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As one of the promising candidates of cold dark matter, primordial black holes (PBHs) were formed due
to the collapse of overdense regions generated by the enhanced curvature perturbations during the
radiation-dominated era. The enhanced curvature perturbations are expected to be non-Gaussian in some
relevant inflation models, and hence, the higher-order loop corrections to the curvature power spectrum
might be non-negligible as well as altering the abundance of PBHs. In this paper, we calculate the one-loop
correction to the curvature power spectrum with local-type non-Gaussianities characterized by Fy; and
Gy standing for the quadratic and cubic non-Gaussian parameters, respectively. Requiring that the one-
loop correction be subdominant, we find a perturbativity condition, namely, |2cAF%; + 6AGy | < 1,
where c is a constant coefficient which can be explicitly calculated in the given model, and A denotes the
variance of the Gaussian part of the enhanced curvature perturbation, and such a perturbativity condition

can provide a stringent constraint on the relevant inflation models for the formation of PBHs.

DOI: 10.1103/PhysRevD.106.063508

I. INTRODUCTION

Primordial black holes (PBHs) can form from the collapse
of overdense regions when large curvature perturbations
reenter the horizon during the radiation-dominated era
[1-4]. PBHs not only represent cold dark matter (DM)
but also explain the merger events detected by the LIGO-
Virgo Collaboration [5—15]. There are various investigations
[6,15-40] putting constraints on the fraction of PBHs in DM
to no more than a few percent except two mass windows
[10716,10714] Mg U [10713,10712] M [41,42]. Reviews
of the constraints on PBHs can be found in [43,44].

It is estimated that the curvature power spectrum needs to
be enhanced to about 1072 in order to form sufficient PBHs
on certain small scales, compared to those on the cosmic
microwave background (CMB) scales, which is of order
10~° [45]. PBHs are formed at the tail of the probability
density function (PDF) of the curvature perturbations, and
the tail is very sensitive to non-Gaussianity, which is very
important to determine the abundance of PBHs [46-54].
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On the other hand, in the squeezed limit of the
bispectrum for canonical single-field inflation models,
the Maldacena consistency condition [55] for the non-
Gaussian parameter fy; and the spectral index 7, namely,

L= —5(ng—1)/12, is usually expected to hold.
Although this condition is violated in the ultra slow-roll
model, there is still large local non-Gaussianity with fy;, =
5/2 [56]. Therefore, non-negligible non-Gaussianities are
usually accompanied by the enhancement of a power
spectrum where the spectral index would be much larger,
rendering non-Gaussianities that might play a significant
role in those inflation models that predict large numbers
of PBHs.

From the viewpoint of quantum field theory (QFT), if
one takes the interaction picture, the power spectrum of
curvature perturbations is equivalent to calculating the
vacuum expectation value of a two-point correlation
function (2PCF) and the non-Gaussianities correspond to
an N-point correlation function (NPCF) with N > 2 by in-
in formalism. On the other hand, the NPCF can make a
contribution to the 2PCF through loop corrections. Based
on the fact that loop corrections of a 2PCF need to be
smaller than the tree level in order to maintain the
significance of perturbation theory, the authors in [57]
found a perturbativity condition such that 054734 <1 -=ny
for a single-field inflation model, where c, represents the
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sound speed, P, denotes the amplitude of the tree-level
power spectrum, and n; < 1 is the spectral index.

In this paper, we calculate the one-loop correction to the
curvature power spectrum with local-type non-Gaussianities
and work out the perturbativity condition for the enhanced
curvature perturbation for the formation of PBHs. In
addition to the constraints from loop corrections, the
abundance of PBHs would naturally select the non-
Gaussian parameters (see, e.g., [58]). We then investigate
the constraints on non-Gaussian parameters by taking into
account both the perturbativity condition and the PBH
abundance. The paper is organized as follows. In Sec. II,
we calculate the one-loop correction for the enhanced power
spectra of curvature perturbations from local-type non-
Gaussianities and work out the perturbativity condition.
In Sec. I1I, we review the calculation of PBH abundance and
obtain the constraints on the non-Gaussian parameters.
Finally, we give a brief conclusion and discussion in Sec. I'V.

