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A claimed detection of cosmological tensor perturbations from inflation via B-mode polarization of the
cosmic microwave background requires distinguishing other possible B-mode sources. One such potential
source of confusion is primordial magnetic fields. For sufficiently low-amplitude B-mode signals, the
microwave background temperature and polarization power spectra from power-law tensor perturbations
and from a power-law primordial magnetic field are indistinguishable. However, we show that such a
magnetic field will induce a small-scale Faraday rotation which is detectable using four-point statistics
analogous to gravitational lensing of the microwave background. The Faraday rotation signal will
distinguish a magnetic-field-induced B-mode polarization signal from tensor perturbations for effective
tensor-to-scalar ratios larger than 0.001, detectable in upcoming polarization experiments.
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I. INTRODUCTION

One of the primary goals of the next-generation of
cosmic microwave background (CMB) experiments is to
detect the primordial B-mode polarization signal from the
tensor perturbations generated by inflation. A detection of
this signal would be compelling evidence of inflation and
help determine the physical mechanism of inflation. While
early Universe inflation generically predicts the production
of metric tensor perturbations with a nearly scale-invariant
spectrum via quantum fluctuations in the gravitational field,
the amplitude of the tensor spectrum can vary greatly
between plausible inflation models.
The current best constraint on the tensor-to-scalar ratio is

r < 0.056 at the 95% confidence level through a combined
analysis of Planck and BICEP2 [1]. The next generation of
large-angle CMB polarization experiments—including the
Simons Observatory [2], BICEP3 [3], LiteBIRD [4], and
CMB-S4 [5]—will have the sensitivity and frequency range
to reduce this bound to r ¼ 10−3 or below. However, the
tensor perturbations from inflation are not the only source
of B-mode polarization in the CMB. Foregrounds and
lensing, in particular, are both known to contribute to
B-mode polarization. Even regions of the sky with expected
low Galactic foregrounds still have polarized foregrounds
which are substantially larger than current upper limits on

any primordial B-mode polarization component [6–8]. In
order to separate foregrounds from cosmological polariza-
tion signals, the coming generation of large-angle B-mode
experiments (BICEP3, Simons Observatory, LiteBIRD)
will measure in many frequency bands, and test the spatial
isotropy and Gaussianity of any signal.
It has also been known for a long time that the lensing

B-mode signal has a low-l contribution whose power
spectrum can be mistaken for or confused with a low-
amplitude primordial signal [9]. B-mode polarization from
lensing has been detected in cross correlation by SPT [10]
and ACT [11]. Great progress has been made in measuring
lensing signals through their non-Gaussian four-point
signature (see, e.g., Ref. [12]), and maps of the lensing
deflection potential have been reconstructed with data from
ACT [13], SPT [14], and Planck [15]. In principle, this can
be done with very high precision, given clean enough maps
with low enough noise (see, e.g., Refs. [16,17]), but in
practice there is a limit to how well low-l lensing can be
reconstructed due to having imperfect data with nonzero
noise. For example, although detecting a signal with
r ∼ 10−6 is theoretically achievable in the absence of any
systematic errors, sky cuts, and foregrounds [17], realistic
forecasts that include such effects generally predict a much
lower sensitivity at the level of σðrÞ ∼ 10−3 [18].
Foregrounds and lensing are the two most important

confusion signals for primordial B-mode polarization, and
detailed modeling of those are well in hand (see Ref. [19]*yilun.guan@utoronto.ca
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for a review). What else could confuse us? Perhaps the next
most likely signal would be from a primordial magnetic
field. Such concern has previously been brought up in, e.g.,
Refs. [20,21] and discussed in Ref. [22]. The extent to
which we can distinguish the two signals, given imperfect
data with nonzero noise, motivates this paper.
Magnetic fields are ubiquitous in the Universe today,

with typical strengths of a few microgauss in galaxies and
galaxy clusters (see, e.g., Refs. [23–25] for reviews).
Furthermore, evidence from the nonobservation of inverse
Compton cascade γ rays from TeV blazars [26] suggests
that magnetic fields are present in the intergalactic medium,
with a lower limit of around 10−7 nG on Mpc scales.
However, the physical origin of the cosmic magnetic field
remains poorly understood. One intriguing possibility is
that cosmic magnetic fields are present before structure
formation and are produced in the very early Universe, such
as during inflation [27] or during a phase transition [28].
Magnetic fields that are present before the decoupling of
CMB photons are generally known as primordial magnetic
fields.
If present, a primordial magnetic field impacts both the

ionization history of the Universe and structure formation,
leaving imprints on the CMB and the matter power
spectrum [29]. In particular, primordial magnetic fields
source scalar, vector, and tensor metric perturbations, and
influence baryon physics through the Lorentz force. In
addition, primordial magnetic fields also introduce a net
rotation of the linear polarization of the CMB photons
through an effect known as Faraday rotation, which leaves
an observable frequency-dependent signal in the CMB
polarization pattern [30,31].
The amplitude of the comoving magnetic field B0

present today is constrained to be no more than a few
nG (see, e.g., Refs. [32,33]). However, it has been pre-
viously shown that a magnetic field with a mean amplitude
of around 1 nG and a power-law power spectrum can
generate a CMB B-mode power spectrum similar to that of
an inflationary tensor-mode signal with tensor-to-scalar
ratio r ≃ 0.004 [22]. This is roughly the limiting tensor
amplitude that will be detected by upcoming CMB experi-
ments. Hence, a lack of knowledge of the primordial
magnetic field may potentially lead us to a wrong con-
clusion if a B-mode polarization signal were to be detected
by upcoming CMB experiments.
In this work we aim to review and reevaluate, with

particular focus on the upcoming CMB experiments, the
potential degeneracy between a B-mode signal from a
primordial magnetic field model and that from primordial
gravitational waves. In particular, we evaluate the degen-
eracy for different tensor-to-scalar ratios r, in the context of
experimental configurations that model the capabilities of
upcoming CMB experiments. We also investigate the
extent to which we can break the degeneracy with
Faraday rotation from the magnetic field, at both the

power-spectrum level and the map level. In particular, as
we show in Sec. V, quadratic estimation of Faraday rotation
at 90 GHz gives a much more significant detection of
magnetic fields than the power spectrum for a given map
noise and resolution; for a tensor-mode signal at the level of
r ¼ 10−3, Faraday rotation clearly breaks the power spec-
trum degeneracy between tensor perturbations and mag-
netic fields.
This paper is organized as follows. In Sec. II, we review

the basics of the primordial magnetic field. In Sec. III, we
summarize the primordial magnetic field contributions to
the CMB power spectrum and evaluate the potential
confusion with the tensor-mode signal from inflation. In
Sec. IV, we briefly review the physics of Faraday rotation
from primordial magnetic fields and discuss to what extent
this effect allows us to break the degeneracy between
primordial magnetic fields and primordial tensor-mode
signals. In Sec. V, we summarize the reconstruction of
Faraday rotation through quadratic estimators and then
discuss to what extent it helps us break the degeneracy.
Finally, we discuss our results and conclude in Sec. VI.

II. PRIMORDIAL MAGNETIC FIELDS

A. Statistics of stochastic matgnetic fields

We consider a stochastic background of magnetic fields
generated prior to recombination and assume that the
magnetic field is weak enough to be treated as a perturba-
tion to the mean energy density of the Universe. As the
Universe is highly conductive prior to recombination, any
electric field quickly dissipates. On scales larger than the
horizon, the magnetic field is effectively “frozen in” due to
the negligible magnetic diffusion on cosmological scales.
Hence, the conservation of magnetic flux gives the scaling
relation Biðxj; τÞ ¼ BiðxjÞ=aðτÞ2, where a is the scale
factor, τ is the conformal time, and xj are the comoving
coordinates. We also assume that the stochastic background
of magnetic fields follows the statistics of a Gaussian
random field, and the energy density of magnetic fields,
which scales quadratically with the magnetic field strength
(∝ B2), follows chi-squared statistics. In Fourier space,1 the
statistics of the magnetic field can be completely described
by its two-point correlations

hB�
i ðkÞBjðk0Þi ¼ ð2πÞ3δð3Þðk − k0Þ

× ½PijPBðkÞ þ iϵijlk̂lPHðkÞ�; ð1Þ

where Pij ≡ δij − k̂ik̂j is a projection operator onto the
transverse plane to k̂ such that Pijkj ¼ 0, and ϵijl is the total
antisymmetric tensor. Here PH and PB refer to the helical
and nonhelical parts of the magnetic field power spectrum,

