line above the inertial range describes the k−2

power law, while the black line above the low-k range goes
like k2.4.

FIG. 6. Plot of the dimensionless quantity DL2=Ek that is used
to measure shockiness of the system as a function of shock
formation times. The data for the plot has been obtained from run
9. The black line indicates a t−0.4 power law.
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E2ðkÞ ¼
1

π

Z
∞

k2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − k2

p d
du

E1ð
ffiffiffi
u

p Þdu: ð36Þ

Substituting Eq. (32), changing the variable, and defining

E2 ¼
π2

k3s
I ; P ¼ πk

2ks
ð37Þ

allows us to write (36) as

IðPÞ ¼
Z

∞

1

dsffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p coshðPsÞ
sinh3ðPsÞ : ð38Þ

The integral in I does not have a closed form solution, but
its asymptotic behavior at small and large values of the
argument can be found to be

IðPÞ ∼
� π

4P3 ; P ≪ 1

2
ffiffiffi
π
P

p
e−2P; P ≫ 1

: ð39Þ

We now propose the function ΨðκÞ to have the form

ΨðκÞ ¼ Ψ̃0

ðκ=κpÞβþ3

1þ ðκ=κpÞα
I
�
πκ

2κs

�
; ð40Þ

where κs ¼ ksL. Note that the parameter β still denotes the
low-k power law. Figure 7 shows ΨðκÞ obtained from
simulation data in comparison to the fit resulting from
using the equation above. It is seen that the fit is very good
in the high-κ region. At the wave number range between the
Taylor and the Kolmogorov wave numbers, the fit deviates
a bit from the simulation data, leading to slightly steeper
values for the inertial range power than k−2. The fit in this
range can be improved by increasing the complexity of the
fitting function, for example, by using a double broken
power law instead, but for our purposes we deem Eq. (40)

to be a good enough estimate for the spectral collapse
function Ψ.

C. Decay of longitudinal kinetic energy

Energy is dissipated into heat by the viscosity at small
length scales, and since our fluid equations do not contain a
forcing term, the total kinetic energy decreases over time.
Figure 8 plots the kinetic energy normalized by its initial
value for several runs as a function of the number of shock
formation times. It is seen that after about 10 shock
formation times the kinetic energy decays following a
power law form. In order to find an analytical function that
models the kinetic energy behavior seen in the figure, we
have applied the analysis made by Saffman in Ref. [38], but
to the longitudinal-only case instead. The starting point is
the relation describing the kinetic energy decay due to
viscous dissipation, which for the fluid equations (1) and
(2) can be shown to be

1

2

dhv2ki
dt

¼ −
2μ

1þ c2s

Z
∞

0

k2EkðkÞdk; ð41Þ

when the vorticity ∇ × v is zero. There is some vorticity
generated from longitudinal only initial conditions under
these fluid equations, as discussed in the next section, but
the transverse kinetic energy is still small enough in
comparison to the longitudinal kinetic energy for the above
equation to be approximately valid. After the shocks have
formed, the energy spectrum has the familiar behavior of
k−2 in the inertial range. According to Saffman, in the case
of Burger’s equation, the spectrum in the inertial range has
the form

EkðkÞ ¼
LJ̄2

4πk2
; ð42Þ

which we assume to also hold for the fluid equations
employed in this paper by applying the physical interpre-
tations of L and J̄2 to the longitudinal case. Here L is the

FIG. 7. The function ΨðκÞ, where the blue line is the curve
obtained from simulation data of run 2 at t ≈ 20ts, and the dashed
red line is a fit using Eq. (40). The obtained values for the fit
parameters are Ψ̃0 ¼ 0.0034, α ≈ 4.801, β ≈ 2.013. κp ≈ 0.976,
and κs ¼ 12.541.

FIG. 8. The kinetic energy normalized by the initial value
plotted for some the runs listed in Table IV as a function of the
shock formation time.
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mean length of shocks per unit area, and J̄2 is the mean
square jump in velocity across the shock. In analogy to
[38], we cut off the integral at the wave number corre-
sponding to the length scale of the shock width δs and
substitute (42) into (41), which after integration gives

1

2

dhv2ki
dt

¼ −
μ

2πð1þ c2sÞ
LJ̄2

δs
∝
v̄3ðtÞ
LðtÞ ; ð43Þ

where to obtain the latter expression we have used the
proportionality relations

L ∝ L−1; J̄2 ∝ v̄2; ð44Þ
and the definition for the shock width δs in Eq. (15). Now in
order to make progress, we need to find a relation between
the time behavior of the integral length scale and the rms
velocity. To this end, we write the spectrum in the form

Ekðk; tÞ ¼ DðtÞ ½k=kpðtÞ�β
1þ ½k=kpðtÞ�α

; ð45Þ

where the prefactor DðtÞ contains the time dependence of
the spectral magnitude. Here we have ignored the high-k
behavior of the spectrum found in the previous section.
Now in the low-k power law range, when k ≪ kp, the
spectrum becomes

Ekðk; tÞ ≈DðtÞkpðtÞ−βkβ: ð46Þ

The very low-k end of the spectrum stays mostly
unchanged, maintaining its magnitude and power law
index, as seen in Fig. 4. Hence, it can be approximated that

DðtÞkpðtÞ−β ¼ const: ð47Þ

Substituting this spectrum into Eq. (7) gives

1

2
hv2ki ¼ DðtÞ

Z
∞

0

½k=kpðtÞ�β
1þ ½k=kpðtÞ�α

dk: ð48Þ

Using this form for the spectrum leads to an overestimation
of the integral, since we have ignored the high-k behavior,
but we argue that this does not affect the value of the energy
significantly, since the largest contribution to the integral
comes from the energy containing scales around the peak
of the spectrum, and the contributions from scales smaller
than the Taylor microscale are small in comparison. After a
change of variables s ¼ k=kp the integral becomes

1

2
hv2ki ¼ DðtÞkpðtÞ

Z
∞

0

sβ

1þ sα
ds: ð49Þ

Since the power laws stay the same after the shocks
have formed, the parameters α and β are mostly constant.

Thus, the integral gives approximately a constant value,
and by using the definition of the rms velocity and relation
(47) with kpðtÞ−1 ¼ LðtÞ, we get

v̄2ðtÞLðtÞβþ1 ¼ const≡ ξ−ðβþ1Þ: ð50Þ

Using this, we can now solve Eq. (43) for the energy E ¼
hv2ki=2 ¼ v̄2=2 with the initial condition Eðt ¼ 0Þ ¼ E0,

yielding

EðtÞ ¼ E0

ð1þ C t
ts
Þζ ; ζ ¼ 2ðβ þ 1Þ

β þ 3
; ð51Þ

where in the denominator we have used (50) to write
the constant ξ in terms of the initial value of the integral
length scale L0 and the initial energy E0, resulting in
ξð2E0Þðβþ3Þ=ð2ðβþ1ÞÞ ¼ L−1

0 v̄0 ¼ t−1s , which is used as an
estimate for the shock formation time. We have also
absorbed all constants into the parameter C, whose value
depends on the values of the prefactors of the relations
listed in Eq. (44). Without knowing the numerical values of
the prefactors, the value of C can be obtained by fitting.
Based on our fits detailed later in this section, its typical
value lies in the range between 0.29 and 0.47. With the help
of the above result, Eq. (50) can be used to find LðtÞ, which
reads as

LðtÞ ¼ L0

�
1þ C

t
ts

�
λ

; λ ¼ 2

β þ 3
: ð52Þ

The integral length scales of some of the runs featured in
Table IVof Appendix B are plotted in Fig. 9 against time in
units of ts the shock formation time. The results obtained
for the power law values as functions of the low-k power
law β in Eqs. (51) and (52) coincide with those found by
similar methods for three-dimensional classical vortical
turbulence [39].

