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Parity-violating physics in the early universe can leave detectable traces in late-time observables. While
vector- and tensor-type parity violation can be observed in theB-modes of the cosmicmicrowave background,
scalar-type signatures are visible only in the four-point correlation function (4PCF) and beyond. This work
presents a blind test for parity violation in the 4PCF of the baryon oscillation spectroscopic survey (BOSS)
CMASS sample, considering galaxy separations in the range ½20; 160� h−1 Mpc. The parity-odd 4PCF
contains no contributions from standard ΛCDM physics and can be efficiently measured using recently
developed estimators. Data are analyzed using both a nonparametric rank test (comparing the BOSS 4PCFs to
those of realistic simulations) and a compressed χ2 analysis, with the former avoiding the assumption of a
Gaussian likelihood. These find similar results, with the rank test giving a detection probability of 99.6%
(2.9σ). This provides significant evidence for parity violation, from either cosmological sources or
systematics. We perform a number of systematic tests: although these do not reveal any observational
artifacts, we cannot exclude the possibility that our detection is caused by the simulations not faithfully
representing the statistical properties of the BOSS data. Our measurements can be used to constrain physical
models of parity violation.As an example,we consider a coupling between the inflaton and aUð1Þ gauge field
and place bounds on the latter’s energy density, which are several orders of magnitude stronger than those
previously reported. Upcoming probes such as DESI and Euclid will reveal whether our detection of parity
violation is due to new physics, and strengthen the bounds on a variety of models.
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I. INTRODUCTION

A detection of parity violation in cosmological observ-
ables would be a smoking gun for physics beyond the
standard model, and it could provide crucial insights into
the nature of dark matter, dark energy, and inflation. In the
conventional paradigm, all cosmological correlators are
symmetric under the parity operator P, since gravity
(along with all other standard model interactions except
the weak force [1]) is P-invariant. Despite this, a number of
theoretical arguments suggest that parity-violating inter-
actions should occur in the early universe, most notably to
source baryogenesis. Creation of the current baryon
asymmetry requires a process which violates charge and
parity conservation [2,3]; a possible route is via lepto-
genesis, which, if sourced by gravity, must be parity
violating, e.g., [4–8].
Additional sources of parity-violation include inflation-

ary interactions between multiple fields, such as via the
Chern-Simons term [9–14], generation of primordial mag-
netic fields [15–17], vector perturbations generated by
cosmic strings or defects [18–20], reheating [21,22],

Chern-Simons modified general relativity [11], and infla-
tionary particle exchange [23,24], all of which leave dis-
tinctive imprints on late-time observables [9]. Potential
evidence for such models was recently provided by [25],
which found a 2.4σ hint (updated to 3.6σ in [26]) of parity
violation in the cosmic microwave background (CMB).
While some argue that this effect may be caused by
interstellar dust emission [27] (though see [28,29]), it has
nevertheless provided a resurgence of interest in these
theories.
To constrain such phenomena, we require observables

that are parity sensitive. Common choices are vector and
tensor quantities, such as B modes of the CMB [30], or
those of galaxy ellipticities [31]. These satisfy P½B� ¼ −B,
and can be combined in two-point correlators (e.g., TB and
EB for the CMB, or EB for weak lensing). Barring
contamination by systematics, the observables should have
no contribution from standard ΛCDM physics, but can be
sourced by effects such as birefringence (whereupon the
plane of the photon polarization is coherently rotated
between the surface of last scattering and the observer,
as in [25]), gravitational wave chirality [9,32–35], and
multifield inflation [7,23,36]. Information is not limited to
the two-point function, however; higher-order correlators*ohep2@cantab.ac.uk
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such as TTB can give additional constraining power on
effects such as birefringence [37].
When constructing observables from scalar fields (such

as the galaxy density or CMB temperature), obtaining a
parity-sensitive quantity is more difficult. As an example,
the isotropic galaxy two-point correlation function (2PCF)
is insensitive to parity, since the action of P is equivalent to
a rotation, under which the statistic is invariant. In three
dimensions, the isotropic N-point correlation functions
(NPCFs) are parity sensitive only if N > 3; this applies
also to the CMB, since the intrinsic fluctuations are the
projection of a three-dimensional quantity. The simplest
statistic with which to probe scalar parity violation is thus
the four-point correlation function (4PCF), as pointed out
in [23,38,39]. A cartoon of this is shown in Fig. 1.1

While a number of works have considered the 4PCF of
the CMB [44,45] including its parity-odd contributions
[38,46] (though only theoretically), the large scale structure
(LSS) equivalent has been rarely explored. Given the influx
of spectroscopic data expected in the next decade from
DESI [47], Euclid [48], and Rubin [49], galaxy surveys
seem to be a natural arena in which to hunt for parity-

violating interactions, allowing constraints to exceed the
CMB cosmic variance limit. Historically, use of the higher-
point galaxy correlation functions has been hampered by
the computational resources required for their estimation;
naïvely, the 4PCF requires OðN4

gÞ operations to compute
from Ng galaxies. Recent works have significantly
improved upon this [50,51], with the algorithm of [51]
requiring only OðN2

gÞ operations. This allows the 4PCF of
current galaxy surveys to be computed in ∼30 CPU hours.
The approach proceeds by first projecting the correlation
function into a suitable angular basis [52]; thence, the
integrals decouple and the 4PCF may be computed by
summing over pairs of galaxies. This naturally generalizes
to higher dimensions, as well as to anisotropic correlators
[53]. As first pointed out in [52] there is a natural separation
of the parity-even and parity-odd isotropic basis functions.
The even-parity component can be used to place constraints
on gravitational non-Gaussianity from a hitherto unex-
plored statistic [54]. The use of the parity-odd basis to
measure parity violation in the galaxy four-point correla-
tion was first proposed in [39] and is carried out in this
work (see also [23]).
There are two main ways in which parity violation can be

probed using the galaxy 4PCF. First, one may place con-
straints on the amplitudes of specific physical models given
their associated theoretical predictions. This is an approach
often used in the analysis of CMB three- and four-point
functions, for example, in non-Gaussianity studies, which
typically exploit separability of the underlying theoretical
templates for significant computational gain [55]. This
approach was also suggested in [23,46,56], and allows for
targeted constraints on specific models of early universe
particle exchange, via a search for their specific isotropy-
violating signatures. An alternative method would be to first
measure the full galaxy 4PCF in some set of bins, then
perform a blind test, looking for the signatures of any
physical model (and systematic effects). This approach is
possible since the parity-odd 4PCF receives no contribution
in ΛCDM, including from general relativistic and baryonic
effects. Given the multitude of possible models for parity
violation,wewill principallyadopt the secondstrategy in this
work, though we demonstrate also the first, by placing
constraints on a specific model involving Chern-Simons
terms in the inflationary Lagrangian. Analysis using the
galaxy 4PCF comes with its complexities, however. In
particular, the high dimensionality of the statistic prohibits
conventional mock-based χ2 analyses. To alleviate this, we
include a data-compression step, facilitated using a theo-
retical model of the 4PCF covariance [57], which dramati-
cally reduces the number of bins without introducing bias. It
is not guaranteed that the 4PCF likelihood be Gaussian,
however (see Appendix A and [58,59]); to provide a fully
robust, yet conservative, test for parity violation, we make
useof a likelihood-free inference technique, involving a suite
of realistic simulations. We caution that such blind tests are

FIG. 1. Cartoon of the galaxy four-point correlation functions
(4PCFs) considered in this work. In the left panel, we show the
4PCF, ζðr1; r2; r3Þ, which depends on the separation vectors of
three secondary galaxies from a given primary. The right panel
shows the parity-inverted 4PCF, P½ζðr1; r2; r3Þ�, which corre-
sponds to replacing ri with −ri. Unlike for the 2PCF and 3PCF,
the two configurations cannot be related by a rotation. The parity-
even 4PCF is a sum of the two geometries (which have the same
side lengths and relative angles), while the parity-odd 4PCF is a
difference. In this work, the 4PCF is given as a function of three
lengths (r1, r2, and r3) and three internal angles (fixing the angle
of the ri vectors with the respect to the primary galaxy). The latter
are represented by their harmonic-space momenta, l1, l2, and l3,
with odd-parity 4PCFs corresponding to odd l1 þ l2 þ l3.
Assuming standard ΛCDM physics, the two correlators shown
in the figure should be equivalent, and thus the expectation value
of the parity-odd 4PCF is zero.

1Large scale structure correlators are sensitive also to redshift-
space distortions [40,41], giving dependence of the statistic on
line-of-sight velocities [42]. This enables vector-type parity
violation to be probed in the 3PCF [43], though it requires
careful modeling of galaxy velocities.

OLIVER H. E. PHILCOX PHYS. REV. D 106, 063501 (2022)

063501-2



naturally subject to systematic uncertainties, some of which
will be explored in this work. The results below represent the
first constraints on scalar parity violation from LSS data.
The remainder of this work is structured as follows. In

Sec. II, we present the parity-odd 4PCF estimator, includ-
ing the corrections necessary to account for nonuniform
survey geometry, before we discuss the data and covariance
matrices in Sec. III. Analysis methods are considered in
Sec. IV, with the corresponding constraints on parity
violation presented in Sec. V. In Sec. VI, we include a
number of systematic checks and a brief discussion of
potential biases in the approach. Section VII discusses
parity-breaking phenomena including the presentation of
an inflationary model for the parity-odd 4PCF, based on a
Chern-Simons coupling, whose amplitude is then bounded
using the BOSS data. We conclude in Sec. VIII, with
Appendixes A and B discussing the impacts of likelihood
non-Gaussianity and sketching the derivation of the Chern-
Simons 4PCF template. JUPYTER notebooks containing our
analysis pipeline can be found on GitHub.2

Note on Blinding.—To limit confirmation bias, the BOSS
data were sent to an external collaborator (M. König) after
computation, and not revealed until the analysis pipeline
was constructed and tested. The initial draft of the paper
was also written before unblinding (encompassing all
sections except Sec. VI and Appendix A), with the
BOSS data replaced by that from a single mock dataset.

II. MEASURING THE PARITY-ODD 4PCF

We begin by outlining our estimator for the parity-odd
4PCF, which is implemented in the public ENCORE code.3

Further details of the formalism can be found in [51] (for
the general NPCF estimator and ENCORE), in [52] (for the
basis functions), in [54] (for the parity-even 4PCF), in [39]
(for an overview of the parity-odd 4PCF), and in [53] (for
extensions beyond flat three-dimensional [3D] space).

A. Isotropic basis functions

Given a (scalar) density field δðrÞ, the 4PCF is defined as

ζðr1; r2; r3Þ≡ hδðsÞδðsþ r1Þδðsþ r2Þδðsþ r3Þi; ð1Þ

where h� � �i represents a statistical average over realizations
of δ. A cartoon of this parametrization is shown in Fig. 1.
By statistical homogeneity, the 4PCF is independent of the
absolute coordinate s.
As demonstrated in [51,53], a complete angular basis for

the isotropic N-point correlation functions is given by the
isotropic basis functions of (N − 1) coordinates defined in
[52] (see also the TriPoSH formalism; [60]).4 For N ¼ 4,

the basis functions are

Pl1l2l3ðr̂1; r̂2; r̂3Þ≡ ð−1Þl1þl2þl3
X

m1m2m3

�
l1 l2 l3

m1 m2 m3

�

×Yl1m1
ðr̂1ÞYl2m2

ðr̂2ÞYl3m3
ðr̂3Þ; ð2Þ

where Ylmðr̂Þ is a spherical harmonic, the 3 × 2 matrix is a
Wigner 3 − j symbol, and the mi summations run over
integer mi ∈ ½−li;li�. Such functions arise from the theory
of angular momentum addition and are specified by three
non-negative integers fl1;l2;l3g, encoding the relative
orientation of r̂1, r̂2, and r̂3. Due to the 3 − j symbol, the
integers must obey the triangle condition jl1 − l2j ≤
l3 ≤ l1 þ l2, and we additionally enforce li ≤ lmax. In
practice, we restrict to relatively low lmax, which gives an
angular resolution of θmin ≈ 2π=lmax for the internal angles
of the 4PCF tetrahedron. The basis functions have the
following properties under parity and conjugation trans-
formations (for parity operator P):

P½Pl1l2l3ðr̂1; r̂2; r̂3Þ� ¼ ð−1Þl1þl2þl3Pl1l2l3ðr̂1; r̂2; r̂3Þ;
P�

l1l2l3
ðr̂1; r̂2; r̂3Þ¼ ð−1Þl1þl2þl3Pl1l2l3ðr̂1; r̂2; r̂3Þ; ð3Þ

implying that the basis is parity-odd and pure imaginary if
l1 þ l2 þ l3 is odd, and parity-even and real else.
Furthermore, Eq. (2) is invariant under joint rotations of all
three separation vectors, i.e., fr1; r2; r3g → fRr1; Rr2; Rr3g,
for arbitrary rotation matrix R.
The isotropic part of the galaxy 4PCF can be decom-

posed into the basis of (2),

ζisoðr1; r2; r3Þ ¼
X
l1l2l3

ζl1l2l3
ðr1; r2; r3ÞPl1l2l3

ðr̂1; r̂2; r̂3Þ;

ð4Þ

where the coefficients ζl1l2l3 (hereafter denoted “multip-
lets”) can be obtained via the orthonormality of Pl1l2l3 .

