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As one of the promising candidates of cold dark matter, primordial black holes (PBHs) were formed due
to the collapse of overdense regions generated by the enhanced curvature perturbations during the
radiation-dominated era. The enhanced curvature perturbations are expected to be non-Gaussian in some
relevant inflation models, and hence, the higher-order loop corrections to the curvature power spectrum
might be non-negligible as well as altering the abundance of PBHs. In this paper, we calculate the one-loop
correction to the curvature power spectrum with local-type non-Gaussianities characterized by FNL and
GNL standing for the quadratic and cubic non-Gaussian parameters, respectively. Requiring that the one-
loop correction be subdominant, we find a perturbativity condition, namely, j2cAF2

NL þ 6AGNLj ≪ 1,
where c is a constant coefficient which can be explicitly calculated in the given model, and A denotes the
variance of the Gaussian part of the enhanced curvature perturbation, and such a perturbativity condition
can provide a stringent constraint on the relevant inflation models for the formation of PBHs.
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I. INTRODUCTION

Primordial black holes (PBHs) can form from the collapse
of overdense regions when large curvature perturbations
reenter the horizon during the radiation-dominated era
[1–4]. PBHs not only represent cold dark matter (DM)
but also explain the merger events detected by the LIGO-
VirgoCollaboration [5–15]. There are various investigations
[6,15–40] putting constraints on the fraction of PBHs in DM
to no more than a few percent except two mass windows
½10−16; 10−14� M⊙ ∪ ½10−13; 10−12� M⊙ [41,42]. Reviews
of the constraints on PBHs can be found in [43,44].
It is estimated that the curvature power spectrum needs to

be enhanced to about 10−2 in order to form sufficient PBHs
on certain small scales, compared to those on the cosmic
microwave background (CMB) scales, which is of order
10−9 [45]. PBHs are formed at the tail of the probability
density function (PDF) of the curvature perturbations, and
the tail is very sensitive to non-Gaussianity, which is very
important to determine the abundance of PBHs [46–54].

On the other hand, in the squeezed limit of the
bispectrum for canonical single-field inflation models,
the Maldacena consistency condition [55] for the non-
Gaussian parameter fsqNL and the spectral index ns, namely,
fsqNL ¼ −5ðns − 1Þ=12, is usually expected to hold.
Although this condition is violated in the ultra slow-roll
model, there is still large local non-Gaussianity with fNL ¼
5=2 [56]. Therefore, non-negligible non-Gaussianities are
usually accompanied by the enhancement of a power
spectrum where the spectral index would be much larger,
rendering non-Gaussianities that might play a significant
role in those inflation models that predict large numbers
of PBHs.
From the viewpoint of quantum field theory (QFT), if

one takes the interaction picture, the power spectrum of
curvature perturbations is equivalent to calculating the
vacuum expectation value of a two-point correlation
function (2PCF) and the non-Gaussianities correspond to
an N-point correlation function (NPCF) with N > 2 by in-
in formalism. On the other hand, the NPCF can make a
contribution to the 2PCF through loop corrections. Based
on the fact that loop corrections of a 2PCF need to be
smaller than the tree level in order to maintain the
significance of perturbation theory, the authors in [57]
found a perturbativity condition such that c−4s Pζ ≪ 1 − ns
for a single-field inflation model, where cs represents the

*Corresponding author.
yuanchen@itp.ac.cn

†Corresponding author.
huangqg@itp.ac.cn

‡mengdeshuang@itp.ac.cn

PHYSICAL REVIEW D 106, 063508 (2022)

2470-0010=2022=106(6)=063508(7) 063508-1 © 2022 American Physical Society

https://orcid.org/0000-0002-5894-902X
https://orcid.org/0000-0001-8560-5487
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.063508&domain=pdf&date_stamp=2022-09-08
https://doi.org/10.1103/PhysRevD.106.063508
https://doi.org/10.1103/PhysRevD.106.063508
https://doi.org/10.1103/PhysRevD.106.063508
https://doi.org/10.1103/PhysRevD.106.063508


sound speed, Pζ denotes the amplitude of the tree-level
power spectrum, and ns < 1 is the spectral index.
In this paper, we calculate the one-loop correction to the

curvature power spectrumwith local-type non-Gaussianities
and work out the perturbativity condition for the enhanced
curvature perturbation for the formation of PBHs. In
addition to the constraints from loop corrections, the
abundance of PBHs would naturally select the non-
Gaussian parameters (see, e.g., [58]). We then investigate
the constraints on non-Gaussian parameters by taking into
account both the perturbativity condition and the PBH
abundance. The paper is organized as follows. In Sec. II,
we calculate the one-loop correction for the enhanced power
spectra of curvature perturbations from local-type non-
Gaussianities and work out the perturbativity condition.
In Sec. III, we review the calculation of PBH abundance and
obtain the constraints on the non-Gaussian parameters.
Finally, we give a brief conclusion and discussion in Sec. IV.