FIG. 9. The longitudinal integral length scale normalized by the
initial value plotted for multiple runs as a function of the number
of shock formation times.
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Equations (51) and (52) can now be used as fitting
functions to the curves seen in Figs. 8 and 9, and the
obtained power law indices can then be compared to the
analytical ones by measuring the low-k power law index β
of each run. The fits to the kinetic energy and the integral
length scale are constrained to the shock containing phase
by using fitting ranges whose lower boundary lies in the
range t=ts ≥ 1. In these ranges the inertial range has a
power law of k−2 and the fitting equations are valid.
Figure 10 shows a pair of such fits for a single run. We
have varied the lower bound of the fit to all data points in
the range 1 ≤ t=ts ≤ 3 and averaged over the results to
obtain the averaged power law indices ζ̂ and λ̂. The low-k
power law indices are measured by fitting a broken power
law, akin to that in Eq. (45), on a suitable wave number
range and averaging the obtained values for the fit
parameters over times 8 ≤ t=ts ≤ 12, which in our simu-
lations results to around 120 data points on average.
The suitable range in question has been chosen to be
k ∈ ½1=6L; 1=LT �, which contains the inertial range and a
sufficient amount of the low-k power law. Time averaging
like this is necessary because there are oscillations in the
spectrum that the fitting algorithm is sensitive to. We have
used the standard deviations of the time averaging to
quantify the strength of these oscillations.
It is also possible to derive relations between β, ζ, and λ

that can be used to test the robustness of the theory by
comparing to the values obtained from the simulations by
fitting. Such relations have been obtained in Refs. [40,41]
by considering appropriate scaling of the energy spectrum
and by making use of the rescaling invariance of the
hydrodynamic equations. Here, one relation follows
immediately from Eq. (50), which requires

λðβ þ 1Þ − ζ ¼ 0 ð53Þ

for it to be valid. This relation can also be obtained directly
from the power laws in Eqs. (51) and (52). A relation
containing only ζ and λ can also be derived by replacing
β in the equation above by using either of these two
equations, giving

ζ − 2ð1 − λÞ ¼ 0: ð54Þ
Table I lists the averaged power law indices and the

standard deviations obtained from fits to the time evolu-
tions of the kinetic energy and the integral length scale.
Power laws obtained from time averaging are denoted by
hats, and alongside them are the power laws obtained from
Eqs. (51) and (52) using the values obtained for the time
averaged low-k power law β̂. These values are listed in

(a) (b)

FIG. 10. Fits of the functions (51) and (52) (red dashed curves) to the time evolution of the kinetic energy (a) and the integral length
scale (b) of run 2 (blue curves). The fitting range is t=ts ≥ 1 and the parameter values obtained are E0 ≈ 0.00263, ζ ≈ 1.207, and
C ≈ 0.391 for the kinetic energy, and L0 ≈ 20.8, λ ≈ 0.346 and C ≈ 0.455 for the integral length scale.

TABLE I. Time averaged fit parameters for the kinetic energy
and integral length scale power laws ζ̂ and λ̂, obtained by fitting
the curves seen in Fig. 10 so that the lower boundary of the fitting
range uses all data points in the range 1 ≤ t=ts ≤ 3, and by
averaging over the results. Also listed are the standard deviations,
and the predicted values for the power laws given by Eqs. (51)
and (52) by using the values for the time averaged low-k power
law β̂ listed in Table II.

ID ζ̂ ζ λ̂ λ σζ σλ

1 1.521 1.294 0.417 0.353 1.09 × 10−2 7.48 × 10−3
2 1.201 1.252 0.339 0.374 2.58 × 10−3 1.43 × 10−3
3 1.200 1.252 0.339 0.374 2.56 × 10−3 1.42 × 10−3
4 1.333 1.284 0.350 0.358 1.08 × 10−2 5.07 × 10−3
5 1.443 1.246 0.454 0.377 1.85 × 10−2 1.48 × 10−2
6 1.377 1.359 0.374 0.320 1.53 × 10−2 7.96 × 10−3
7 1.403 1.352 0.426 0.324 1.83 × 10−2 1.32 × 10−2
8 1.307 1.330 0.265 0.335 4.54 × 10−3 6.60 × 10−3
9 1.164 1.296 0.294 0.352 3.07 × 10−3 2.07 × 10−3
10 1.160 1.237 0.294 0.381 3.38 × 10−3 1.88 × 10−3
11 1.314 1.422 0.265 0.289 7.46 × 10−3 4.15 × 10−3
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Table II alongside α̂ and the averaged value of the inertial

range power law dβ − α. Also listed are the standard
deviations of these averages, denoted by sigmas, the initial
low-k power law index of the energy spectrum β0 and the
initial high-k power law β0 − α0. The errors obtained from
the fitting covariances are negligible in comparison to the
standard deviations of the time fluctuations in all of these
cases. We have also measured the magnitude of the
statistical fluctuations resulting from different initial ran-
dom phases given to the Fourier velocity components by
making runs with the same initial conditions but with
different random seeds. Based on these runs, the fluctua-
tions are found to be either smaller or at the largest
comparable in magnitude to the standard deviations in
Tables I and II. The values in these two tables are used to
test the relations (53) and (54), which are listed in Table III
along with their standard deviations obtained from the error
propagation formula. These are denoted as ΔCi where the
index i marks the column of the table (the run ID column
being column 0). These relations are also plotted in a
ζλ-coordinate system in Fig. 11 where different low-k
power law values correspond to lines with different slopes
converging at the origin [41]. The diagonal solid black line
is the curve ζ ¼ 2ð1 − λÞ of Eq. (54). The error bars for the
data points obtained from Table I are smaller than the data
point markers and are thus not drawn in the figure. The
scaling law following from the self-similarity is fulfilled
well, with the value of zero lying within the margin of error,
whereas the one using the scaling invariance is not as good
due to the small standard deviations in the values of ζ and λ.

D. Generation of transverse kinetic energy

In our simulations we see an emergence of small amounts
of transverse kinetic energy from longitudinal-only initial

conditions. In order to study the vorticity generation more
closely, we can take a look at the vorticity equation, obtained
by taking a curl of Eq. (2). The equation can bewritten for the
vorticity ω ¼ ∇ × v, which in two-dimensional case can be
treated as a scalar, giving

∂ω

∂t
þ ð1 − 2c2sÞωð∇ · vÞ þ ð1 − c2sÞðv ·∇Þω

− c2sv ×∇2v ¼ η

1þ c2s
∇2ω: ð55Þ

From this it follows that if initially ω ¼ 0

∂ω

∂t
¼ c2sv × ∇ð∇ · vÞ; ð56Þ

meaning that there is a vorticity generating term resulting
from the last term on the left-hand side of (2), giving rise to

FIG. 11. A ζλ-plot that illustrates the relations in Eqs. (53) and
(54). The diagonal solid black line is the curve ζ ¼ 2ð1 − λÞ. The
data points for each run have been obtained using the values of ζ̂
and λ̂ from Table I.