II. CONSTRAINTS ON THE LOCAL-TYPE
NON-GAUSSIAN PARAMETERS FROM
ONE-LOOP CORRECTIONS

For the local-type non-Gaussianities, the curvature
perturbation is expanded in terms of the Gaussian part in
real space. Up to cubic order, it is given by

S(x) = Cylx) + Frilz(x) + Gaila(x), (1)
|

(CK)E(K)) = (Lo (k)E,(K)) +

where (,(x) follows Gaussian statistics, and Fy; and
Gn, are the dimensionless non-Gaussian parameters
related to the commonly used notations fy;, and gy by
Fno=3/5fn, and Gy =9/25gn1, respectively. In
momentum space, the curvature perturbation is expanded
by convolution of the Gaussian part

L) = ¢,(k) + Fy / %gg@cgw —p)

d*p d*q
o [ 5 [ Gehamtia-p-a).
@

The dimensionless power spectrum of curvature perturba-
tion P (k) is defined as

(CR)EW)) = =5 Pe(k) )0 (k +K).  (3)

The one-loop correction from the local-type non-
Gaussianities can be derived by inserting Eq. (2) into
Eq. (3). According to the property of a Gaussian variable,
the odd n-point functions vanish, the even n-point functions
can be expanded by all possible contractions of the 2PCFs
(¢o(k){o(K')), and the final result can be expressed as

3
((217:)73 /W[FﬁL@g(P)Cg(k —p)é’g(q)é'g(k/ —q)

+ 2GNL<§g(k)Z:g (p)Cg (q>€g(k/ iy 2 q)>]

= (e (k)¢ (k) +

d*p

2R (P)le (@) Lok =)o (K = q))

+ 6GNL(E (k) () (Lo (@) S (K —p — q))]. (4)

where the disconnected diagrams do not show up in the
final physical process since they factor out as in the
standard QFT process. Therefore, the dimensionless power
spectrum can be written as

0 1
Pe(k) = PE (k) + P (k). (5)
where Pé(VO)(k) is the Gaussian-part spectrum, and

P = | o P PPk =)
Il

2 p’lk—pl?
2r ¢ p p’

is the one-loop correction. By introducing two variables
u = p/kand v = |k — p|/k, the one-loop correction can be
rewritten as

O (P
= L P (uk)P,” (vk)
Pél)(k)=F2NL/O du/l_dv T

2

(0)
P
+6Gn P (k) / dp‘fT(m

(0) (0)
© Iu P (uk)P: (vk
:FIZ\IL/O du/l_dvg(zé( )

I/t1)2

+6AGN P (k). (7)

where A stands for the variance of the Gaussian part of
curvature perturbation spectrum Péo)(k), namely,
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A= / PP (k)d In k, (8)

and the variance of the one-loop correction Pél) (k) reads

D= /Pgl)(k)d In
e uk)PY (vk)
_FIZ\IL/dlnk/ du/ e
1-

+ 6A%GyL
= 2CA2F12\IL + 6A2GNL, (9)

where ¢ is a constant coefficient which can be explicitly
calculated for the given enhanced curvature perturbation.
Usually, ¢ is expected to be O(1) for some typical PBH
formation models.

From the viewpoint of QFT, Fy;, and Gy should be
regarded as the coupling constants. In general, the shape
of the power spectrum from one-loop correction should
be different from that in tree-level order. Quantitatively, the
variance of the one-loop correction ") is supposed to be
much smaller than that of the tree-level order 6(*) = A in
order to ensure the expansion converges. Therefore, the
perturbativity condition for the enhanced curvature pertur-
bation with local-type non-Gaussianities reads

2cAF%; 4 6AGy | < 1. (10)

Note that Gy can be positive or negative.

In the following part of this section, we will consider two
typical models that are enhanced at a certain scale over the
CMB scale, namely, an infinite narrow spectrum and a
log-normal-shaped spectrum. These two models are com-
monly used in studying the formation of PBHs (see, e.g.,
[40,59-62]). Suppose that an enhanced power spectrum has
a cutoff at k,,,, (or decreases dramatically if k > k,,,), then
according to Eq. (6), the one-loop power spectrum will
have a cutoff at 2k,,,, due to the conservation of momen-
tum. This indicates that, for an enhanced power spectrum
which has a cutoff wavelength, the one-loop power
spectrum is integrable, and one does not need to perform
regularization and renormalization which is different from
the case discussed in [57] where the authors consider a
scale-invariant power spectrum.

