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A dark energy with a negative energy density in the past can simultaneously address various
cosmological tensions, and if it is to be positive today to drive the observed acceleration of the universe,
we show that it should have a pole in its equation of state parameter. More precisely, in a spatially uniform
universe, a perfect fluid (submitting to the usual continuity equation of local energy conservation) whose
energy density ρðzÞ vanishes at an isolated zero z ¼ zp, necessarily has a pole in its equation of state
parameter wðzÞ at zp, and, wðzÞ diverges to positive infinity in the limit z → zþp and it diverges to negative
infinity in the limit z → z−p—we assume that zp is not an accumulation point for poles of wðzÞ. However,
the converse statement that this kind of a pole of wðzÞ corresponds to a vanishing energy density at that
point is not true as we show by a counterexample. An immediate implication of this result is that one should
be hesitant to observationally reconstruct the equation of state parameter of the dark energy directly, and
rather infer it from a directly reconstructed dark energy density.
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I. INTRODUCTION

The ΛCDM model is the standard model of cosmology
based on the theory of general relativity with a cosmological
constant (Λ) and the existence of a pressureless source
dubbed cold dark matter (CDM). Despite its immense
success and reign of over two decades, its persistent
inefficacy in explaining certain cosmological observations
advocates the need for an update to the standard model of
cosmology [1–7].
One way of tackling the shortcomings of ΛCDM is by

considering cosmological models incorporating, on top of
the usual sources of ΛCDM (matter, radiation, etc.), a dark
energy (DE) perfect fluid (as an effective or actual source)
with energy density ρDEðzÞ that attains negative values in
the past. Out of the various observational tensions arising
within ΛCDM that can be addressed via a negative DE
density, the most prominent ones are the Hubble constant
(H0), Lyman-α (Ly-α) and S8 discrepancies. The S8
discrepancy is indirectly, the former two discrepancies
are directly related to the value of

3H2ðzÞ ¼ ρm0ð1þ zÞ3 þ ρDEðzÞ; ð1Þ

where we work in units c ¼ 1 and 8πG ¼ 1, z and HðzÞ
are respectively the redshift and the Hubble function, ρm0

is the present-day matter density, ρDEðzÞ is the DE density
(the cosmological constant for ΛCDM), and radiation,
i.e., photons and relativistic relics, are neglected. First,
the local estimations of the Hubble constant—e.g.,

H0 ¼ 73.04� 1.04 km s−1Mpc−1 from the calibration
of Supernovae using Cepheid variables [8] and H0 ¼
69.8� 0.8 km s−1Mpc−1 when they are calibrated via the
Tip of the Red Giant Branch (TRGB) [9]—are in tension
at various levels of significance with its inferred values
from observational constraints when cosmic microwave
background (CMB) data is included in the analyses; e.g.,
Planck Collaboration found H0 ¼ 67.36� 0.54 km s−1

Mpc−1 from the full CMB data [10]. Second, while the
observations prefer a higher value of the Hubble constant
compared to Planck results for ΛCDM, even the most
recent Ly-α measurements of eBOSS (SDSS DR16)
still prefer a lower HðzÞ value at the effective redshift
z ¼ 2.33, and also a higher comoving angular diameter
distance to this redshift which is also achievable by
lower values of HðzÞ for z < 2.33, showing a mild
∼1.5σ tension with the Planck results [11,12]. Third,
the S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0=0.3

p
parameter is used to quantify the

discrepancy in the σ8 −Ωm0 plane where σ8 is a measure
of the amount of structure defined as the root-mean-square
of the present-day matter density fluctuations within
spheres of 8h−1 Mpc, h≡H0=100 km s−1 Mpc−1 is the
dimensionless reduced Hubble constant and Ωm0 ≡
ρm0=3H2