5

Given the transformation properties of (3), we find a natural
split of ζiso into parity-even and parity-odd parts:

ζþðr1; r2; r3Þ
¼

X
l1þl2þl3¼even

ζl1l2l3ðr1; r2; r3ÞPl1l2l3ðr̂1; r̂2; r̂3Þ;

ζ−ðr1; r2; r3Þ
¼

X
l1þl2þl3¼odd

ζl1l2l3ðr1; r2; r3ÞPl1l2l3ðr̂1; r̂2; r̂3Þ: ð5Þ

2Available at github.com/oliverphilcox/Parity-Odd-4PCF.
3Available at github.com/oliverphilcox/encore.
4The approach naturally extends to anisotropic correlators [53],

though we do not consider them in this work.

5Since the anisotropic basis functions are orthogonal to those
of (2), the decomposition in (4) holds regardless of whether the
full statistic is isotropic.
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These satisfy P½ζ�ðr1; r2; r3Þ� ¼ �ζ�ðr1; r2; r3Þ and may
be related to the sum and difference of the two panels in
Fig. 1. In this work, we restrict to odd l1 þ l2 þ l3, and
thus consider the (purely imaginary) parity-odd 4PCF.

B. 4PCF estimator

Invoking the ergodic principle, we may estimate the full
4PCF as an integral over four density fields,

ζ̂ðr1; r2; r3Þ≡ 1

V

Z
dsδðsÞδðsþ r1Þδðsþ r2Þδðsþ r3Þ; ð6Þ

where V is the integration volume. This is unbiased; i.e., it
has expectation E½ζ̂� ¼ ζ. Since the basis functions of (2)
are orthonormal [52], Eq. (6) can be used to construct an
estimator for the 4PCF basis coefficients:

ζ̂l1l2l3ðr1; r2; r3Þ ¼
Z

dr̂1dr̂2dr̂3P�
l1l2l3

ðr̂1; r̂2; r̂3Þζ̂ðr1; r2; r3Þ

¼ 1

V

X
m1m2m3

�
l1 l2 l3

m1 m2 m3

�

×
Z

dsdr̂1dr̂2dr̂3δðsÞδðsþ r1Þδðsþ r2Þδðsþ r3ÞYl1m1
ðr̂1ÞYl2m2

ðr̂2ÞYl3m3
ðr̂3Þ; ð7Þ

using the conjugate properties of (3). Defining the harmonic coefficients

almðs; rÞ≡
Z

drδðsþ r̂ÞYlmðr̂Þ; ð8Þ

this is separable in r̂i:

ζ̂l1l2l3ðr1; r2; r3Þ ¼
X

m1m2m3

�
l1 l2 l3

m1 m2 m3

�Z
ds
V
δðsÞal1m1

ðs; r1Þal2m2
ðs; r2Þal3m3

ðs; r3Þ: ð9Þ

For a discrete density field defined by Ng particles at positions fxig with weights wi, the estimator can be written as a sum:

almðxi; rÞ≡
XNg

j¼1

wjYlmð dxj − xiÞδDðr − jxj − xijÞ;

ζ̂l1l2l3ðr1; r2; r3Þ ¼
XNg

i¼1

X
m1m2m3

�
l1 l2 l3

m1 m2 m3

�
wial1m1

ðxi; r1Þal2m2
ðxi; r2Þal3m3

ðxi; r3Þ; ð10Þ

where the Dirac delta, δD, ensures that we count only
secondary particles j, separated from the primary i, by a
distance r. Since we must compute alm at the location of
each primary particle, the estimator requires a sum over
pairs of particles, and thus has complexity OðN2

gÞ; in
practice, the scaling is closer to linear, as themi summation
is rate limiting for large lmax [51]. By replacing the Dirac
function in (10) by a binning function of finite width, the
estimator extends to bin-averaged 4PCF estimates; we refer
the reader to [51,54] for details. We further note that the
4PCF contains also a “disconnected” piece sourced by two
copies of the 2PCF. While this can be subtracted at the
estimator level directly [54], it does not contribute to parity-
odd multiplets and will thus be ignored henceforth.

C. Edge correction

Finally, estimator (9) must be modified to account for the
nonuniform survey geometry. For this purpose, we first
define the 4PCF using the generalized Landy-Szalay form
[51,61,62]

ζ̂ðr1; r2; r3Þ≡N ðr1; r2; r3Þ
Rðr1; r2; r3Þ

; ð11Þ

where N and R are the 4PCF estimates obtained from
“data-minus-random” and random catalogs, respectively,
both of which are modulated by the survey window
function. Following some algebra, the edge-corrected
4PCF multiplets are given by
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ζl1l2l3ðr1; r2; r3Þ ¼
X
l0
1
l0
2
l0
3

½M−1�l01l02l03l1l2l3
ðr1; r2; r3Þ

N l0
1
l0
2
l0
3
ðr1; r2; r3Þ

R000ðr1; r2; r3Þ
; ð12Þ

defining the coupling matrix

M
l0
1
l0
2
l0
3

l1l2l3
ðr1; r2; r3Þ ¼

ð−1Þl01þl0
2
þl0

3

ð4πÞ3=2
X

L1L2L3

RL1L2L3
ðr1; r2; r3Þ

R000ðr1; r2; r3Þ
�Y3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2li þ 1Þð2Li þ 1Þð2l0

i þ 1Þ
q �8>><

>>:
l1 L1 l0

1

l2 L2 l0
2

l3 L3 l0
3

9>>=
>>;

×

�
l1 L1 l0

1

0 0 0

��
l2 L2 l0

2

0 0 0

��
l3 L3 l0

3

0 0 0

�
; ð13Þ

with the curly brackets indicating a Wigner 9 − j symbol.
This allows us to “undo” the effects of nonuniform
survey geometry by measuring the 4PCF multiplets of the
random field R.6 Note that there are two manners in which
a parity-odd ζ can be sourced: parity-oddN and parity-even
R, or parity-oddR and parity-evenN .7 For this reason, it is
imperative to restrict to parity-odd multipets only after
performing edge correction.

III. DATA

A. Data and simulations

Our dataset comprises galaxies from the twelfth data
release (DR12) [64] of the Baryon Oscillation Spectro-
scopic Survey (BOSS), part of SDSS-III [65,66]. The survey
contains two samples, CMASS and LOWZ, of which we use
the former. This contains 587 071 (216 041) galaxies in the
northern (southern) galactic cap (hereafter denoted NGC and
SGC), across a redshift range z ∈ ½0.43; 0.7�, and an effective
redshift of zeff ¼ 0.57.8 We use a fiducial cosmology fΩm ¼
0.31;Ωbh2 ¼ 0.022;h¼ 0.676;σ8 ¼ 0.8;ns ¼ 0.96;

P
mν ¼

0.06 eVg to convert angles and redshifts to Cartesian coor-
dinates (cf. [54,67]) and assign galaxy weights according to

wtot ¼ ðwrf þ wfc − 1Þwsyswfkp: ð14Þ

Here wrf , wfc, and wsys correspond to redshift-failure, fiber-
collision, and systematic weights, respectively, with wfkp ¼
½1þ nðzÞP0�−1 being the well-known Feldman-Kaiser-

Peacock (FKP) weight [68] for background number density
nðzÞ and P0 ¼ 104 h−3Mpc3. To model the survey geom-
etry,weuse theBOSS randomcatalogs, containing50×more
randoms than galaxies.
We additionally make use of a suite of Nmocks ¼ 2048

“MultiDark-Patchy” (hereafter PATCHY) simulations [69,70].
These are computed using an approximate gravity solver and
calibrated to an N-body simulation, with halo occupation
parameters adjusted such that the mocks well reproduce the
BOSS two- and three-point statistics. These share the
CMASS survey geometry and are assigned weights via

wtot ¼ wvetowfcwfkp; ð15Þ

including the veto weight wveto. The mocks are generated
with the parameter set fΩm ¼ 0.3071;Ωbh2 ¼ 0.02205;
h ¼ 0.6777; σ8 ¼ 0.8288; ns ¼ 0.96;

P
mν ¼ 0 eVg and

coordinates are converted using the BOSS fiducial
cosmology.

B. 4PCF estimates

One of the main drawbacks with higher-order NPCFs is
their dimensionality. To characterize the 4PCF, we must
specify three multiplet indices (l1, l2, l3) and three radial
bins (r1, r2, r3), which can lead to a statistic with a large
number of (highly correlated) elements [51]. For this reason,
we adopt a relatively coarse radial binning scheme using
Nr ¼ 10 linearly spaced radial bins in ½20; 160� h−1Mpc,
giving Δr ¼ 14 h−1 Mpc. Furthermore, we enforce r2 >
r1 þ Δr and r3 > r2 þ Δr, to ensure that the separation
between any two galaxies in the 4PCF tetrahedron is at least
Δr (cf. Fig. 1). This removes modes from the nonlinear
region; these are difficult to model and can be strongly
affected by baryonic physics. For the angular binning, we fix
lmax ¼ 5, leading to a total of 56 radial bins and 111
multiplets (both parity-odd and parity-even), hence 6216
elements in the full 4PCF statistic. In the analysis of Sec. IV,
we use only the 23 multiplets with odd l1 þ l2 þ l3 and

6Note that this does not remove any geometry effects that
couple to the anisotropic 4PCF, nor those coupling to the 4PCF
multiplets with li > L, assuming an initial lmax of L. The former
effect is expected to be small (and usually ignored for the 3PCF
[63]), and the latter is ameliorated by discarding all multiplets
containing li ¼ L after edge correction, justified by noting that
the coupling matrix M is close to tridiagonal.

7This occurs since the product of 3 − j symbols in the coupling
matrix is zero unless l1 þ l2 þ l3 þ l0

1 þ l0
2 þ l0

3 þ L1 þ L2 þ
L3 is even.

8Data are publicly available at data.sdss.org/sas/dr12/boss/lss/.
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li ≤ 4, giving a total of Nζ ¼ 1288 elements; the rest are
required for edge-correction (Sec. II C).
Computation of the 4PCF multiplets, ζl1l2l3ðr1; r2; r3Þ,

is performed using the ENCORE code [51]. We separately
measure the contributions from a random catalog and a set
of 32 “data-minus-random” catalogs, each with 1.5× the
galaxy density; the latter are averaged to form the N
quantities entering the edge-correction equation (11), while
the former give R.9 Using (12), the quantities are then
combined to form the edge-corrected 4PCF multipoles.
For samples with similar number densities to BOSS, the

runtime of ENCORE scales as NgN3
rðlmax þ 1Þ5 [51], with

computation dominated by the mi summations of (10)
rather than estimation of the harmonic coefficients alm
(which scales as N2

gð1þ lmaxÞ2, albeit with a more modest
prefactor). In practice, we parallelize computation using
OPENMP, with each NGC (SGC) simulation requiring
∼32ð6Þ CPU hours to analyze on a modern 16-core Intel
processor, including edge correction. In total, analysis of
the BOSS data and 2048 PATCHY mocks required ∼80 k
CPU hours. This is comparable to the computational costs
of the 2PCF analysis in Ref. [73], and is facilitated by the

efficient nature of the ENCORE algorithm. We display a
selection of the measured 4PCF multiplets in Fig. 2.

C. Covariance matrices

The PATCHY mocks described in Sec. III A can be used to
form a sample covariance of the 4PCF statistic in the
standard manner:

Ĉl1l2l3;l01l
0
2
l0
3
ðr1; r2; r3; r01; r02; r03Þ

¼ 1

Nmocks − 1

XNmocks

i¼1

ðζðiÞl1l2l3ðr1; r2; r3Þ − ζl1l2l3ðr1; r2; r3ÞÞ

× ðζðiÞl0
1
l0
2
l0
3
ðr01; r02; r03Þ − ζ̄l0

1
l0
2
l0
3
ðr01; r02; r03ÞÞ; ð16Þ

where ζðiÞ represents the ith 4PCF estimate (in the NGC or
SGC region) and ζ̄ is the average over Nmocks realizations.
Since the number of 4PCF bins exceeds the number of
PATCHY mocks, this is not invertible, making it difficult to
perform traditional χ2-based analyses. For this reason, we
supplement the sample covariance with the analytic covari-
ance described in [57]. Essentially, this computes:

Covðr1; r2; r3; r01; r02; r03Þ ¼
Z

ds
V
ds0

V
hδðsÞδðsþ r1Þδðsþ r2Þδðsþ r3Þδðs0Þδðs0 þ r01Þδðs0 þ r02Þδðs0 þ r03Þi

−
Z

ds
V
hδðsÞδðsþ r1Þδðsþ r2Þδðsþ r3Þi

Z
ds0

V
hδðs0Þδðs0 þ r01Þδðs0 þ r02Þδðs0 þ r03Þi; ð17Þ

where the statistical expectations can be expanded using
Wick’s theorem to yield products of four 2PCFs.
The covariance is then projected into the angular basis of
Sec. II A and simplified. The approach makes a number of
assumptions:

(i) Isotropy: The 2PCF ξðrÞ≡ hδðsÞδðsþ rÞi is as-
sumed to be a function only of jrj. This neglects
redshift-space distortions, which have a nontrivial
impact on the isotropic 4PCF covariance.

(ii) Gaussianity: The expectations entering (17) strictly
contain additional contributions from higher-order
correlators such as the 3PCF.