TABLE II. The initial low-k power law of energy spectrum β0
and the initial inertial range power law β0 − α0, and the same
parameters after the shocks have formed obtained by time
averaging the results obtained from broken power law fits of
Eq. (45) over the interval 8 ≤ t=ts ≤ 12, denoted by hats. The last
three columns list the standard deviations for the time fluctuations
of the parameters α and β, and the inertial range power law.

ID β0 β0 − α0 α̂ β̂ dβ − α σα σβ σβ−α

1 4 −8 3.576 2.669 −0.907 0.368 0.167 0.363
2 3 −3 4.464 2.348 −2.116 0.072 0.113 0.069
3 3 −3 4.464 2.349 −2.115 0.072 0.113 0.068
4 4 −5 4.182 2.586 −1.596 0.522 0.440 0.189
5 5 −15 4.238 2.305 −1.933 0.426 0.299 0.182
6 5 −5 4.986 3.240 −1.745 0.381 0.453 0.139
7 9 −6 5.258 3.176 −2.082 0.261 0.264 0.027
8 5 −2 4.891 2.967 −1.924 0.443 0.464 0.050
9 3 −3 4.693 2.683 −2.010 0.710 0.739 0.052
10 3 −3 4.374 2.243 −2.131 0.669 0.681 0.017
11 7 −4 5.970 3.916 −2.055 0.514 0.530 0.026

TABLE III. Numerical values for the relations of Eqs. (53) and
(54) that are obtained using the fit parameters in Tables I and II.
The last two columns contain the standard deviations of the
relations in columns 1 and 2 obtained using the standard deviations
of the fit parameters with the error propagation formula.

ID λ̂ðβ̂ þ 1Þ − ζ̂ ζ̂ − 2ð1 − λ̂Þ ΔC1 ΔC2

1 0.008 0.354 0.076 1.85 × 10−2
2 −0.066 −0.122 0.039 3.85 × 10−3
3 −0.066 −0.122 0.039 3.82 × 10−3
4 −0.078 0.033 0.155 1.48 × 10−2
5 0.056 0.351 0.145 3.49 × 10−2
6 0.209 0.125 0.173 2.21 × 10−2
7 0.376 0.255 0.126 3.21 × 10−2
8 −0.256 −0.163 0.126 1.40 × 10−2
9 −0.080 −0.247 0.218 5.15 × 10−3
10 −0.206 −0.252 0.201 5.06 × 10−3
11 −0.013 −0.157 0.142 1.12 × 10−2
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some transverse kinetic energy even when the initial con-
ditions contain only longitudinal modes.
In the simulations we see that early on the vorticity field

attains its largest values in the regions containing over-
lapping or colliding shocks. This is illustrated in Figs. 12(a)
and 12(b) that show the magnitude of the velocity field and
the corresponding vorticity that has been scaled by the
integral length scale to obtain a dimensionless quantity.
As the shocks overlap with each other, their amplitude
increases, and regions with much higher amplitudes than
seen in the initial conditions are formed, shown in the figure
in yellow. The largest values of vorticity right after the

shocks are formed are obtained around these regions,
shown as thin short dark red lines in the contour plot.
These features are short-lived and change location as the
shocks travel. The other part of the vorticity field after
shock formation is the background vorticity that changes
slowly in comparison to the vorticity from shock collisions,
and contains vortexlike structures that often appear in pairs
of different signs. Over time as the shocks get dissipated,
the background vorticity becomes dominant, with the
shocks being only faintly visible in comparison, as seen
in Fig. 12(d), which plots the dimensionless vorticity field
at the very end of a run. The higher the Reynolds number of

(a) (b)

(c) (d)

FIG. 12. The magnitude of the velocity field jvj (a) and the corresponding vorticity field ω ¼ ∇ × v scaled by the integral length scale
(b) of a moderate Reynolds number 40802 resolution run after about 13 shock formation times. Figures (c) and (d) show the same
quantities for a high Reynolds number run at the end of the run at about t ¼ 67ts. The runs have the same initial conditions as runs 2 and
9. In Figs. (b) and (d) vortex-like structures can be seen, appearing in pairs of different signs.
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the run is, the higher the generated transverse kinetic
energy is relative to the longitudinal kinetic energy. In
Fig. 13 the energy fraction E⊥=Ek has been plotted for
several runs, and the group of curves with the highest
values corresponds to the high Reynolds number runs.
It shows that the transverse kinetic energy is still small
compared to the longitudinal kinetic energy, even after 60
shock formation times.
Runs 3 and 10 contain only bulk viscosity. We find that

in the longitudinal case, both the bulk and the shear
viscosity affect the fluid almost in an identical way.
Runs 2 and 3, and 9 and 10 have the same initial conditions
and random phases, with the only difference being the
viscosity type. The values for the viscosities in these runs
are chosen so that the value of the effective viscosity is the
same. In the longitudinal case, these pairs of runs produce
results that are very close to each other, which can also be
seen from the plots of longitudinal quantities, such as in
Figs. 20, 21 of Appendix C, and Fig. 11, where the runs
overlap, or from the tables of the previous section.
The same is not true in the transverse case, as is evident

by Figs. 13 and 22, where the curves of the previously
mentioned run pairs clearly separate from each other some
time after the start of the run, with the bulk viscosity only
run having a larger transverse kinetic energy at the end in
both cases (see Table IV in Appendix B for the color and
viscosity type of each run in the case of Fig. 22). This is
because in the shear viscosity only case the dissipation of
energy is larger, as under these fluid equations the
dissipation due to viscosity can be shown to be

1

2

dhv2i
dt

¼
(
− 2μ

1þc2s

R∞
0 k2EðkÞdk; when ∇× v¼ 0

− 2η
1þc2s

R
∞
0 k2EðkÞdk; when ∇ · v¼ 0

ð57Þ

meaning that for the transverse component the viscous
dissipation is caused only by the shear viscosity. This also
strongly affects the shape of the transverse energy spectrum
at large-k between the bulk and shear-viscosity only runs.
The focus of this paper is the study of the longitudinal

case, and thus there is more potential work to be done in
studying the transverse case under these fluid equations. The
transverse only case (incompressible flow) has been exten-
sively studied and forms part of the standard understanding
of turbulence presented in textbooks (see e.g., Ref. [39]).