0 is the present-day matter density parameter.
Similar to the previous discrepancies, the measurements
of S8 from low redshift probes (weak lensing, cluster
counts, redshift-space distortion) do not agree well with its
inferred value when ΛCDM is analyzed using CMB; e.g.,
compare the Planck result of S8 ¼ 0.832� 0.013 from full
CMB data [10] with S8 ¼ 0.766þ0.020

−0.014 from KiDS-1000
(weak lensing) [13]. S8 is a model-dependent parameter*ozulker17@itu.edu.tr
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that is sensitive to the expansion history, HðzÞ, both
through σ8 and Ωm0—the effect of HðzÞ on Ωm0 is clear
from the definition of the present-day density parameter,
and growth of structure is naturally affected by the speed
and duration of the expansion that work against it on large
scales. Considering the nature of the above discrepancies,
a particular HðzÞ function may solve all three of them,
and, as seen from Eq. (1), this HðzÞ can be translated to a
particular form of the effective DE density ρDEðzÞ when
ρm0 is constrained. Nonparametric observational recon-
structions of HðzÞ or ρDEðzÞ aiming to get hold of such
functions from these data, consistently find ρDEðzÞ to
attain negative values (although usually statistically con-
sistent with zero) for z≳ 1.5 [14–19]. Moreover, para-
metric reconstructions and models that allow the DE
density to attain negative values can relax some or all
of the H0, S8 and Ly-α discrepancies by invoking a
negative DE density at z≳ 1.5 [14,20–30]. In particular,
in Ref. [22], the graduated DE (gDE) was shown to
ameliorate the H0 and Ly-α discrepancies by preferring a
density that rapidly transitions from negative to positive,
and in Ref. [25], its limiting case the sign switching
cosmological constant (ΛsCDM) where the transition
happens instantaneously, was shown to ameliorate all
three discrepancies; the upcoming observational analysis
of ΛsCDM with an extended dataset that includes a prior
on the absolute luminosity magnitudes of Supernovae,
shows strong preference of the model over ΛCDM in
Bayesian evidence [29]. All of the above points show
strong phenomenological motivation for considering a DE
density that attains negative values in the past.
A negative energy density may seem alarming from a

theoretical perspective with regards to the established
energy conditions, which are usually considered along with
general relativity (GR), viz., the dominant energy condition
(DEC), the weak energy condition (WEC) etc. We start
addressing these concerns by first noting that while a perfect
fluid (effective) DE density that is negative definitely
violates the DEC and WEC—it also violates the null energy
condition (NEC) and the strong energy condition (SEC) if it
continuously transits to a positive value in the late universe,
due to the behavior studied in this work of its equation of
state (EOS) parameter wDE—this does not necessarily mean
it is incompatible with the singularity/censorship theorems
that are proved relying on these energy conditions; that is
because the singularity theorems rely on restrictions of the
Einstein tensor corresponding to the restrictions imposed
on the total energy momentum tensor (might be effective)
by the energy conditions, and, in the presence of multiple
sources or modified gravity, the total energy momentum
tensor may submit to these energy conditions while the DE
itself does not—an example is the nonminimally interacting
DE (IDE) models [31] for which the DE density can become
arbitrarily negative as long as it is compensated by the rest
of the sources whose energy density contributing to the total

energy momentum tensor is positive. Second, the energy
conditions are reasonable assumptions that any field obeys,
but, there is no a priori reason that they should hold [32]. In
fact, all pointwise energy conditions (which include all the
examples given above) are violated by quantum fields [33];
even one of the weakest nonpointwise energy conditions,
the so called averaged null energy condition (ANEC) does
not always hold for quantum fields [34]. Perhaps more
suspiciously, simplest classical configurations with a scalar
field such as quintessence generically violates the SEC,
and a nonminimally coupled scalar field as in Brans-Dicke
theory [35] can violate all the pointwise energy conditions
and even the ANEC [36]. Third, the DE need not be a
physical energy source, but rather an effective term in the
field equations due to an underlying modified theory of
gravity (some examples are provided below) in which case
whether it satisfies the energy conditions or not is a matter of
interest but not an expectation.
Considering the above points, and that there exists a