1In this paper we use the following Fourier convention:
f̃ðkÞ ¼ R

d3xeik·xfðxÞ, and fðxÞ ¼ 1
ð2πÞ3

R
d3ke−ik·xf̃ðkÞ.
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respectively. For the sake of simplicity, we assume that the
helical magnetic field component vanishes, though we
should note that a helical magnetic field is predicted
by some proposed magnetogenesis scenarios (see, e.g.,
Refs. [34,35]).
We assume that the power spectrum of the magnetic field

follows a power law with a cutoff scale kD, given by

PB ¼ ABknB; k ≤ kD; ð2Þ

which vanishes for k > kD. The dissipation scale kD
reflects the suppression of the magnetic field due to
radiation viscosity on small scales. AB and nB denote the
amplitude and spectral index of the magnetic field power
spectrum, respectively, both of which depend on the
specific magnetogenesis scenario. In particular, an infla-
tionary magnetogenesis model prefers a scale-invariant
spectrum with a spectral index nB ≈ 3, while a causally
generated magnetic field in the post-inflationary epoch
prefers a spectrum with nB ≥ 2 [21].
The assumption that the magnetic field is “frozen in” and

follows a power law with a cutoff scale kD is only an
approximation. Magnetohydrodynamic simulations (e.g.,
Refs. [36–38]) have shown that magnetic fields tend to
source turbulence on scales smaller than the horizon.
However, such an effect is expected to have a negligible
impact on the results in this paper as it mostly affects the
small-scale magnetic fields, whereas (as we discuss in
Sec. III) only the large-scale magnetic modes are degen-
erate with a primordial tensor mode signal. Thus, we
neglect subhorizon plasma dynamics.
In addition, following a common convention in the

literature, we smooth the magnetic field with a Gaussian
kernel fλðxÞ ¼ N exp ð−x2=2λ2Þ on a comoving scale λ.
The magnetic field fluctuation on the comoving scale λ can
then be characterized by

B2
λ ≡ hBλðxÞ ·BλðxÞi ¼

1

π2

Z
∞

0

dkk2e−k
2λ2PBðkÞ; ð3Þ

which is related to the power spectrum amplitude AB by

AB ¼ ð2πÞnBþ5B2
λ

2ΓðnBþ3
2
ÞknBþ3

λ

: ð4Þ

The damping scale kD can also be approximated as [39]

kD ¼ ð5.5 × 104Þ 1
nBþ5

�
Bλ

1 nG

�
− 2
nBþ5

�
2π

λ=Mpc

�nBþ3

nBþ5

× h
1

nBþ5

�
Ωbh2

0.022

� 1
nBþ5

����
λ¼1 Mpc

Mpc−1; ð5Þ

where h is the reduced Hubble parameter defined as
h≡H0=100 km s−1Mpc−1.

B. Magnetic perturbations

Consider a particular realization of a stochastic magnetic
field, with the magnitude of the field at x and conformal
time τ given by Biðx; τÞ. Its energy-momentum tensor can
be written as

T0
0 ¼ −

1

8πa4
B2ðxÞ;

T0
i ¼ Ti

0 ¼ 0;

Ti
j ¼

1

4πa4

�
1

2
B2ðxÞδij − BiðxÞBjðxÞ

�
; ð6Þ

where we have used the “freeze-in” condition Biðx; τÞ ¼
BiðxÞ=aðτÞ2. Since ρB ≡ T0

0 ∝ a−4 scales the same way as
the photon energy density, one can reparametrize the
magnetic field perturbation relative to the photon density
ργ and pressure pγ as [29]

T0
0 ¼ −ργΔB;

Ti
j ¼ pγðΔBδ

i
j þ Πi

BjÞ; ð7Þ

where ΔB denotes the scalar perturbations sourced by
magnetic fields relative to the radiation energy density,
andΠi

Bj denotes the anisotropic stress frommagnetic fields
which can be further decomposed into scalar-, vector-, and
tensor-type perturbations.
Initial conditions of magnetically induced perturbation

modes can be decomposed into three types: (1) compen-
sated [40,41], (2) passive [29,42], and (3) inflationary [43].
In particular, compensated magnetic modes arise when the
magnetic contributions to the metric perturbations are
compensated by fluid modes to the leading order on
superhorizon scales. They include the contributions from
magnetic fields after neutrino decoupling, and are finite in
the τ → 0 limit. The passive magnetic modes, on the other
hand, account for the magnetic contribution prior to
neutrino decoupling. In this period, the Universe is domi-
nated by a tightly coupled radiative fluid which prevents
any anisotropic stress from developing. Without neutrino
free-streaming, the magnetic field acts as the only source of
anisotropic stress, leading to a logarithmically growing
mode [42]. This mode survives neutrino decoupling as a
constant offset on the amplitude of the nonmagnetic mode.
Inflationary magnetic modes, as another type of initial
condition, depend on the specific generation mechanism
[43], and are therefore not considered in this paper in order
to maintain the generality of our results to different
magnetic field models.
We also note that several other isocurvature

modes involving magnetic fields exist, as outlined in
Refs. [44,45]. In this work we focus only on the “adiabatic”
mode because its CMB anisotropy power spectrum is more
difficult to distinguish from the measured power spectrum
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(which is consistent with adiabatic perturbations with a
power-law initial power spectrum in standard ΛCDM).
Isocurvature modes will generate power spectra with
acoustic peaks out of phase with the measured power
spectrum [44] which, for a given amplitude of magnetic
field, will make isocurvature modes easier to detect in the
CMB power spectra than adiabatic modes of the same
amplitude. Thus, we expect the conclusion of our study to
also hold for isocurvature modes, if not stronger, and we
leave a more thorough analysis to future work.
From this physical picture it is apparent that the size of

the perturbations from magnetic fields depends on the
epoch of their generation relative to the epoch of neutrino
decoupling, as can be parametrized by log10ðτν=τBÞ, where
τν is the neutrino decoupling time and τB is the magnetic
field generation time. Though the exact number for
this quantity remains unknown and can be model depen-
dent, we assume log10ðτν=τBÞ ¼ 17 for simplicity, follow-
ing Ref. [33]. In addition, the magnetic field also introduces
a Lorentz force acting on the baryons in the primordial
plasma. It effectively augments the pressure perturbations
of the baryon-photon fluid which prevent photons and

baryons from falling into their gravitational wells. This
effect is analogous to a change in the baryon energy density
which affects the sound speed of the baryon-photon fluid
and changes its acoustic oscillations [46–48].

III. IMPACTS ON CMB POWER SPECTRA

A primordial magnetic field influences CMB anisotro-
pies through both its metric perturbations and the Lorentz
force, and generates perturbations of scalar, vector, and
tensor types. We make use of the publicly available code
MagCAMB2 [32] which extends the Boltzmann code
CAMB [49] to include the effects of a primordial magnetic
field discussed in Sec. II. In Fig. 1 we show an example set
of CMB power spectra that are sourced by a stochastic
primordial magnetic field with B1 Mpc ¼ 1 nG and a nearly
scale-invariant spectrum (nB ¼ −2.9). Contributions from
different magnetic modes are plotted in different colors,
from which one observes that the passive tensor-mode
signal in CBB

l has significant power at l≲ 100 resembling

FIG. 1. Contributions of different magnetic modes to the CMB power spectra (in units of μK2) from a stochastic background of
primordial magnetic fields with B1 Mpc ¼ 1 nG, log10 τB=τν ¼ 17, and nB ¼ −2.9 (nearly scale invariant) generated using MagCAMB.

2https://github.com/alexzucca90/MagCAMB.
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that of an inflationary tensor-mode signal and hence may
pose a possible source of confusion. On the other hand,
the compensated vector-mode contribution dominates at
l≳ 1000 in bothCTT

l andCBB
l which is not degenerate with

the inflationary tensor-mode signal. Hence, this vector-
mode perturbation from primordial magnetic fields gives us
a potential way to break the degeneracy.
To evaluate the extent of the confusion for upcoming

CMB experiments, we simulate different sets of CMB
power spectra using CAMB with the standard ΛCDM
model and the Planck best-fit cosmological parameters as
our fiducial model [50], while varying the tensor-to-scalar
ratio r to reflect different science targets, with the spectral
index nT fixed by the slow-roll inflation consistency
relation nT ¼ −r=8. We consider several toy-model full-
sky microwave background experiments specified by
angular resolution and map sensitivity. In addition, we
simulate the observed power spectra for each experiment
with an idealized noise model given by

Nl ¼ w−1 exp ðlðlþ 1Þθ2=8 ln 2Þ; ð8Þ

where w−1=2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πσ2pix=Npix

q
denotes the expected noise

level of an experiment, with σpix being the per-pixel noise
level, Npix the total number of pixels, and θ the FWHM size
of a Gaussian telescope beam. We also assume that the
polarization and temperature noise are related simply
by ðσPpixÞ2 ¼ 2ðσTpixÞ2.
In Table I we list the toy-model experiments (Expts)

considered in this work. In particular, Expts A and B
approximate the capabilities of the Simons Observatory
Large Aperture Telescope (SO LAT) and Small Aperture
Telescope (SO SAT), respectively. Expt C1 represents a
combined constraint with both of these experiments. Expt
C2 represents the capability of the anticipated CMB-S4
experiment, while Expt C3 is the limit of a noiseless CMB
map so that the power spectrum uncertainty is due entirely
to cosmic variance.