(iii) Survey geometry: While the 4PCF is edge corrected
(Sec. II C), the same is not true for the covariance.
The latter inherits nontrivial dependence on the
survey geometry [74,75], which cannot be simply
captured by modifying the survey volume or shot
noise [57].

these reasons, we do not expect the analytic models of [57] to
accurately predict the true covariance of BOSS. It is a
relatively close approximation of matrix structure, however,
and will thus be used as a proxy covariance to facilitate the
analysis techniques described in Sec. IV. We construct the
covariance using the same radial binning parameters as in
Sec. III A, restricting to odd l1 þ l2 þ l3. Following
the prescription of [74] (but generalized to higher dimen-
sions), we use an effective volume of 1.90 h−3Gpc3

(0.77 h−3Gpc3) and shot noise Pshot ¼ 3130 h−3 Mpc3

(3160 h−3Mpc3) for the NGC (SGC) subsample. The input
2PCFs are taken from a fit to the BOSS CMASS power
spectrum, modeled using the effective field theory of large
scale structure [76], as implemented in CLASS-PT [77].
Figure 3 compares the analytic and sample covariances

for the NGC region, with the latter estimated from (16)
using 2048 PATCHY mocks. Considering the correlation
matrices [Fig. 3(a), defined as Rij ≡ Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
for

covariance Cij], we find good agreement between the
two, indicating that the Gaussian theory model well
reproduces the matrix structure. However, the diagonal
elements [Fig. 3(b)] of the analytic covariance are roughly a
factor of 2 less than those of the sample covariance. This is

9If the algorithm’s runtime scales as N2
g, this partitioning

minimizes the Poisson error at the fixed computational cost
[71,72]. In our case, the scaling is closer to linear, and thus the
total work is roughly independent of the partition size.
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FIG. 2. Measurements of the parity-odd 4PCF from the BOSS CMASS galaxy sample, alongside those from 2048 PATCHY

simulations. The NGC (SGC) results are shown in blue (red) bands, with the BOSS data shown as error bars, using the PATCHY

variances. Results are displayed for a selection of fl1;l2;l3gmultiplets (which specify the internal angles of the galaxy tetrahedron, as
in Fig. 1), whose values are indicated by the title of each subfigure. In total, 23 parity-odd multiplets are included in the analysis of
Sec. V. The horizontal axis specifies the radial bin combinations, fr1; r2; r3g, with the central values of r1, r2, and r3 in each bin shown
in the top panel. These correspond to the distances of the secondary, tertiary, and quaternary galaxies from the primary in Fig. 1. For
visibility, the 4PCF measurements are rescaled by a factor −ir1r2r3. As expected, the PATCHY measurements show no signs of parity
violation. Given the high correlation between neighboring bins, it is difficult to visually assess whether the BOSS dataset contains
signatures of parity violation; this is quantified in Figs. 4 and 5.
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likely to arise from the nontrivial survey geometry of the
BOSS CMASS region [57] and prohibits direct use of the
analytic covariance as a model for the 4PCF statistics.10

IV. ANALYSIS METHODS

Below, we discuss two techniques that will be used to
search for a signature of parity violation in Sec. V: (1) a
nonparametric rank test, which does not require the like-
lihood to be Gaussian, and (2) data compression followed

by a mock-based χ2 analysis. Both approaches make use of
the smooth (but inaccurate) covariance matrix model of
Sec. III C to overcome the difficulties associated with the
high dimensionality of the 4PCF. To avoid confirmation
bias, the pipeline implementing these techniques11 was
constructed before the BOSS data were unblinded.

A. Nonparametric rank test

Nonparametric tests provide a powerful way to analyze
data when the underlying likelihood is not known. Here, we

(a)

(b)

FIG. 3. Comparison of the sample and analytic covariance matrices for the parity-odd 4PCF of the BOSS CMASS NGC region. The
former are estimated using (16), while the latter use the approach of [57], which does not include redshift-space distortions, non-
Gaussianity, or the effects of survey geometry. (a) Comparison of the correlation matrices (defined as the covariance matrices normalized
by their diagonals); we see similar structure in both cases. The rows and columns represent the indices of the 4PCF, collapsed into one
dimension, with each submatrix (indicated by the dotted lines) showing a different multiplet fl1;l2;l3g, as labeled in green. Elements
within a submatrix are ordered in increasing radii r1, r2, r3. We include only the first six multiplets here; 23 are used in the analysis of
Secs. Vand VII C. (b) The corresponding diagonal elements of the covariance. Notably, the analytic covariance is an underestimate by a
factor close to 2; we expect this to arise primarily due to the nonuniform survey geometry of the CMASS region [57].

10Note that this discrepancy is not fully resolved by rescaling
the theory covariance by a constant factor. 11Available at github.com/oliverphilcox/Parity-Odd-4PCF.
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consider a rank test, examining the null hypothesis of zero
parity-odd 4PCF. To implement this, we first define a test
statistic, computed on both the data and a set of mocks.
These simulations are required to obey the null hypothesis
(i.e., be parity invariant) and have realistic noise properties.
The test statistic measured from data is then compared to
the empirical distribution obtained from the mocks,
allowing construction of a detection significance. For
example, if the data statistic exceeds that of 95% of the
mocks, we may reject the null hypothesis at 95% C.L. The
principal advantage of this approach is that it does not
require a theoretical PDF for the test statistic; i.e., we do not
have to assume the 4PCF to be a draw from some
multivariate Gaussian. Indeed, the observed 4PCF does
not appear to be Gaussian; this is explored in Appendix A.
A limitation of such rank tests is that one cannot claim a
detection at high significance; rather the maximal con-
fidence level is ð1 − 1=NmocksÞ.
Below, wewill use the following test statistic, dubbed the

pseudo-χ2:

χ̃2 ≡ ½ζTC̃−1ζ�NGC þ ½ζTC̃−1ζ�SGC; ð18Þ

where ζ is the set of measured parity-odd 4PCF multipoles
(treated as a Nζ-dimensional vector) and C̃ is the theoretical

covariance matrix (Sec. III C). If C̃ is equal to the sample
covariance (in the limit of infinitemocks), Eq. (18) reduces to
the usual χ2 statistic, given a fiducial model of zero parity-
odd 4PCF and assuming the NGC and SGC regions to be
independent. While the covariances are not quite equal in
practice (Fig. 3), we expect (18) to produce a close-to-
optimalweighting for the data, particularly if the likelihood is
close to Gaussian. Furthermore, since the pseudo-χ2 statistic
does not subtract off a mean, the rank test will naturally
account for any spurious parity-odd contributions that are
present in both PATCHY and BOSS. These might arise from
imperfections in the edge-correction routine or light cone
projection effects. To perform the test, we simply compute χ̃2

for BOSS and each of the Nmocks ¼ 2048 PATCHY simula-
tions (Sec. III A), before assigning a detection significance
from the empirical PATCHY PDF.

B. Compressed Gaussian analysis

A common trick when dealing with high-dimensional
statistics is to apply some form of data compression [e.g.,
[78–81]]. In general, this proceeds byprojecting the data onto
some (small) set of basis vectors, thus greatly reducing the
dimensionality.When performing parameter inference, basis
vectors are usually chosen to preserve the Fisher information
matrix [78,80] or the log-likelihood [81]. Since our primary
goal in this work is to search for signatures of parity violation
in a model-agnostic fashion, we adopt a somewhat different
compression scheme, following [54,79].

Here, we project the 4PCF onto a basis given by the
eigenvectors of the theoretical covariancematrix (Sec. III C).
Explicitly, we define the projected statistic

v≡ UTζ; ð19Þ

where the orthogonalmatrixU is specified by C̃ ¼ UΛUT for
diagonal eigenvalue matrix Λ. The compressed statistic has
covariance E½vvT � ¼ UTCU, whereC is the covariance of ζ;
if the theory and analytic covariances agree, this is diagonal
and equal to Λ. In practice, we expect the compressed
coefficients to be almost independent.
To perform dimensionality reduction, we must restrict to

a subset of the aforementioned basis vectors. Given that we
have no prior on the shape of a parity-violating 4PCF
signal, we cannot select the basis vectors based on signal-
to-noise considerations (as in [54,79]). Instead, we use the
Neig eigenvectors with smallest Λi, corresponding to the
directions that can be most well measured.12 This highlights
the benefits of using the theoretical covariance matrix to
perform the projection; since the sample covariance does
not have full rank, its smallest eigenvalues are not well
defined.
Following the selection of the basis vectors, we project

both the BOSS data and the PATCHY mocks into the Neig-
dimensional subspace using (19). As in (16), we can form a
sample covariance for v from the PATCHY measurements:

Ĉv;αβ ¼
1

Nmocks − 1

XNmocks

i¼1

ðvðiÞα − v̄αÞðvðiÞβ − v̄βÞ; ð20Þ

where vðiÞα indicates the compressed 4PCF of the ith mock,
with α; β ∈ f1;…; Neigg. Assuming Nmocks > Neig, the
sample covariance has full rank (unlike the uncompressed
4PCF covariance) and is thus invertible. In the low-dimen-
sional subspace, analysis centers around the following
statistic:

T̂2 ¼ vTĈ−1
v v; ð21Þ

where we have assumed zero mean, as in the null
hypothesis. If v is assumed to be Gaussian distributed (a
fair assumption if the dimensionality is small), T̂2 follows a
χ2 distribution with Neig degrees of freedom in the limit of
large Nmocks. In practice, we must account for noise in the
sample covariance Ĉv. An approach is to add the “Hartlap”
correction factor [82,83], leading to the modified statistic

Ĥ2 ¼ fH × vTĈ−1
v v; fH ¼ Nmocks − Neig − 2

Nmocks − 1
; ð22Þ

12Additional choices of basis functions can be found in
Sec. VI D.
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whose expectation is χ2. Ĥ2 is then analyzed using a χ2

distribution, assuming Gaussianity. However, this does not
correctly treat the sample covariance noise and results in a
PDF which is too sharply peaked if Neig is close to Nmocks

[84]. Instead, one should analyze the T̂2 statistic (21)
directly, using the PDF:

fTðT2;n;pÞ¼ Γ½ðnþ1Þ=2�
Γðp=2ÞΓ½ðn−pþ1Þ=2�

n−p=2ðT2Þp=2−1
ðT2=nþ1Þðnþ1Þ=2 ;

ð23Þ

where n ¼ Nmocks − 1, p ¼ Neig, and Γ is the Gamma
function [84]. When dealing with multiple independent
datasets (i.e., the NGC and SGC 4PCF measurements), one
may sum the two T2 estimates; the resulting PDF is the
convolution of two copies of (23) and is easily evaluated
with a fast Fourier transform. This approach will be
adopted for the main analysis of Sec. V to ensure that
we do not claim a false detection of parity violation.
Finally, we comment on the validity of our compression

scheme. By the Eckart-Young theorem [85], the scheme is
optimal (in terms of inverse variance) in the limit of C̃ ¼ C
and a Gaussian covariance. Since the data and mocks are
compressed in the same manner, it is unbiased for any
choice of projection matrix U or dimension Neig. If too few
basis vectors are used or if the theory covariance is far from
the truth, the penalty (in the limit of large Nmocks) is simply
a reduced detection significance.13 When using finite
Nmocks, increasing Neig will also lead to increased noise

in the covariance matrix Ĉv, somewhat lessening the
detection significance. To incorporate these effects, a range
of Neig values will be considered in Sec. V.

V. NULL-TEST RESULTS

We now proceed to assess whether the BOSS data
contain signatures of parity violation. First, we consider
the raw 4PCF measurements, displayed in Fig. 2 for a
selection of multiplets fl1;l2;l3g. As expected, the mean
parity-odd 4PCF of PATCHY mocks appears close to zero.
This functions as a useful consistency test for the analysis
pipeline; errors in the 4PCF computation could have led to
a detectable signal in PATCHY mocks, especially given that

the parity-even 4PCF is large [54]. For the standard
deviations, we find a rough scaling of ðr1r2r3Þ−1, with
enhanced amplitudes found for the SGC region due to its
smaller volume (Sec. III). Moving to the BOSS results, we
find considerable (highly correlated) scatter around zero,
but no obvious signatures of parity violation.
To examine this further, we turn to the nonparametric

rank test of Sec. IVA. In Fig. 4, we plot the empirical
distribution of the pseudo-χ2 test statistic; this appears to
have broader tails than a standard χ2 distribution (most
likely due to imperfections in the theoretical covariance C̃),
highlighting the importance of a nonparametric treatment.
The BOSS data have a rank of 2040=2048, and an
associated detection probability of 99.6% (equivalent to
2.9σ). This is inconsistent with a random draw from the
empirical distribution of PATCHY mocks and gives evidence
for parity violation. A greater number of simulations would
be needed to probe this detection at higher significance.
An additional test is given by the projected χ2-based

analysis discussed in Sec. IV B. While this assumes a
Gaussian distribution for the compressed statistic (some-
what justified by the reduced number of bins), it uses the
sample covariance rather than the theoretical covariance,
and thus optimally weights the data. In the top panel of
Fig. 5, we show the theoretical and empirical distributions
of the projected sample statistics T2 and H2 (Sec. IV B)
from PATCHY, with the latter obtained via bootstrapping. For
small Neig, the empirical distributions of both statistics

FIG. 4. Empirical distribution of the pseudo-χ2 test statistic
defined in (18) from 2048 PATCHYmocks and the BOSS data. This
is a proxy for the standard χ2 parameter, but uses the theoretical
covariance matrix of Sec. III C. The data (shown as a vertical
dashed line) have a Cumulative distribution function (CDF) of
99.6%; this is inconsistent with the null hypothesis of parity
invariance at 2.9σ. Note that this test does not assume Gaussianity
of the likelihood, and naturally encompasses any spurious parity-
odd contributions appearing in both the PATCHY mocks and the
BOSS data. The significant detection of parity violation found by
this test indicates either parity-violating physics or unresolved
systematics. The above plot represents the main result of this work.