II. CONSTRAINTS ON THE LOCAL-TYPE
NON-GAUSSIAN PARAMETERS FROM

ONE-LOOP CORRECTIONS

For the local-type non-Gaussianities, the curvature
perturbation is expanded in terms of the Gaussian part in
real space. Up to cubic order, it is given by

ζðxÞ ¼ ζgðxÞ þ FNLζ
2
gðxÞ þGNLζ

3
gðxÞ; ð1Þ

where ζgðxÞ follows Gaussian statistics, and FNL and
GNL are the dimensionless non-Gaussian parameters
related to the commonly used notations fNL and gNL by
FNL ≡ 3=5fNL and GNL ≡ 9=25gNL, respectively. In
momentum space, the curvature perturbation is expanded
by convolution of the Gaussian part

ζðkÞ ¼ ζgðkÞ þ FNL

Z
d3p
ð2πÞ3 ζgðpÞζgðk − pÞ

þGNL

Z
d3p
ð2πÞ3

Z
d3q
ð2πÞ3 ζgðpÞζgðqÞζgðk − p − qÞ:

ð2Þ

The dimensionless power spectrum of curvature perturba-
tion PζðkÞ is defined as

hζðkÞζðk0Þi ¼ 2π2

k3
PζðkÞð2πÞ3δð3Þðkþ k0Þ: ð3Þ

The one-loop correction from the local-type non-
Gaussianities can be derived by inserting Eq. (2) into
Eq. (3). According to the property of a Gaussian variable,
the odd n-point functions vanish, the even n-point functions
can be expanded by all possible contractions of the 2PCFs
hζgðkÞζgðk0Þi, and the final result can be expressed as

hζðkÞζðk0Þi ¼ hζgðkÞζgðk0Þi þ
Z

d3p
ð2πÞ3

Z
d3q
ð2πÞ3 ½F

2
NLhζgðpÞζgðk − pÞζgðqÞζgðk0 − qÞi

þ 2GNLhζgðkÞζgðpÞζgðqÞζgðk0 − p − qÞi�

¼ hζgðkÞζgðk0Þi þ
Z

d3p
ð2πÞ3

Z
d3q
ð2πÞ3 ½2F

2
NLhζgðpÞζgðqÞihζgðk − pÞζgðk0 − qÞi

þ 6GNLhζgðkÞζgðpÞihζgðqÞζgðk0 − p − qÞi�; ð4Þ

where the disconnected diagrams do not show up in the
final physical process since they factor out as in the
standard QFT process. Therefore, the dimensionless power
spectrum can be written as

PζðkÞ ¼ Pð0Þ
ζ ðkÞ þ Pð1Þ

ζ ðkÞ; ð5Þ

where Pð0Þ
ζ ðkÞ is the Gaussian-part spectrum, and

Pð1Þ
ζ ðkÞ ¼ k3F2

NL

2π

Z
d3p

Pð0Þ
ζ ðpÞPð0Þ

ζ ðjk − pjÞ
p3jk − pj3

þ 3GNL

2π
Pð0Þ

ζ ðkÞ
Z

d3p
Pð0Þ

ζ ðpÞ
p3

ð6Þ

is the one-loop correction. By introducing two variables
u ¼ p=k and v ¼ jk − pj=k, the one-loop correction can be
rewritten as

Pð1Þ
ζ ðkÞ ¼ F2

NL

Z
∞

0

du
Z

1þu

j1−uj
dv

Pð0Þ
ζ ðukÞPð0Þ

ζ ðvkÞ
u2v2

þ 6GNLP
ð0Þ
ζ ðkÞ

Z
dp

Pð0Þ
ζ ðpÞ
p

¼ F2
NL

Z
∞

0

du
Z

1þu

j1−uj
dv

Pð0Þ
ζ ðukÞPð0Þ

ζ ðvkÞ
u2v2

þ 6AGNLP
ð0Þ
ζ ðkÞ; ð7Þ

where A stands for the variance of the Gaussian part of

curvature perturbation spectrum Pð0Þ
ζ ðkÞ, namely,
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A ¼
Z