We compute Markov chain Monte Carlo (MCMC)
model fitting to find the best-fit cosmologies for two
competing models: (1) a model with a nonzero tensor-
to-scalar ratio r but no primordial magnetic field contri-
bution (ΛCDMþ r hereafter), and (2) a model with
r ¼ 0 but nonzero primordial magnetic field contribution
(ΛCDMþ PMF hereafter). The Markov chain varies the
standard cosmological parameters, plus either the tensor-to-
scalar ratio or the primordial magnetic field amplitude and
power spectrum index (see Appendix A for more details on
the MCMC model fitting and example results from the
Markov chains). The log-likelihood for a given model is
taken as [51]

−2 lnLðfĈlgjfClgÞ ¼
X
l

ð2lþ 1ÞfTr½ĈlC−1
l �

− ln jĈlC−1
l j − 3g; ð9Þ

where Cl contains the theory power spectra given by

Cl ≡
0
B@

CTT
l CTE

l 0

CTE
l CEE

l 0

0 0 CBB
l

1
CA; ð10Þ

and Ĉl contains the observed power spectra given by

Ĉl ≡ 1

2lþ 1

X
m

alma
†
lm; ð11Þ

with alm ≡ ðaTlmaElmaBlmÞT . Note that the full set of power
spectra—CTT

l , CEE
l , CBB

l , and CTE
l —are used in the model

fitting.
Specifically, the simulated power spectrum is generated

with the ΛCDMþ r model, which we then fit with a
ΛCDMþ PMF model to find degenerate magnetic field
models in terms of CMB power spectra. Although in theory
the expected power spectra from the two competing models
are not completely degenerate due to, for instance, the
vector-mode signal from the primordial magnetic field, in
practice the difference may not be detectable at a given
experimental noise level, especially when B1 Mpc ≲ 1 nG.
By computing the Δχ2 between the two best-fit models, we
evaluate the extent of the degeneracy between the
ΛCDMþ r model and the ΛCDMþ PMF model at vari-
ous r targets and experiment sensitivities, as listed in
Table I.

A. Fiducial cosmology with r = 0.01

We first consider a target of r ¼ 0.01 which is one of the
primary goals of the upcoming CMB experiments such as
the Simons Observatory [2]. In particular, the Simons
Observatory will have two separate instruments for

TABLE I. Different sets of experimental parameters considered
in this paper. Expt A represents a ground-based small-aperture
telescope, while Expt B represents a ground-based large-aperture
telescope. Expts C1, C2, and C3 represent a combination of Expts
A and B at various noise levels.

Name Beam (arcmin) Noise (μKarcmin) lmin lmax fsky

A 17 2 30 1000 0.1
B 1.4 6 30 3000 0.4
C1 17 2 30 1000 0.1

1.4 6 30 3000 0.4
C2 17 1 30 1000 0.1

1.4 2 30 3000 0.4
C3 17 0 30 1000 0.1

1.4 0 30 3000 0.4
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measuring different angular scales of the CMB power
spectrum: a large-aperture telescope which mainly focuses
on small-angle CMB anisotropies, and a small-aperture
telescope which mainly focuses on the large-angle CMB
anisotropies. As the tensor-mode signal from infla-
tion is expected to show up predominantly in the large
angular scales, it is the main target of the SO SAT
experiment.
Suppose that we live in a universe that is well described

by a ΛCDMþ r model with r ¼ 0.01, and we measure the
CMB power spectrum with an SO SAT–like experiment,
specified as Expt A in Table I. We simulate the observed
CMB power spectra for Expt A between angular scales of
lmin ¼ 30 and lmax ¼ 3000, with a sky fraction of
fsky ¼ 0.3, to account for the effect of partial sky coverage
from a ground-based experiment.
We then fit the simulated data with both the ΛCDMþ r

and ΛCDMþ PMF models. The resulting B-mode polari-
zation power spectra CBB

l for the two best-fit models are
shown in Fig. 2, compared to the simulated data. It shows
that the two competing models can be highly degenerate
over the angular scales probed by the simulated experi-
ment (Expt A; 30≲ l≲ 3000), with a difference much
smaller than the variance of the observed data. To be more
specific, one can model the variance of the observed data
as [52]

σ2ðClÞ ¼
2

ð2lþ 1Þfsky
ðCl þ NlÞ2 ð12Þ

and compare it to the difference between the two sets of
best-fit power spectra, as shown in Fig. 3. The difference in
the best-fit power spectra is around 2 orders of magnitude

below the expected variance of the observed power
spectrum, indicating that breaking the degeneracy between
the two models is impossible without additional informa-
tion. The corresponding difference in χ2 between these two
best-fit models is Δχ2 ≃ 0.1
The degeneracy between the two models is nottoo

surprising because on large angular scales (l≲ 100) the
passive tensor mode dominates over the other contribu-
tions from the primordial magnetic field, and the passive
tensor mode is mathematically equivalent to the infla-
tionary tensor-mode signal; the degeneracy is unavoid-
able if one observes only on large angular scales. On the
other hand, one does see a noticeable difference between
the two models at l≲ 10, indicating that the two models
are not completely degenerate on all angular scales. This
is expected because on small angular scales (l≳ 1000)
the compensated vector mode signal from a primordial
magnetic field starts to dominate over the other magnetic
modes in the CBB

l power spectrum. This difference on
small scales gets minimized by the best-fit model,
leading to the difference seen at l≲ 10. This also
implies that the small-scale CMB anisotropies contain
crucial information that helps break the degeneracy
between r ¼ 0.01 in tensor perturbations and a primor-
dial magnetic field.
In Fig. 4 we show the posterior distributions of the

magnetic field parameters (B1 Mpc and nB) from the
ΛCDMþ PMF model fitting an inflationary tensor per-
turbation at r ¼ 0.01. Specifically, we obtain a best-
fit primordial magnetic field model with B1 Mpc ¼
1.42þ0.42

−0.54 nG at the 68% confidence level, on par with
the observational constraints set by Planck in 2015 [33].
We also note that a nearly scale-invariant spectrum, with
a spectral index of nB < −2.49, is preferred by the
simulated data, which we find to be a generic feature
of the ΛCDMþ PMF models degenerate to ΛCDMþ r.
An apparent degeneracy between the amplitude of the
magnetic field B1 Mpc and the magnetic spectral index nB
can also be seen. This is because as nB increases, the
power spectrum of primordial magnetic fields tilts toward
smaller scales, leading to less power in the large-scale
modes which Expt A (or an SO SAT–like experiment) is
sensitive to, and thus the loss of power gets compensated
by a stronger magnetic field.
Now suppose that one obtains additional observations

from a large-aperture telescope like the SO LAT, specified
as Expt B in Table I, which strongly constrains the small-
scale CMB anisotropies. One can then combine its con-
straining power with Expt A to jointly constrain the
primordial magnetic field on both small and large angular
scales. For simplicity, we simulate the observed power
spectra of the combined constraint by simulating two
separate experiments with the same underlying CMB
realization and combining them trivially by using the

FIG. 2. Best-fit CBB
l power spectra (in units of μK2) for the

ΛCDMþ r (blue) and ΛCDMþ PMF (red) models, to an
underlying tensor cosmology with r ¼ 0.01 and map noise
Expt A in Table I. The black dots represent the simulated data
after removing noise model UNCLEAR, and the black dashed
line represents the noise model.
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experiment that gives the lowest variance at each l to avoid
mode double counting.
In Fig. 5, we show how the joint posterior distribution of

the magnetic field parameters (B1 Mpc and nB) changes
after we add the data from Expt B to the constraint.
The degeneracy between nB and B1 Mpc is broken when
the additional observations from Expt B (or an SO LAT–
like experiment) are included which tightly constrains the
small-scale modes of the primordial magnetic field. The
joint constraint leads to a much tighter allowed parameter
space (shown as the red contour) favoring a primordial
magnetic field with B1 Mpc ∼ 1 nG and a scale-invariant
spectrum. We find a Δχ2 ≃ −2.5 between the best-fit
ΛCDMþ r model and the ΛCDMþ PMF model, showing
a stronger preference for the ΛCDMþ r model. This
improvement in Δχ2 is driven by improved sensitivity in
the small angular scales which severely constrain the
compensated vector mode from primordial magnetic field,
dominating at l≳ 1000 and with no degenerate signal in
ΛCDMþ r. This indicates that if an apparent primordial
B-mode signal is detected at an amplitude of around
r ¼ 0.01, a joint constraint using both large and small

FIG. 3. Difference of the two best-fit CMB power spectra in Fig. 2 (red solid line) and the analytic covariance of the simulated power
spectrum (black dashed line).

