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Scalar-induced gravitational waves (SIGWs) are attracting growing attention for probing extremely
short-scale scalar perturbations via gravitational wave measurements. In this paper, we investigate the
SIGWs from statistically anisotropic scalar perturbations, which are motivated in inflationary scenarios in
the presence of, e.g., a vector field. While the ensemble average of the SIGW energy spectrum is isotropic
for the standard statistically isotropic scalar perturbations, the statistical anisotropy in the source introduces
the multipole moments of the differential SIGW energy spectrum. We consider quadrupole anisotropy in
the scalar power spectrum and show that the SIGW spectrum has anisotropies up to l ¼ 4. We present
generic formulas of the multipole moments and then apply them to the delta-function-like and log-normal
source spectra. We find analytic expressions for the former case and show that the infrared scalings of the
multipole moments are the same as the isotropic SIGWs. Interestingly, the monopole has an additional local
minimum in the high-k tail, a key feature to distinguish from the isotropic SIGWs. The latter log-normal
case is analytic for the narrow-peak source, and we perform the numerical calculation for the broad peak.
As one expects, the multipole moments become broader with increasing source width. Our results are
helpful to test the isotropy of primordial density perturbations at extremely small scales through SIGWs.
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I. INTRODUCTION

Gravitational wave (GW) experiments, like LISA [1] and
DECIGO [2], Taiji [3], and TianQin [4] will be able to probe
the stochastic GW background (SGWB) from astrophysical
and cosmological sources. GWs propagate almost freely
over space, and they carry information about the Universe
much earlier than the recombination epoch that we have
already observed via the cosmic microwave background
(CMB). Therefore, GWexperiments are expected to serve as
a promising observational window for unknown physics in
the early Universe. Recently, the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) [5] has
reported strong evidence of a stochastic common-spectrum
process across pulsars from analyzing 12.5-yr pulsar timing
array data, which might be the signal of the SGWB. The
SGWB may be interpreted as scalar-induced gravitational
waves (SIGWs), which could be a counterpart of primordial
black hole (PBH) formation due to large scalar perturbations
at extremely short scales [6–14].
In contrast to the usual assumption of the homogeneity

and isotropy of the SGWB, the anisotropies can shed light
on the unique properties of the source and the propagation
over the Universe [15–20]. The first attempt to investigate
the anisotropies of the SGWB was made by Ref. [21] in the

case of ground-based interferometers (i.e., LIGO), which
has been also considered for space-based interferometers
[22] and pulsar timing arrays [23,24]. Recently, Ref. [19]
has investigated the sensitivity of LISA to the anisotropies
of the SGWB in the millihertz band by using the current
instrument specifications, as well as the latest theoretical
characterizations of sources of SGWB anisotropies
[16,25–27]. They found that βΩGW ∼ 2 × 10−11 (where
β is the velocity of a boost that induces the dipole) is
required to observe a dipole signal with LISA.
In this paper, we investigate another possible origin for

anisotropic SIGWs—i.e., the statistical anisotropy of
primordial scalar perturbations, which can be realized
in, e.g., the anisotropic inflation scenario [28–31]. The
statistical properties of the first-order scalar perturbations
are transferred to the SIGW energy spectra via second-
order coupling in the Einstein equation. Therefore, the
observations of SIGWs can be used to probe the statistics
of primordial scalar perturbations, which are not accessible
via the current observation of the CMB. Previous works on
SIGWs mostly assume statistical isotropy of the primordial
density perturbations [32–40]. Statistical anisotropy of
scalar perturbations has been considered for induced tensor
modes in Ref. [41] for the first time. In that work, the
author showed that quadrupole non-Gaussianity introduces
superhorizon-induced tensor modes without violating
causality at the two-loop level. Such induced superhorizon
tensor modes may be seen in the CMB polarization, as in

*iascchao@ust.hk
†iasota@ust.hk

PHYSICAL REVIEW D 106, 063507 (2022)

2470-0010=2022=106(6)=063507(12) 063507-1 © 2022 American Physical Society

https://orcid.org/0000-0003-1187-8743
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.063507&domain=pdf&date_stamp=2022-09-07
https://doi.org/10.1103/PhysRevD.106.063507
https://doi.org/10.1103/PhysRevD.106.063507
https://doi.org/10.1103/PhysRevD.106.063507
https://doi.org/10.1103/PhysRevD.106.063507


the case with primordial tensor modes. Recently, Ref. [42]
explored the enhancement of the propagation anisotropy of
SIGWs from the sharply peaked isotropic scalar perturba-
tions. Our work differs from Refs. [41,42], as we consider
the one-loop-order SIGWenergy spectrum from statistically
anisotropic Gaussian scalar perturbations. Indeed, evalu-
ation of the one-loop spectrum is more complicated than the
soft limit calculation in Ref. [41], and we report the result in
this paper.
The paper is organized as follows: In Sec. II, we first

characterize the anisotropies in the differential energy
spectra of SIGWs, and then derive the generic expressions
of multipole moments of the differential SIGW spectra up
to l ¼ 4. Next, we consider the delta-function-like and
log-normal spectra for primordial curvature perturbations
in Sec. III for the radiation-dominated (RD) epoch, and the
analytic and numerical expressions for the multipole
moments of the differential SIGW spectra are derived.
The infrared behaviors and characteristic scales of the
multipole moments are discussed as well. Finally, we
summarize the results in Sec. IV and present the details of
the derivation of the anisotropic spectrum of SIGWs in the
Appendix.

II. INDUCED GRAVITATIONAL WAVES FROM
ANISOTROPIC PRIMORDIAL DENSITY

PERTURBATIONS

The second-order coupling of scalar perturbations in the
Einstein equation introduces SIGWs [43–46]. Hence, the
statistical information of the first-order perturbations can be
transferred to SIGWs. In this section, we analyze the effect
of the statistical anisotropy of first-order scalar perturba-
tions on the signals of SIGWs.