13This is easiest to showby considering the average χ2 difference
between some signal ζ0 and the null hypothesis of E½ζ̂� ¼ 0.
Without compression,Δχ2 ¼ ζT0C

−1ζ0, while following projection
by someNζ × Neig matrixU,Δχ2proj ¼ ζT0UðUTCUÞ−1UTζ0. If the
projection is optimal, i.e., if U is the eigenvector matrix of C, then
Δχ2proj;opt ¼

PNeig

i¼1 ζ̄
2
0;i=Λi where ζ̄0 ¼ UTζ0. Since ζ̄20;i ≥ 0 and

Λi > 0, it is clear thatΔχ2proj;opt ≤ Δχ2, with equality iffNeig ¼ Nζ .
A similar result holds in themore general case due to the properties
of projectionmatrices; this is easily shown by rotating to a diagonal
basis.
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seem well-fit by their theory models, which is expected
since Nmocks is considerably larger than Neig. At larger Neig

we begin to see discrepancies between the H2 statistic and
the accompanying χ2 theory model, with the former having
a slightly narrower distribution. Considering the detection
CDFs shown in the lower panel of Fig. 5, the distribution of
PATCHY mocks appear somewhat nonuniform for the H2

statistic at Neig > 100. In particular, 152 (199) mocks lie in
the outermost 5% of the theory distribution for Neig ¼ 100

(Neig ¼ 250), in contrast to the 102� 10 expected. This
echoes the conclusion of [84]; if Neig is close to Nmocks,
improper treatment of covariance matrix noise may be
dangerous and could lead to false detections of parity
violation. For the T2 distribution (which correctly treats
such effects) we find somewhat better agreement, with 135
and 162 mocks in the outer 5% region, respectively.
However, the distribution still appears to be somewhat
skewed. We attribute this to intrinsic non-Gaussianity of the
4PCF likelihood (see [59] and Appendix A), whose effect
increases as the size of the data vector increases, and the
central limit theorem becomes less applicable.
For the BOSS data, the compressed Gaussian analysis

gives detection significances of 59.2%, 77.8%, 83.3%, and

100.0% for Neig ¼ 10, 50, 100, and 250, respectively,
equivalent to 1.3σ; 1.7σ, 1.9σ, and 3.9σ in a two-tail test.
The fact that these results are a strong function of Neig

suggests that our projection scheme is inefficient, i.e., that
4PCF components dropped from the analysis carry sig-
nificant information regarding the parity-violating signa-
ture.14 This is a consequence of performing a blind
analysis; given the lack of a physical model, we cannot
choose basis vectors which maximize the signal to noise
(though see Sec. VI D for results using alternative choices
of the compression scheme). Overall, we find a weak
preference for a non-Gaussian signal using the compressed
analysis. This notwithstanding, we again find a preference
for a nonzero parity-odd signal from the sample, though
again caution that the Neig ¼ 250 result may be artificially
enhanced by likelihood non-Gaussianity.

FIG. 5. Distributions of theH2 and T2 statistics (22) and (21) for the compressed BOSS data and PATCHY simulations. We show results
using various numbers of basis vectors, Neig, as indicated by the titles, and note that the statistic includes both NGC and SGC
measurements. The top panels compare the theoretical and empirical PDFs for each statistic, while the bottom panels display the CDFs.
Results for BOSS are shown as vertical dashed lines in both cases. To compute the empirical distributions (shown as histograms), we
apply bootstrapping; ðNmocks − 1Þ mocks are used to define a sample covariance, allowing computation of H2 and T2 for the excluded
mock. The theoretical PDFs for H2 and T2 are the convolution of two χ2 or T2 distributions (23). For BOSS, we report detection
probabilities of 59.2%, 77.8%, 83.3%, and 100.0% from the T2 statistic usingNeig ¼ 10, 50, 100, and 250 basis vectors, respectively. As
in Fig. 4, we find mild evidence for parity violation, particularly as Neig increases. We caution that this test assumes a Gaussian
likelihood, which may lead to overestimated detection probabilities at high Neig (as suggested by the somewhat skewed empirical
distribution of PATCHY mocks at Neig ¼ 250, and the results of Appendix A, which correspond to Neig ¼ Nζ).

14This differs from the conclusion of [54], which used a similar
compression scheme to analyze the parity-even 4PCF. In the
former work, basis vectors were chosen based on the mean non-
Gaussian signal from the mocks, ensuring optimal linear com-
pression. This is not possible in our case, since the mocks
conserve parity.
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To close, we comment on the implications of the results
found herein. First, we note that the results are largely
consistent between the two tests, with both finding a
detection of large-scale parity violation at ∼3σ. This cannot
be caused by an incorrectly modeled likelihood (evidenced
by the rank test), nor is it a result of our analysis incorrectly
treating the window function (which would have led to the
compressed analysis showing a parity-violating signature
in the PATCHY mocks). This leaves two explanations:
(1) new physics, and (2) unexplained systematics. While
the first is a distinct possibility (and is not ruled out by other
observations, since no former experiment has measured the
4PCF in a model-agnostic fashion), the second should also
be carefully considered. A brief discussion of this is
presented in the next section.

VI. SYSTEMATIC TESTS

Below, we report the results of various checks performed
to test the results of Sec. V, utilizing data cuts, mock
catalogs, and rescaled statistics. In the final section, we will
also comment on potential sources of systematic effects that
could lead to a false detection of parity violation. All the
analyses below were devised post-unblinding.

A. Data partitioning

A simple test for systematic errors is to repeat the
nonparametric rank test described in Sec. IVA for the
two BOSS regions (NGC and SGC) separately. The two
patches are in opposite hemispheres, have different cali-
brations, and are of different angular sizes; thus, this is a
sensitive test of the effects of survey calibration and large-
scale modes.
Figure 6 displays the pseudo-χ2 statistic for the two

BOSS regions separately (plotting both the observational
data and the empirical distribution from 2048 PATCHY

mocks). Here, we find ranks of 2023=2048 and
1963=2048 for the NGC and SGC regions separately, with
a lower significance found for the smaller-volume region,

as expected. Neither value is enough to claim a detection on
its own; however, the trends from the two are in agreement,
and their combination reaches the 2.9σ level reported in
Sec. III. This test does not reveal any clear differences
between the two regions; the results are consistent with our
expectations if this is indeed a bona fide detection of parity
violation.

B. Dependence on radial and angular scales

An additional test is to examine the impact of radial and
angular binning on the detection significance reported in
Sec. V. For this purpose we will primarily use the rank test
of Sec. IVA, and adjust the criteria for which bins are
included in the analysis, always including a subset of those
discussed in Sec. III B. In general, we expect the detection
significance to decrease somewhat as the dimensionality
(and hence number of measured Fourier modes) is reduced,
relative to the initial size of Nζ ¼ 1288). This will be
particularly apparent if we excise regions in which the
signal is strongest.
First, we consider changing the radial binning strategy.

Two variations are possible: we can filter based on the
distances of secondary galaxies from the primary or those
of the secondary galaxies from each other (cf. Fig. 1). To
test the former, we will separately remove the first and
last radial bins in each dimension, i.e., that with ri ∈
½20; 34� h−1Mpc and ½146; 160� h−1 Mpc, respectively.
When the minimum radius is increased, we have a modest
decrease in dimensionality (to Nζ ¼ 805) and a detection
rank of 1949=2048 (2.0σ). If the maximum radius is instead
reduced, Nζ decreases by a third, but we do not find a
change in the overall detection significance. The first result
is unsurprising: the variance scales approximately as
ðr1r2r3Þ−2; thus, if the signal has support over a range
of radii, removing the low-r bins would reduce the
detection significance. In the second case, the lack of
variation suggests that the detection is not caused by some
spurious ultralarge mode (arising from foregrounds, for
example), though we caution that the signal to noise in
these modes is the smallest.
To vary the allowed distances between secondary gal-

axies, we may modify the restrictions on the allowed
tetrahedral shapes. In particular, accepting configurations
with r1 < r2 þ γΔr < r3 þ 2γΔr restricts the internal sep-
arations to be at least γΔr (with γ ¼ 1 in the fiducial
analysis of Sec. V). If we set γ ¼ 0, and thus include all
bins satisfying r1 < r2 < r3, secondary galaxies can be
arbitrarily close together, and the size of the data vector
increases to Nζ ¼ 2760. If the signal contains small-scale
power, this should increase the detection significance; here,
the nonparametric test gives a rank of 2045=2048 (almost at
the saturation point), equivalent to 3.2σ, with the Neig ¼
100 (250) compressed χ2-based analysis giving a detection
probability of 99.7% (100.0%), equivalent to 3.4σ (4.3σ).

FIG. 6. As Fig. 4, but analyzing the two observational regions
(NGC and SGC) separately. The NGC region (red) contains
almost 3 times as many galaxies and is thus expected to be more
constraining. We report detection significances of 98.8% (95.8%)
for NGC (SGC), corresponding to 2.5σ (2.0σ).
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This suggests that small-scale modes are of importance,
though we note that they could contain contributions from
parity-breaking physics on halo scales, such as magneto-
hydrodynamics (whose contributions are generally
expected to be small in the main analysis, since we restrict
to separations above 14 h−1Mpc). If we instead fix γ ¼ 2,
forcing secondary galaxies to be separated by at least
28 h−1Mpc, we find a sharp reduction in dimensionality to
Nζ ¼ 460, but only a slight decrease in the detection rank
(to 1970=2048, or 2.1σ). This suggests that the signal
causing the detection contains nontrivial support on rela-
tively large (and generally well understood) scales.
Next, we consider varying the angular binning, by altering

the maximum multipole lmax, and thus the values of
fl1;l2;l3g (Sec. II) that are used in the analysis. Setting
lmax ¼ 3 reduces the dimensionality to Nζ ¼ 616 and
changes the detection significance to 1970=2048, or
96.2% (2.1σ). The physical action of this is to reduce the
number of squeezed tetrahedra in the analysis (which have
smaller internal tetrahedron angles, i.e., large l). If lmax is
further reduced to 2 (with Nζ ¼ 224) the rank falls to
1466=2048, or 71.6% (1.1σ). Our conclusions for lmax ¼
3 are similar to the above: the signal contains contributions
from small-scale modes, but is not entirely dominated by
them, while the lmax ¼ 2 result will occur primarily due to
the much reduced dimensionality, and thus signal to noise.
We further note that themultipletswith the greatest impact on
the detection significance are fl1;l2;l3g ¼ f1; 1; 1g,
f1; 2; 2g and permutations thereof. This is again unsurpris-
ing, given that these are the modes with the greatest signal to
noise, but may serve to indicate that any signal observed is
not entirely from some squeezed limit.

C. Realization-dependent rescaling

Under null assumptions (and assuming Gaussianity for
the sake of illustration), the rank test compares the variance
of the observational data with that of the PATCHY mocks. As
such, a spurious detection of parity violation could be
caused by the simulations underestimating the true covari-
ance, for example, due to mismatches in the galaxy bias
parameters or the underlying cosmology. From Fig. 4, we
see that excellent agreement between data and mocks can
be obtained if one inflates the covariance of the PATCHY

simulations by 13%. Under the assumption of a Gaussian
4PCF covariance, this requires the 2PCF to be rescaled by
3%. While this may seem straightforward, it is somewhat
nontrivial, since the PATCHY simulations are calibrated to
match the BOSS two- and three-point clustering statistics
on small scales [69,70].
To probe this, we consider normalizing the odd-parity

4PCF measurements by their even-parity (more specifi-
cally, disconnected) counterparts and reapplying the rank
test of Sec. IVA. To perform this robustly, we first fit the
Gaussian 4PCF contribution to a simple theory template
(presented in [86]), extracting a single overall amplitude for

each realization.15 The odd-parity 4PCF measurements (for
both theBOSS data and each PATCHYmock) are then divided
by this amplitude, which will remove the dominant effect of
an overall rescaling of the PATCHY covariance compared to
that of BOSS. While the PATCHY covariance need not be
wrong by a simple constant, this is expected to capture the
leading-order effect, and particularly accounts for the
unknownvalue of b1σ8.We note that this prescription cannot
be easily applied to the compressed Gaussian analyses, since
it violates the Gaussian assumption on large scales due to
sample-variance cancellation.
In practice, we find an NGC (SGC) normalization factor

of 0.85 (0.99) for BOSS, and 0.92� 0.04 (0.94� 0.06) for
the 2048 PATCHY simulations. Notably, the BOSS NGC
data have a smaller factor; this will shift the corresponding
pseudo-χ2 value of BOSS toward those of the mocks. In
Fig. 7, we show the corresponding rank test results, finding
that the detection significance is slightly reduced (to
2014=2048), matching our expectation. However, this is
consistent with the broadened posterior associated with this
test (comparing the widths of the empirical distributions in
Figs. 4 and 7), and we still find a weak detection of parity
violation, now at 2.4σ. It is clear that the detection cannot
be entirely removed by a simple rescaling; if differences in
the statistical properties of simulations and observational
data are to blame, they must be scale dependent.