The infinite narrow spectrum peaked at k., at the tree
level; namely, the § spectrum is parametrized as

P (k) = Ak.5(k — k). (11)
Then, the one-loop correction to the § power spectrum for
the local non-Gaussian expansion can be analytically
expressed by

1072

0« =0.5
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<
X 10731
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FIG. 1. The log-normal power spectrum (the blue solid line)

and its one-loop corrections (dashed and dotted lines) of local-
type non-Gaussianities with different F; and Gy . The width of
the Gaussian spectrum and its variance are fixed at o, = 0.5 and
A = 1072, respectively.

k\2 k
P (k) = A2F (17) ® (2 - E)

+ 6A2Gy k. S(k — k), (12)

and the variance of the one-loop correction is o(!) =
2A%F3; + 6A?Gyy, corresponding to ¢ = 1 in Eq. (9).
The log-normal-shaped spectrum is given by

P =S (-5

where the dimensionless parameter o, is related to the
width of the spectrum (~e°). The total one-loop correction
is the sum of the contributions of the Fy, and Gyp, terms
and depends on the values of Fyy and Gy;.. The Gy, term
in one-loop correction only causes a constant shift 6AGy ,
while the Fy;, term needs to be calculated numerically. The
tree-level and one-loop power spectrum are shown in Fig. 1
for Fyp, =0, Gy, = 5 and Fyp = 5, Gy, = 0, where we
set A=107"2 and o, = 0.5. For the log-normal power
spectrum, the coefficient ¢ in Eq. (9) depends on the width
of the tree-level spectrum and is shown in Fig. 2. We see
that the coefficient ¢ is roughly smaller than O(1) despite
the width.

III. CONSTRAINTS ON THE NON-GAUSSIAN
PARAMETERS COMBINED WITH THE
ABUNDANCE OF PBHs

In this section, we will briefly review the abundance of
PBHs and give the constraints on the non-Gaussian
parameters by considering both loop correction and the
abundance of PBHs. Throughout this section, we will
consider a d-spectrum described by Eq. (11).

063508-3



MENG, YUAN, and HUANG

PHYS. REV. D 106, 063508 (2022)

1.0f

0.8r

0.6

0.4r

0.2r

107! 10° 10!
Ox

FIG. 2. The value of ¢ as a function of the width of the
log-normal spectrum o,.

Let P({) to be the PDF of £, then the initial mass
function of the PBHs f# can be estimated by integrating the
PDF over the region { > ¢, where (. ~ O(1) [63-66] is the
critical value to form a single PBH:

1 cg>
g — 4z = dc .
/ /¢>cL,P(C) : /(:(cg)>ccv2ﬂAeXp< £ (14)

fPC k)d In k = A. Note that
the proper quantity to compute the probability of forming
PBHs is the volume average density contrast ¢ instead of £
as shown in [67]. However, we aim to discuss the
possibility to constrain non-Gaussianities using both loop
corrections and PBHs rather than evaluating a precise upper
(or lower) bound. Also, for a peaked power spectrum, we
can use ¢ approximately, and /3 is related to the fraction of
PBH DM by [68]

o gform ‘ pbh -4
~25x 10 a s 15
Jpbh X ﬂ(10.75) <Mo> (15)

with gf°™ and My the effective degrees of freedom and the
mass of PBHs at the formation time, respectively. A fixed
Spon would select the values of A, Fyr, and Gyi. In the
following part, we consider that all DM is in the form of
107!2 M, PBHs, namely, fp, = 1,andthen f ~7 x 1075,

First of all, for a pure Fyy, model where Gy, = 0, the
equation £( g) = (, is solved as

where we have used (¢2)

—1 4 TF4FnC,

Z:gi = 2 FNL

(16)

If Fp, > 0, f can be expressed as

10!

—— Mpph = 10712M,, fooh =1
oW =0.10©

100 oM < g

10—2 L

10-3 L \

1074

-5 0 5 10 15 20 25 30 35 40
Fne

FIG. 3. The allowed parameter space for A and Fy, in the case
of Gy = 0. The shaded region corresponds to |o(!) /6] < 1,
and the dashed line corresponds to |6!!)/6(?)| = 0.1. The solid
red line stands for n,, = 1072 M and Spon = 1.

p= / PL,)dC, + /g;mP@g)dcg

(i) b5

where erfc(x) is the complementary error function. While

for —i < Fn1 <0, f becomes
§g+ 1 z_: — 1 é + )
= P(¢,)de, =~erfc| =2 | —zerfc| 2= ). (18
p= [ Pieac, = (55 ) -gete(S). as)
For Fyp < —%, the curvature perturbation can never

exceed the critical value of forming a PBH. The parameter
space in this case is demonstrated in Fig. 3 (the red solid
curve). On the other hand, if we require |6 /6(®)| < 1 to
maintain the validity of perturbation theory, this would also
place a constraint in the parameter space. The shaded
region in Fig. 3 denotes the allowed parameter space
which satisfies the perturbativity condition. It can be seen
that the two constraints give rise to —% < Fyp, <35 for
161/ < 1 and —1 < Fy <5 for |61 /6] < 0.1.