A. The anisotropic spectrum of SIGWs

Let us consider SIGWs in the Newtonian gauge, as a
SIGW in this gauge is considered physical—i.e., the energy
density behaves as radiation in the subhorizon limit [47,48].
In this paper, we parametrize the metric perturbations as
follows:

ds2¼a2ðτÞ
�
−ð1−2ΦÞdτ2þ

�
ð1þ2ΨÞδijþ

1

2
hij

�
dxidxj

�
;

ð1Þ

where Φ and Ψ are the first-order Bardeen potentials, and
we define conformal time as

τ ¼
Z

t
dtaðtÞ: ð2Þ

For simplicity, we ignore the linear tensor perturbations, and
the second-order tensor perturbation hij satisfies the trans-
verse-traceless (TT) condition: δik∂khij ¼ 0, δijhij ¼ 0. The

latin indices are raised and lowered by Kronecker symbols
in this paper.
We consider the commonly used effective energy density

of GWs [48–54]:

ρGWðτ;xÞ ¼
M2

pl

16a2ðτÞ hh
0
ijðτ;xÞhij0ðτ;xÞi; ð3Þ

whereMpl ≡ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
, a prime is a derivative with respect

to conformal time, and the bracket in the first line means
the time average over several periods of GWs as well as the
ensemble average [52]. Equation (3) is justified only for
the linear tensor mode in the traditional backreaction
formalism, and nonpropagating tensor modes can be
included at fourth-order scalar perturbations in general.
These are not gravitational waves and cause the gauge
dependence issue. Recently, Ref. [48] provided a proper
interpretation about the gauge transformation of GWs and
showed that Eq. (3) can be used to describe the physical
SIGWeven at fourth order in the scalar perturbations in the
Newtonian gauge in a general way. Similar discussion has
also taken place in Ref. [47].
A stochastic background of GWs is customarily charac-

terized by their ener density fractionΩGW of thewave vector
k [53,55], which is defined as the GW energy density per
unit logarithmic frequency for each line-of-sight direction
k̂≡ k=k—namely,Z

∞

0

dk
k

Z
dk̂
4π

ΩGWðτ;k;xÞ≡ ρGWðτ;xÞ
ρcritðτÞ

; ð4Þ

where ρcritðτÞ ¼ 3M2
plH

2ðτÞ with the Hubble parameter H.
We assume the statistical homogeneity of the curvature
perturbations, so we drop the spatial dependence in
ΩGWðτ;k;xÞ in this paper. Statistical isotropy implies k̂
independence of ΩGWðτ;kÞ, so that the angular integral
becomes trivial in the standard case. In this paper, we
consider that the SO(3) symmetry of the spectrum is broken
to SO(2) in the presence of a preferred direction d̂ in the
source. Such a source is generally motivated in inflationary
scenarios with spinning fields [56–59]. The anisotropy can
be parameterized by the angle between d̂ and k̂. Then, we
consider the multipole expansion

ΩGWðτ;kÞ ¼
X∞
l¼0

ð−iÞlð2lþ 1ÞΩlðτ; kÞPlðd̂ · k̂Þ; ð5Þ

where Pl stands for the Legendre polynomials. We have
assumed one preferred direction for simplicity, but multiple
preferred directions may be considered. In that case, we
instead consider the expansion with respect to the spherical
harmonics but leave the study to the follow-up work.
When the relevant modes of GWs are well inside the

Hubble radius, one can relate the ΩGWðτ;kÞ and the power
spectrum Phðτ;kÞ as follows:
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ΩGWðτ;kÞ ¼
1

48

�
k
H

�
2

Phðτ;kÞ; ð6Þ

where H≡ a0=a is the comoving Hubble parameter, and
the overbar denotes the time average over several periods of
the GWs. Here, Ph ¼

P
λ¼þ;× P

λλ
h , with

hhλkðτÞhsk0 ðτÞi ¼ δð3Þðkþ k0Þ 2π
2

k3
Pλs

h ðτ;kÞ; ð7Þ

where Pλs
h ðτ;kÞ is the polarized angular-dependent dimen-

sionless power spectrum for SIGWs.
In the RD epoch, the GW energy spectrum is time

independent, and the waves start to decay relative to the
matter density after the matter-radiation equality. The
energy spectrum observed today τ0 is given by [60,61]

ΩGWðτ0; fÞ ≃ 1.6 × 10−5
�

Ωr;0h2

4.18 × 105

�

×

�
g�s

106.75

�
−1=3

Ωr;GWðτeq; fÞ; ð8Þ

where Ωr;GWðτeq; fÞ is the energy spectrum evaluated at
the matter-radiation equality τeq, and the physical frequency
is related with the comoving scale k as f ¼ k=ð2πa0Þ≃
1.5 × 10−9ðk=pc−1Þ Hz. g�sðτiniÞ ≃ 106.75 is the effective
degrees of freedom at the initial production of SIGWs,
and Ωr;0h2 ≃ 4.18 × 105 is the radiation density today
given by Planck [62]. The relation in Eq. (8) will also
hold for ΩGWðτ;kÞ. In this paper, we focus on the
calculation of the differential energy spectra ΩGWðτ;kÞ
in Eq. (6), and its current observed spectrum can be directly
derived by Eq. (8).

B. Perturbation theory

In Fourier space, the dynamics of the SIGWs is given by
the second-order Einstein equation for the tensor mode

hλk
00ðτÞ þ 2Hhλk

0ðτÞ þ k2hλkðτÞ ¼ SλkðτÞ; ð9Þ

where the prime denotes the derivative with respect to the
conformal time τ. The source term SλkðτÞ is given by
[32,33]

SλkðτÞ ¼ 4

Z
d3p

ð2πÞ3=2 e
λðk;pÞ

�
2ΦpðτÞΦk−pðτÞ

þ 4

3ð1þ ωÞ ðH
−1Φ0

pðτÞ þΦpðτÞÞ

× ðH−1Φ0
k−pðτÞ þΦk−pðτÞÞ

�
; ð10Þ

where ω is the parameter of the background equation of
state—i.e., ω ¼ 1=3 and 0 for radiation- and matter-

dominated epochs, respectively. λ ¼ þ;× denote two
polarizations of SIGWs. The quantity eλðk;pÞ is defined
as eλðk;pÞ≡ eλlmðk̂Þplpm, which is equal to 1ffiffi