D. Choice of compression scheme

For the compressed Gaussian analysis of Sec. IV B, it is
important to choose a set of basis vectors that allow for

FIG. 7. As Fig. 4, but normalizing the 4PCF measurements by a
realization-dependent amplitude, as described in Sec. VI C. This
will account for an overall rescaling factor between the BOSS
data and PATCHY simulations, arising, for example, from a
different value of σ8. In this case, the detection significance is
slightly reduced; however, we still find hints of parity violation at
the 2.4σ level.

15An alternative approach is to divide the odd-parity 4PCF by
the value of the disconnected (i.e., Gaussian) 4PCF in each bin;
this is not performed since the latter statistic suffers from
significant cosmic variance on large scales and can be negative.
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significant dimensionality reduction while preserving key
features of the data. For null tests such as that of Sec. IV B,
this is nontrivial, since we do not have prior knowledge of
the form of a parity-violating model. For this reason, the
analysis of Sec. III adopted a set of basis vectors selected
using a minimum variance criterion; this is equivalent to
maximizing signal to noise assuming a uniform signal in
all bins.
An alternative approach would be to assert some typical

form for the parity-violating signal, and use this to select a
sensible set of basis vectors onto which the measured
4PCFs are projected. A simple choice is ζΛðr1; r2; r3Þ ∝
ðr1r2r3Þ−1 (matching the approximate scaling of the error
bars). In this case, the compressed Gaussian analysis gives
detection significances of 0.8σ, 1.8σ, 3.5σ for Neig ¼ 50,
100, 250, respectively. A more nuanced choice would be to
weight by the inflationary parity-breaking 4PCF model
introduced in Sec. VII. This has a physically reasonable
form (albeit specific to a single parity-breaking phenome-
non) and leads to Gaussian significances of 0.7σ, 1.5σ,
2.3σ, respectively. Finally, we consider fixing the fiducial
model to the fl1;l2;l3g ¼ f0; 0; 0g multiplet of the
disconnected 4PCF. This will indicate whether the
observed signal was sourced by incomplete subtraction
of the disconnected component. In this case, we find
detection significances of 2.0σ, 1.3σ, and 2.6σ.
For an ideal projection, corresponding to matched true

and fiducial 4PCFs, a strong detection significance would
be found at small Neig (whereupon the effects of likelihood
non-Gaussianity are suppressed), which would increase
only slightly as Neig was increased. This behavior is clearly
not observed for any of the templates discussed above,
suggesting that the signal causing the 4PCF detection is not
close to one of the above forms. This is unsurprising: even
if the signal is cosmological in nature, it could be sourced
by a wide variety of physical effects, each of which has a
different signature in the Nζ ¼ 1288-dimensional 4PCF
statistic. That we do not observe a strong detection with any
template is additionally consistent with the notion that, if
such an effect is real, it lies on the threshold of that
detectable by current data.

E. Tests on mock catalogs

Auseful end-to-end test of our analysis pipeline is to apply
it to a set of (parity-conserving) mock catalogs and test
whether a signal is observed. For this purpose,wewill use the
NSERIES simulation suite16: a set of 84mock catalogs created
to verify the BOSS analysis pipeline [87]. These were
constructed from full N-body simulations (though are not
quite independent) using the cosmological parameters
fΩm ¼ 0.286; σ8 ¼ 0.82; ns ¼ 0.97; h ¼ 0.7;

P
mν ¼ 0g,

and have similar halo occupation distribution and selection

function to the BOSS data, as well as a careful treatment of
fiber collisions. The NSERIES window function is somewhat
different from that ofBOSS (cf. Sec. III A), and includes only
the NGC region. For this reason, the simulations are
accompanied by 2048 PATCHY simulations generated with
the NSERIES window function (hereafter “PATCHY-NSERIES”
simulations), which will be used to generate covariances and
perform the relevant rank tests. Unlike for BOSS, the
PATCHY-NSERIES simulations were not calibrated to the
small-scale clustering of the NSERIES simulations (which
have a slightlymodified cosmology to PATCHY-NSERIES); as a
result, the covariance of NSERIES and PATCHY-NSERIES could
differ somewhat, which would have implications for the
parity-violation tests, as discussed in Sec. VI C.
Using the methodology of Sec. IV, we analyze each of

the 84 NSERIES simulations in turn, giving the 4PCF
measurements shown in Fig. 8 (which display no obvious
signal). Here, we show results only for the rank tests;
implementation of the other tests discussed above (such as
the compressed Gaussian analysis and constraints on the
inflationary models of Sec. VII) can be found online.17

Figure 9(a) compares the distribution of the pseudo-χ2

statistic for the NSERIES and PATCHY-NSERIES simulations
(following Sec. V). If our analysis pipeline is working as
expected, and the statistical properties of NSERIES and
PATCHY-NSERIES are similar, the empirical pseudo-χ2 dis-
tributions of the two should match; thus the NSERIES

simulations should have a mean rank of ≈1024=2048 (with
some deviations expected from sample variance). In prac-
tice, we find a mean rank of 244=2048 (11.9%), which is
significantly below the expected value. Since the test
statistic is a quadratic form, this does not imply a false
detection of parity violation (which would give a mean rank
greater than 1024=2048); instead it highlights differences
between the NSERIES and PATCHY-NSERIES simulation suites
(despite the similarity observed in Fig. 8). As mentioned
above, these could come from a variety of factors, such as a
different underlying cosmology, the inclusion of fiber
collisions in the former, and a different halo occupation
distribution. Notably, none of the NSERIES mocks have a
mean rank above 95%; hence we do not find evidence for
parity violation in any case.
To more closely assess the impact of differences in the

NSERIES and PATCHY-NSERIES covariance matrices (which
cause the difference in pseudo-χ2, in the Gaussian limit),
we additionally perform a rank test with the mocks rescaled
using the realization-dependent factor of Sec. VI C. The
relevant normalization is 0.90� 0.03 for NSERIES and
0.92� 0.04 for PATCHY-NSERIES. This differences implies
that the NSERIES histogram will shift slightly in the
direction of PATCHY-NSERIES; this is observed in Fig. 9(b).
The mean rank is 634=2048 (31.0%), which is significantly
closer to the expected value than without rescaling. Around

16Available at www.ub.edu/bispectrum/page11.html. 17github.com/oliverphilcox/Parity-Odd-4PCF.
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FIG. 8. Measurements of the parity-odd 4PCF from the mean of 84 NSERIES mocks (black) and 2048 NSERIES-PATCHY simulations
(blue), following the form of Fig. 2. We additionally display theoretical predictions for the Chern-Simons inflationary model (green) and
its two constituent parts, proportional to dodd0 (red dashed lines) and dodd1 (purple dashed lines). Theory models are multiplied by an
amplitude corresponding to ACS ¼ 5 × 104 for visibility, with data-driven constraints on this parameter presented in Fig. 10. The
NSERIES dataset appears consistent with parity conservation, as expected; this is explored further in Fig. 9.
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10% of the NSERIES mocks lie in the outer 5% region of the
PATCHY-NSERIES histogram, giving approximately a one-in-
ten chance of a false detection (or here, an antidetection).
The shift in the mean rank induced by the rescaling factor
leads to two conclusions: (a) the factor can be usefully
adopted to remove the lowest-order differences in simu-
lation covariance matrices (validating the approach of
Sec. VI C), and (b) the difference between NSERIES and
PATCHY-NSERIES covariances is not fully captured by the
rescaling, and is thus scale dependent.
The above tests indicate that the validity of our null tests

depend strongly on whether the statistical properties of the
simulation suite employed to compute empirical distribu-
tions match those of the real data. A difference in the
sample covariance matrix (which could be caused by
various effects, as elaborated upon below) can lead to a
false under- or overdetection of parity violation. For the
NSERIES simulation suite, these differences are quite sig-
nificant and lead to a marked underdetection; however, this
can be substantially reduced by including the realization-
dependent rescaling factor of Sec. VI C.

F. Other sources of systematics

While the above tests constrain a variety of different
systematic effects, they are by no means exhaustive. Below,
we discuss a number of additional effects that could
contribute to the tentative detections reported in Sec. V.
These can be separated into two groups: (a) effects that lead
to the PATCHY simulations having a different covariance
(and higher-order statistical properties) to that of the data,

and (b) observational phenomena causing a parity-violating
signal in the odd-parity 4PCF itself.
First, we consider possible causes for a systematic

difference between PATCHY mocks and BOSS data.
Besides simple differences in cosmological parameters or
halo occupation distributions, discrepancies could arise due
to the treatment of nonlinear evolution. The PATCHY mocks
are generated using approximate gravity solvers only
(before being calibrated to an N-body simulation, and
the observational data); while this will not affect the large
(linear) scales, it can modify the small-scale clustering, and
thus provide an error on small scales, where the con-
straining power of the data is greatest. Simply calibrating
the two- and three-point functions does not guarantee that
the covariance is well reproduced, since this depends on N-
point functions up to N ¼ 8. Such effects would distort the
pseudo-χ2 distribution of the PATCHY mocks and could lead
to false detections of parity violation. This hypothesis can
be probed via the NSERIES tests of Sec. VI E; once
realization-dependent rescaling is included, we find fair
agreement between the mock data and PATCHY-NSERIES
simulations, and no spurious detections of parity violation.
For the BOSS data, we expect better agreement with PATCHY,
given that the simulations were calibrated to the observed
small-scale clustering; however, we still find a 2.9σ detection
of parity violation, or 2.4σ when the rescaling factor is
included. This reduces the likelihood that the effect is caused
by inaccuracies in PATCHY (considering also the scale-cut
information discussed in Sec. VI B), though this effect is
certainly worthy of future study.

(a) (b)

FIG. 9. Distribution of the pseudo-χ2 statistic for a set of high-fidelity NSERIES simulations (orange) and the corresponding empirical
distributions obtained from 2048 PATCHY-NSERIES mocks. In the left panel (analogous to Fig. 4), we find a mean rank of 244=2048, with
30=84 mocks lying in the outer 5% region of the empirical distribution PATCHY-NSERIES distribution. As such, we report an
underestimate of the test statistic relative to that expected. This is attributed to the difference in cosmology and bias parameters between
the NSERIES mocks and PATCHY simulations. The right panel shows the effect of including the realization-dependent rescaling factor
discussed in Sec. VI C: this reduces the difference between datasets and increases the mean rank to 634=2048, with only 8 of the 84
simulations in the outer 5% of the empirical distribution. In both cases, there are no NSERIES simulations with a pseudo-χ2 value in the
upper 5% region of the empirical distribution, and thus no detection of parity violation. (a) Fiducial (b) Including realization-dependent
rescaling.
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Another effect not included in the PATCHY mocks is that
of fiber collisions, arising from the inability to position
telescope fibers within a certain distance from each other. If
the assignment of fibers to a telescope image is performed
in a particular direction (i.e., picking all objects above a
certain brightness from one side of a field of view to
another), and the quartet of galaxies contains some distant
component, a parity-violating signal may be created, due to
a preference of one tetrahedral handedness over the other.
Two lines of evidence suggest this may not be an important
contribution: first, the NSERIES mocks include the effect of
fiber collisions and do not show strong evidence for a
parity-violating signal; second, most tetrahedra considered
in this work have large radial separations. Although fiber
collisions happen in the angular domain, rather than radial,
all galaxies have minimum separations above 20 h−1Mpc
(Sec. VI B), and thus most fibers of relevance will be
spaced by tens of arcminutes. The effect could also change
the statistical properties of the data (i.e., the covariance
matrix); the impact of this is analogous to the effects
discussed above.
The BOSS dataset is also known to contain systematic

effects on large scales due to imperfectly subtracted fore-
ground modes, arising, for example, from Galactic emis-
sion or varying seeing conditions. Given that these do not
impact BAO measurements, they are usually ignored,
though they may be of more relevance to the analyses
considered herein. For such an effect to show up in the odd-
parity 4PCF signal, it would need to be parity violating.
Since observational effects are not required to obey
isotropy and homogeneity, this is possible and could be
formed, for example, from the composition of two small-
scale 2PCFs (of different lengths) with a large-scale
gradient between them. This is analogous to the discon-
nected 4PCF contribution (but parity odd) and could be
sourced by the above observational phenomena, or even
cosmological effects such as isocurvature modes. From the
analysis employing hemispherical cuts (Sec. VI A), it is
clear that, if this was the cause of the parity-breaking
detection, it is not a one-off phenomenon, and, moreover, it
is not sourced solely by very small or very large tetrahedron
configurations (Sec. VI B). The particular form of our
tetrahedral basis (i.e., the decomposition into coupled
spherical harmonics) makes checking individual tetrahedral
configurations difficult, unless a dedicated analysis is
performed; the best way to probe them would be with
mocks including all observational effects, though none of
this type currently exist. We note, however, that such large-
scale modes would likely have an impact also on lower-
order statistics which utilize large-scale data. The consis-
tency of such two-point and three-point function analyses
with those of the CMB suggest that these effects, if present,
are comparatively small [76,88].

VII. CONSTRAINTS ON INFLATIONARY
PARITY VIOLATION

The 4PCF measurements presented in Sec. V may be
used to place constraints on specific models of cosmologi-
cal parity violation, such as those involving inflation. As
noted in Appendix B of [7], parity violation cannot be
generated by single-field inflation,18 and thus its detection
in data could give evidence for multiple fields active in the
early universe. Here, we consider a particular multifield
model, which gives an analytic form for the parity-odd
galaxy 4PCF, in addition to lower-dimensional observables.
An analogous procedure may be used to constrain any
model which induces a nontrivial parity-odd 4PCF; a
selection of these are briefly discussed in Sec. VII A 2.