IV. ESTIMATE FOR THE GRAVITATIONAL
WAVE POWER SPECTRUM

While there are no gravitational waves in two dimen-
sions, we can estimate the gravitational wave power
spectrum generated by shocks in three dimensions by
using the results in Ref. [35], according to which the
energy spectrum maintains the k−2 inertial range power law
in any number of space dimensions. By assuming the
energy spectrum to have a simple broken power law form,
the GW power spectrum can be obtained by adapting
standard methods [20,42–46].
The source of the gravitational waves is taken to be the

shear stresses resulting from a velocity field consisting of
randomly distributed sound waves, generated on a time-
scale long compared the light-crossing time of any impor-
tant scales in the velocity field. The resulting GW power
spectrum can be calculated from the unequal time velocity
field correlators for the system. Our calculation assumes
that the shock lifetime ts is much less than a Hubble time,
meaning that the expansion of the universe can be approxi-
mated by setting the velocities to zero after a Hubble time
[18]. It is also assumed that the fluid velocities are non-
relativistic, and that the velocity can be treated as a
Gaussian random field, with any non-Gaussianity leading
to negligible contributions to the connected four-point
correlator. As the initial velocity field steepens into shocks,
the velocity field loses its Gaussianity but we assume the
deviation from Gaussianity to be small, so that the
correlator can still be approximately treated as Gaussian.
Measuring the unequal time correlators for a collection of
shock waves to test the validity of this assumption stands as
possible future work.
We begin by citing Eq. (3.46) of Ref. [20], which gives

the growth rate of the gravitational wave power spectrum
Pgw as

1

H�

d
dt

Pgw ¼ 3ðΓv̄2Þ2ðH�LÞ
ðkLÞ3
2π2

P̃gwðkLÞ; ð58Þ

where H� is the Hubble rate at the time of the transition
and Γ is the mean adiabatic index of the fluid. We take
Γ ¼ ð1þ c2sÞ ¼ 4=3, as appropriate for an ultrarelativistic
fluid. The final factor in the expression is a dimensionless
spectral density function, defined as

FIG. 13. Development of the ratio of the transverse to longi-
tudinal kinetic energy of several runs with time, in units of the
shock formation time ts. The high Reynolds number runs 7 and 9,
and the low Reynolds number runs 2 and 4 are clearly separated
into two groups by at least an order of magnitude, with the high
Re runs having higher transverse kinetic energy. The exception is
the low Re bulk viscosity only run (ID 2, green), which joins the
high Re curves at the end of the run.
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P̃gwðyÞ ¼
1

4πycs

�
1 − c2s
c2s

�
2
Z

zþ

z−

dz
z
ðz − zþÞ2ðz − z−Þ2

zþ þ z− − z

× P̃vðzÞP̃vðzþ þ z− − zÞ; ð59Þ

where z� ¼ yð1� csÞ=ð2csÞ, z ¼ qL, and P̃vðzÞ is the
scaled velocity spectral density, which is related to the
actual spectral density as

PvðqLÞ ¼ L3v̄2P̃vðqLÞ ð60Þ

with q being the wave number. The relation between the
energy spectrum and the spectral density in 3D is

EðkÞ ¼ k2

2π2
PvðkÞ: ð61Þ

On the other hand, the energy spectrum can also be written
in terms of the collapse functionΨ as seen in Eq. (28), from
which it follows that

PvðzÞ ¼ π2L3v̄2
ΨðzÞ
z2

: ð62Þ

Now for the function ΨðzÞ we use the broken power law
form of Eq. (29) that by using Eq. (60) gives

P̃vðzÞ ¼
Ψ0π

2

z2p

ðz=zpÞβ−2
1þ ðz=zpÞα

: ð63Þ

Here the parameter κp of Eq. (29) has been denoted with zp
to coincide notationally with z and is fixed in terms of α and
β along with Ψ0 through Eqs. (30) and (31). Using this and
Eq. (59), and integrating Eq. (58) with respect to time
with a change of variable z ¼ kLs gives the following
expression for the gravitational wave power spectrum

1

ðH�L0Þ2
Pgwðk; tH⋆Þ ¼

3πΨ2
0Γ2ð1 − c2sÞ2
8L2

0z
4
pc5s

k5

×
Z

tH⋆

0

dtv̄4ðtÞL6ðtÞ
Z

sþ

s−

ds Iðs; tÞ

ð64Þ

where tH⋆ is the lifetime of the GW source, which we recall
is taken to be the Hubble time at the time of the phase
transition, [18]. The integrand I has the form

Iðs; tÞ ¼ ðs− sþÞ2ðs− s−Þ2½sðsþ þ s− − sÞ=s2pðtÞ�β−3
s2pðtÞ½1þ ½s=spðtÞ�α�½1þ ½ðsþ þ s− − sÞ=spðtÞ�α�

;

ð65Þ

with spðtÞ ¼ zp=kLðtÞ, and s� ¼ ð1� csÞ=ð2csÞ Now we
write the time integral only in terms of the integral scale
LðtÞ by relating it to v̄ðtÞ using Eq. (50) and substituting the

time development Eqs. (51) and (52) into it (while keeping
in mind that E ¼ v̄2=2). Because of the relation between the
power law indices in Eq. (53) the time dependence vanishes
and the equation can be written in the form

v̄2ðtÞ ¼ v̄20

�
LðtÞ
L0

�
−ðβþ1Þ

: ð66Þ

Here v̄0 denotes the initial value of the rms velocity. Using
this, the time integral in Eq. (64) can be written asZ

tH⋆

0

dtv̄4ðtÞL6ðtÞ ¼ v̄40L
6
0

Z
tH⋆

0

dt

�
LðtÞ
L0

�
2ð2−βÞ

: ð67Þ

Next we make a change of variables τ ¼ kLðtÞ=zp ¼ s−1p in
the time integral. This is tantamount to integrating over the
integral length scale, which in the scenario considered here
is a monotonically increasing quantity with time. The time
differential can be related to the differential of this new
variable by using Eq. (52), which yields

dt ¼ zp
λCkv̄0

�
τ

τ0

�
1=λ−1

dτ; ð68Þ

where λ is the decay power law of the integral length scale,
C is a decay parameter whose inverse gives the number of
shock formation times that it takes for the flow to start
decaying, and τ0 ¼ kL0=zp. Now, the s integrand can also
be written as

Iðs; τÞ ¼ τ2ðβ−2ÞIτðs; τÞ; ð69Þ

where

Iτðs; τÞ ¼
ðs − sþÞ2ðs − s−Þ2½sðsþ þ s− − sÞ�β−3
½1þ ðτsÞα�½1þ ταðsþ þ s− − sÞα� ; ð70Þ

meaning that the factor of τ resulting from Eq. (67) ends
up canceling with that coming from the s integrand. The
Eq. (64) now becomes

1

ðH�L0Þ2
PgwðkÞ ¼

3πΨ2
0zpΓ2ð1− c2sÞ2

8c5s

�
kL0

zp

�
4

τ2β−1=λ−30

×
Z

τH⋆

τ0

dτ τ1=λ−1
Z

sþ

s−

ds Iτðs; τÞ; ð71Þ

where τH⋆ ¼ kLðtH⋆Þ=zp, and in the prefactor the powers
of k and L0 are equal, so that they can be written in terms of
τ0 ¼ kL0=zp. It is worth noting that with this formulation
the integration limits also depend on the wave number k.
We can now write the power law index λ in terms of the
low-k power law index of the energy spectrum β using
the relation between them in Eq. (52). We then factorise the
result and write it in the form
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1

ðH�L0Þ2
PgwðkL0; τH⋆Þ ¼

v̄30
C
N SðkL0; τH⋆Þ; ð72Þ

where the numerical factorN is determined by the speed of
sound in the fluid and the power law parameters α and β
appearing in the energy spectrum and has the form

N ¼ 3π

8

ðβ þ 3ÞΨ2
0zp

2

Γ2ð1 − c2sÞ2
c5s

: ð73Þ

The function SðkL0; τH⋆Þ determines the shape of the
spectrum, and can be written as