2
p p2sin2θ

cos 2φ for λ ¼ þ and 1ffiffi
2

p p2sin2θ sin 2φ for λ ¼ ×; where

cos θ ¼ k·p
kp and ðp; θ;φÞ is the coordinate of p in a

spherical coordinate system whose ðx; y; zÞ axes are
aligned with ðeðk̂Þ; eðk̂Þ; k̂Þ; and ðeiðk̂Þ; ēiðk̂ÞÞ is a pair
of orthogonal polarization vectors, both of which are
orthogonal to the wave vector k of GWs. We assume
scalar perturbations are adiabatic for simplicity. Also, we
ignore the first-order anisotropic stress, whose effect on
SIGWs has been shown to be small [33].
Our calculation is, in principle, similar to the traditional

calculations of the isotropic SIGWs [32,33]. The difference
is the angular dependence of the linear scalar power
spectrum. The statistically anisotropic uniform density
slice’s curvature power spectrum is expanded into

Pd̂
ζ ðpÞ ¼ PζðpÞ

X∞
l¼0

ð−iÞlð2lþ 1ÞAlðpÞPlðd̂ · p̂Þ; ð11Þ

where p̂≡ p=p, p≡ jpj, and PζðpÞ is the isotropic part of
the dimensionless power spectrum. In a statistically
isotropic universe, A0 ¼ 1 and Al≠0 ¼ 0. In this paper,
we consider nonvanishing l ¼ 0 and l ¼ 2 moments,
which are motivated in the anisotropic inflation scenario
[28–30,56], but their extension to higher moments is
straightforward. The first three relevant Legendre poly-
nomials are given as P0ðλÞ ¼ 1, P2ðλÞ ¼ ð3λ2 − 1Þ=2,
P4ðλÞ ¼ ð35λ4 − 30λ2 þ 3Þ=8.
One often uses another convention to parametrize the

anisotropy, which can be written as

Pd̂
ζ ðpÞ ¼ PζðpÞ

X∞
l¼0

gl½1 − ðd̂ · p̂Þ2�l; ð12Þ

and the constraint on the quadrupole moment by the CMB
anisotropies is given as g2 < 0.016 ð68% C:L:Þ, which can
be recast into jA2j < 0.0021 ð68% C:L:Þ [63]. However, this
limit is applied for the CMB scale k < 0.1 h=Mpc, which
has nothing to do with the scale probed by the SIGWs. There
is no prior reason to simply extrapolate the tight constraints
on the statistical isotropy to the unconstrained small scales.
Indeed, there is an aniotropic inflation scenario that predicts
statistical isotropy at the CMB scale with anisotropic
attractor solution at the late stage of inflation [29].
Plugging in the multipole expansion of the scalar power

spectrum [Eq. (11)], we find the power spectrum of SIGWs,

INDUCED GRAVITATIONAL WAVES FROM STATISTICALLY … PHYS. REV. D 106, 063507 (2022)

063507-3



Pλs
h ðτ;kÞ¼

k3

π

Z
d3peλðk;pÞesðk;pÞPζðpÞPζðjk−pjÞ

p3jk−pj3

×
X∞
l;r¼0

ð−iÞlþrð2lþ1Þð2rþ1ÞAlðpÞArðjk−pjÞ

×Plðd̂ · p̂ÞPrðd̂ · dk−pÞFðτ;p; jk−pjÞ; ð13Þ

where dk − p ¼ ðk − pÞ=jk − pj, and the source kernel is
defined as

Fðτ; p; qÞ ¼ 1

2

�
6þ 6ω

5þ 3ω

�
4
�Z

τ

τini

dτ1gkðτ; τ1Þfðτ1; p; qÞ
�
2

:

ð14Þ
We also introduce

fðτ; p; qÞ ¼ 2ð5þ 3ωÞ
3ð1þ ωÞ TðpτÞTðqτÞ

þ 2ð1þ 3ωÞ
3ð1þ ωÞ ½τT 0ðpτÞTðqτÞ þ τTðpτÞT 0ðqτÞ�

þ ð1þ 3ωÞ2
3ð1þ ωÞ τ2T 0ðpτÞT 0ðqτÞ; ð15Þ

where τini is set to zero in this paper, and gkðτ; τ1Þ is the
green function for hλkðτÞ in Eq. (9). T is the linear transfer
function for Φ normalized by superhorizon ζ. In the present
setup, multipole expansion [Eq. (5)] stops at l ¼ 4, since
the induced spectrum is given as a product of the scalar
power spectrum up to l ¼ 2. Combining Eqs. (6) and (13),
the multipole moments of the SIGW spectrum are written as

Ωlðz; kÞ ¼
1

48

�
k
H

�
2

Hlðz; kÞ; ð16Þ

with x ¼ jk − pj=k, y ¼ p=k, z ¼ kτ, and

Hlðz; kÞ≡
Z

∞

0

dy
Z

1þy

j1−yj
dx

�
4y2 − ð1þ y2 − x2Þ2

4xy

�
2

× Fðz; x; yÞPζðkyÞPζðkxÞ½δl0 þQlðk; x; yÞ�;
ð17Þ

where we define

Q0ðk; x; yÞ≡ A2ðkxÞA2ðkyÞQ0xyðx; yÞ; ð18Þ

Q2ðk; x; yÞ≡ A2ðkxÞQ2xðx; yÞ þ A2ðkyÞQ2yðx; yÞ
þ A2ðkxÞA2ðkyÞQ2xyðx; yÞ; ð19Þ

Q4ðk; x; yÞ≡ A2ðkxÞA2ðkyÞQ4xyðx; yÞ: ð20Þ

The functions Qlðk; x; yÞ contain the information of stat-
istical anisotropy in Eq. (11). The explicit expressions of

Qlxyðx; yÞ are shown in Eqs. (A6) to (A10). Thus, Ω2 and
Ω4 are nonzero for nonvanishing A2.
H0 depends on A2, as the product of P2 contains the

monopole. This fact is useful in searching for the statistical
anisotropy of the primordial curvature perturbations,
because the information on the anisotropy can even be
extracted from the monopole moment of SIGWs without
analyzing the anisotropies.

III. EXAMPLES

In this section, we evaluate the gravitational wave
spectrum for specific examples of scalar power spectra:
delta-function and log-normal power spectra. For simplic-
ity, we assume that Al has no scale dependence at the scale
of interest. We need to calculate the time average Fðz; x; yÞ
to obtain Hlðz; kÞ, which depends on the background
evolution of the Universe—i.e., the Green’s function in
the time integral [Eq. (14)], so we need to analyze case by
case. The analytic expressions of Fðz; x; yÞ at the RD epoch
have been calculated in Refs. [32,35,64], and Ref. [35] also
presented the analytic expressions for the matter-dominated
epoch. In this paper, we focus on the RD epoch, where
ω ¼ 1=3 and H ¼ 1=τ.