Second, we switch to the pure Gy, case where Fyp, = 0.
In this case, {(¢,) =, + Gnilj = ¢, has at most three
real roots. When Gy > 0 or Gy < —%ﬁ, there is only
one real root, namely,

218\ |, 5 4
=) [0 (64 )
1 4 \1”

2 2 1
TGy, iGNL<CC+\/§C+27GNL>i -

-1/3
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FIG. 4. The allowed parameter space for A and Gy, by fixing
Fyi = 0. The shaded region corresponds to |6(!) /6| < 1, and
the dashed line corresponds to |o(1)/6(®| = 0.1. If all DM is
made up of 10712 M PBHs, the choice of A and Gy;_ falls on the
red curve.

and S is evaluated as

p= [P, - erfc(le_A) (20)

while for positive Gy, it becomes

p= / P((,)d¢, = erfc(\/g_iJ (21)

4
_ﬁ When
real roots {; <0 <, < {5

for Gy, < —274—§% < Gy < 0, there are three

G = —mcos(eﬁ),
&= m [cos(6/3) — V/3sin(6/3)],
£ = m lcos(8/3) + V3sin(0/3)],  (22)

where we used the notations in [58] such that 0 =

2_#2\1/2
atan[%] and ¢ =

2 i
= v In this case, f takes the

form

p= [P, + / P(C,)dC,

—00

1 ¢ 1) < & ) 1 ( % >
=—erfc +—erfc ——erfc| —=— . (23
2 (\/ 24) 2 V24A) 2 V2A (23)
The parameter space for the pure Gy case is illustrated in
Fig. 4. The constraints from the PBH abundance and

1000} 0
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FIG. 5. The parameter space for the non-Gaussian parameters
Fyi, and Gy, if 10712 My PBHs make up all of the DM.

perturbatwlty condition lead to —800 < GNL < 1200 for
61 /6| < 1 and —0.25 < Gy < 4 for |61 /6| < 0.1.

Finally, for the general case where both Fy;, and Gy are
free, the solution to {({,) = £, is lengthy, and we calculate
f numerically. The result is shown in Fig. 5 by fixing
Moy = 10712 Mg and f,, = 1. It can be seen that in order
to maintain the validity of perturbation theory, one can get
constraints on both Fy, and Gy for a fixed m,y, and f .
For Gy, < 0, the bound of Fy; depends on Gy, and the
lower limit of Gy, does not exist, and one can only get a
constraint on Fy;, by considering both the perturbativity
condition and PBH abundance. When Gy, > 0, one can
get constraints such that —20 < Fp, < 40 and Gy, < 1300
if |6 /60| < 1, and it turns out that —1/4 < Fy; <4 and
Gn, S5 if |6V /6] < 0.1.

IV. CONCLUSION AND DISCUSSION

In this paper, we calculate the one-loop correction
to the power spectrum of the curvature perturbation
with local-type non-Gaussianities. We evaluate the one-
loop power spectrum to a general form, and take the ¢
spectrum and log-normal spectrum as two examples. In
order to warrant the validity of perturbation theory, we
require that the variance of the one-loop spectrum be
much smaller than that of tree level, and we get a
perturbativity condition for the non-Gaussian parameters,
namely, |2cAF%; + 6AGy.| < 1. Moreover, the non-
Gaussian parameters are tightly constrained if a significant
amount of DM is in the form of PBHs.

In general, the non-Gaussian parameters of different
orders in the local-type non-Gaussian model should be
independent of each other, so it is expected to have no
accidental cancellation between the Fy; and Gy, terms in
the one-loop correction. In this sense, each term in
the correction should be, respectively, smaller than the
tree-level order, and the relations AF% < O(1) and
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|AGnL| < O(1) should hold. On the other hand, the
abundance of PBHs would naturally select the non-
Gaussian parameters and thus lead to further constraints
on the non-Gaussian parameters. For a certain inflation
model, the non-Gaussian parameters discussed in this paper
could be related to the coefficients in the interaction
Hamiltonian above third order. Our work suggests that
the consideration of both the perturbativity condition and
PBH abundance would place natural constraints on infla-
tion models, which we will leave for future work.
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