plethora of studies in the literature on phantom (wDE < −1)
DE models all of which violate all the pointwise energy
conditions similar to a negative DE density, we encourage
not being reluctant with regards to the possible negativity
of the DE. Theoretically motivated models that incorporate
an actual or effective negative energy source are already
present in the cosmology literature, e.g., ghost-matter
cosmologies [37], scalar-tensor theories of gravity such
as Brans-Dicke theory [38], loop quantum gravity [39],
braneworld models [40], everpresent Λ [41], unimodular
gravity without energy conservation [42], quadratic bimet-
ric gravity [43], fðTÞ gravity [44], fðTμνTμνÞ gravity (also
known as energy-momentum squared gravity) [21],
Snyder-de Sitter scalar [45], a dynamical cosmological
term ΛðtÞ [46]; see also Ref. [25] and references therein.
Also, recently an anti-de Sitter to de Sitter transition in line
with the conjecture of Ref. [22] was suggested relying on
running Barrow entropy [47].
Of course such a negative DE density should transit to

positive regime at late times to drive the present-day
acceleration of the universe, and if it varies continuously,
it should vanish at least for once at a redshift z ¼ zp. It has
been observed that such models present a pole in the DE
EOS parameter wDEðzÞ≡ pDEðzÞ=ρDEðzÞ at the transition
point zp (pDE denotes the DE pressure); moreover, this pole
results in an EOS parameter that diverges to negative
infinity if we approach to pole in the direction z → z−p ,
and diverges to positive infinity in the direction z → zþp
[14,16,18,21–24,30,40,48–52]. See the bottom panel of
Fig. 1 for this type of divergence and note that, for an
expanding spatially uniform universe, the limit z → zþp
corresponds to moving forward in time while z → z−p to
backwards. A particular cosmological scenario in which the
EOS parameter becomes singular as the total energy density
of the universe vanishes was first investigated in Ref. [53],
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and it was shown in Ref. [14] that for any effective DE
whose energy density vanishes at zp, the effective EOS
parameter diverges such that jwDEðzpÞj → ∞, provided that
zp is not a critical point of ρðzÞ and any other sources
accompanying the DE are pressureless. In this paper, we
prove that this kind of a pole is a necessary condition for any
source submitting to the local energy conservation if it
attains a vanishing energy density even at a critical point
regardless of the accompanying sources, moreover, the
divergence of wðzÞ has the above mentioned characteristic
with opposite signs around the pole as depicted in Fig. 1,
and also that the converse is not necessarily true, i.e., this
kind of a pole does not imply that the DE density vanishes at
that point.

II. STATEMENT

Let us consider a perfect fluid source (possibly multi-
component) described by the energy momentum tensor
(EMT) Tμν ¼ ðρþ pÞuμuν þ pgμν, where gμν is the metric,
ρ and p are respectively the energy density and pressure of
the fluid as measured in its rest frame, uμ is the timelike
vector field describing the 4-velocity of the fluid, and we
work in units c ¼ 1 and 8πG ¼ 1 with the metric signature
ð−þþþÞ resulting in uμuμ ¼ −1. Einstein field equations
(EFE) read

Gμν ¼ Tμν; ð2Þ

where Gμν is the Einstein tensor, and through the twice
contracted Bianchi identity, leading to ∇μGμν ¼ 0, they
imply the local energy conservation

∇μTμν ¼ 0; ð3Þ

where∇ is the metric-compatible covariant derivative. From
now on, in accordance with the cosmological principle, we
assume a universe described by the Robertson-Walker (RW)
metric ds2 ¼ −dt2 þ a2ðtÞdΣ2, where t is cosmic time, aðtÞ
is the scale factor with a0 being its present day value, dΣ is
the metric of three dimensional homogeneous and isotropic
spatial hypersurfaces, and we define the redshift as
z≡ −1þ a0=a. Given the RW metric, Eq. (3) implies
the continuity equation

dρ
dt

þ 3Hðρþ pÞ ¼ 0; ð4Þ

where H ≡ 1
a
da
dt is the Hubble parameter.