FIG. 4. Joint posterior distributions for the ΛCDM þ PMF
model parameters after fitting the simulated data (generated with
a ΛCDMþ r model with r ¼ 0.01) to a ΛCDMþ PMF model.
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angular scale measurements is a promising approach to rule
out a degenerate ΛCDMþ PMF model.

B. Lower-r targets

In addition to the fiducial model with r ¼ 0.01 discussed
in the preceding section, we also repeat the study in
Sec. III A for different targets of r ranging from 0.001
to 0.010, and computeΔχ2 between the two best-fit models
for each set of the simulations of a given r. In particular, we
consider three sets of combined observations specified as
Expts C1, C2, C3 in Table I. Expt C1 represents the set of
observations considered in Sec. III A as a joint constraint of
Expts A and B, Expt C2 represents a similar set of
experiments with lower noise levels, and Expt C3 repre-
sents the same set of experiments in a noiseless limit.
The results of model fitting show that the degenerate

ΛCDMþ PMF models generally favor a nearly scale-
invariant spectrum (nB ≃ −2.9) with B1 Mpc ≲ 0.8 nG,
which is below the current observational limits. Figure 6
shows how the amplitude of the magnetic field in the
degenerate ΛCDMþ PMF model varies with r. This is
useful because it provides a look-up table of degenerate
parameter spaces between the two models, allowing one to
easily identify the degenerate magnetic field model to a
given r target. It shows that, in general, one only needs to
worry about scale-invariant primordial magnetic field
models with B1 Mpc ≳ 0.5 nG when targeting r≳ 0.001.
The results also show that, as the noise level of the
experiment improves, more magnetic field parameter space
will be strongly constrained, thus reducing the allowed
amplitude of the degenerate primordial magnetic field
model.
In Fig. 7 we show how Δχ2 between the two best-fit

models changes as we vary r for each of the three sets of

simulated observations. As a reference, we compare the
Δχ2 with the 95% confidence level of a χ2 distribution with
one degree of freedom (Δχ2 ¼ −3.841) since the two
competing models differ by one degree of freedom. We
note that the estimated Δχ2 for Expt C2 decreases at
r≲ 0.004. This is likely due to a combination of realiza-
tion-induced randomness and a poor convergence of some
of the MCMC chains. Nevertheless, combined with Fig. 6,
one sees a generic trend in the decrease of B1 Mpc and the
increase of Δχ2 as noise level decreases or as r is lowered,
which matches our expectations. Thus, our results are likely
sensible approximations of the expected performance of
upcoming CMB experiments, which are sufficient for our
discussion here. In particular, one can see that the perfor-
mance of Expt C1 in breaking the degeneracy between
the two models quickly degrades as r≲ 0.008. With C2

FIG. 5. Joint posterior distributions of the magnetic field
parameters after fitting a ΛCDMþ PMF model to the simulated
CMB power spectra with a fiducial model of inflationary tensor
modes with r ¼ 0.01. The red contour shows the posterior
distribution obtained from Expt A only, while the blue contour
shows the posterior distribution obtained from a joint constraint
from both Expt A and Expt B, as specified in Table I. Contour
levels indicate the 68% and 95% confidence levels, respectively.

FIG. 6. Magnetic field magnitudes (B1 Mpc) that fit the simu-
lated data at different target r for Expt C1, C2, and C3 specified in
Table I. The error bars indicate the 68% confidence interval for
the marginal posterior distribution.

FIG. 7. Variation of Δχ2 with different targets of r. The three
lines represent the three simulated sets of observations specified
in Table I. The black dashed line shows a reference level of
Δχ2 ¼ −3.841 which corresponds to the 95% confidence level
for a χ2 distribution with one degree of freedom.
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(a CMB-S4-like experiment), the situation is much
improved as the degeneracy is effectively broken for any
r≳ 0.004. In the noiseless limit (Expt C3), the degeneracy
limit in r, after which the two models are indistinguishable,
is pushed further down to r≲ 0.002. This implies that we
will be cosmic-variance-limited to make a distinction
between an inflationary tensor-mode signal and a primor-
dial magnetic field signal below r≲ 0.002.
Note that our conclusions so far are based entirely on

constraining primordial magnetic fields through their
effects on the CMB power spectra by means of metric
perturbations and the Lorentz force. However, this is not the
only way one can constrain primordial magnetic field
signals. In fact, primordial magnetic fields also induce a
Faraday rotation effect on the polarization of CMB photons
[31], thus providing an additional means to constrain
primordial magnetic field models. Hence, in the subsequent
sections we will examine whether such an effect can
improve our ability to distinguish the two models.

IV. B-MODE POLARIZATION FROM
FARADAY ROTATION

Another probe of primordial magnetic fields is the effect
of Faraday rotation, in which the presence of a magnetic
field causes a net rotation of the linear polarization
directions of CMB photons along their path. The rotation
angle α depends on the frequency of observation and the
integrated electron density along the line of sight,

α ¼ 3

16π2e
λ20

Z
_τ B̃ðxÞ · dl; ð13Þ

where λ0 is the observed wavelength, _τ≡ neσTa is the
differential optical depth proportional to the electron
number density ne, and B̃≡Ba2 is the comoving magnetic
field. For a homogeneous magnetic field with a present
amplitude of ∼1 nG, the net rotation of the polarization
angle is about a degree at 30 GHz, with the size of the effect
scaling with frequency as α ∝ v−2 [30]. For a stochastic
magnetic field with a power spectrum PBðkÞ, the rotation
field αðn̂Þ is anisotropic with a two-point correlation
function given by [53]

hαðn̂Þαðn̂0Þi¼
�

3λ20
16π2e

�
2
Z

d3k
ð2πÞ3PBðkÞ

Z
dη

Z
dη0

× _τðηÞ_τðη0Þe−ik·n̂ηeik·n̂0η0 ½n̂ · n̂0−ðk̂ · n̂Þðk̂ · n̂0Þ�;
ð14Þ

which can also be written as

hαðn̂Þαðn̂0Þi ¼
X
L

2Lþ 1

4π
Cαα
L PLðn̂ · n̂0Þ; ð15Þ

where PLðxÞ are the Legendre polynomials and Cαα
L is the

rotational power spectrum. The rotational power spectrum
follows as

Cαα
L ¼

�
3λ20

16π2e

�
2 2LðLþ 1Þ

π

Z
∞

0

dk
k
k3PBðkÞT2

LðkÞ; ð16Þ

where we have defined a transfer function TLðkÞ as

TLðkÞ≡
Z

kΔη

0

dx
x
_τðη0 − x=kÞjLðxÞ: ð17Þ

Here η0 is the conformal time today, jLðxÞ is the spheri-
cal Bessel function, and Δη≡ η0 − η�, with η� corres-
ponding to the conformal time when the visibility
function is at its maximum. Equation (16) provides the
general expression for the rotational power spectrum
generated by a primordial magnetic field model with a
given PBðkÞ.
The rotation field effectively turns E-mode polarization

into B-mode polarization, leading to a B-mode power
spectrum CBB

l given by [53]

CBB
l ¼

X
l2L

ð2Lþ 1Þð2l2 þ 1Þ
2π

Cαα
L CEE

l2
ðHL

ll2
Þ2

× ð1þ ð−1ÞLþlþl2Þ; ð18Þ

where HL
ll2

is defined through the Wigner 3j symbol
[54] as

HL
ll2

≡
�
l L l2

2 0 −2

�
: ð19Þ

Equation (18) gives the expected signal in CBB
l

from an anisotropic rotation field αðn̂Þ with a power
spectrum Cαα

L , giving us an additional means to probe
the primordial magnetic field model through the Faraday
rotation effect.