A. Primordial correlators

1. Chern-Simons inflation

Consider an inflationary Lagrangian containing the
following couplings between an inflaton field, ϕ, and a
Uð1Þ gauge field, Aμ:

L ⊃ fðϕÞ
�
−
1

4
FμνFμν þ γ

4
FμνF̃μν

�
; ð24Þ

where Fμν ≡ ∂μAν − ∂νAμ is a two-form. The second term
involves the Hodge dual, F̃μν, and is of the Chern-Simons
form [10,10,13,90,91]. This is controlled by two pieces: a
function fðϕÞ giving the time evolution of the field, and a
dimensionless ratio γ, which sets the amplitude of parity
breaking.19 Following [13,93], we will assume γ to be
constant (on naturalness grounds), and fix fðϕÞ ∝ a−4 (for
scale factor a), such that the vector field has a time-
independent vacuum expectation value (VEV) and thus a
scale-invariant correlator.20 If one instead assumes
fðϕÞ ∝ const, the energy density of the vector field will
decay as a−4 during inflation, giving observational signa-
tures only on the largest scales [12].
The Lagrangian (24) leads to a number of modifications

to the standard inflationary picture. First, the presence of a
background VEV Aμ

0 (usually represented in the electro-
magnetic notation as E0, with B0 ¼ 0) leads to anisotropic
expansion, and its perturbations can provide an isocurva-
ture source for the primordial curvature ζ. Such effects are
strongly constrained by CMB data, limiting the energy
density in the gauge field (hereafter ρE) to be a small
fraction of the inflaton energy density ρϕ. Couplings
between the inflaton and gauge field will additionally

18An exception can occur for ghost inflation [89]; this will be
discussed in future work.

19Constraints on the reheating temperature from big bang
nucleosynthesis restrict the coupling strength to jγj < 5.5 [12,92].

20This is a natural choice within the Ratra mechanism [93,94].
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generate gravitational waves through the metric tensor hij,
as well as scalar-tensor couplings. This can lead to
observable signatures in CMB E-modes and B-modes
(and nonzero parity-breaking spectra such as CTB

l and
CEB
l ), though such effects are slow-roll suppressed [13]. We

note that a nonzero VEV E0 is a natural prediction of the
theory; this is simply the impact of long-wavelength
classical perturbations in the vector field which have not
yet reentered the horizon.21 Furthermore, the action of
nonzero γ is to produce an excess of one gauge field helicity
mode over the other, causing a parity asymmetry.
In this work, we are interested in the scalar correlators

generated by the above interaction, i.e., only those involv-
ing the curvature ζ. As demonstrated in [12,13,38,95], the
gauge fields lead to anisotropy in the two-point function:

hζðk1Þζðk2Þi ¼ ð2πÞ3δDðk1 þ k2ÞPζðk1Þ½1þ g�ðk̂1 · Ê0Þ�;
ð25Þ

where Pζ ≈H2=ð4ϵM2
pk3Þ is the primordial power spec-

trum, for Hubble parameter H, Planck mass Mp, and slow-
roll parameter ϵ. This is of the well-known Ackerman-
Carroll-Wise form [96], for approximately scale-invariant
coupling g� ∝ ρE=ρϕ. Furthermore, the Lagrangian given in
(24) generates an angle-averaged bispectrum and trispec-
trum of the curvature perturbation ζ. The first takes the
form of [97,98]

hζðk1Þζðk2Þζðk3Þi ¼ ð2πÞ3δDðk1 þ k2 þ k3Þ
×

X
n¼0;1;2

cnLnðk̂1 · k̂2Þ

× Pζðk1ÞPζðk2Þ þ 2 perms:; ð26Þ

where Ln is a Legendre polynomial of order n and the
coefficients cn (simply related to Planck’s fL¼n

NL parameters
[98]) are again proportional to the fractional energy density
in the vector field [13] and satisfy c0 ¼ −2=3c1 ¼ 2c2.
These parametrize a number of effects beyond the infla-
tionary Lagrangian (24), such as curvature fluctuations
sourced by primordial magnetic fields [17], solid inflation
[99] (which boasts c2 ≫ c0), and massive spinning par-
ticles [24,100]. Finally, the four-point function for the CS
model was computed in [38,95] and can be expressed in
terms of the reduced trispectrum t, defined as

�Y4
i¼1

ζðkiÞ
�

¼ ð2πÞ3δD
�X4

i¼1

ki

�
½tk1k2k3k4

þ 23 perms:�: ð27Þ

Separating even and odd parts, we have

tk1k2k3k4

			
even

¼
X
n¼0;2

devenn ðLnðk̂1 · k̂3Þ þ Lnðk̂1 · K̂Þ

þ Lnðk̂3 · K̂ÞÞPζðk1ÞPζðk3ÞPζðKÞ;
tk1k2k3k4

			
odd

¼ i
X
n¼0;1

doddn ðLnðk̂1 · k̂3Þ þ Lnðk̂1 · K̂Þ

þ ð−1ÞnLnðk̂3 · K̂ÞÞ½ðk̂1 × k̂3Þ · K̂�
× Pζðk1ÞPζðk3ÞPζðKÞ; ð28Þ

where K ¼ k3 þ k4 is the trispectrum diagonal and
t−k1−k2−k3−k4 ¼ �tk1k2k3k4

for the even and odd components, respec-
tively. This depends on new parameters, fdng, with the
odd-parity contributions sourced iff γ is nonzero (i.e., if the
Lagrangian contains a Chern-Simons term). While (28) is a
relatively general parametrization for scale-invariant
parity-odd primordial trispectra, we may specialize to
the Chern-Simons model by fixing deven0 ¼ deven2 =2, and
dodd0 ¼ −dodd1 =3, each of which is linear in ρE=ρϕ.
For later convenience, we will rewrite the odd-parity

reduced trispectrum corresponding to (24) as

tk1k2k3k4

			
odd

¼ 3iACSPζðk1ÞPζðk3ÞPζðsÞ½ðk̂1 × k̂3Þ · ŝ�
× ½1− k̂1 · k̂3 þ k̂1 · ŝ− k̂3 · ŝ�≡ tðk1;k3; sÞ; ð29Þ

introducing the Mandelstam variable s≡ k1 þ k2, and
defining the overall amplitude ACS ≡ −dodd0 ¼ dodd1 =3 as

ACS ≈
0.3
π2

e8πjγj

jγj6
jg�j
0.01

�
N
60

�
2

;

g� ≈ −
5.4 × 105

π

e4πjγj

jγj3
0.01
ϵ

�
N
60

�
2 ρE
ρϕ

; ð30Þ

for jγj > 1, assuming that modes of interest exited the
horizon N e-folds before the end of inflation. As expected
from Sec. II, the reduced trispectrum in (29) is pure
imaginary and depends on a parity-odd cross product.
Combining the above, we can constrain the gauge field

energy density from the two-, three-, or four-point functions
of the scalar field, or, following the transformations outlined
in Sec. VII B, the galaxy overdensity. As in [13,38], we
expect the constraints to be a strong function of jγj: gauge
field production increases with γ, and the N-point function
scales as 2ðN − 1Þ powers of the gauge field perturbation δE,
leading to a prefactor of e4πðN−1Þjγj=jγj3ðN−1Þ. In thiswork,we
will derive constraints only from the parity-odd 4PCF: this
provides both a tight constraint for jγj > 0 due to the above
argument and is a clean probe, since it is not contaminated by
gravitational non-Gaussianity.

21Following [13], the magnitude of this ought to scale as
Ntot − N, where N is the number of e-folds before the CMB
modes exited the horizon and Ntot gives the total duration of
inflation.
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2. Other sources

Before proceeding to derive constraints on the Chern-
Simons inflationary model, we briefly discuss a number of
alternative phenomena that can source parity violation.
First, the Lagrangian presented in (24) remains applicable
when ϕ is not the inflaton. This has been suggested as a
mechanism for primordial magnetogenesis [93,94] and will
source similar parity violation. An additional case of
interest is when Fμν is the electromagnetic tensor and ϕ
an axionlike particle in the late universe; this can generate
detectable cosmic birefringence [25,33,101]. Second, the
inflationary Lagrangian could contain a gravitational
Chern-Simons term

L ⊃ f0ðϕÞRλ
σμνR̃

σμν
λ ð31Þ

[9–11], for some Riemann curvature tensor Rμνρσ and a
function f0ðϕÞ of the inflaton ϕ. Following a similar
calculation to that of [38] for the Lagrangian described
above, one can compute the scalar trispectrum correspond-
ing to (31), which is now sourced by couplings to tensor
modes rather than vectors.
Primordial parity violation can also arise from particle

exchange in the early universe (as part of the so-called
“cosmological collider” [24,102]). At high energies, it is
natural to assume that the inflaton is coupled to additional
fields (be they scalars, vectors, or tensors), via some three-
point interaction vertices, e.g., ð∂μϕÞð∂νϕÞ∂μVν for a
primordial vector Vμ. In this case, the two-point function

of the inflaton (and thus the curvature perturbation ζ) can
receive an off-diagonal contribution. A simple example of
this occurs for light mediators, which takes the form

hζðk1Þζðk2ÞijXpðKÞ

¼ BζζXp
ðk1; k2; KÞ

PXp
ðKÞ X�

pðKÞð2πÞ3δDðk1 þ k2 þ KÞ; ð32Þ

where PXp
is the power spectrum of X in some polarization

state p and BζζXp
is the interaction three-point function

[23,46,56,103,104], or, more precisely, its consistency-
relation-violating component [105]. Combining two of
these interactions, one obtains an exchange diagram for
ζ, i.e., a four-point function of the scalar curvature, with
some shape proportional to jBζζXp

j2=PXp
. If the field in

question is helical, this can lead to a parity-violating
trispectrum if PXþ ≠ PX−

. As discussed in [23], such
contributions can be measured directly using a statistical
anisotropy (“fossil”) estimator, which can be recast as a
model-specific compression of the full four-point function.
In the squeezed limit (K ≪ k1 ≈ k2, again noting that
massive mediators can have different behaviors;
cf. [103,104,106]), the interaction bispectrum is approx-
imately given by ð3=2ÞPζðk1ÞPXp

ðKÞϵpijk̂i1k̂j1 [23,24,102],
where ϵp is the polarization tensor. For a light vector
exchange field X, this leads to the following schematic
form for the trispectra (following [23]):

tk1k2k3k4

			
even

∼ ½PXþðKÞ þ PX−
ðKÞ�Pζðk1ÞPζðk3Þðk̂1 · K̂Þðk̂3 · K̂Þ½k̂1 · k̂3 − ðk̂1 · K̂Þðk̂3 · K̂Þ�;

tk1k2k3k4

			
odd

∼ −i½PXþðKÞ − PX−
ðKÞ�Pζðk1ÞPζðk3Þðk̂1 · K̂Þðk̂3 · K̂Þ½ðk̂1 × k̂3Þ · K̂�: ð33Þ

The similarities of this and (28) are manifest, particularly if one assumes a scale invariant form for the power spectrum of X,
such that PX�ðKÞ ∝ PζðKÞ. We thus note that a simple extension to the parametrization of (28) can incorporate trispectra
arising from particle exchange. A similar conclusion holds also for intermediate fields X of higher spin (noting that scalar
exchange cannot generate parity-violating couplings).

B. 4PCF model

To place constraints on the Chern-Simons interaction, we must compute the galaxy 4PCF associated with the primordial
trispectrum of (29). At redshift z, the tree-level galaxy trispectrum, Tg, can be related to the primordial correlator via

ð2πÞ3δDðk1 þ k2 þ k3 þ k4ÞTgðk1; k2; k3; k4; zÞ ¼
�Y4

i¼1

Z1ðki; zÞMðki; zÞζðkiÞ
�
; ð34Þ

whereMðk; zÞ is the transfer function, defined by δmatterðk; zÞ≡Mðk; zÞζðkÞ, and Z1ðk; zÞ≡ bðzÞ þ fðzÞðk̂ · n̂Þ2 is the tree-
level galaxy RSD kernel [for linear bias bðzÞ, growth-rate fðzÞ, and line-of-sight n̂]. From (34), we may obtain the odd-
parity 4PCF using Fourier transforms:
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ζ−ðr1; r2; r3; zÞ ¼
Y4
i¼1

�Z
ki

Mðki; zÞZ1ðki; zÞ
� Z

s
tðk1; k3; sÞ½eiðk1·r1þk2·r2þk3·r3Þ þ 23 perms:�

× ð2πÞ3δDðk1 þ k2 − sÞð2πÞ3δDðk3 þ k4 þ sÞ; ð35Þ

shifting the permutation sum to the exponential term by symmetry, and using Dirac delta functions to enforce
s ¼ k1 þ k2 ¼ −k3 − k4. The corresponding multiplets, ζl1l2l3 , can then be estimated by performing weighted integrals
over ri, as in (7). Following a lengthy derivation sketched in Appendix B, we obtain the final form for odd l1 þ l2 þ l3:

ζl1l2l3ðr1; r2; r3; zÞ ¼ ð4πÞ11
ffiffiffi
2

p
ACSil1þl2þl3

X
L1L2L3L4L5L0

5

iL1þL2þL3þL4−L5þL0
5CL1L2L3L4L5L0

5

×
�
L1 L2 L5

0 0 0

��
L3 L4 L0

5

0 0 0

�
Ml1l2ðl3Þl30

L1L2L3L4L5L0
5

×
Z

x2dx
Z

x02dx0KL5L0
5
ðx; x0ÞIl1L1

ðx; r1ÞJl2

L2
ðx; r2ÞIl3L3

ðx0; r3ÞJ0L4
ðx0; 0Þ þ 23 perms: ð36Þ

[cf. (B9)]. Here, I, J, and K are Bessel-weighted integrals
over the transfer function and/or primordial power spec-
trum (B10), Cl1���lN ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l1 þ 1Þ � � � ð2lN þ 1Þp

, and M
is a coupling matrix given in (B11). The 4PCF may thus be
computed as a two-dimensional integral, following evalu-
ation of the (radially binned) I, J, and K functions for a
range of values of L, l, x, and x0. In practice, the 4PCF
model is computed in PYTHON, with the various Wigner
3 − j and 9 − j symbols evaluated using SYMPY.22 In Fig. 8
we plot the theoretical model for a range of multiplets,
finding a shape that depends strongly on both frig and
flig, with some multiplets dominated by the dodd0 part, and
others by that proportional to dodd1 .