SðkL0;τH⋆Þ¼ τð3β−1Þ=20

Z
τH⋆

τ0

dττðβþ1Þ=2
Z

sþ

s−

dsIτðs;τÞ: ð74Þ

Using Eq. (74), we have plotted the shape of the GW
power spectrum numerically. In the three-dimensional case
the low-k power law index of the energy spectrum β is not
expected to be the same as in 2D, and should be determined
by numerical simulations. After the phase transition has
completed, the fluid contains shocks and has the k−2 power
law at the inertial range. For this estimate, we have assumed
a value of β ¼ 4, and taken α ¼ 6 to obtain the correct
value for the high-k power law. The spectrum is then
obtained by numerically integrating the two integrals
that appear in (74) for a given ratio LðtH⋆Þ=L0, which
we have taken to be 6.1 for illustrative purposes when
plotting the spectrum in Fig. 14. The figure highlights an
interesting aspect in the low-k end of the spectrum, in that
there is a change in the low-k power law index around
kL0 ≃ zpL0=LðtH⋆Þ ≃ 0.095, after which the power law
changes from a steeper k9 power law to a shallower power
law of k5.5. The location where this change occurs is
determined by the lifetime of the source tH⋆ through the

ratio LðtH⋆Þ=L0, so that the shallower power law appears in
the range

zpL0=LðtH⋆Þ≲ kL0 ≲ zp: ð75Þ

Therefore, for short enough lifetimes, where the integral
scale does not have enough time to grow significantly
compared to its initial value, the range is short and close to
the peak, meaning that effectively only the steeper slope is
obtained, and for long lifetimes, where LðtH⋆Þ ≫ L0, the
bend occurs at very small wave numbers close to the origin,
so that the spectrum effectively only possesses the shal-
lower slope. In the first case, the shock formation time ts is
close in magnitude to the duration of the GW source tH⋆ ,
which is the Hubble time. Hence only short-lived source
ts ≪ tH⋆ , as assumed here, will show the intermediate
power law.
The power law behavior of the GW power spectrum can

be inspected by extracting the wave number behavior of
Eq. (72) in different limits. At very small wave numbers
fulfilling the condition τ ≪ 1 for any τ ∈ ½τ0; τH⋆ � the
integral over s yields essentially a constant, from which
it follows that

1

ðH�L0Þ2
PgwðkÞ ∝ k2βþ1; ð76Þ

which for β ¼ 4 gives the value of the power law index seen
in Fig. 14. At large wave numbers, so that τ ≫ 1 for any
τ ∈ ½τ0; τH⋆ �, it can be approximated

Iτðs; τÞ ≈
ðs − sþÞ2ðs − s−Þ2½sðsþ þ s− − sÞ�β−α−3

τ2α
; ð77Þ

which means that the s-integral yields a constant once
more, and after integrating over τ, the k-dependence is
found to be

1

ðH�L0Þ2
PgwðkÞ ∝ k2ðβ−αÞþ1; ð78Þ

which for acoustic turbulence gives the power law of k−3 at
high wave numbers. To touch on the intermediate power
law seen in Fig. 14, we need to understand the behavior of
the τ-integrand in the regime where the s-integral does not
yield a constant. To this end, we rewrite the integrals of
Eq. (74) in the form

1

ðH�L0Þ2
PgwðkÞ ∝ k

3β−1
2

Z
τH⋆

τ0

fðτÞ; ð79Þ

where the function fðτÞ denotes the integrand

fðτÞ ¼ τ
βþ1
2

Z
sþ

s−

dsIτðs; τÞ: ð80Þ

FIG. 14. The function SðkL0Þ obtained numerically from
Eq. (74) with parameter values α ¼ 6, β ¼ 4, and LðtH⋆Þ=L0 ¼
6.1. A bend in the spectrum at the low-k end is seen at
kL0 ≃ zpL0=LðtH⋆Þ ≃ 0.1. The black line demonstrates a power
law of k5.5.
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This function has been obtained numerically by using the
same parameter values as in Fig. 14, and is plotted in
Fig. 15. Since the integration limits depend on the wave
number k, a different part of this curve is integrated for each
value of k. It turns out that the intermediate power law is
obtained at wave numbers for which the integration range
spans the peak of the function fðτÞ, that is, when the
separation between τH⋆ and τ0 is larger than the width of the
peak in the integrand fðτÞ, which is located approxima-
tively in the range 0.5≲ τ ≲ 2. The width of the integration
range for a given k is determined by the ratio LðtH⋆Þ=L0.
When it is large, the peak is panned even for small wave
numbers, resulting in the narrower power law at low-k, and
when it is small, the integration range is narrow and does
not span the peak entirely for any k so that only the steeper
power law is obtained. For the wave numbers in the
intermediate power law range, the integral over fðτÞ is
effectively a constant, since the largest contribution to the
integral is obtained around the peak, which is spanned for
all such wave numbers, and since the contributions from the
edges of the integration range are small in comparison.
Therefore, it follows that in the intermediate power law
range the GW power spectrum goes as

1

ðH�L0Þ2
PgwðkÞ ∝ k

3β−1
2 ; ð81Þ

giving the power law seen in Fig. 14 when β ¼ 4.
To conclude, apart from giving a power law of k−3 in the

high-k range, the decay of the shocks also induces a change
in the low-k power law, going from k2βþ1 to a shallower
kð3β−1Þ=2 one, over a range depending on the integral scale
of the fluid flow after a Hubble time. Note that the rate at
which the flow was originally generated may also appear
as a scale in the gravitational wave power spectrum, below
which another power law may apply [46]. We have

assumed that this happens at a lower wave number than
any considered here.

V. CONCLUSIONS

We have studied decaying acoustic turbulence using
two-dimensional numerical simulations with the emphasis
being on the impact of the shocks upon the energy
spectrum, and on the decay of the kinetic energy.
Conducting the simulations in two dimensions allows for
better computational efficiency and the use of larger grid
sizes in comparison to 3D, which leads to there being
more dynamic range in the wave number space. Two-
dimensional systems are also simpler to analyse and in the
case of shocks share some properties with three-dimen-
sional systems. By making use of the universality of the
power spectra, the obtained two-dimensional decay proper-
ties and power laws of the system have been applied in
three dimensions to calculate an estimate for the gravita-
tional wave power spectrum resulting from a collection of
shock waves.
The longitudinal energy spectrum of the fluid can be

written in terms of the longitudinal kinetic energy, integral
scale, and the dimensionless function ΨðkLÞ as seen in
Eq. (28). The function ΨðkLÞ has the property that it
maintains its shape over time at length scales above the
dissipation range. Using the tanh shock profile obtained
from the fluid equations, we have presented an analytical
universal form for this function, which is found to be a
broken power law modulated by an integral function I that
is shown in Eq. (38). This function depends on the
steepness of the shocks via the wave number parameter
ks appearing in the argument of the tanh shocks. Between
the wave numbers corresponding to the integral scale
and the Taylor microscale, the power law is found to be
k−2.08�0.08, which agrees very well with the k−2 power law
associated with acoustic turbulence [35], obtained as an
inverse-variance weighted average of the measurements in
Table II. At lower wave numbers, using the same method,
the power law is kβ, with β ¼ 2.50� 0.31.
In order to find the time evolution of the longitudinal

kinetic energy, we have used the k−2 inertial range power
law, and the self-similarity of the spectrum at low-k to find
Eqs. (51) and (52), the latter of which describes the decay
of the longitudinal integral length scale. At times much
larger than the shock formation time, these produce power
law forms, where the values of the power law indices
depend on the low-k power law index of the energy
spectrum. From the simulations using the earlier averaging
technique with the means and standard deviations listed in
Table I, we find the kinetic energy to decay as t−1.21�0.06,
and the integral scale to increase as t0.32�0.03. To test the
validity of our results, we have used the analytical results
and the scaling relations between the power law para-
meters, and compared the results from those to the