A. Faraday rotation from a scale-invariant
primordial magnetic field

As discussed in Sec. III A, degenerate magnetic field
models are approximately scale invariant. Hence, in this
section we focus exclusively on this class of primordial
magnetic field models (with nB ≃ −2.9). In addition, we
make another simplifying assumption that the magnetic
modes with scales smaller than the thickness of the last
scattering surface contribute negligibly to the total Faraday
rotation, so we only consider magnetic modes for k≲ kD
with kD ≃ 2 Mpc−1. This assumption is motivated by the
fact that the total Faraday rotation is dominated by the
large-scale modes, as the rotation generated by magnetic
modes with scales smaller than the thickness of the last
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scattering surface tends to cancel due to the Faraday
depolarization effect [55].
With the assumptions above, the transfer function TLðkÞ

defined in Eq. (17) can then be approximated as

TLðkÞ ≃
jLðkη0Þ
kη0

; ð20Þ

where we have used the approximation thatΔη ≈ η0 and the
fact that the differential optical depth _τ is sharply peaked
relative to the slowly varying magnetic field (as we have
ignored the fast-varying modes with scales smaller than the
thickness of the last scattering surface) and integrates to ≃1
near the last scattering surface. The rotation power spec-
trum Cαα

L then becomes

Cαα
L ¼ 9LðLþ 1Þλ40

4ð2πÞ5e2η30

Z
kD

0

dkPBðkÞj2LðxÞ

¼ 9LðLþ 1ÞB2
λν

−4
0

ð4πÞ3ΓðnBþ3
2
Þe2

�
λ

η0

�
nBþ3

Z
xD

0

dxxnBj2LðxÞ; ð21Þ

where xD ≡ kDη0, ν0 is the observing frequency, and λ ¼
1 Mpc is the length of the smoothing kernel. This result is
consistent with that given in Ref. [31]. Specifically, we
follow the same approximation as in Ref. [31] that
replaces j2LðxÞ with 1=2x2 after the second zero of
jLðxÞ in Eq. (21) to simplify the numerical integration
of the fast-oscillating functions. In Fig. 8 we show the
rotation power spectrum of a primordial magnetic field
with B1 Mpc ¼ 1 nG for different nB, as calculated from
Eq. (21). The results show that as the spectral index
approaches nB ≃ −3, the rotation spectrum approaches a
scale-invariant limit as expected. The above derivations
assume that the CMB polarization is generated instanta-
neously at the beginning of recombination, which is not
true. A full calculation also needs to consider that Faraday
rotation occurs along with the generation of CMB
polarization. This effect was calculated in Ref. [53] and
shown to result in a small difference compared to our
order-of-magnitude estimate here.
With the rotational power spectrum Cαα

l , one can
estimate the expected CBB

l power spectrum sourced by
the rotation field using Eq. (18). In Fig. 9 we show the
expected B-mode power spectrum sourced by a nearly
scale-invariant primordial magnetic field with nB ¼ −2.9
and B1 Mpc ¼ 1 nG, observed at 100 GHz.3 Figure 9
exhibits two noticeable features: (1) the Faraday rotation

signal in CBB
l peaks at small angular scales (at l ∼ 1000),

similar to the CMB lensing signal, with a significantly
lower amplitude than CMB lensing; (2) unlike the CMB
lensing signal, the B-mode signal from the rotation field
displays acoustic oscillations similar to those in the CMB
E-mode power spectrum. This is expected since, according
to Eq. (18), the B-mode signal from the rotation field is
effectively a convolution of the E-mode power spectrum
CEE
l with the rotation power spectrumCαα

l in l space.Cαα
l is

scale invariant, so the variation with l in the resulting CBB
l

is determined by that of CEE
l , thus reflecting the acoustic

oscillations. This is a unique feature that allows to
distinguish the rotation signal from the lensing signal
in CBB

l .

FIG. 8. Rotation power spectrum for different magnetic spectral
indices nB calculated using Eq. (21) with the Planck 2018 best-fit
cosmology [50], ν0 ¼ 100 GHz, and B1 Mpc ¼ 1 nG. The ampli-
tude of the power spectrum scales with B2

1 Mpc and ν−40 .

FIG. 9. The green curve shows the B-mode signal (in units of
μK2) generated by the Faraday rotation of a primordial magnetic
field with nB ¼ −2.9 and B1 Mpc ¼ 1 nG at ν0 ¼ 100 GHz. The
orange curve shows the expected lensing signal, and the blue
curve shows the CEE

l signal. Note that “FR” denotes Faraday
rotation.

3Note that we only use the primary E-mode polarization signal
to generate the B-mode signal from Faraday rotation. For the
small magnetic fields relevant to this paper, the magnetic field
contribution to E-mode polarization is negligible compared to the
primary CMB E-mode. Therefore, the correction to the Faraday
rotation signal from including the magnetic-field E-mode con-
tribution is also negligibly small.
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To forecast the expected constraining power of future
CMB experiments through Faraday rotation, we define the
signal-to-noise ratio (SNR) as

�
S
N

�
2

¼
X
l

ð2lþ 1ÞfskyðCBB;FR
l Þ2

2ðCBB;tot
l þ NBB

l Þ2 ; ð22Þ

where CBB;FR
l is the expected B-mode signal from Faraday

rotation, and CBB;tot
l is the total B-mode signal that includes

contributions from both the Faraday rotation signal and the
CMB lensing signal. NBB

l refers to the expected B-mode
noise power spectrum from a given experiment as approxi-
mated by Eq. (8). The factor fsky is added to approximate
the effect of the partial sky coverage of a realistic experi-
ment, in the form of a reduction in the number of available
measurements and thus a reduction in the total SNR. In
addition, we assume an observing frequency of 100 GHz
for the subsequent discussion. Lower frequencies increase
the rotation signal for a given magnetic field, but are also
technically more difficult to attain comparable map sensi-
tivity and resolution as higher frequency channels like
100 GHz.
As the Faraday rotation signal is mainly significant on

small angular scales, large-aperture experiments are most
relevant to detecting such a signal. Specifically, we con-
sider Expt B as specified in Table I with different noise
levels (6, 2, and 0 μKarcmin), and compute the SNR for
each experiment for a scale-invariant primordial magnetic
field with the amplitude B1 Mpc varying from 0.1 to 1 nG.
The resulting SNRs are presented in Fig. 10, which shows
that for an SO LAT–like experiment with a noise level of
6 μKarcmin, the Faraday rotation signal is not detectable in
the power spectrum. In comparison, a CMB-S4-like experi-
ment with a noise level of 2 μKarcmin barely detects a
primordial magnetic field with B1 Mpc ≳ 0.9 nG at
SNR≳1, while in the noiseless limit one can detect a
primordial magnetic field with B1 Mpc ≳ 0.5 nG with
SNR≳1, and B1 Mpc ≳ 0.8 nG with SNR≳3. As con-
cluded from Fig. 6, degenerate primordial magnetic field
models of interest to the upcoming experiments generally
have amplitudes B1 Mpc ranging from ∼0.5–1 nG, compa-
rable to the detection limit of the noiseless case. This
suggests that Faraday rotation in the B-mode power
spectrum is unlikely a competitive constraint on the
primordial magnetic field.
On the other hand, the above SNR estimates neglect the

effect of delensing, which is a procedure to remove the
CMB lensing signal from the B-mode power spectrum (see,
e.g., Ref. [56]). As the CMB lensing signal is generally
much larger than the Faraday rotation signal in CBB

l , being
able to remove a significant portion of the lensing signal
significantly reduces the total variance in the B-mode
power spectrum, thus improving the SNR. To be more
specific, we can denote the CBB;tot

l in Eq. (22) as

CBB;tot
l ¼ CBB;CMB

l þ CBB;FR
l þ AdelensC

BB;lensing
l ; ð23Þ

where CBB;CMB
l , CBB;FR

l , and CBB;lensing
l denote the B-mode

signal from the CMB, primordial magnetic field, and
lensing, respectively, and Adelens denotes the residual
fraction of delensing which characterizes the delensing
efficiency. Optimistic estimates suggest that an SO-like
experiment can achieve Adelens ∼ 0.5 with inputs from
external data sets [2], and a CMB-S4-like experiment with
a noise level around 2 μKarcmin can achieve Adelens ∼ 0.4
[5]. If the B-mode power spectrum is signal dominated,
delensing can improve the signal-to-noise ratio by a factor
of A−1

delens, thus lowering the primordial magnetic field

detection limit by a factor of A−1=2
delens.

V. ROTATIONAL FIELD RECONSTRUCTION
FROM PRIMORDIAL MAGNETIC FIELDS

Faraday rotation acts as an effective rotation field αðn̂Þ
that rotates the CMB polarization field:

�2Aðn̂Þ≡ ðQ� iUÞðn̂Þ ¼ e�2iαðn̂ÞðQ̃� iŨÞðn̂Þ; ð24Þ

whereQ and U refer to the Stoke parameters for the rotated
polarization field and we use a tilde to denote the unrotated
polarization field. In the limit that αðn̂Þ ≪ 1, δ�2Aðn̂Þ≃
�2iαðn̂Þ�2Ãðn̂Þ. Such rotation induces off-diagonal cor-
relations between E-mode and B-mode polarization maps
[57,58] (see Appendix B for a derivation), given by

hElmB�
l0m0 iCMB ¼

X
LM

αLMξ
LM
lml0m0fEBlLl0 ; ð25Þ

with

FIG. 10. Signal-to-noise ratio for various B1 Mpc. The three
different solid curves show the SNR curve for three experiments
with various noise levels. The dashed curve indicates the thresh-
old of SNR ¼ 1.