The statement we will prove in this paper is that Eq. (4)—
whether or not it stems from general relativity—implies that
the EOS parameter w≡ p=ρ of the fluid has a pole at a point
zp if zp is an isolated zero of ρðzÞ (i.e., if ρðzpÞ ¼ 0 and there
exists a neighborhood of zp for which the only contained
zero is zp). Moreover, this pole is such that (see Fig. 1)

lim
z→z−p

wðzÞ ¼ −∞; and; lim
z→zþp

wðzÞ ¼ ∞: ð5Þ

We only assume that zp is not an accumulation point for the
poles of wðzÞ.
The converse statement is not true: the EOS parameter

might have a pole described exactly by Eq. (5), yet
the energy density does not necessarily vanish at zp. We
show this by a simple counterexample for which WðzÞ ¼

2
ðz−1=2Þ1=3 with zp ¼ 1=2 (see the yellow lines in Fig. 1 and

the definition of W in the relevant section).

FIG. 1. Top panel shows the DE densities for various models
scaled by ρc;0 ≡ 3H2ðz ¼ 0Þ and the bottom panel shows their
corresponding EOS parameters, both with respect to redshift z.
The blue line corresponds to the mean values in Ref. [23] from
their analysis (CMBþ all dataset) with α ¼ 1 and the model is
dubbed VMS for the initials of the authors. The solid green line
corresponds to the gDE with mean values (for ρDE;0=ρc;0, λ, and γ)
in the analysis of Ref. [22] when λ is free. The dashed green
line is again the gDE but when (1 − λ) is not a ratio of two
odd integers (see [22] for details), the values used are
ρDE;0=ρc;0 ¼ 0.6, λ ¼ −1.36, γ ¼ −0.09. The yellow line is a
counterexample to the converse statement for which the pole does
not correspond to a zero of the density; it is characterized by
WðzÞ ¼ 2

ðz−1=2Þ1=3, and we used ρDE;0=ρc;0 ¼ 0.65.
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III. DARK ENERGY AS THE SOURCE

The above statement is clearly not limited to the DE
density, however, for the rest of the paper we will consider
the source whose energy density vanishes to be the DE. This
is because the ambiguous nature of the DE lets us treat it as
an effective source ρDE (e.g., a combination of a cosmo-
logical constant and a scalar field [28], or just a modification
to EFE due to an underlying modified gravity model such as
in Ref. [42]) whose energy density can be negative and EOS
parameter can attain values wDE < −1 and wDE > 1 without
necessarily violating energy conditions and having stability
problems (see Ref. [25] and references therein), and even
be singular (these singularities are of the weak kind and
spacetime is geodesically complete [54,55]). In addition,
previous works showing how a negative DE density transit-
ing to positive regime in the late universe is able to solve the
prominent and mild cosmological tensions, emphasizes the
importance of our results in the context of DE.
One might ask why should an effective DE obey the

continuity equation. While this is not always necessary, it
covers a broad family of cases. We can easily make the DE
obey Eq. (4), for example, by writing

Gμν ¼ Tμν þ Tμν
DE; ð6Þ

for a RW universe, assuming DE to be a perfect fluid
Tμν
DE ¼ ðρDE þ pDEÞuμuν þ pDEgμν, and that rest of the

sources do not interact with DE non-minimally; in this
case, since ∇μðTμν þ Tμν

DEÞ ¼ 0 as a direct consequence of
the twice contracted Bianchi identity, the minimal inter-
action condition implies

∇μT
μν
DE ¼ 0: ð7Þ

Note that, for this particular example, if the DE density is to
be negative at any given time, other physical sources or
negative spatial curvature (spatially open universe) also
must be present so that H2 > 0 is satisfied.