FIG. 15. The integrand function fðτÞ [see Eq. (80)] plotted
using the same parameter values as in Fig. 14. The highlighted
area shows the part of the curve contributing to the GW power
spectrum at kL0 ¼ 0.24, which lies roughly in the middle of the
intermediate power law range.
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independent data obtained from the simulations by fitting.
In general, we find these to be in good agreement.
Lastly, we have produced an estimate for the shape of

the gravitational wave power spectrum in three dimensions,
using the universality of the k−2 spectrum for a shocked
fluid, and the evolution laws for the kinetic energy and the
integral scale. The power spectrum is peaked at a wave
number set by the initial integral scale. At higher wave
numbers the GW power spectrum is found to go as k−3,
which is the same as the power law predicted from linear
evolution of acoustic waves produced by first order phase
transitions [19,20].
At wave numbers lower than the peak of the spectrum,

there is a change in the power law from k2βþ1 to a less
steep kð3β−1Þ=2. This power law is maintained down to
values of k of order the inverse integral scale at the end of
the effective sourcing of GWs, expected to be about a
Hubble time.
Our work is of direct relevance for calculations of the

gravitational wave power spectrum produced by first order
thermal phase transitions in the early Universe, in cases
where the shock formation and decay time ts is shorter than
the Hubble time, often the case for phase transitions strong
enough to be observed. The acoustic turbulence simulated
here in two dimensions will also develop in three dimen-
sions, with the same k−2 power law in the energy spectrum
at high k. This is also the same power law as found in the
linear approximation to the evolution of the sound waves
following the phase transition, and so we do not expect
qualitative changes to the GW power spectrum as a result of
the appearance and decay of shocks. However, we do
expect the acoustic turbulence to significantly affect the
power-law behavior of the gravitational wave power
spectrum at wave numbers lower than the peak, where a
nontrivial power law may develop in the energy spectrum.
The index of this power law cannot, however, be predicted
from two-dimensional numerical simulations. In any case,
the low-k power law in the gravitational wave spectrumwill
be different from that from the linear evolution of acoustic
waves and from vortical turbulence. Finding this character-
istic power law is clearly a high priority for reliable
predictions for the gravitational wave power spectrum
following a phase transition.
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APPENDIX A: SHOCK TUBE RUNS

In the appendices, the length and time units are the lattice
spacing. We take the speed of light to be 1. In order to
check the validity of the results obtained for the shock
waves in Sec. III A, we have conducted runs on a shock
tube, a very thin lattice of size 12240 × 2, essentially
corresponding to a one-dimensional situation. The grid
spacing and the time step size are still the same as before.
The initial condition in the energy density is a waveform

δρðxÞ ¼ 1

2

�
tanh

�
1

4

�
xþ N

20

��
− tanh

�
1

4

�
x −

N
20

���
;

ðA1Þ

where N ¼ 12240, giving a nearly square shaped wave-
form whose center is located at the origin and whose width
is about 10% of the grid length. The velocity is zero
initially, that is vxðx; yÞ ¼ vyðx; yÞ ¼ 0. These initial con-
ditions do not fulfil the requirement hδρi ¼ 0, but this is not
essential, since we are only interested in the shocks and
their properties, and not in the physicality of the system.
The initial waveform breaks into two shocks, one traveling
to the right and one to the left, with such waves also
appearing in the velocity.
These isolated shock waves can now be used to test the

shock profile found in Eq. (21) by comparing it to the
simulation data. This is done in Fig. 16(a) for the velocity,
which shows the wave profile obtained from data in blue
and the shock profile obtained from the aforementioned
equation in red for a run with a shear viscosity value of
η ¼ 0.264. The same is done for the energy density in
Fig. 16(b) where to obtain the red curve the relation

δρðx; tÞ ¼ ρ0

�
u

u − ð1þ c2sÞVðx; tÞ
− 1

�
ðA2Þ

is used, which reduces to Eq. (26) when δρ ≪ ρ0. We see
that the model matches the data quite well, apart from the
crest of the shock, wherein there is a slight deviation from
the value predicted by the model caused by the numerical
scheme’s inability to precisely deal with sharp disconti-
nuities. The strength of this effect depends on the initial rms
velocity of the run, and the value of the viscosity, with large
rms velocities and small viscosities leading to larger
deviations and more oscillatory behavior. This is demon-
strated in Fig. 17 where a right-moving shock profile has
been plotted for runs with varying viscosity values. This
effect can be reduced by using a higher order finite
difference scheme, as can be seen in Fig. 18, where a
fourth order scheme has been used in performing the same
run as in Fig. 16(a). By impacting the shock shape, higher
order schemes also slightly change the shape of the energy
spectrum at high wave numbers and also, based on our
tests, increase the amount of transverse power generated.
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Neither of these have a significant impact on the key results
we have presented.2 Another aspect to consider is the
conservation of the energy density hρi ¼ ρ0, which is not
by default taken into account when a central difference
scheme is used. We have measured how well this con-
servation is fulfilled and we find that the largest deviations
are obtained in the high Reynolds number runs. In run 9 the
largest deviation for hρi=ρ0 from unity is 0.1, which is
obtained only briefly at the start of the run, when the
shocks are at their strongest, after about 4 shock formation
times. The quantity remains mostly within 2.5% of the
expected value and the deviations from it show a decreasing
trend throughout the run after the initial phase. As these
are the most extreme deviations and considering their
small magnitude, we conclude that the energy density is
conserved to a satisfactory level of accuracy even in
the high Reynolds number case and thus the central
difference scheme we have employed is expected to

provide representative results for the set of runs we have
featured in this paper.
The time evolution of the wave profile in a η ¼ 0.264 run

has been plotted in Fig. 19. Over time the top of the wave
profile gets narrower until a sawtooth form is reached.
There is no decrease in the amplitude of the shock before
this point. The opposite is true for the bottom of the wave
profile, where it gets wider as time goes on. Using these
properties, we have measured the velocity of the shock
wave in this run and compared it to the value given by
Eq. (25) for the shock wave seen in the simulation. The
chosen time window spans 6000 simulation time units, and
is chosen near the start of the run in such a way that the
wave profiles are not yet in the sawtooth phase, and there
are no collisions between the right and left moving shock
waves that could affect the shock speed. Since there is no
decay in the amplitude and no change in the steepness of
the shock, the propagation of a single point in the waveform
can be measured in this interval, assuming a constant
velocity. The value obtained from Eq. (25) is found to be
within 1% of th measured value.

(a)

(b)

FIG. 16. Comparison between a right-moving shock in
(a) velocity and (b) energy density obtained from simulation
data (blue line) and the shock profile predicted by Sec. III A (red
line) early on in a shock tube run. The viscosity of the run is
η ¼ 0.264, and the parameter values used for the shock profile are
Vþ ¼ 0.116, Vm ¼ 0, and x0 ¼ 28.7, giving a shock velocity
u ≈ 0.632.