DISTINGUISHING PRIMORDIAL MAGNETIC FIELDS FROM … PHYS. REV. D 106, 063505 (2022)

063505-11



fEBlLl0 ¼ 2ϵlLl0 ½HL
l0lC̃

EE
l −HL

ll0C̃
BB
l �; ð26Þ

ξLMlml2m2
≡ ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þð2l2 þ 1Þð2lþ 1Þ

4π

r

×

�
l L l2

−m M m2

�
; ð27Þ

and

ϵlLl2 ≡
1þ ð−1ÞlþLþl2

2
: ð28Þ

The h…iCMB denotes that the average is to be taken over
CMB realizations only. The coupling also allows one to
reconstruct the rotation field αLM with a quadratic estimator
similar to the reconstruction of CMB lensing [12]:

α̂LM ¼ AEB
L

X
ll0

X
mm0

ξLMlml0m0gEBll0 ElmB�
l0m0 ; ð29Þ

with the normalization factor AL defined as

ðAEB
L Þ−1 ¼

X
ll0

ð2lþ 1Þð2l0 þ 1Þ
4π

gEBll0 f
EB
lLl0 ; ð30Þ

ensuring the quadratic estimator is unbiased. The weights
gEBll0 can be chosen to minimize the total variance of the
estimator hα�LMαLMi with

gEBll0 ¼ fEBlLl0
CEE
l CBB

l0
: ð31Þ

The minimized variance of the estimator, denoted as NEB
L ,

is related to the normalization factor as

NEB
L ¼ AEB

L ¼
X
ll0

ð2lþ 1Þð2l0 þ 1Þ
4π

ðfEBlLl0 Þ2
CEE
l CBB

l0
; ð32Þ

where CEE
l and CBB

l0 are the observed E- and B-mode power
spectrum, respectively. Here NEB

L is a dimensionless quan-
tity that characterizes the variance of the reconstructed
rotation angle at each L.
In Fig. 11, we show the expected reconstruction noise

NEB
L calculated using Eq. (32) for experiments considered

previously in Table I, and for a nearly scale-invariant
primordial magnetic field with varying amplitudes of
B1 Mpc and nB ¼ −2.9. In particular, we consider Expt A
with noise levels of 2 and 1 μKarcmin, and Expt B with
noise levels of 6, 2, and 0 μKarcmin. The results show that
the large-aperture experiments have orders of magnitude
lower reconstruction noise at l≳ 1000, confirming our
expectation that the small-scale CMB anisotropies domi-
nates the SNR in detecting Faraday rotation signal.

To forecast the expected performance of the quadratic
estimator for future CMB experiments, we define the SNR as

ðS=NÞ2 ¼
XLmax

L¼Lmin

fsky
2Lþ 1

2

�
Cαα
L

NEB
L

�
2

; ð33Þ

where, similar to Sec. IV, we use fsky to approximate the
partial sky coverage.We also assume that the observations are
made at 100GHz, which is the frequency channel expected to
contribute the highest SNR.
In Fig. 12 we show the expected SNR for the same set of

experiments considered previously. It shows that recon-
structing a rotation field using the quadratic estimator
approach results in an order-of-magnitude improvement
in the SNR as compared to constraining its effects on the
CMB B-mode power spectrum. This is consistent with the
claims in Ref. [59] and is unsurprising as the effect of a
rotation field α onCBB

l scales as α2, which is a second-order
effect, whereas its effect on the cross correlation hEBi
scales with α [see Eq. (25)], which is a first-order effect,

FIG. 11. Gaussian noise covariance NEB
L for experiments

specified in Table I with varying noise levels.

FIG. 12. Signal-to-noise ratio expected for the quadratic esti-
mator in a variety of experimental settings. The black dashed line
represents SNR ¼ 1.
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thus giving a significantly improved SNR. The results also
show that large-aperture experiments (Expt B) have better
SNR in general as a result of the significantly lower
reconstruction noise (as shown in Fig. 11). Specifically,
an SO SAT–like experiment with a noise level of
2 μKarcmin gives comparable SNR to an SO LAT–
like experiment with a noise level of 6 μKarcmin, both
of which are capable of constraining primordial magnetic
field models down to B1 Mpc ≳ 0.3 nG with S=N≳ 3.
CMB-S4-like noise levels push this limit down to
B1 Mpc ≳ 0.1 nG.
These calculations demonstrate that primordial magnetic

field models with B-mode power spectra that are degen-
erate with primordial tensor modes with r > 0.001 will be
strongly constrained by the rotation signal in small-scale
anisotropies. As in Sec. IV, we have neglected the effect of
delensing, which may further improve the primordial
magnetic field constraint.

VI. DISCUSSION

We have investigated the following question: can pri-
mordial magnetic fields be distinguished from primordial
gravitational waves as a source of B-mode polarization in
the CMB power spectrum? Concerns regarding a possible
degeneracy in the B-mode power spectrum signal have
previously been raised (see, e.g., Refs. [21,22]). In this
work we confirmed with simulations that the answer is
likely “no” if one utilizes only the information in the large-
scale CMB anisotropies (l≲ 1000), as a primordial mag-
netic field also introduces large-scale B-mode signals by
sourcing tensor-mode metric perturbations in a mathemati-
cally equivalent form to that of the primordial gravitational
waves, thus generating a completely degenerate signal on
large angular scales. However, as we demonstrated in
Sec. III, after including small-scale CMB polarization
anisotropies (l≳ 1000), the answer becomes “yes”
because of both the magnetic field’s vector-mode contri-
bution to B-mode polarization on small scales, and espe-
cially due to Faraday rotation of E-mode polarization into
B-mode. Upcoming high-sensitivity measurements of
polarization on small scales will enable this distinction
for any magnetic field that might be mistaken for a
primordial tensor mode signal when using only large-angle
B-mode polarization data. We demonstrated this explicitly
for tensor-mode amplitudes down to r ¼ 10−3. For even
smaller tensor-mode signals, at some point sufficient
delensing techniques must be demonstrated. The amplitude
at which lensing signals become an important consideration
remains to be seen [60].
As a specific example, we have shown that the power

spectrum of a CMB map that covers 40% of the sky with
zero noise (cosmic variance limit) can distinguish the
presence of a primordial magnetic field equivalent to a
tensor mode with amplitude r≳ 2 × 10−3; the same mag-
netic field can also be detected through its quadratic

Faraday rotation signal at a far higher statistical signifi-
cance, for the same polarization map. The Faraday rotation
signal is therefore able to detect the presence of substan-
tially smaller magnetic fields than the power spectrum
alone. This is also true in the presence of map noise levels
corresponding to near-future experiments. As an example, a
BB-polarization power spectrum signal corresponding to a
tensor amplitude of roughly r ¼ 3 × 10−3 can be mimicked
by a 0.7 nG magnetic field (as shown in Fig. 6). A next-
generation CMB experiment, such as Simons Observatory,
will have sensitivity for, at best, a marginal detection
(≈3.7σ) of this power spectrum signal; such a magnetic
field will also produce a Faraday rotation signal which can
be detected by quadratic estimation on the same polariza-
tion maps with a significance well above 10σ, as shown
in Fig. 11.
Our analysis extends previous work (e.g., Ref. [22]) by

considering a wider class of magnetic field models and
tensor-to-scalar ratio targets and, more importantly, by
explicitly identifying degenerate magnetic field models
to a given tensor-mode signal using simulations and
MCMC-based model fitting. We also for the first time
considered map-based Faraday rotation estimation as a way
to break the degeneracy between tensor modes and mag-
netic fields. Our result provides a practical recipe to follow:
should a potential tensor-mode signal be detected in the
CMB B-mode power spectrum, one can identify degenerate
magnetic field models from our analysis and look for its
Faraday rotation signal. Upper limits on such a signal
provide a clear route to ruling out a plausible contaminant
of a tensor B-mode signal. Magnetic fields thus join
gravitational lensing and galactic foregrounds as known
B-mode contributors for which we possess clear methods of
discriminating them from the hallmark signature of early
Universe inflation.

ACKNOWLEDGMENTS

We thank Daniel Boyanovsky for helpful comments on
the manuscript. Y. G. acknowledges the partial support of
Pittsburgh Particle Physics Astrophysics and Cosmology
Center (PITT PACC) in the duration of this work. This
research was supported in part by the University of
Pittsburgh Center for Research Computing through the
resources provided.

APPENDIX A: MCMC

We perform MCMC-based model fitting using an
ensemble sampler from EMCEE [61] with 50 walkers.
We use a mixed proposal function that makes stretch moves
95% of the time and Gaussian moves based on the fisher
matrix 5% of the time. We find that the resulting MCMC
chains generally converge well after 400 steps based on
autocorrelation tests and adopt a fixed number of 400 steps
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for all subsequent MCMC runs. Specifically, for the
ΛCDMþ r model, we adopt flat priors on ωb, ωCDM,
H0, ns, As, and r, and a Gaussian prior on τreio with
τreio ¼ 0.065� 0.015. For the ΛCDMþ PMF model, we
use a flat prior on B1 Mpc with 0 ≤ B1 Mpc ≤ 2.5 nG, and a
flat prior on nB restricted to −2.9 ≤ nB ≤ 0.