A. Anisotropic SIGWs from a delta-function-like source

The nearly delta-function-like spectrum of curvature
perturbations are realized in several PBH formation mod-
els, such as Starobinsky’s R2-gravity [65] and parametric
resonance [66–68], in which the small-scale curvature
perturbations are exponentially amplified over a narrow
k region, parametrized as

PζðkÞ ¼ Aζδðlnðk=k�ÞÞ ¼ Aζk�δðk − k�Þ; ð21Þ

where k� is the peak position, and Aζ is the normalization
constant. While the statistical anisotropies in those scenarios
have not been discussed in the literature, we consider the
delta function scalar power spectrum as a toy model, as the
delta function simplifies the convolution integral, so that we
can get analytic expressions in this case. Equation (17) can
be recast into

Hlðz;kÞ ¼
Z 1ffiffi

2
p

− 1ffiffi
2

p
ds

Z
∞

1ffiffi
2

p
dt
ð1− 2t2Þ2ð1− 2s2Þ2
4ðtþ sÞ2ðt− sÞ2

×Pζ

�
k
t− sffiffiffi

2
p

�
Pζ

�
k
tþ sffiffiffi

2
p

�
FRD

�
z;
t− sffiffiffi

2
p ;

tþ sffiffiffi
2

p
�

×

�
δ0l þQl

�
k;
t− sffiffiffi

2
p ;

tþ sffiffiffi
2

p
��

; ð22Þ

where we consider the following quarter turn in the xy
plane:
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s ¼ y − xffiffiffi
2

p ; t ¼ yþ xffiffiffi
2

p : ð23Þ

Substituting Eq. (21) into the multipole moments Hl,
and then using Eq. (16), we can calculate the multipole
moments of the differential energy spectrum of SIGWs as
follows:

Ωδ
lðk̃Þ ¼ Ωδ

isoðk̃Þ½δl0 þQδ
lðk; 1=k̃; 1=k̃Þ�; ð24Þ

where we introduce

Ωδ
isoðk̃Þ≡ 3

64
A2
ζ

�
k̃2 − 4

4

�
2

k̃2ð3k̃2 − 2Þ2

×

�
π2ð3k̃2 − 2Þ2Θð2=

ffiffiffi
3

p
− k̃Þ

þ
�
4þ ð3k̃2 − 2Þ ln

����1 − 4

3k̃2

����
�

2
�
Θð2 − k̃Þ ð25Þ

and

Qδ
0ðk; 1=k̃; 1=k̃Þ ¼

5

8
ðA2Þ2ð8 − 12k̃2 þ 3k̃4Þ; ð26Þ

Qδ
2ðk; 1=k̃; 1=k̃Þ ¼

1

4
A2ð3k̃2 − 4Þ

þ 5

56
ðA2Þ2ð8þ 6k̃2 − 3k̃4Þ; ð27Þ

Qδ
4ðk; 1=k̃; 1=k̃Þ ¼

5

448
ðA2Þ2ð48þ 8k̃2 þ 3k̃4Þ: ð28Þ

Equation (25) is the energy spectrum of SIGWs from an
isotropic delta-function-like source [69]. We define the
dimensionless wave number k̃≡ k=k�. The Heaviside step
function Θð2 − k̃Þ implies the cutoff at k ¼ 2k� which is
due to the momentum conservation. The energy spectrum
of SIGWs is time independent during the RD epoch, which
is reasonable, as the short-wavelength (i.e., the subhorizon-
scale) SIGWs behave like radiation.
All effects from the anisotropic source on SIGWs are

involved in the relative shapes of Ωδ
l in Eq. (24) with

respect to the isotropic SIGWsΩδ
iso, which are shown in the

top-left panel of Fig. 1. The relative shapes of the
monopole, quadrupole, and l ¼ 4 moments for A2 ¼ 0.2
are displayed in the top-right panel of Fig. 1, by blue, red,
and brown solid curves, respectively. The cyan curve
denotes the quadrupole for A2 ¼ −0.2, while Ωδ

0 and Ωδ
4

are invariant under the transformation A2 → −A2. This
distinct behavior of the quadrupole moment is due to the
linear term in terms of A2, stemming from the coupling
between the monopole and quadrupole moments of the
source. From Eqs. (26)–(28), we have Ωδ

0ðk̃Þ ∝ 1þ ðA2Þ2,
Ωδ

2ðk̃Þ ∝ A2, and Ωδ
4ðk̃Þ ∝ ðA2Þ2.

It is straightforward to see from Eqs. (26)–(28) that,
while Qδ

4 is always non-negative, Qδ
0;2 can be either

positive or negative. The zeros for Qδ
0;2 are labeled as

k̃δln, which depends on the size of A2: k̃
δ
0n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2=

ffiffiffi
3

pq
and k̃δ21 ∈ ½1.04; 1.33� for −0.4 ≤ A2 ≤ 0.2 (which is
required by the positivity of the scalar power spectrum
in Eq. (11). We emphasize that this A2 constraint merely
comes from the truncation of the multipole expansion in
Eq. (11) at quadratic order, which is the case in the
anisotropic inflationary model we considered. In general,
inflationary models provide multipole coefficients such
that the scalar power spectrum is non-negative definite,
and it is not necessarily possible to have simple constraint
equations for each coefficient. For the monopole moment
Ωδ

0, there is an extra narrow dip around the scale k̃δmin ¼
ffiffiffi
2

p
shown in the top-right panel of Fig. 1. The width of this dip
is estimated as

k̃δ02 − k̃δ01 ≃ 0.86; ð29Þ

and the local minimum is given by

Ωδ
0ðk̃δminÞ ¼ Ωδ

isoðk̃δminÞ
�
1 −

5

2
ðA2Þ2

�
: ð30Þ

This unique feature in principle can be used to extract the
magnitude of A2 when compared with the isotropic case.
When we consider the positivity constraint −0.4 ≤
A2 ≤ 0.2, there will be at most a 40% deviation from
the isotropic SIGWs at k̃δmin, which is one of the main
results in this paper. In addition, the small amplifications
occur in the infrared regime and high-k tail of Ωδ

0;
however, the total amplitudes are suppressed in these
ranges. For the quadrupole moment Ωδ