FIG. 17. Shock profiles of different shock tube runs with
varying values of shear viscosity after 6000 simulation time units.

FIG. 18. Figure 16(a) but a fourth order accurate finite differ-
ence scheme has been used in the run, improving the correspon-
dence of the curves. All parameter values are the same apart from
x0 ¼ 29.0.

2The change in the high-k end of the spectrum resulting from
the use of a higher order finite difference scheme changes the
value obtained for the parameter κs of Fig. 7 in Sec. III B but the
fit is still good.
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APPENDIX B: RUNS AND INITIAL CONDITIONS

The runs have been performed using code written in
PYTHON with CYTHON [47] providing C-like performance
in the most computationally demanding parts of the
simulations, like in the evaluation of the spatial derivatives
over arrays. The code is parallelized using MPI for PYTHON
[48] so that the computations can be distributed to multiple
processor cores to provide further speed ups. NumPy [49] has
been used for the computations involving arrays along with
numexpr, which accelerates computations between arrays
and optimizes memory usage. The runs have been con-
ducted on CSC’s (Finnish IT center for science) super-
computer Puhti. All fits and numerical integrations used to
obtain the results featured in this paper have been per-
formed with SciPy [50], which is a PYTHON library offering
tools for scientific computing. The routines used are
curve_fit found in SciPy.optimize for the fits, and quad
found in SciPy.integrate for the numerical integration.
Numerical integration via quad is not however used in
calculating quantities whose definitions contain integrals
over the energy spectrum, such as the rms-velocities or the
integral length scale in Eq. (12). Instead, in those cases the

integrals are discretized as sums over the squared Fourier
arrays as Z

d2k →
ð2πÞ2
V

X
k̄

; ðB1Þ

where V ¼ N2ðΔx1ÞðΔx2Þ. The routine from SciPy has only
been used in the evaluation of the integrals in Eqs. (38),
(64), and (80).
The initial conditions are given in terms of the longi-

tudinal and transverse spectral densities

PkðjkjÞ ¼
1

V
ðjvkxðkÞj2 þ jvkyðkÞj2Þ ðB2Þ

P⊥ðjkjÞ ¼
1

V
ðjv⊥x ðkÞj2 þ jv⊥y ðkÞj2Þ ðB3Þ

given in the form of Eq. (10). The real space velocity
components are then solved from these using the Fourier
space projectors

v⊥i ðkÞ ¼ ðδij − k̂ik̂jÞvjðkÞ ðB4Þ
vki ðkÞ ¼ k̂ik̂kvjðkÞ ðB5Þ

and by taking the inverse Fourier transforms of viðkÞ. Here
δij is the Kronecker delta, and the Einstein summation
convention is applied. On the lattice, the unit vectors k̂i
are written in terms of the eigenvalues of the derivative
operators as

k̂i ¼
sinðkiΔxiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i sin

2ðkiΔxiÞ
p ; ðB6Þ

where Δxi is the lattice spacing in the direction of the ith
component. These projectors are also used to get the
longitudinal energy spectra at noninitial times by applying
them to the Fourier transformed velocity components. The
Fourier transform algorithm utilized is the N-dimensional
Fast Fourier Transform routine provided by NumPy. The
spectrum E⊥ðkÞ or EkðkÞ is then obtained from the N × N
sized arrays by radially averaging over circular rings

TABLE IV. The initial parameter values for the spectral densities and some other quantities of interest in the 100802-resolution runs
used in this paper.

ID α0 β0 γ β0 − α0 þ 1 kp A=V B η ν jδjmax ts v̄ Re

1 12 3 4 −8 0.100 64 0.5A 0.066 0 0.12 166 0.0761 10.9
2 6 2 3 −3 0.035 128 1.0A 0.066 0 0.66 302 0.0768 20.2
3 6 2 3 −3 0.035 128 1.0A 0 0.088 0.66 302 0.0768 20.2
4 9 3 3 −5 0.035 352 0.5A 0.066 0 0.14 301 0.0955 31.1
5 20 4 5 −15 0.035 900 0.5A 0.066 0 0.12 532 0.0731 32.3
6 10 4 2 −5 0.025 800 0.5A 0.066 0 0.08 300 0.1275 55.4
7 15 8 3 −6 0.009 17920 1.0A 0.066 0 0.50 625 0.1519 164.1
8 7 4 2 −2 0.007 7840 1.0A 0.066 0 0.44 322 0.2201 177.4
9 6 2 3 −3 0.007 15680 1.0A 0.066 0 0.27 643 0.1726 217.5
10 6 2 3 −3 0.007 15680 1.0A 0 0.088 0.27 643 0.1726 217.5
11 11 6 5 −4 0.006 89600 1.0A 0.066 0 0.61 595 0.1830 224.2

FIG. 19. Evolution of the wave profile of a right-moving shock
in the η ¼ 0.264 run. The profiles at various times have been
shifted in x to make the shocks overlap.
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of width Δk, which is the reciprocal lattice spacing.
The averaging stops when the edges of the array are
reached, meaning that the corner regions are ignored.
This paper contains results from 11 runs with a resolution

of 100802 whose initial conditions are listed in Table IV. In
addition, there are a couple of 40802 resolution runs that are
used in plotting the contour plots of Figs. 1 and 12 that use
the same initial conditions as runs 2 and 9. The runs listed in
the table are labeled from 1 to 11 in the order of increasing
longitudinal Reynolds number. Columns 2-4 and 6-7 con-
tain the initial parameter values for the longitudinal velocity
spectral density given in Eq. (10). The parameter A has been
scaled by dividing it by the volume V to reduce its
magnitude. The energy density is initialized in the same
way as the velocity, and the initial density spectral density in
all of the runs is the same, apart from the prefactor A that is
replaced by B, found in the 8th column of the table, given in
terms of A. The 5th column shows the value of the initial
high-k power law in the energy spectrum.
The next two columns after the spectral parameters list the

values of the shear viscosity η and the bulk viscosity ν. In the
runs featured in this paper, all runswith shear viscosity use the
value of 0.066 and all runs with bulk viscosity use the value
0.088. Finding a suitable value for the viscosity is a balancing
act, as too large values either lead to no shocks forming at all,
or to the formation of very weak and short lived shocks,
whereas too lowvalues give rise to significant instabilities and
undesirable effects like the appearance of strong oscillations
at the crest of the shocks. The bulk viscosity runs 3 and 10 use
the same random seeds as runs 2 and 10, meaning they have
the same initial waveforms both in velocity and density. All
other runs use seeds that differ from each other.
The final four columns list some initial quantities

measured from the initial conditions. The quantity jδjmax
is the largest value obtained by the fractional density
perturbation δρ=ρ0 at the initial time, and ts is the shock
formation time. The length of the runs in simulation time
units is determined by it, as all of the runs are cut off after
about 60 shock formation times. The final two columns list
the initial root mean square velocity, and the longitudinal
Reynolds number of the run, obtained using Eq. (19). The
cutoff parameter kd seen in the initial spectrum of Eq. (10)
has the value of 1=

ffiffiffi
5

p
in all runs.