In Figs. 13 and 14 we show the full set of posterior
distributions for the ΛCDMþ r and ΛCDMþ PMF mod-
els, respectively, when fitting the simulated observations
from Expt A with a fiducial cosmology with a nonzero
tensor-to-scalar ratio, r ¼ 0.01. A burn-in ratio of 70% has
been applied to obtain the posterior distributions.

FIG. 13. Best-fit ΛCDMþ r cosmological parameters obtained for simulated data for Expt A with a fiducial cosmology with
r ¼ 0.010.
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APPENDIX B: QUADRATIC ESTIMATOR FOR
POLARIZATION ROTATION

Faraday rotation acts as an effective rotation field αðn̂Þ
that rotates the CMB polarization maps, given by

�2Aðn̂Þ≡ ðQ� iUÞðn̂Þ ¼ e�2iαðn̂ÞðQ̃� iŨÞðn̂Þ; ðB1Þ

whereQ and U refer to the Stoke parameters for the rotated
CMB photons. Approximating α as a small angle, the

change in the polarization field due to rotation can be
approximated as δð�2Aðn̂ÞÞ ≃�2iαðn̂Þ�2Ãðn̂Þ. In lm
space, the change in �2Alm is

δð�2AlmÞ ≃�2i
X
LM

X
l2m2

αLM�2Al2m2

×
Z

dn̂�2Y
�
lmðn̂ÞYLMðn̂Þ�2Yl2m2

ðn̂Þ; ðB2Þ

FIG. 14. Best-fit ΛCDM þ PMF cosmological parameters obtained for simulated data for Expt A with a fiducial cosmology with
r ¼ 0.010.
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where sYlm denotes the spin-weighted spherical harmonics [62]. The integral can be performed with the formula

Z
dn̂s1Yl1m1

ðn̂Þs2Yl2m2
ðn̂Þs3Yl3m3

ðn̂Þ ¼
�Q

3
i¼1 2li þ 1

4π

�
1=2

�
j1 j2 j3
m1 m2 m3

��
j1 j2 j3
−s1 −s2 −s3

�
; ðB3Þ

which gives

δð�2AlmÞ ≃�2i
X
LM

X
l2m2

αLM�2Al2m2
ξLMlml2m2�H

L
ll2
; ðB4Þ

with

ξLMlml2m2
≡ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ1Þð2l2þ1Þð2lþ1Þ

4π

r �
l L l2

−m M m2

�
;

ðB5Þ

and

�H
L
ll2

≡
�

l L l2
�2 0 ∓ 2

�
¼ ð−1ÞlþLþl2∓HL

ll2
: ðB6Þ

On the other hand, the polarization field �2Alm can be
decomposed into curl-free (E-mode) and gradient-free
(B-mode) components with

Elm ¼ 1

2
ðþ2Alm þ −2AlmÞ;

Blm ¼ 1

2i
ðþ2Alm − −2AlmÞ: ðB7Þ

This gives

δElm¼−2i
X
LM

X
l2m2

αLMξ
LM
lml2m2

HL
ll2
ðβlLl2Ẽl2m2

þϵlLl2B̃l2m2
Þ;

ðB8Þ

and

δBlm¼2
X
LM

X
l2m2

αLMξ
LM
lml2m2

HL
ll2
ðϵlLl2Ẽl2m2

−βlLl2B̃l2m2
Þ;

ðB9Þ

where we have defined HL
ll2

≡ þHL
ll2

and

ϵlLl2 ≡
1þ ð−1ÞlþLþl2

2
;

βlLl2 ≡
1 − ð−1ÞlþLþl2

2
: ðB10Þ

Equations (B8) and (B9) describe the effect of
Faraday rotation on the CMB E-mode and B-mode
polarization maps, respectively, which effectively mixes
the multipole moments of the two maps through rotation.
This introduces couplings between the E-mode and
B-mode maps at different l which otherwise do not exist,
given by

hElmB�
l0m0 iCMB ¼

X
LM

αLMξ
LM
lml0m0fEBlLl0 ; ðB11Þ

with

fEBlLl0 ¼ 2ϵlLl0 ½HL
l0lC̃

EE
l −HL

ll0C̃
BB
l �: ðB12Þ

The h…iCMB denotes that the average is to be taken over
CMB realizations only. One can then define an unbiased
quadratic estimator for the rotation field as

α̂LM ¼ AEB
L

X
ll0

X
mm0

ξLMlml0m0gEBll0 ElmB�
l0m0 ; ðB13Þ

where the normalization factor, which ensures that the
estimator is unbiased, is given by

ðAEB
L Þ−1 ¼

X
ll0

ð2lþ 1Þð2l0 þ 1Þ
4π

gEBll0 f
EB
lLl0 : ðB14Þ

where we have used

X
mm0

ξLMlml0m0ξL
0M0

lml0m0 ¼ ð2lþ 1Þð2l0 þ 1Þ
4π

δLL0δMM0 : ðB15Þ

YILUN GUAN and ARTHUR KOSOWSKY PHYS. REV. D 106, 063505 (2022)

063505-16



[1] F. K. Hansen et al., Planck 2018 results. X. Constraints on
inflation, Astron. Astrophys. 641, A10 (2020).

[2] Peter Ade, James Aguirre, Zeeshan Ahmed, Simone Aiola,
Aamir Ali et al., The simons observatory: Science goals and
forecasts, J. Cosmol. Astropart. Phys. 02 (2019) 056.

[3] J. A. Grayson, P. A. R. Ade, Z. Ahmed, K. D. Alexander, M.
Amiri et al., BICEP3 performance overview and planned
Keck Array upgrade, 10.1117/12.2233894 (2016).

[4] M. Hazumi, P. A. R. Ade, Y. Akiba, D. Alonso, K. Arnold
et al., LiteBIRD: A satellite for the studies of B-mode
polarization and inflation from cosmic background radiation
detection, J. Low Temp. Phys. 194, 443 (2019).

[5] Kevork N. Abazajian, Peter Adshead, Zeeshan Ahmed,
Steven W. Allen, David Alonso et al., CMB-S4 Science
Book, First Edition (2016), arXiv:1610.02743.

[6] P. A. R. Ade, Z. Ahmed, R. W. Aikin, K. D. Alexander, D.
Barkats et al., BICEP2/Keck array V: Measurements of
B-mode polarization at degree angular scales and 150 GHz
by the Keck Array., Astrophys. J. 811, 126 (2015).

[7] R. Adam, P. A. R. Ade, N. Aghanim, M. Arnaud, J.
Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro,
J. G. Bartlett et al. (Planck Collaboration), Planck inter-
mediate results. XXX. The angular power spectrum of
polarized dust emission at intermediate and high Galactic
latitudes, Astron. Astrophys. 586, A133 (2016).

[8] P. A. R. Ade, Z. Ahmed, R. W. Aikin, K. D. Alexander et al.,
Constraints on Primordial Gravitational Waves Using
Planck, WMAP, and New BICEP2/Keck Observations
Through the 2015 Season, Phys. Rev. Lett. 121, 221301
(2018).

[9] Lloyd Knox and Yong-Seon Song, Limit on the Detect-
ability of the Energy Scale of Inflation, Phys. Rev. Lett. 89,
011303 (2002).

[10] D. Hanson, S. Hoover, A. Crites, P. A. R. Ade, K. A. Aird
et al., Detection of B-Mode Polarization in the Cosmic
Microwave Background with Data from the South Pole
Telescope, Phys. Rev. Lett. 111, 141301 (2013).

[11] Alexander van Engelen, Blake D. Sherwin, Neelima Sehgal,
Graeme E. Addison, Rupert Allison et al., The atacama
cosmology telescope: Lensing of CMB temperature and
polarization derived from cosmic infrared background
cross-correlation, Astrophys. J. 808, 7 (2015).

[12] Wayne Hu and Takemi Okamoto, Mass reconstruction with
cosmic microwave background polarization, Astrophys. J.
574, 566 (2002).

[13] Omar Darwish, Mathew S Madhavacheril, Blake Sherwin
et al., The Atacama Cosmology Telescope: A CMB lensing
mass map over 2100 square degrees of sky and its cross-
correlation with BOSS-CMASS galaxies, 2020, 10.1093/
mnras/staa3438.

[14] G. P. Holder et al. (SPT Collaboration), A cosmic micro-
wave background lensing mass map and its correlation with
the cosmic infrared background, Astrophys. J. 771, L16
(2013).