C. Amplitude constraints

The importance of the inflationary gauge field may be
quantified by the ratio of energy densities, ρE=ρϕ, or the
parity-odd 4PCF amplitude, ACS (30). This sets the level of
parity violation imprinted in the primordial inflaton per-
turbations, arising from interactions with the Uð1Þ gauge
field. To constrain the amplitudes, we perform parameter
inference using the measured 4PCF multiplets of Sec. V
and the Chern-Simons model given in (36). For simplicity,
we will assume the data to be Gaussian distributed and
work in a compressed subspace containing Neig ¼ 100

basis vectors for each of the NGC and SGC regions (whose
distribution was shown to be approximately Gaussian in
Sec. V). In Sec. IV B, a minimum-variance criterion was
used to select the basis vectors; here, we instead pick those
with maximal signal to noise for the Chern-Simons model.
The reduced dimensionality facilitates direct use of the

PATCHY simulations to form the sample covariance (20); to
account for the finite number of mocks, we perform
inference using the following log-likelihood:

− logLðACSÞ¼
Nmocks

2
log

�
1þ T2ðACSÞ

Nmocks−1

�
þ const: ð37Þ

This uses the T2 statistic, defined analogously to (21):

T2ðACSÞ≡ ðv̂data − ACSvCSÞTĈ−1
v ðv̂data − ACSvCSÞ; ð38Þ

where v̂data represents the compressed 4PCF data vector, Ĉv
is a sample covariance, and vCS is the compressed 4PCF
model of (36), excluding the ACS prefactor. Likelihoods for
the NGC and SGC regions are constructed separately and
multiplied, assuming independence. Here, we perform two
analyses: one using the BOSS data, and the second using
the mean of Nmocks ¼ 2048 PATCHY mocks. In the latter
case, no Chern-Simons contribution should be present.
Figure 10 shows the resulting constraints on the trispec-

trum amplitude. For the mean of PATCHY mocks, the 1σ
constraint is ACS ¼ 0� 760 (demonstrating unbiasedness,
as expected), with ACS ¼ 570� 780 observed for BOSS.
In both cases, the constraints are consistent with zero,
suggesting that the Chern-Simons coupling is not respon-
sible for the detection of parity violation reported in Sec. V.
If we additionally restrict to ACS ≥ 0, we find that ACS <
1500 and ACS < 2000 for the mean-of-PATCHY and BOSS
datasets, respectively (95% C.L.).23 Additionally, including
tetrahedra with small separations between secondary gal-
axies (as in Sec. V) does not appreciably improve the

22Code implementing this calculation is available at github
.com/oliverphilcox/Parity-Odd-4PCF.

23We have additionally verified that no false detection of
Chern-Simons inflation is obtained when using the NSERIES
mocks of Sec. VI E.
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constraints, which we justify by noting that the bulk of the
signal to noise occurs on comparatively large scales.
Of greater physical interest are the constraints on the

energy densities ρE=ρϕ. Thesemay be obtained from theACS
bounds using (30), assuming fiducial values for the infla-
tionary parameters and fixing the coupling strength to γ ¼ 1,
giving an equal contribution from the parity-even and parity-
odd terms in (24).24 Using the BOSS CMASS data, we find
ρE=ρϕ < 1.6 × 10−19 (95% C.L.). If jγj is increased to 2, the
gauge field production is strongly amplified, and the con-
straint tightens to ρE=ρϕ < 3.5 × 10−33.
We may additionally place limits on the phenomeno-

logical parameters fdoddn g appearing in (28). Using an
analogous method to the above, we find the 1σ constraints
dodd0 ¼ −610� 800 and dodd1 ¼ −13 000� 35 000 from
BOSS, both of which are fully consistent with zero. For
the mean of 2048 Patchy simulations, we find dodd0 ¼
−20� 770 and dodd1 ¼ 0� 34 000, again indicating that
the method is unbiased. Although the physical scale of the
two coefficients is the same (in the Chern-Simons model
they follow the relation −dodd0 ¼ dodd1 =3 ¼ ACS), the first
parameter is constrained almost 50× better than the second:
this is attributed to the different angular behavior of the two
terms, with dodd0 dominating the fl1;l2;l3g ¼ f1; 1; 1g
multiplet, for example (cf. Fig. 8).
Our results for the Chern-Simons model may be com-

pared to those obtained from the power spectrum and

bispectrum of the CMB.25 In particular, the Planck 2018T-
and E-mode datasets (analyzed with the SMICA prescrip-
tion) gave the constraints

−0.036 ≤ g� ≤ 0.036; −13 ≤ c0 ≤ 11;

−7 ≤ c1 ≤ 281; −55 ≤ c2 ≤ 37 ð39Þ

[98,107], on the inflationary parameters g� and fcng
appearing in the two- and three-point parametrizations of
(25) and (26) at 95% C.L., and translating into our notation.
Assuming γ ¼ 1 and the above fiducial parameters, these can
be used to place bounds on the gauge field energy density:
ρE=ρϕ ≲ 7 × 10−13 (2 × 10−16) using the two- (three-)point
function measurements (cf. [38]). Furthermore, a forecast of
the detectability of ρE=ρϕ from the CMB four-point function
was presented in [38]. This predicted a bound on ρE=ρϕ of
∼3 × 10−20 at 95% C.L. [or equivalently σðdodd1 Þ ¼ 640] for
a cosmic-variance dominated measurement using lmax ¼
2000 and jγj ¼ 1.
Bounds on the gauge field energy density from the

BOSS 4PCF are far stronger than those obtained from the
CMB anisotropic power spectrum and isotropic bispectrum
(for jγj > 0), due to the exponential dependence on jγj
[[38], Fig. 4]. As such, they represent the strongest current

FIG. 10. Constraints on the amplitude of physical models for parity violation, for both the Chern-Simons Lagrangian of (24) (left) and
the more general parametrization of (28) (right), using the explicit parity-odd 4PCF prediction given in (36) and plotted in Fig. 8. To
obtain these distributions, we fit the measured 4PCF multiplets shown in Fig. 2 to templates derived in Appendix B, following
compression of both observations and model into a 100-dimensional subspace. For the Chern-Simons model, we give results for both the
trispectrum amplitude ACS and the corresponding ratio of parity-breaking gauge field and inflaton energy densities, ρE=ρϕ, using
relation (30) with jγj ¼ 1. The 1σ constraints are ACS ¼ 0� 760 for the mean of 2048 PATCHY mocks (blue) and ACS ¼ 570� 780 for
the BOSS data (red), both of which are consistent with zero. The right panel gives constraints on the doddn parameters appearing in (28):
we find dodd0 ¼ −610� 800 (−20� 770) and dodd1 ¼ −13 000� 35 000 (0� 34 000) for BOSS (mean of Patchy) data, respectively. In
the Chern-Simons model, −dodd0 ¼ dodd1 =3 ¼ ACS.

24Note that exchanging γ → −γ simply swaps the dominant
and suppressed helicity states of the gauge field.

25Since the coupling is assumed to be active only during
inflation, the Lagrangian (24) does not generate cosmic birefrin-
gence. Generation of parity-violating CMB spectra is possible,
however (due to helical gravitational wave production), but this is
slow-roll suppressed, as noted above.
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constraints on Chern-Simons inflationary models. Our
measurement is roughly a factor of 5 worse than that
predicted for the CMB: this occurs since the latter contains
significantly more Fourier modes than the observed galaxy
distribution, and thus an increased signal-to-noise ratio
(although it is subject to the smoothing effects of projection
integrals). As the volume of spectroscopic data grows, we
expect the constraints on ρE=ρϕ to significantly strengthen,
especially considering that the signal to noise of the Chern-
Simons 4PCF (36) scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vsurvey

p
, roughly independent

of redshift.26 A survey such as DESI will probe ∼100× the
BOSS volume [47] and should thus be expected to tighten
the constraints on ρE=ρϕ (and any other parity-breaking
model amplitudes) by roughly an order of magnitude,
providing stronger constraints on parity-breaking inflation
than possible with the CMB. Finally, we note that, for LSS,
the parity-odd 4PCF is an optimal place in which to search
for these signatures, since, unlike other observables, the
statistic is free from gravitational effects; thus, we do not
have to marginalize over the effects of late-time non-
Gaussianity.

VIII. SUMMARY AND CONCLUSIONS

Searching for parity violation provides a unique manner
in which to probe new physics occurring in the early
universe, including that of multifield inflation, baryogen-
esis, and primordial magnetic field generation. While there
is a long history of constraining various parity-breaking
phenomena using the CMB [6,9,10,13,17,20,37,38,108],
few analyses have made use of LSS data. In this work, we
have placed the first constraints on (hitherto unexplored)
scalar-type parity violation using the BOSS CMASS
galaxy sample. The isotropic NPCFs are parity sensitive
only if N > 3 [23,38,39]; recent developments in NPCF
computation [51] have enabled efficient computation of the
galaxy 4PCF, enabling such analyses. To provide a model-
agnostic test, we have performed a blind search for parity
violation using the full parity-odd 4PCF (whose expect-
ation value is zero in ΛCDM). Our primary tool has been a
nonparametric rank test, comparing the BOSS 4PCF (on
scales between 20 h−1Mpc and 160 h−1 Mpc) to that of a
suite of realistic mock catalogs. This avoids the need to
assume a Gaussian likelihood, and provides a robust (albeit
conservative) model-agnostic test. In the BOSS sample we
found tentative evidence for parity violation, with a
detection probability of 99.6%, equivalent to 2.9σ. This
indicates either new physics beyond the standard model or
unknown systematics.
As an additional test, we have performed a classical χ2-

based analysis of the BOSS data, making use of a data
compression scheme and a covariance matrix computed

from mock catalogs. Furthermore, we use a theoretical
Gaussian covariance [57] to facilitate high-fidelity compres-
sion, which reduces the dataset toNeig numbers; importantly,
the results are not biased for this choice, avoiding a potential
systematic error. Postcompression, the empirical χ2 distri-
bution closely matches that of the theory model for
Neig ≲ 100; this gives credence to the assumption of
Gaussianity. For this test, we find a detection probability
of 83.3% from BOSS when using Neig ¼ 100, or 100.0%
when using Neig ¼ 250, though the latter may be artificially
inflated from likelihood non-Gaussianity. The results are
broadly consistentwith those from the rank test; however, the
strong dependence on Neig implies that our basis decom-
position is inefficient, and that informationmaybebeing lost.
We have carried out a number of tests to explore

potential systematic effects in our data which could lead
to a false detection of parity violation. These include
splitting the data into subregions, imposing radial and
angular cuts, comparing against mock catalogs, altering the
compression scheme, and normalizing by an overall rescal-
ing factor. No clear evidence for systematics is observed,
and we find our detection to be relatively coherent across
various scales and sky regions. That said, our tests do rely
heavily on the PATCHY mocks well representing the
statistical properties of the BOSS data; although we have
ruled out differences due to an overall rescaling factor, a
scale dependent difference remains the most likely cause of
our results, in the absence of a cosmological signal.
Finally, we have used the measured 4PCF to bound the

amplitudes of physical models of parity violation. Here, we
have primarily considered a single scenario; a Chern-Simons
term in the inflationary Lagrangian, which couples the
inflaton to a Uð1Þ gauge field. This leads to a definite
prediction for the primordial polyspectra [13,38], which,
with some effort, can be translated into amodel for thegalaxy
4PCF. Performing a Gaussian likelihood analysis using this
template gives a comparable constraint on the ratio of gauge
field and inflaton energy densities to that expected from the
CMB [38] (but much stronger than that from lower-order
statistics); ρE=ρϕ < 1.6 × 10−19 (95%C.L.), assuming stan-
dard inflationary parameters. Notably, this does not appear to
explain the above parity-violating signal. Similar constraints
may be obtained for any other physical model giving a
definite prediction for the galaxy 4PCF.
The coming years will lead to an explosion in the volume

of LSS data available, which will either confirm or refute
the tentative detection of parity violation found herein.
Unlike for the gravitational contribution [54], the signal-to-
noise of the inflationary 4PCF is not a strong function of
redshift, with the constraints on models of new physics
being primarily sensitive to the survey volume. To further
increase the constraining power, we may fold in additional
information, for example, using the 5PCF and anisotropic
NPCFs (which source additional information regarding
vector parity breaking [43]). Going beyond spectroscopic