Pð0Þ
ζ ðkÞd ln k; ð8Þ

and the variance of the one-loop correction Pð1Þ
ζ ðkÞ reads

σð1Þ ¼
Z

Pð1Þ
ζ ðkÞd ln k

¼ F2
NL

Z
d ln k

Z
∞

0

du
Z

1þu

j1−uj
dv

Pð0Þ
ζ ðukÞPð0Þ

ζ ðvkÞ
u2v2

þ 6A2GNL

¼ 2cA2F2
NL þ 6A2GNL; ð9Þ

where c is a constant coefficient which can be explicitly
calculated for the given enhanced curvature perturbation.
Usually, c is expected to be Oð1Þ for some typical PBH
formation models.
From the viewpoint of QFT, FNL and GNL should be

regarded as the coupling constants. In general, the shape
of the power spectrum from one-loop correction should
be different from that in tree-level order. Quantitatively, the
variance of the one-loop correction σð1Þ is supposed to be
much smaller than that of the tree-level order σð0Þ ¼ A in
order to ensure the expansion converges. Therefore, the
perturbativity condition for the enhanced curvature pertur-
bation with local-type non-Gaussianities reads

j2cAF2
NL þ 6AGNLj ≪ 1: ð10Þ

Note that GNL can be positive or negative.
In the following part of this section, we will consider two

typical models that are enhanced at a certain scale over the
CMB scale, namely, an infinite narrow spectrum and a
log-normal-shaped spectrum. These two models are com-
monly used in studying the formation of PBHs (see, e.g.,
[40,59–62]). Suppose that an enhanced power spectrum has
a cutoff at kmax (or decreases dramatically if k > kmax), then
according to Eq. (6), the one-loop power spectrum will
have a cutoff at 2kmax due to the conservation of momen-
tum. This indicates that, for an enhanced power spectrum
which has a cutoff wavelength, the one-loop power
spectrum is integrable, and one does not need to perform
regularization and renormalization which is different from
the case discussed in [57] where the authors consider a
scale-invariant power spectrum.
The infinite narrow spectrum peaked at k� at the tree

level; namely, the δ spectrum is parametrized as

Pð0Þ
ζ ðkÞ ¼ Ak�δðk − k�Þ: ð11Þ

Then, the one-loop correction to the δ power spectrum for
the local non-Gaussian expansion can be analytically
expressed by

Pð1Þ
ζ ðkÞ ¼ A2F2

NL

�
k
k�

�
2

Θ
�
2 −

k
k�

�
þ 6A2GNLk�δðk − k�Þ; ð12Þ

and the variance of the one-loop correction is σð1Þ ¼
2A2F2

NL þ 6A2GNL corresponding to c ¼ 1 in Eq. (9).
The log-normal-shaped spectrum is given by

Pð0Þ
ζ ðkÞ ¼ Affiffiffiffiffiffiffiffiffiffi

2πσ2�
p exp

�
−
ln2ðk=k�Þ

2σ2�

�
; ð13Þ

where the dimensionless parameter σ� is related to the
width of the spectrum (∼eσ�). The total one-loop correction
is the sum of the contributions of the FNL and GNL terms
and depends on the values of FNL and GNL. The GNL term
in one-loop correction only causes a constant shift 6AGNL,
while the FNL term needs to be calculated numerically. The
tree-level and one-loop power spectrum are shown in Fig. 1
for FNL ¼ 0, GNL ¼ 5 and FNL ¼ 5, GNL ¼ 0, where we
set A ¼ 10−2 and σ� ¼ 0.5. For the log-normal power
spectrum, the coefficient c in Eq. (9) depends on the width
of the tree-level spectrum and is shown in Fig. 2. We see
that the coefficient c is roughly smaller than Oð1Þ despite
the width.

III. CONSTRAINTS ON THE NON-GAUSSIAN
PARAMETERS COMBINED WITH THE

ABUNDANCE OF PBHs

In this section, we will briefly review the abundance of
PBHs and give the constraints on the non-Gaussian
parameters by considering both loop correction and the
abundance of PBHs. Throughout this section, we will
consider a δ-spectrum described by Eq. (11).