IV. PROOF

In redshift form, when applied to the DE component, the
continuity equation (4) reads

dρDEðzÞ
dz

¼ 3

1þ z
½1þ wDEðzÞ�ρDEðzÞ; ð8Þ

where pDEðzÞ ¼ wDEðzÞρDEðzÞ. Then, rearranging and
integrating the equationZ

ρDEðz2Þ

ρDEðz1Þ

dρ0DE
ρ0DE

¼ 3

Z
z2

z1

dz
1þ wDEðzÞ

1þ z
: ð9Þ

Defining

WðzÞ≡ 3
1þ wDEðzÞ

1þ z
; ð10Þ

and performing the integration on both sides of the above
equation, we have

jρDEðz2Þj ¼ jρDEðz1Þje
R

z2
z1

WðzÞdz
: ð11Þ

Let zp be a zero of ρDE, i.e., ρDEðzpÞ ¼ 0. We will show
that zp is a pole of WðzÞ. First, observe that zp cannot be a
zero of ρDE if WðzÞ is bounded from below in the
neighborhood of zp. Say,WðzÞ ≥ r for an interval fz; zpg ∈
½x; y� around zp where r, x and y are arbitrary real numbers,
and zp is the only zero of ρDE in that interval. The existence
of such an interval without any other zero is guaranteed by
our assumption that zp is an isolated zero of ρðzÞ (the
isolation condition always holds by the identity theorem if
ρðzÞ is an analytic function of redshift that does not vanish
everywhere). Then,

Z
zp

x
WðzÞdz ≥ ðzp − xÞr: ð12Þ

From Eq. (11) we have

jρDEðzpÞj ¼ jρDEðxÞje
R

zp
x

WðzÞdz; ð13Þ

and from Eq. (12) we have

jρDEðxÞje
R

zp
x

WðzÞdz ≥ jρDEðxÞjeðzp−xÞr > 0: ð14Þ

Thus, WðzÞ cannot be bounded and there must be at least
one pole of WðzÞ in the interval ½x; y�, otherwise
jρDEðzpÞj > 0 and zp is not a zero of ρDE. Furthermore,
assuming that zp is not an accumulation point for the poles
ofWðzÞ, we can pick ½x; y� arbitrarily small around zp such
that there exists only one pole in the interval ½x; y�. This pole
must be zp itself, because if it was not, we could have just
picked a smaller ½x; y� interval around zp that exclude the
single pole leaving no poles in the interval ½x; y�, contra-
dicting our initial statement that there must be at least one
pole in the interval ½x; y� in order to satisfy ρDEðzpÞ ¼ 0.
Now, let us pick a small enough interval ½x; y� for which

zp is the only pole of W and is the only zero of ρDE
contained. Since ρDEðzÞ is continuous, from Eq. (11), we
should have

jρDEðzpÞj ¼ lim
zl→z−p

jρDEðxÞje
R

zl
x

WðzÞdz

¼ lim
zl→zþp

jρDEðyÞje−
R

y

zl
WðzÞdz

; ð15Þ

where the minus sign in the last exponent is because we
switched the place of the integration bounds y and zl. The
condition ρDEðzpÞ ¼ 0 is satisfied only for
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lim
zl→z−p

Z
zl

x
WðzÞdz ¼ − lim

zl→zþp

Z
y

zl

WðzÞdz ¼ −∞: ð16Þ

Since we picked the interval ½x; y� such thatWðzÞ is finite if
z ≠ zp for z ∈ ½x; y�, Eqs. (16) are satisfied only for the
appropriate signs of divergences as z → zp, i.e.,