26Note that this differs from the signal to noise of the
gravitational 4PCF, which scales as ½bðzÞDðzÞ�2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

Vsurvey
p

[54].
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surveys, it is likely that high-volume observables such as
intensity mapping and the Lyman-α forest, as well as the
CMB itself, will shed additional light on this, pinning down
a variety of new physics models.
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APPENDIX A: LIKELIHOOD NON-GAUSSIANITY

A major assumption of most cosmological analyses is
that the underlying likelihood for the statistic of interest can
be well approximated as Gaussian. While this is often
ensured by the central limit theorem, it can break down in
the case of highly correlated data, such as that considered in
this work. In this appendix, we present a simple test to
check whether the likelihood of the full 4PCF can be
justifiably considered Gaussian.
For this purpose, we take the PATCHY-NSERIES NGC

simulations (Sec. VI E) and partition them into two groups.
The first 500 are used to compute a sample mean and
covariance for the distribution, thus defining a Gaussian
distribution from which we draw 105 mock observations.
Each of these is compressed into one dimension via the
pseudo-χ2 statistic defined in (18) and histogrammed. This
can then be compared to the empirical pseudo-χ2 distribution
obtained from the remaining simulations directly. If the
likelihood is Gaussian, the two distributions should match.
The resulting PDFs are shown in Fig. 11. Notably, the

empirical and Gaussianized distributions do not match,
indicating that the full 4PCF distribution is not well
described by a Gaussian, even in the best-case scenario

FIG. 11. Distribution of the pseudo-χ2 statistic (18) estimated
from PATCHY-NSERIES simulations (red) and Gaussian realizations
(blue), drawn from a distribution with mean and covariance
estimated from a second set of PATCHY-NSERIES simulations. The
clear differences between the distributions indicates that the full
4PCF likelihood cannot be well-approximated as Gaussian.
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when the mean and variance are estimated from the
simulations. In particular, the Gaussian assumption over-
estimates the sample variance, which will reduce any
potential detection significance. If one instead uses the
theoretical covariance to define the Gaussian distribution,
the situation is far worse: the pseudo-χ2 distribution instead
peaks at ≈1250, indicating a breakdown of the modeling
assumptions (as discussed in Sec. III C). Finally, we note
that, although the full (uncompressed) 4PCF distribution
appears to be non-Gaussian, this does not imply that the
same is true for the projected statistics of Sec. IV B, since
the central limit theorem becomes more applicable as the
dimensionality reduces.

APPENDIX B: DERIVATION OF THE
CHERN-SIMONS 4PCF MODEL

Below, we sketch the derivation of the parity-odd 4PCF
induced by the Chern-Simons coupling of Sec. VII. Our
starting point is the general expression given in (35), which
is a product of four pieces. By expanding the angular
dependence of each term using the isotropic basis functions
(Sec. II A), we may compute the full 4PCF efficiently.
To begin, we consider the primordial Chern-Simons

trispectrum defined in (29). The angular pieces may be
written in terms of isotropic basis functions of three
coordinates using [52] [Appendix A.2]:

ðk̂1 × k̂3Þ · ŝ ¼ i

ffiffiffi
2

p

3
ð4πÞ3=2P111ðk̂1; k̂3; ŝÞ; k̂1 · k̂3 ¼ −

1ffiffiffi
3

p ð4πÞ3=2P110ðk̂1; k̂3; ŝÞ;

k̂1 · ŝ ¼ −
1ffiffiffi
3

p ð4πÞ3=2P101ðk̂1; k̂3; ŝÞ; k̂1 · k̂3 ¼ −
1ffiffiffi
3

p ð4πÞ3=2P011ðk̂1; k̂3; ŝÞ: ðB1Þ

The resulting products of two basis functions can be simplified using [ [52], Sec. VI C], yielding

tðk1; k3; sÞ ¼ −
ffiffiffi
2

p
ACSð4πÞ3=2Pζðk1ÞPζðk3ÞPζðsÞ

×

�
P111ðk̂1; k̂3; ŝÞ þ

1ffiffiffi
5

p P221ðk̂1; k̂3; ŝÞ þ
1ffiffiffi
5

p P212ðk̂1; k̂3; ŝÞ −
1ffiffiffi
5

p P122ðk̂1; k̂3; ŝÞ
�
; ðB2Þ

whose radial part is separable in k1, k3, and s. For the general parity-odd trispectrum given in (28), we obtain the same
result, but with the replacement ACSP111 → −dodd0 P111, ACSP221 þ 2 perms: → dodd1 P221=3þ 2 perms.
Next, we consider the Dirac delta functions. By rewriting ð2πÞ3δDðk1 þ k2 − sÞ as a complex exponential, inserting

plane-wave expansions [ [109], Eq. 16.63], then performing the angular integral, the function can be expressed as a sum
over one-dimensional integrals and isotropic basis functions of three coordinates:

ð2πÞ3δDðk1 þ k2 − sÞ ¼ ð4πÞ5=2
X

L1L2L5

iL1þL2þL5ð−1ÞL5CL1L2L5

�
L1 L2 L5

0 0 0

�
PL1L2L5

ðk̂1; k̂2; ŝÞ

×
Z

∞

0

x2dxjL1
ðk1xÞjL2

ðk2xÞjL5
ðsxÞ; ðB3Þ

where CL1���LN
≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2L1 þ 1Þ � � � ð2LN þ 1Þp

, the 2 × 3matrices are Wigner 3-j symbols, and we have used properties of the
Gaunt integral [ [110], Eq. 34.3.22]. Similarly,

ð2πÞ3δDðk3 þ k4 þ sÞ ¼ ð4πÞ5=2
X

L3L4L0
5

iL3þL4þL0
5CL3L4L0

5

�
L3 L4 L0

5

0 0 0

�
PL3L4L0

5
ðk̂3; k̂4; ŝÞ

×
Z

∞

0

x02dx0jL3
ðk3x0ÞjL4

ðk4x0ÞjL0
5
ðsx0Þ: ðB4Þ

Note that the integrands are again separable in fkig and s. Using the approach of [111], they may equivalently be rewritten
as infinite sums.
For the transfer functions Mðk; zÞZ1ðk; zÞ, we first expand the redshift-space kernel Z1ðkÞ in spherical harmonics

(dropping the redshift dependence for clarity):
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Z1ðk̂; n̂Þ≡ bþ fðk̂ · n̂Þ2 ¼ 4π
X
lm

��
bþ f

3

�
δKl0 þ

2f
15

δKl2

�
Y�
lmðn̂ÞYlmðk̂Þ≡ 4π

X
lm

ZlY�
lmðn̂ÞYlmðk̂Þ; ðB5Þ

for linear bias bðzÞ, growth rate fðzÞ, and line-of-sight n̂. Since we consider only isotropic 4PCFs in this work, we can
integrate over the Line-of-sight orientation (which is equivalent to performing a joint rotation of all frig). Following some
algebra, this leads to a set of isotropic functions of four coordinates (see [52] for details):

Z
dn̂
4π

Z1ðk̂1; n̂ÞZ1ðk̂2; n̂ÞZ1ðk̂3; n̂ÞZ1ðk̂4; n̂Þ ¼ ð4πÞ2
X

j1j2j12j3j4

�
j1 j2 j12
0 0 0

��
j12 j3 j4
0 0 0

�
Zj1Zj2Zj3Zj4

× Cj1j2j12j3j4Pj1j2ðj12Þj3j4ðk̂1; k̂2; k̂4; k̂4Þ; ðB6Þ

where ji ∈ f0; 2g and j12 ∈ f0; 2; 4g.
The final contribution is from the Fourier basis functions and their permutations, which can be written

eiðk1·r1þk2·r2þk3·r3Þ þ 23 perms: ¼
X
H

eiðk1·rH1þk2·rH2þk3·rH3þk4·rH4Þ; ðB7Þ

where fH1; H2; H3; H4g is one of the 24 permutations of f1; 2; 3; 4g, and we have introduced r4 ¼ 0 for convenience.
Projecting onto the 4PCF basis functions Pl1l2l3ðr̂1; r̂2; r̂3Þ gives a sum of isotropic functions of four coordinates:

X
H

ð4πÞ−1=2
Z

dr̂1dr̂2dr̂3dr̂4P�
l1l2l3

ðr̂1; r̂2; r̂3Þeiðk1·rH1þk2·rH2þk3·rH3þk4·rH4ÞYl4m4
ðr̂4Þ

¼
X
H

ð4πÞ7=2ΦHð−iÞl1þl2þl3jlH1
ðk1rH1ÞjlH2

ðk2rH2ÞjlH3
ðk3rH3ÞjlH4

ðk4rH4ÞPlH1lH2ðl�ÞlH3lH4
ðk̂1; k̂2; k̂3; k̂4Þ; ðB8Þ

using the plane wave expansion and inserting l4 ¼ m4 ¼ r4 ¼ 0 in the first line. In the second line we include a
permutation factor ΦH, given by ð−1Þl1þl2þl3 if flH1;lH2;lH3;lH4g is an odd permutation of fl1;l2;l3g (removing the
zero element) and unity else. Furthermore, l� is set by the position of the zero, e.g., l� ¼ lH2 if lH1 ¼ 0, l� ¼ lH4 if
lH3 ¼ 0, etc.
Combining the above results, we obtain

ζl1l2l3ðr1; r2; r3Þ ¼ ð4πÞ11
ffiffiffi
2

p
ACSil1þl2þl3

X
H

X
L1L2L3L4L5L0

5

iL1þL2þL3þL4−L5þL0
5CL1L2L3L4L5L0

5

×

�
L1 L2 L5

0 0 0

��
L3 L4 L0

5

0 0 0

�
×MlH1lH2ðl�ÞlH3lH4

L1L2L3L4L5L0
5

×
Z

x2dx
Z

x02dx0KL5L0
5
ðx; x0ÞIlH1

L1
ðx; rH1ÞJlH2

L2
ðx; rH2ÞIlH3

L3
ðx0; rH3ÞJlH4

L4
ðx0; rH4Þ; ðB9Þ

defining the integrals

IlLðx; rÞ≡
Z

∞

0

k2dk
2π2

MðkÞPζðkÞjLðkxÞjlðkrÞ; JlLðx; rÞ≡
Z

∞

0

k2dk
2π2

MðkÞjLðkxÞjlðkrÞ;

KLL0 ðx; x0Þ≡
Z

∞

0

s2ds
2π2

PζðsÞjLðsxÞjL0 ðsx0Þ: ðB10Þ

In practice, we must integrate the statistic over radial bins of finite width, which corresponds to replacing, e.g., jlðkrÞ with
|blðkÞ for bin b. The bin-integrated Bessel functions are analytic and their forms can be found in [112] [Appendix A].
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The coupling matrix in (B9) is given by an integral over five isotropic basis functions of five coordinates:

MlH1lH2ðl�ÞlH3lH4

L1L2L3L4L5L0
5

¼
X

j1j2j12j3j4

Cj1j2j12j3j4

�
j1 j2 j12
0 0 0

��
j12 j3 j4
0 0 0

�
Zj1Zj2Zj3Zj4

Z
dk̂1dk̂2dk̂3dk̂4dŝ

× ½Pj1j2ðj12Þj3ðj4Þj40PL1L2ðL5Þ0ðL5Þ0L5
P00ð0ÞL3ðL3ÞL4L0

5
PlH1lH2ðl�ÞlH3ðlH4ÞlH40

�ðk̂1; k̂2; k̂3; k̂4; ŝÞ

×

�
P10ð1Þ1ð1Þ01 þ

1ffiffiffi
5

p P20ð2Þ2ð2Þ01 þ
1ffiffiffi
5

p P20ð2Þ1ð2Þ02 −
1ffiffiffi
5

p P10ð1Þ2ð2Þ02

�
ðk̂1; k̂2; k̂3; k̂4; ŝÞ; ðB11Þ

where we have noted that isotropic functions of N coordinates may be rewritten in terms of those with N þM ≥ N
coordinates by inserting a factor ð4πÞM=2. Despite its complexity, this can be evaluated analytically, making extensive use of
the product relation for isotropic basis functions of five coordinates:

PΛPΛ0 ¼ ð4πÞ−5=2
X
Λ00

ð−1ÞΛ00
1
þΛ00

2
þΛ00

3
þΛ00

4
þΛ00

5CΛCΛ0CΛ00
Y5
i¼1

��Λi Λ0
i Λ00

i

0 0 0

��
PΛ00

×

8<
:

Λ1 Λ2 Λ12

Λ0
i Λ0

2 Λ0
12

Λ00
1 Λ00

2 Λ00
12

9=
;
8<
:

Λ12 Λ3 Λ123

Λ0
12 Λ0

3 Λ0
123

Λ00
12 Λ00

3 Λ00
123

9=
;
8<
:

Λ123 Λ4 Λ5

Λ0
123 Λ0

4 Λ0
5

Λ00
123 Λ00

4 Λ00
5

9=
; ðB12Þ

[[52], Sec. VI E], where Λ≡ fΛ1;Λ2; ðΛ3Þ;Λ4; ðΛ123Þ;Λ4;Λ5g, the curly braces indicate Wigner 9 − j symbols, and CΛ
involves all elements of Λ. This simplifies considerably when some elements of Λ or Λ0 are zero.
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