FIG. 1. The log-normal power spectrum (the blue solid line)
and its one-loop corrections (dashed and dotted lines) of local-
type non-Gaussianities with different FNL and GNL. The width of
the Gaussian spectrum and its variance are fixed at σ� ¼ 0.5 and
A ¼ 10−2, respectively.
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Let PðζÞ to be the PDF of ζ, then the initial mass
function of the PBHs β can be estimated by integrating the
PDF over the region ζ > ζc where ζc ∼Oð1Þ [63–66] is the
critical value to form a single PBH:

β ¼
Z
ζ>ζc

PðζÞdζ ¼
Z
ζðζgÞ>ζc

1ffiffiffiffiffiffiffiffiffi
2πA

p exp

�
−
ζ2g
2A

�
dζg; ð14Þ

where we have used hζ2gi ¼
R
Pð0Þ

ζ ðkÞd ln k ¼ A. Note that
the proper quantity to compute the probability of forming
PBHs is the volume average density contrast δ instead of ζ
as shown in [67]. However, we aim to discuss the
possibility to constrain non-Gaussianities using both loop
corrections and PBHs rather than evaluating a precise upper
(or lower) bound. Also, for a peaked power spectrum, we
can use ζ approximately, and β is related to the fraction of
PBH DM by [68]

fpbh ≃ 2.5 × 108β

�
gform�
10.75

�−1
4

�
mpbh

M⊙

�
−1
2

; ð15Þ

with gform� andmpbh the effective degrees of freedom and the
mass of PBHs at the formation time, respectively. A fixed
fpbh would select the values of A, FNL, and GNL. In the
following part, we consider that all DM is in the form of
10−12 M⊙ PBHs, namely, fpbh ¼ 1, and then β ≃ 7 × 10−15.
First of all, for a pure FNL model where GNL ¼ 0, the

equation ζðζgÞ ¼ ζc is solved as

ζg� ¼ −1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4FNLζc

p
2FNL

: ð16Þ

If FNL > 0, β can be expressed as

β ¼
Z

ζg−

−∞
PðζgÞdζg þ

Z þ∞

ζgþ
PðζgÞdζg

¼ 1

2
erfc

�
ζgþffiffiffiffiffiffi
2A

p
�
þ 1

2
erfc

�
−

ζg−ffiffiffiffiffiffi
2A

p
�
; ð17Þ

where erfcðxÞ is the complementary error function. While
for − 1

4ζc
< FNL < 0, β becomes

β¼
Z

ζgþ

ζg−

PðζgÞdζg¼
1

2
erfc

�
ζg−ffiffiffiffiffiffi
2A

p
�
−
1

2
erfc

�
ζgþffiffiffiffiffiffi
2A

p
�
: ð18Þ

For FNL < − 1
4ζc
, the curvature perturbation can never

exceed the critical value of forming a PBH. The parameter
space in this case is demonstrated in Fig. 3 (the red solid
curve). On the other hand, if we require jσð1Þ=σð0Þj < 1 to
maintain the validity of perturbation theory, this would also
place a constraint in the parameter space. The shaded
region in Fig. 3 denotes the allowed parameter space
which satisfies the perturbativity condition. It can be seen
that the two constraints give rise to − 1

4
< FNL ≲ 35 for

jσð1Þ=σð0Þj < 1 and − 1
4
< FNL ≲ 5 for jσð1Þ=σð0Þj < 0.1.

Second, we switch to the pure GNL case where FNL ¼ 0.
In this case, ζðζgÞ ¼ ζg þ GNLζ

3
g ¼ ζc has at most three

real roots. When GNL > 0 or GNL < − 4
27ζ2c

, there is only

one real root, namely,

ζ1 ¼ −
�
21=3

3

�"
G2

NL

�
ζc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2c þ

4

27GNL

s �#−1=3

þ 1

21=3GNL

�
G2

NL

�
ζc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2c þ

4

27GNL

s ��1=3
; ð19Þ

FIG. 2. The value of c as a function of the width of the
log-normal spectrum σ�.

FIG. 3. The allowed parameter space for A and FNL in the case
of GNL ¼ 0. The shaded region corresponds to jσð1Þ=σð0Þj ≤ 1,
and the dashed line corresponds to jσð1Þ=σð0Þj ¼ 0.1. The solid
red line stands for mpbh ¼ 10−12 M⊙ and fpbh ¼ 1.
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and β is evaluated as

β ¼
Z

∞

ζ1

PðζgÞdζg ¼
1

2
erfc

�
ζ1ffiffiffiffiffiffi
2A

p
�
; ð20Þ

while for positive GNL, it becomes

β ¼
Z

ζ1

−∞
PðζgÞdζg ¼

1

2
erfc

�
−ζ1ffiffiffiffiffiffi
2A

p
�

ð21Þ

for GNL < − 4
27ζ2c

. When − 4
27ζ2c

< GNL < 0, there are three

real roots ζ1 < 0 < ζ2 < ζ3:

ζ1 ¼ −
2ffiffiffi

3
p ð−GNLÞ1=2

cosðθ=3Þ;

ζ2 ¼
1ffiffiffi

3
p ð−GNLÞ1=2

½cosðθ=3Þ −
ffiffiffi
3

p
sinðθ=3Þ�;

ζ3 ¼
1ffiffiffi

3
p ð−GNLÞ1=2

½cosðθ=3Þ þ
ffiffiffi
3

p
sinðθ=3Þ�; ð22Þ

where we used the notations in [58] such that θ ¼
atan½ðζ2t −ζ2cÞ1=2ζc

� and ζt ≡ 2

3
ffiffi
3

p ffiffiffiffiffiffiffiffiffi
−GNL

p . In this case, β takes the

form

β¼
Z

ζ1

−∞
PðζgÞdζgþ

Z
ζ3

ζ2

PðζgÞdζg

¼1

2
erfc

�
−ζ1ffiffiffiffiffiffi
2A

p
�
þ1

2
erfc

�
ζ3ffiffiffiffiffiffi
2A

p
�
−
1

2
erfc

�
ζ2ffiffiffiffiffiffi
2A

p
�
: ð23Þ

The parameter space for the pure GNL case is illustrated in
Fig. 4. The constraints from the PBH abundance and

perturbativity condition lead to −800 < GNL ≲ 1200 for
jσð1Þ=σð0Þj < 1 and −0.25 < GNL ≲ 4 for jσð1Þ=σð0Þj < 0.1.
Finally, for the general case where both FNL and GNL are

free, the solution to ζðζgÞ ¼ ζc is lengthy, and we calculate
β numerically. The result is shown in Fig. 5 by fixing
mpbh ¼ 10−12 M⊙ and fpbh ¼ 1. It can be seen that in order
to maintain the validity of perturbation theory, one can get
constraints on both FNL and GNL for a fixed mpbh and fpbh.
For GNL < 0, the bound of FNL depends on GNL, and the
lower limit of GNL does not exist, and one can only get a
constraint on FNL by considering both the perturbativity
condition and PBH abundance. When GNL > 0, one can
get constraints such that −20≲ FNL ≲ 40 and GNL ≲ 1300

if jσð1Þ=σð0Þj < 1, and it turns out that −1=4≲ FNL ≲ 4 and
GNL ≲ 5 if jσð1Þ=σð0Þj < 0.1.

IV. CONCLUSION AND DISCUSSION

In this paper, we calculate the one-loop correction
to the power spectrum of the curvature perturbation
with local-type non-Gaussianities. We evaluate the one-
loop power spectrum to a general form, and take the δ
spectrum and log-normal spectrum as two examples. In
order to warrant the validity of perturbation theory, we
require that the variance of the one-loop spectrum be
much smaller than that of tree level, and we get a
perturbativity condition for the non-Gaussian parameters,
namely, j2cAF2

NL þ 6AGNLj ≪ 1. Moreover, the non-
Gaussian parameters are tightly constrained if a significant
amount of DM is in the form of PBHs.
In general, the non-Gaussian parameters of different

orders in the local-type non-Gaussian model should be
independent of each other, so it is expected to have no
accidental cancellation between the FNL and GNL terms in
the one-loop correction. In this sense, each term in
the correction should be, respectively, smaller than the
tree-level order, and the relations AF2

NL ≪ Oð1Þ and

FIG. 4. The allowed parameter space for A and GNL by fixing
FNL ¼ 0. The shaded region corresponds to jσð1Þ=σð0Þj ≤ 1, and
the dashed line corresponds to jσð1Þ=σð0Þj ¼ 0.1. If all DM is
made up of 10−12 M⊙ PBHs, the choice of A and GNL falls on the
red curve.

FIG. 5. The parameter space for the non-Gaussian parameters
FNL and GNL if 10−12 M⊙ PBHs make up all of the DM.
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jAGNLj ≪ Oð1Þ should hold. On the other hand, the
abundance of PBHs would naturally select the non-
Gaussian parameters and thus lead to further constraints
on the non-Gaussian parameters. For a certain inflation
model, the non-Gaussian parameters discussed in this paper
could be related to the coefficients in the interaction
Hamiltonian above third order. Our work suggests that
the consideration of both the perturbativity condition and
PBH abundance would place natural constraints on infla-
tion models, which we will leave for future work.
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