2, the zero point k̃δ21
determines the positive or negative contribution of Ωδ

2 to
the differential energy spectrum ΩGWðτ;kÞ in Eq. (5) for
various k ranges.
The infrared behavior of the energy spectrum is critical

for GW observations [60,70,71]. It has already been shown
in Ref. [70] that there in general exists a universal infrared
behavior k3 of SIGWs no matter the super- or subhorizon
scales when several physical conditions are satisfied.
However, the isotropic SIGWs from the delta-function-like
source are shown to have k2 infrared scaling when we take
the limit k̃ ≪ 1 and yield Ωδ

isoðk̃Þ ≃ 3A2
ζ k̃

2ln2k̃. In this case,
the delta-function-like source is unphysical, as the delta
function in Fourier space implies a two-point correlation for
infinitely long distance in real space. From Eqs. (26)–(28), it
is straightforward to see that the functions Qδ

lðk; 1=k̃; 1=k̃Þ
are constant for k̃ ≪ 1, so the multipole moments Ωδ

lðk̃Þ
have the same infrared scaling as the isotropic SIGWs
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Ωδ
isoðk̃Þ, which can be clearly seen in Fig. 1. This conclusion

can also be immediately seen from Eq. (13) when we take
the infrared limit k ≪ 1: the direction dependence of k

vanishes as dk − p → −p̂ in that limit; therefore, the infrared
behavior must be same with the isotropic case. Hence, we
conclude that it is hard to distinguish the SIGWs from the
anisotropic part with the isotropic SIGWs in the infrared
regime.

B. Anisotropic SIGWs from a log-normal source

The delta-function-like spectrum is an unphysical toy
model to approximate a sharp peak in the power spectrum.
Realistic peaks could be approximated by the log-normal
spectrum with a nonzero peak width. To our knowledge, the
isotropic SIGWs from a log-normal source are first calcu-
lated in Ref. [60]; we here mainly follow their treatments
therein. The log-normal spectrum is parametrized as

PζðkÞ ¼
Aζffiffiffiffiffiffi
2π

p
Δ
exp

�
−
ln2ðk=k�Þ

2Δ2

�
; ð31Þ

whereAζ ¼
R
∞
−∞ PζðkÞd ln k is the normalization constant,Δ

is the variance describing the width of PζðkÞ, and ln k� is the
mean location of this log-normal distribution. We note that
the log-normal spectrum [Eq. (31)] reduces to the mono-
chromatic spectrum [Eq. (21)] in the small-width limit. On
the other hand, if the log-normal distribution is broad enough,
Δ → ∞, but keeping the ratio Aζ=Δ fixed, it would recover
the scale-invariant power spectrum which is favored by CMB
observation on the large scales. The previously studied
statistically anisotropic scalar spectrum in anisotropic infla-
tion could also be classified into the latter category.
The multipole moments of the energy spectrum of

SIGWs originated from the log-normal source [Eq. (31)]
can also be calculated by using the generic formula (17),
and we get

FIG. 1. Top-left panel: the isotropic SIGW spectra from the delta-function-like and log-normal sources (with the widths
Δ ¼ 10−3; 10−2; 1, 10). The spectra become broader as the width of the source increases. The break scale k̃LNb ¼ 2Δe−Δ2

for Δ ¼
10−2 is shown as well. Top-right panel: the relative shapes Ωδ

lðk̃Þ=Ωδ
isoðk̃Þ as a function of k̃ ¼ k=k� for A2 ¼ 0.2 (blue, red, and brown

solid curves), and Ωδ
2ðk̃Þ=Ωδ

isoðk̃Þ for A2 ¼ −0.2 (cyan solid curve). The zeros k̃δ01, k̃δ02 ofQδ
0ðk; 1=k̃; 1=k̃Þ, and k̃δ21 ofQδ

2ðk; 1=k̃; 1=k̃Þ for
A2 ¼ �0.2 are displayed. The dashed curves denote the absolute value of the negative ratios of l ¼ 0, 2, while Qδ

4ðk; 1=k̃; 1=k̃Þ is
always positive. The local minimum of ðΩδ

0 − Ωδ
isoÞ=Ωδ

iso located at k̃δmin ¼
ffiffiffi
2

p
, is labeled by the black dotted line. Bottom-left and

bottom-right panels: the numerical results of the SIGW spectra ΩLN
l ðk̃Þ with respect to the isotropic part ΩLN

iso ðk̃Þ for the broad peaks
Δ ¼ 1, 10, respectively, and the anisotropic coefficients A2 ¼ �0.2. The blue, red, and brown solid curves refer to the monopole,
quadrupole, and l ¼ 4moments of SIGWs, respectively. The blue, red, cyan (A2 ¼ −0.2), and brown dashed curves refer to the positive
expressions ðΩLN

iso − ΩLN
0 Þ=ΩLN

iso , −ΩLN
2 =ΩLN

iso , and −ΩLN
4 =ΩLN

iso , respectively. The black dashed curve shown in the bottom-right panel
refers to −ΩLN

2 =ΩLN
iso with A2 ¼ −0.4.
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HLN
l ðz;x;yÞ¼ A2

ζ

2πΔ2

Z
∞

0

dy
Z

1þy

j1−yj
dx

�
4y2− ð1þy2−x2Þ2

4xy

�
2

×exp

�
−
ln2xþ ln2yþ2 ln k̃ lnðxyÞþ2ln2k̃

2Δ2

�
×Fðz;x;yÞ½δl0þQlðk;x;yÞ�: ð32Þ

Reference [60] found the following convenient coordinate
transformation:

u ¼ 1ffiffiffi
2

p lnðxyÞ; v ¼ 1ffiffiffi
2

p ln
x
y
: ð33Þ

In the new frame, the integral domain is enclosed by the
following curves:

χðuÞ ¼
ffiffiffi
2

p
arccoshðe−u=

ffiffi
2

p
=2Þ; ð34Þ

ξðuÞ ¼
ffiffiffi
2

p
arcsinhðe−u=

ffiffi
2

p
=2Þ: ð35Þ

Using the above new variables, Eq. (32) becomes

HLN
l ðz; kÞ ¼ 729

16

�
6þ 6ω

5þ 3ω

�
4 A2

ζ

πΔ2z2
k̃2eΔ

2

×
Z

∞

−∞
du

Z
ξðuÞ

Re½χðuÞ�
dvRðeuþvffiffi

2
p
; e

u−vffiffi
2

p Þ

× exp
�
−

v2

2Δ2

�
exp

�
−
ðuþ ffiffiffi

2
p ðln k̃þ Δ2ÞÞ2

2Δ2

�
× ½δl0 þQlðk; e

uþvffiffi
2

p
; e

u−vffiffi
2

p Þ�; ð36Þ

where we introduce

Rðx; yÞ≡ ðx2 þ y2 − 3Þ4½x4 þ ðy2 − 1Þ2 − 2x2ðy2 þ 1Þ�2
1024x6y6

×

�
π2Θ

�
2

ffiffiffiffiffi
xy

p
cosh

�
1

2
ln
x
y

�
−

ffiffiffi
3

p �

þ
�
ln

���� ðxþ yÞ2 − 3

ðx − yÞ2 − 3

���� − 4xy
x2 þ y2 − 3

�
2
	
: ð37Þ

Note that the integrands ofHLN
l ðz; kÞ in Eq. (36) are even in

v, and we only need to calculate the integrals over the
upper-half domain, which is formed by Re½χðuÞ� and ξðuÞ;
the real part in χðuÞ is taken to ensure that χðuÞ ¼ 0 for
u > −

ffiffiffi
2

p
ln 2. Since the integrands of HLN

l ðz; kÞ are
proportional to the Gaussian function, the result depends
crucially on whether the widths of the Gaussian peaks are
inside the integration domain or not, which is determined
by the values of Δ. Following Ref. [60], we will discuss the
cases of a narrow peak Δ ≪ 1 and a wide peak Δ≳ 1
separately.

1. Narrow peak

The SIGW spectrum for a narrow peak Δ ≪ 1 has a
similar form to the delta-function-like power spectrum. The
main contribution of integrals over u and v comes from the
peaks of Gaussian functions—i.e., u ¼ −

ffiffiffi
2

p ðln k̃þ Δ2Þ
and v ¼ 0. Using the method of stationary phase, we
approximately perform the t integral as follows:

Z
ξðuÞ

Re½χðuÞ�
dv exp

�
−
v2

Δ2

�

×Qlðk; e
uþvffiffi

2
p
; e

u−vffiffi
2

p ÞRðeuþvffiffi
2

p
; e

u−vffiffi
2

p Þ

≃
ffiffiffi
π

2

r
Qlðk; e

uffiffi
2

p
; e

uffiffi
2

p ÞRðe uffiffi
2

p
; e

uffiffi
2

p Þ

× Δ
�
erf

�
ξðuÞffiffiffi
2

p
Δ

�
− erf

�
Re½χðuÞ�ffiffiffi

2
p

Δ

��
; ð38Þ

where the error function is defined as

erfðwÞ≡ 2ffiffiffi
π

p
Z

w

0

e−z
2

dz: ð39Þ

Substituting the above expressions back into Eq. (36), we
similarly integrate v and get

ΩLN
0 ðk̃Þ ¼ ΩLN

iso ðk̃Þ½1þQδ
0ðk; 1=ðeΔ

2

k̃Þ; 1=ðeΔ2

k̃ÞÞ�; ð40Þ

ΩLN
2 ðk̃Þ ¼ ΩLN

iso ðk̃ÞQδ
2ðk; 1=ðeΔ

2

k̃Þ; 1=ðeΔ2

k̃ÞÞ; ð41Þ

ΩLN
4 ðk̃Þ ¼ ΩLN

iso ðk̃ÞQδ
4ðk; 1=ðeΔ

2

k̃Þ; 1=ðeΔ2

k̃ÞÞ; ð42Þ

where ΩLN
iso ðk̃Þ is the energy spectrum for the isotropic

SIGWs [60],

ΩLN
iso ðk̃Þ ¼

Ωδ
isoðeΔ

2

k̃Þ
4

�
erf

�
1

Δ
arcsinh

k̃eΔ
2

2

�

−erf
�
1

Δ
Re

�
arccosh

k̃eΔ
2

2

���
: ð43Þ

Here we take ω ¼ 1=3 for the radiation domination. It is
straightforward to see that the above expressions recover the
delta-function-like case, Eqs. (26)–(28), when the width of
peak vanishes,Δ → 0. As we expect, the SIGWs from a log-
normal source reduce to the delta-function-like case—i.e.,

lim
Δ→0

ΩLN
l ðk̃Þ ¼ Ωδ

lðk̃Þ: ð44Þ

The narrow-peak result of the isotropic SIGWs [Eq. (43)]
can be further simplified by using the approximation eΔ

2 ≃ 1
[60]:
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ΩLN
iso;Δ≪1ðk̃Þ ≃ erf

�
1

Δ
arcsinh

k̃
2

�
Ωδ

isoðk̃Þ: ð45Þ

Note that the error function is independent of the kernel of
the source, so it is also independent of the background
equation of state [60]. Similarly to the delta-function-like
case, there are also corresponding zero points of QLN

0;2:

fk̃LN01 ; k̃LN02 ; k̃LN21 g ¼ e−Δ
2fk̃δ01; k̃δ02; k̃δ21g: ð46Þ

These characteristic scales for the narrow peak are related to
those of the delta-function-like case by a factor e−Δ

2

, which
is a universal corresponding relation between the narrow-
peak and delta-function-like cases. Note that the coefficient
A2 is assumed to be a constant in this paper, so these zero
points k̃LNln ðA2Þ depend on the width Δ only, and we recover
the delta-function-like case when the narrow limit is taken—
i.e., k̃LNln ≃ k̃δln as Δ → 0. Similarly, the monopole moments
provide the major contribution for the small A2.
A distinctive feature of the narrow log-normal case

compared to the delta-function-like case is the infrared
behavior of SIGWs’ energy spectra. Reference [60] shows
that there exists a break scale k̃LNb ¼ 2Δe−Δ2

for a narrow
log-normal source, where the GW spectrum changes its
infrared behaviors from k3 to k2. The infrared scaling k3 on
the superhorizon scales originates from the causality [70,72],
while the delta-function-like source merely gives k2 infrared
scaling. This is because the delta-function-like source
[Eq. (21)] is not physical, as we include the infinite-distance
correlations in the real space. In addition, there is also a
logarithmic divergence at k̃LNp ¼ 2=

ffiffiffi
3

p
e−Δ

2

, a local infrared

maximum at k̃LNIR ¼ e−1−Δ
2

, and a dip at k̃LNd ¼
ffiffi
2
3

q
e−Δ

2

.