The simulation code that has been used to create these
runs can be found in Ref. [51]. Also included are the scripts
used to initialize each of these runs. Non-related movies of
longitudinal and transverse only runs produced with the
simulation code can be found in Refs. [52,53].

APPENDIX C: PLOTS CONTAINING ALL
OF THE RUNS

This section contains versions of Figs. 8, 9, and 13 where
curves from all runs found in Table IV are included in the
plots. The runs are distinguishable from each other by the
colors found in the ID column of the table.

FIG. 21. Figure 9 but all runs featured in Table IVare included.

FIG. 20. Figure 8 but all runs featured in Table IVare included.
The runs have been color coded to match the colors found in the
ID columns of the tables here and in all other figures containing
multiple runs to allow for distinguishability.

FIG. 22. Figure 13 but all runs featured in Table IVare included.
The high Reynolds number runs in the range 160–230, and the low
Reynolds number runs in the range 10–60 are clearly separated into
two groups by at least an order of magnitude, with the high Re runs
having higher transverse kinetic energy. The exception is the low
Re bulk viscosity only run (ID 3, green), which joins the high Re
curves in the end. It has identical initial conditions to run 2 (orange)
apart from the viscosity type.

DAHL, HINDMARSH, RUMMUKAINEN, and WEIR PHYS. REV. D 106, 063511 (2022)

063511-20



[1] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Observation of Gravitational Waves from a Binary Black
Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[2] A. Ricciardone, Primordial gravitational waves with LISA,
J. Phys. Conf. Ser. 840, 012030 (2017).

[3] N. Christensen, Stochastic gravitational wave backgrounds,
Rep. Prog. Phys. 82, 016903 (2019).

[4] C. Caprini and D. G. Figueroa, Cosmological backgrounds
of gravitational waves, Classical Quantum Gravity 35,
163001 (2018).

[5] B. Allen, The stochastic gravity wave background: Sources
and detection, in Les Houches School of Physics: Astro-
physical Sources of Gravitational Radiation (1996),
pp. 373–417, arXiv:gr-qc/9604033.

[6] M. Maggiore, Gravitational wave experiments and early
universe cosmology, Phys. Rep. 331, 283 (2000).

[7] P. Amaro-Seoane et al. (LISA Collaboration), Laser Inter-
ferometer Space Antenna, arXiv:1702.00786.

[8] E. Witten, Cosmic separation of phases, Phys. Rev. D 30,
272 (1984).

[9] C. J. Hogan, Gravitational radiation from cosmological
phase transitions, Mon. Not. R. Astron. Soc. 218, 629
(1986).

[10] M. Kamionkowski, A. Kosowsky, and M. S. Turner, Gravi-
tational radiation from first order phase transitions, Phys.
Rev. D 49, 2837 (1994).

[11] C. Caprini et al., Detecting gravitational waves from
cosmological phase transitions with LISA: An update,
J. Cosmol. Astropart. Phys. 03 (2020) 024.

[12] A. H. Guth and E. J. Weinberg, Cosmological consequences
of a first order phase transition in the SU(5) grand unified
model, Phys. Rev. D 23, 876 (1981).

[13] P. J. Steinhardt, Relativistic detonation waves and bubble
growth in false vacuum decay, Phys. Rev. D 25, 2074
(1982).

[14] J. Ignatius, K. Kajantie, H. Kurki-Suonio, and M. Laine,
The growth of bubbles in cosmological phase transitions,
Phys. Rev. D 49, 3854 (1994).

[15] J. R. Espinosa, T. Konstandin, J. M. No, and G. Servant,
Energy budget of cosmological first-order phase transitions,
J. Cosmol. Astropart. Phys. 06 (2010) 028.

[16] A. Mégevand and S. Ramírez, Bubble nucleation and
growth in slow cosmological phase transitions, Nucl. Phys.
B928, 38 (2018).

[17] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J.
Weir, Gravitational Waves from the Sound of a First Order
Phase Transition, Phys. Rev. Lett. 112, 041301 (2014).

[18] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J.
Weir, Numerical simulations of acoustically generated
gravitational waves at a first order phase transition, Phys.
Rev. D 92, 123009 (2015).

[19] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J.
Weir, Shape of the acoustic gravitational wave power
spectrum from a first order phase transition, Phys. Rev.
D 96, 103520 (2017); 101, 089902(E) (2020).

[20] M. Hindmarsh and M. Hijazi, Gravitational waves from first
order cosmological phase transitions in the Sound Shell
Model, J. Cosmol. Astropart. Phys. 12 (2019) 062.

[21] D. Cutting, M. Hindmarsh, and D. J. Weir, Vorticity, Kinetic
Energy, and Suppressed Gravitational Wave Production in

Strong First Order Phase Transitions, Phys. Rev. Lett. 125,
021302 (2020).

[22] V. S. L’vov, Y. L’vov, A. C. Newell, and V. Zakharov,
Statistical description of acoustic turbulence, Phys. Rev. E
56, 390 (1997).

[23] V. S. L’vov, Y. V. L’vov, and A. Pomyalov, Anisotropic
spectra of acoustic turbulence, Phys. Rev. E 61, 2586
(2000).

[24] U. Frisch and J. Bec, Burgulence, in Les Houches 2000
Summer School: Session 74: New Trends in Turbulence
(2000), arXiv:nlin/0012033.

[25] J. Bec and K. Khanin, Burgers turbulence, Phys. Rep. 447, 1
(2007).

[26] D. Porter, A. Pouquet, and P. Woodward, A numerical study
of supersonic turbulence, Theor. Comput. Fluid Dyn. 4, 13
(1992).

[27] S. Kida and S. Orszag, Energy and spectral dynamics in
decaying compressible turbulence, J. Sci. Comput. 7, 1
(1992).

[28] F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq,
C. Gacherieu, and T. Poinsot, Large-eddy simulation of the
shock/turbulence interaction, J. Comput. Phys. 152, 517
(1999).

[29] U.-L. Pen and N. Turok, Shocks in the Early Universe, Phys.
Rev. Lett. 117, 131301 (2016).

[30] A. Roper Pol, S. Mandal, A. Brandenburg, T. Kahniashvili,
and A. Kosowsky, Numerical simulations of gravitational
waves from early-universe turbulence, Phys. Rev. D 102,
083512 (2020).

[31] A. Brandenburg, K. Enqvist, and P. Olesen, Large scale
magnetic fields from hydromagnetic turbulence in the very
early universe, Phys. Rev. D 54, 1291 (1996).

[32] P. B. Arnold, C. Dogan, and G. D. Moore, The bulk
viscosity of high-temperature QCD, Phys. Rev. D 74,
085021 (2006).

[33] E. Hewitt and R. E. Hewitt, The gibbs-wilbraham phenome-
non: An episode in fourier analysis, Arch. Hist. Exact Sci.
21, 129 (1979).

[34] J. Burgers, A mathematical model illustrating the theory of
turbulence, Adv. Appl. Mech. 1, 171 (1948).

[35] B. Kadomtsev and V. Petviashvilil, On acoustic turbulence,
Dokl. Akad. Nauk SSSR 208, 794 (1973).

[36] E. Kuznetsov and V. Krasnoselskikh, Anisotropic spectra of
acoustic type turbulence, Phys. Plasmas 15, 062305 (2008).
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