lim
z→z−p

WðzÞ ¼ −∞; and; lim
z→zþp

WðzÞ ¼ ∞: ð17Þ

Clearly, Eq. (17) is satisfied if and only if

lim
z→z−p

wDEðzÞ ¼ −∞; and; lim
z→zþp

wDEðzÞ ¼ ∞: ð18Þ

This concludes the proof.1

V. CLOSING REMARKS

The most important implication of this simple fact about
the EOS is that one needs to be hesitant to use the EOS to
characterize the DE in phenomenological statistical analy-
ses. This point was emphasized also in Ref. [16]. Even non-
parametric reconstructions of the DE EOS parameter could
fail to capture this singularity—an excellent example can
be seen by comparing the results in Ref. [18] when wDEðzÞ
is constrained directly, and when it is inferred from a
directly constrained ρDEðzÞ. Since the present-day DE
density is clearly positive, any nonsingular EOS parameter
would result in a DE density that is always positive as it
cannot cross zero without a pole; this unnecessarily restricts
the phenomena of the DE density in observational analyses,
since viewed as an effective source, the DE density may
enjoy negative energy densities and singularities in its EOS
parameter without repercussions.
Another point is that, in the literature, an EOS parameter

that satisfies w < −1 is dubbed “phantom” and is strongly
associated with an energy density that grows with the
expansion of the universe. Although this is true for a
phantom energy as defined in the seminal paper [57] with a
strictly positive energy density, the possibility of the energy
density attaining negative values breaks this association.
The more general interpretation that also covers cases that
violates the positivity condition is that for w > −1, the

energy density approaches to zero with the expansion, and
for w < −1, it deviates from zero. Of course, for a positive
energy density, deviation from zero corresponds to growth
as usual. See also the relevant discussion in Sec. II
of Ref. [24].
It is worth noting that for a given present-day DE density

value, the same EOS parameter can correspond to different
histories for the DE density and the expansion. Take the
blue line in the top panel of Fig. 1 as an example and make
the transformation

ρDEðz ≥ zpÞ → −ρDEðz ≥ zpÞ ð19Þ

to see this. This transformation would leave the EOS
parameter unchanged since the densities are present in
Eq. (11) with their absolute values. Note that, at least either
one of the transformed or nontransformed energy densities
produced by this method has to be nondifferentiable if
dρDE
dz ≠ 0 at zp.
Unlike the cases we investigated in this paper, if DE

completely vanishes in the past, say, for z ≥ zp, the point of
vanishing is still a zero of ρDE, but it is not isolated. Thus,
the above proof does not apply for this physically very
interesting scenario; however, we state (the proof would be
similar) that such a DE density would still have at least half
of the pole, i.e.,

lim
z→z−p

wDEðzÞ ¼ −∞: ð20Þ

Note that such a form of the DE density that completely
vanishes in the past can be smooth but it cannot be analytic.
Finally, we emphasize that, as discussed in the introduc-

tion, a negative DE density and the accompanied singu-
larity/singularities in its EOS parameter are not problematic
from the point of view of fundamental theories of physics
and various theoretical models with such behavior already
exists, especially if one considers an effective DE density
rather than an actual physical source; moreover, a DE
density that was negative in the past which has transited to
the positive regime driving the present-day acceleration of
the universe, is strongly motivated phenomenologically by
cosmological observations. Future prospects related to this
work could include checking whether the same or a similar
behavior for the EOS parameter exists for anisotropic and/or
inhomogeneous metrics for an energy density that touches
zero, and specifically looking for an observational evidence
for singularities in the DE EOS parameter.
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1While we have used redshift as the time parameter in our
discussions and proof, everything holds for any other time
parameter that can be mapped to redshift bijectively at least in
the neighborhood of zp such as cosmic time t in an ever
expanding universe, or y–redshift [56] defined as y≡ z

1þz; e.g.,
for the y–redshift, we have limy→y−pwDEðyÞ ¼ −∞, and,
limy→yþp wDEðyÞ ¼ ∞, where yp ¼ zp

1þzp
. Note that the signs of

the infinities or equivalently the directions of the one-sided limits
should be interchanged if the alternative time parameter runs
backwards to redshift as in the case of t.
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