Equations (40)–(42) imply that the infrared behaviors of
ΩLN

l ðk̃Þ are determined by the isotropic part ΩLN
iso;IRðk̃Þ.

Similar to the delta-function-like case, there also exists a
local minimum at k̃LNmin ¼ e−Δ

2

k̃δmin for the monopole
moment ΩLN

0 ðk̃Þ. The width of the dip around k̃LNmin is
estimated as

k̃LN02 − k̃LN01 ¼ e−Δ
2ðk̃δ02 − k̃δ01Þ; ð47Þ

and the local minimum is given by

ΩLN
0 ðk̃LNminÞ ¼ ΩLN

iso ðk̃LNminÞ
�
1 −

5

2
ðA2Þ2

�
; ð48Þ

which is also at most a 40% deviation from the iso-
tropic SIGWs.

2. Broad peak

Avariety of models predict a broad primordial curvature
spectrum—e.g., Refs. [13,73–77]. In contrast to the narrow
case discussed above, the integrand in Eq. (36) is no longer

concentrated around the peak. Reference [60] finds that the
function R in Eq. (37) in the integrand behaves differently
for u≳ 1, juj ∼Oð1Þ, and u ≲ −1. Hence, Ref. [60]
decomposes the integral into these three different domains,
evaluates each separately, and adds up all the contributions
at the end to obtain a formula; it turns out that the
approximated results obtained by Ref. [60] are reasonably
good compared with the numerical results.
For our case, we need to consider the behaviors of the

combinations Q̃LN
l R in the integral region. Their analytic

expressions are quite complicated, so it is not straightfor-
ward to get the semianalytic results as Ref. [60] did, and
we leave this to the follow-up work. Here, we resort to the
numerical method to calculate the integrals in Eq. (36) with
different broad peaks Δ ¼ 1, 10 and the anisotropic
coefficients A2 ¼ �0.2, which are shown in the bottom-
left and bottom-right panels of Fig. 1. For comparison, we
also plot the case A2 ¼ −0.4 for ΩLN

2 .
As we expect, the multipole moments of SIGW energy

spectra are extended as the width of the source increases.
Observing the bottom-left and bottom-right panels of Fig. 1,
we see that the zero k̃LN21 for A2 ¼ 0.2 of the quadrupole
moment for Δ ¼ 1 shifts to the larger-k regime (while k̃LN21
for A2 ¼ −0.2 shifts to the smaller-k regime) compared with
the delta-function-like case shown in the top-right panel of
Fig. 1. We anticipate that the zeros move to the right as we
increase thewidth, as we finally get almost flat spectra in the
bottom-right panel in the figure. Also, the zeros of ΩLN

2

depend on the value of A2 (see the cyan and black curves),
sinceΩLN

2 contains both the linear and quadratic terms in A2

[see Eq. (19).] However, this behavior will not be explained
straightforwardly based on the delta-function case. The log-
normal case is not a simple superposition of delta-function
sources, since Fourier mode coupling appears at second
order. We should note that the zeros also depend on the
magnitude of A2.

IV. CONCLUSIONS

With the advent of the space-based GW experiments
(e.g., LISA, DECIGO, TianQin, and Taiji), observations of
SGWBs will play an irreplaceable role in telling us valuable
and unique information about the early Universe. In
particular, SIGWs can be a probe of large scalar perturba-
tions at tiny scales inaccessible by the CMB anisotropies.
We have very little information about such an extremely tiny
scale so far, and even fundamental assumptions about
statistical symmetry of the perturbations are not guaranteed
at these scales. This work considered the possibility of
probing the statistical isotropy of the primordial density
perturbations by using the SIGWs.
First, we reviewed the dynamics of the SIGWs and the

forms of the source term. Then, we derived generic
expressions of the multipole moments of the SIGW energy
spectrum from an anisotropic scalar power spectrum. We
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showed that the monopole, quadrupole, and l ¼ 4moments
arise due to the quadrupole anisotropy in the scalar power
spectrum. This conclusion is independent of the shape of the
anisotropic scalar power spectrum. Next, we considered two
examples of the scalar power spectrum: the delta-function-
like, and log-normal spectra during the radiation-dominated
epoch. For the former case, we derived the analytic
expressions for the multipole moments of the differential
SIGW energy spectra. The monopole moment differs from
the statistically isotropic case, and there exists a dip in the
high-k tail, which is a unique feature of the monopole
moment, as shown in Fig. 1. We showed the peculiar scale
dependence of the multipole moments in the subhorizon
scales, but the infrared behaviors are the same as with the
isotropic one. We considered the narrow Δ ≪ 1 and broad
peakΔ≳ 1 separately for the latter log-normal spectrum. An
isotropic narrow peak leads to a spectrum similar to the
isotropic delta-function-like source but behaves as k3 in the
infrared tail, which also applies to the multipole moments in
the anisotropic case. For the broad peak, we perform the
numerical calculations and get the moments of the differ-
ential SIGW energy spectra for Δ ¼ 1, 10 and A2 ¼ �0.2,
shown in Fig. 1. As we expect, the SIGW spectra become
broader for larger Δ.
This work considered SIGWs from the anisotropic scalar

power spectrum phenomenologically, whose amplitude is
controlled by the size of scalar perturbations. Hence, this
type of SIGW will be much more observationally interest-
ing when one considers the PBH formation in the early
Universe. However, to our knowledge, PBH formation has

not been discussed in the presence of statistical anisotropy.
We may consider additional vector fields in the existing
PBH models, but it would be more interesting if the vector
field itself can source a large scalar power spectrum. In an
anisotropic inflation scenario, g2 in Eq. (12) is somewhat a
free parameter controlled by a gauge kinetic function in
supergravity action [29]. If g0 ≪ g2 is realized at some
small scales, PζðpÞ will be enhanced by g2. We will
consider the possibility of such a PBH formation scenario
in the follow-up work.
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APPENDIX: THE DERIVATION OF THE
ANISOTROPIC SPECTRUM OF SIGWs

Starting from the equation of motion [Eq. (9)], the power
spectrum of SIGWs from a statistically anisotropic source
can be derived by using the Green’s function solution of
Eq. (9), similar to the calculations of isotropic SIGWs
[33,36,38],