[15] N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont et al.
(Planck Collaboration), Planck 2018 results. VIII. Gravita-
tional lensing, Astron. Astrophys. 641, A8 (2020).

[16] Gabrielle Simard, Duncan Hanson, and Gil Holder, Pros-
pects for delensing the cosmic microwave background for
studying inflation, Astrophys. J. 807, 166 (2015).

[17] Uroš Seljak and Christopher M. Hirata, Gravitational
lensing as a contaminant of the gravity wave signal in
the CMB, Phys. Rev. D 69, 043005 (2004).

[18] David Alonso, Joanna Dunkley, Ben Thorne, and Sigurd
Næss, Simulated forecasts for primordial B -mode searches
in ground-based experiments, Phys. Rev. D 95, 043504
(2017).

[19] Marc Kamionkowski and Ely D. Kovetz, The quest for B
modes from inflationary gravitational waves, Annu. Rev.
Astron. Astrophys. 54, 227 (2016).

[20] Iain A. Brown, Concerning the statistics of cosmic magnet-
ism, arXiv:1005.2982.

[21] Levon Pogosian and Alex Zucca, Searching for primordial
magnetic fields with CMB B-modes, 2018, 10.1088/1361-
6382/aac398.

[22] Fabrizio Renzi, Giovanni Cabass, Eleonora Di Valentino,
Alessandro Melchiorri, and Luca Pagano, The impact of
primordial magnetic fields on future CMB bounds on
inflationary gravitational waves, J. Cosmol. Astropart. Phys.
08 (2018) 038.

[23] Lawrence M. Widrow, Origin of galactic and extragalactic
magnetic fields, Rev. Mod. Phys. 74, 775 (2002).

[24] Ruth Durrer and Andrii Neronov, Cosmological magnetic
fields: Their generation, evolution and observation, Astron.
Astrophys. Rev. 21, 62 (2013).

[25] Tina Kahniashvili, Axel Brandenburg, Arthur Kosowsky,
Sayan Mandal, and Alberto Roper Pol, Magnetism in the
Early Universe, 2018, 10.1017/S1743921319004447.

[26] Andrii Neronov and Ievgen Vovk, Evidence for strong
extragalactic magnetic fields from fermi observations of
TeV blazars, Science 328, 73 (2010).

[27] Michael S. Turner and Lawrence M. Widrow, Inflation-
produced, large-scale magnetic fields, Phys. Rev. D 37,
2743 (1988).

[28] T. Vachaspati, Magnetic fields from cosmological phase
transitions, Phys. Lett. B 265, 258 (1991).

[29] J. Richard Shaw and Antony Lewis, Massive neutrinos and
magnetic fields in the early universe, Phys. Rev. D 81,
043517 (2010).

[30] Arthur Kosowsky and Abraham Loeb, Faraday rotation of
microwave background polarization by a primordial mag-
netic field, Astrophys. J. 469, 1 (1996).

[31] Arthur Kosowsky, Tina Kahniashvili, George Lavrelashvili,
and Bharat Ratra, Faraday rotation of the cosmic microwave
background polarization by a stochastic magnetic field,
Phys. Rev. D 71, 043006 (2005).

[32] Alex Zucca, Yun Li, and Levon Pogosian, Constraints on
primordial magnetic fields from planck data combined with
the south pole telescope CMB b-mode polarization mea-
surements, Phys. Rev. D 95, 063506 (2017).

[33] P. A. R. Ade, N. Aghanim, M. Arnaud, F. Arroja, M.
Ashdown et al., Planck 2015 results. XIX. Constraints on
primordial magnetic fields, Astron. Astrophys. 594, A19
(2016).

[34] V. B. Semikoz and D. Sokoloff, Magnetic helicity and
cosmological magnetic field, Astron. Astrophys. 433, L53
(2005).

[35] L. Campanelli and M. Giannotti, Magnetic helicity gene-
ration from the cosmic axion field, Phys. Rev. D 72, 123001
(2005).

DISTINGUISHING PRIMORDIAL MAGNETIC FIELDS FROM … PHYS. REV. D 106, 063505 (2022)

063505-17

https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1088/1475-7516/2019/02/056
https://doi.org/10.1117/12.2233894
https://doi.org/10.1007/s10909-019-02150-5
https://arXiv.org/abs/1610.02743
https://doi.org/10.1088/0004-637X/811/2/126
https://doi.org/10.1051/0004-6361/201527616
https://doi.org/10.1103/PhysRevLett.121.221301
https://doi.org/10.1103/PhysRevLett.121.221301
https://doi.org/10.1103/PhysRevLett.89.011303
https://doi.org/10.1103/PhysRevLett.89.011303
https://doi.org/10.1103/PhysRevLett.111.141301
https://doi.org/10.1088/0004-637X/808/1/7
https://doi.org/10.1086/341110
https://doi.org/10.1086/341110
https://doi.org/10.1093/mnras/staa3438
https://doi.org/10.1093/mnras/staa3438
https://doi.org/10.1088/2041-8205/771/1/L16
https://doi.org/10.1088/2041-8205/771/1/L16
https://doi.org/10.1051/0004-6361/201833886
https://doi.org/10.1088/0004-637X/807/2/166
https://doi.org/10.1103/PhysRevD.69.043005
https://doi.org/10.1103/PhysRevD.95.043504
https://doi.org/10.1103/PhysRevD.95.043504
https://doi.org/10.1146/annurev-astro-081915-023433
https://doi.org/10.1146/annurev-astro-081915-023433
https://arXiv.org/abs/1005.2982
https://doi.org/10.1088/1361-6382/aac398
https://doi.org/10.1088/1361-6382/aac398
https://doi.org/10.1088/1475-7516/2018/08/038
https://doi.org/10.1088/1475-7516/2018/08/038
https://doi.org/10.1103/RevModPhys.74.775
https://doi.org/10.1007/s00159-013-0062-7
https://doi.org/10.1007/s00159-013-0062-7
https://doi.org/10.1017/S1743921319004447
https://doi.org/10.1126/science.1184192
https://doi.org/10.1103/PhysRevD.37.2743
https://doi.org/10.1103/PhysRevD.37.2743
https://doi.org/10.1016/0370-2693(91)90051-Q
https://doi.org/10.1103/PhysRevD.81.043517
https://doi.org/10.1103/PhysRevD.81.043517
https://doi.org/10.1086/177751
https://doi.org/10.1103/PhysRevD.71.043006
https://doi.org/10.1103/PhysRevD.95.063506
https://doi.org/10.1051/0004-6361/201525821
https://doi.org/10.1051/0004-6361/201525821
https://doi.org/10.1051/0004-6361:200500094
https://doi.org/10.1051/0004-6361:200500094
https://doi.org/10.1103/PhysRevD.72.123001
https://doi.org/10.1103/PhysRevD.72.123001


[36] Axel Brandenburg, Kari Enqvist, and Poul Olesen, Large-
scale magnetic fields from hydromagnetic turbulence in the
very early Universe, Phys. Rev. D 54, 1291 (1996).

[37] Robi Banerjee and Karsten Jedamzik, Are Cluster Magnetic
Fields Primordial?, Phys. Rev. Lett. 91, 251301 (2003).

[38] Tina Kahniashvili, Axel Brandenburg, and Alexander G.
Tevzadze, The evolution of primordial magnetic fields since
their generation, Phys. Scr. 91, 104008 (2016).

[39] Andrew Mack, Tina Kahniashvili, and Arthur Kosowsky,
Microwave background signatures of a primordial stochas-
tic magnetic field, Phys. Rev. D 65, 123004 (2002).

[40] Massimo Giovannini, Magnetized initial conditions for
CMB anisotropies, Phys. Rev. D 70, 123507 (2004).

[41] Fabio Finelli, Francesco Paci, and Daniela Paoletti, Impact
of stochastic primordial magnetic fields on the scalar
contribution to cosmic microwave background anisotropies,
Phys. Rev. D 78, 023510 (2008).

[42] Antony Lewis, CMB anisotropies from primordial inhomo-
geneous magnetic fields, Phys. Rev. D 70, 043011 (2004).

[43] Camille Bonvin, Chiara Caprini, and Ruth Durrer, Magnetic
fields from inflation: The CMB temperature anisotropies,
Phys. Rev. D 88, 083515 (2013).

[44] Massimo Giovannini and Kerstin E. Kunze, Generalized
CMB initial conditions with pre-equality magnetic fields,
Phys. Rev. D 77, 123001 (2008).

[45] Massimo Giovannini and Kerstin E. Kunze, Faraday rota-
tion, stochastic magnetic fields, and CMB maps, Phys. Rev.
D 78, 023010 (2008).

[46] Jenni Adams, Ulf H. Danielsson, Dario Grasso, and Héctor
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