Pd̂;λs
h ðτ;kÞ ¼ k3

π

Z
d3peλðk;pÞesðk;pÞFðτ; p; jk − pjÞP

d̂
ζ ðpÞ
p3

Pd̂
ζ ðk − pÞ
jk − pj3 ; ðA1Þ

where the source kernel Fðτ; p; jk − pjÞ is shown in Eq. (14). We consider angular dependence in the linear scalar power
spectrum in Eq. (A1). The preferred direction d̂ introduces the nontrivial azimuthal dependence for p, which differs from the
standard isotropic calculation. Without loss of generality, we may take a coordinate system where k ¼ ð0; 0; kÞ,
p ¼ pðsin θ cosφ; sin θ sinφ; cos θÞ, and d̂ ¼ ðsin α cos β; sin α sin β; cos αÞ, so that

d̂ · p̂ ¼ cos α cos θ þ cosðφ − βÞ sin θ sin α; ðA2Þ

d̂ · ð dk − pÞ ¼ ðk − p cos θÞ cos α − p cosðφ − βÞ sin α sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2 − 2kp cos θ

p : ðA3Þ

We change the variables as x ¼ jk − pj=k, y ¼ p=k and z ¼ kτ. As we have x ¼ xðp; θÞ and y ¼ yðpÞ, we can integrate φ
independently from x and y in Eq. (A1). Then we get

X
λ¼þ;×

Pλλ
h ðτ;kÞ ¼ P0ðd̂ · k̂Þ

Z
xy
A2ðkxÞA2ðkyÞQ0xyðx; yÞ

− 5P2ðd̂ · k̂Þ
Z
xy
½A2ðkxÞQ2xðx; yÞ þ A2ðkyÞQ2yðx; yÞ þ A2ðkxÞA2ðkyÞQ2xyðx; yÞ�

þ 9P4ðd̂ · k̂Þ
Z
xy
A2ðkxÞA2ðkyÞQ4xyðx; yÞ; ðA4Þ
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where d̂ · k̂ ¼ cos α and we defineZ
xy
≡
Z

∞

0

dy
Z

1þy

j1−yj
dx

�
4y2 − ð1þ y2 − x2Þ2

4xy

�
2

Fðz; x; yÞPζðkxÞPζðkyÞ: ðA5Þ

We also introduce

Q0xyðx; yÞ ¼
160

81

�
5þ 3ω

6þ 6ω

�
4 1

x2y2
½3x4 þ 2x2ðy2 − 3Þ þ 3ðy2 − 1Þ2�; ðA6Þ

Q2xðx; yÞ ¼
32

81

�
5þ 3ω

6þ 6ω

�
4 1

x2y2
½3x4y2 þ 2x2y2ð1 − 3y2Þ þ 3y2ðy2 − 1Þ2�; ðA7Þ

Q2yðx; yÞ ¼
32

81

�
5þ 3ω

6þ 6ω

�
4 1

x2y2
½3x2ð1þ y2 − x2Þ2 − 4x2y2�; ðA8Þ

Q2xyðx; yÞ ¼ −
160

567

�
5þ 3ω

6þ 6ω

�
4 1

x2y2
½3x6 − 3x4ðy2 þ 1Þ þ 3ðy2 − 1Þ2ðy2 þ 1Þ − x2ð3þ 2y2 þ 3y4Þ�; ðA9Þ

Q4xyðx; yÞ ¼
20

567

�
5þ 3ω

6þ 6ω

�
4 1

x2y2
½35x8 − 20x6ð3þ 7y2Þ þ 6x4ð3þ 10y2 þ 35y4Þ

þ 4x2ð1þ 3y2 þ 15y4 − 35y6Þ þ ðy2 − 1Þ2ð3þ 10y2 þ 35y4Þ�: ðA10Þ

In the above derivations, we use the relation ½P2ðxÞ�2 ¼ 18
35
P4ðxÞ þ 2

7
P2ðxÞ þ 1

5
P0ðxÞ for the Legendre polynomials.

We apply the above generic formulas to the RD epoch, where ω ¼ 1=3 andH ¼ 1=τ. The Green’s function of Eq. (9) is
given by

gkðτ; τ1Þ ¼ Θðτ − τ1Þ
τ1 sin½kðτ − τ1Þ�

kτ
; ðA11Þ

and the source function fRDðz1; x; yÞ in Eq. (14) for the RD epoch is calculated as

fRDðz1; x; yÞ ¼
27

x3y3z3

�
18xyz2 cos

xzffiffiffi
3

p cos
yzffiffiffi
3

p þ ½54 − 6ðx2 þ y2Þz2 þ x2y2z4� sin xzffiffiffi
3

p sin
yzffiffiffi
3

p

þ 2
ffiffiffi
3

p
yzðx2z2 − 9Þ sin xzffiffiffi

3
p cos

yzffiffiffi
3

p þ 2
ffiffiffi
3

p
xzðy2z2 − 9Þ sin yzffiffiffi

3
p cos

xzffiffiffi
3

p
�
; ðA12Þ

which is equal to 3 at z ¼ 0 and decays as ∼z−2 at large z, so that the source term during the RD epoch quickly decays, and a
large amount of SIGWs are mainly produced at the early stage of horizon entry. Since we observe SIGWs at the present
epoch—i.e., τ → ∞ or z ≫ 1—in this limit and taking the time average, we find [35]

I2RDðz→∞; x; yÞ ¼ 1

2

�
27ðx2 þ y2 − 3Þ

16x3y3z

�
2
��

−4xyþ ðx2 þ y2 − 3Þ ln
����3− ðxþ yÞ2
3− ðx− yÞ2

����
�

2

þ π2ðx2 þ y2 − 3Þ2Θðxþ y−
ffiffiffi
3

p
Þ
�
:

ðA13Þ

With the above preparations, substituting the above expressions into Eq. (17), and using the relation (6), we can obtain the
semianalytic expressions of the differential energy spectrum Ωd̂

GWðτ;kÞ of SIGWs and the multipole expansion [Eq. (5)]
when the isotropic power spectrum of the curvature perturbations PζðkÞ is given. The functions Q0xyðx; yÞ, Q2xðx; yÞ,
Q2yðx; yÞ, Q2xyðx; yÞ, Q4xyðx; yÞ at the RD epoch are calculated by taking ω ¼ 1=3 in Eqs. (A6)–(A10).
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