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The possible signatures of the presence of hyperons inside neutron stars are discussed within a Bayesian
inference framework applied to a set of models based on a density dependent relativistic mean field
description of hadronic matter. Nuclear matter properties, hypernuclei properties and observational
information are used to constraint the models. General properties of neutron stars such as the maximum
mass, radius, tidal deformability, proton fraction, hyperon fraction and speed of sound are discussed. It is
shown that the two solar mass constraint imposes that neutron stars described by equations of state that
include hyperons have in average a larger radius, ≳0.5 km, and a larger tidal deformability, ≳150, than the
stars determined from a nucleonic equation of state, while the speed of sound at the center of the star is
more than 25% smaller. If a 1.4 M⊙ star with a radius ≲12.5 km is measured it is quite improbable that a
massive star described by the same model contains hyperons. A similar conclusion is drawn if a two solar
mass star with a radius ≲11.5 km or a neutron star with a mass above 2.2 M⊙ is observed: the possible
hyperon content of these stars is ruled out or very reduced. The hyperon presence inside neutron stars is
compatible with the present NICER mass-radius observations of the pulsars PSR J0030þ 0451 and PSR
J0740þ 6620 and the gravitational wave detection GW170817. It is shown that if the polytropic index
γ ¼ ∂ ln p=∂ ln ϵ takes values of the order of 1.75 at not too large densities, it may indicate the onset of
some kind of exotic matter, but not necessarily of deconfined quark matter.
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I. INTRODUCTION

Recent developments in multimessenger astronomy
bring important information on matter far beyond the
one reachable in terrestrial laboratories, e.g., the very large
neutron-proton asymmetry and baryonic density. The core
of neutron stars (NS) may contain extreme phases of matter
[1]. The NS observed as pulsars are one of the densest
and most compact objects in the Universe. In the year
2010, when the massive pulsar PSR J1614-2230, the first
high mass neutron star (NS) with a mass close to two
solar masses, was announced with a small uncertainty at
68% confidence interval (CI), the authors have questioned
whether the presence of exotic degrees of freedom such as
hyperons, pion or kaon condensates or a deconfined quark
phase would be compatible with such a large mass [2]. This
was due to the fact that the onset of new degrees of freedom
inside NS would soften strongly the equation of state, not
allowing that stellar matter would be able to support masses
as large as a two solar masses [3–5]. Later, the mass of the
PSR J1614-2230 was reviewed [6,7], being the present
accepted value M ¼ 1.908� 0.016 M⊙. Meanwhile, the
mass of other two solar mass NS have been determined:
PSR J0348–0432 with M ¼ 2.01� 0.04 M⊙ [8], PSR
J0740þ 6620 with M ¼ 2.08� 0.07 M⊙ [9] and, very

recently, J1810þ 1714 with a mass M ¼ 2.13� 0.04 M⊙
[10]. Soon, after the announcement of PSR J1614-2230,
several authors have shown that two solar masses are still
compatible with exotic degrees of freedom taking into
account the still reduced information on the strong force at
high densities; see for instance [11–15], see also [16–19].
In [20], the authors have considered three nucleonic

equation of state (EOS) and 14 hyperonic EOS proposed by
different groups and analyzed the differences between the
NS properties of these two sets of models. They concluded
that the second set, which included hyperons, predicted
larger radii, in particular a gap larger than 1 km for the
radius of 1.4 M⊙ stars. However, they also pointed out that
the 14 hyperonic EOS were obtained from models that did
not satisfy the constraints obtained for pure neutron matter
(PNM) using ab initio methods within a chiral effective
field theory framework (χEFT) [21]. This approach allows
a controlled estimate of the uncertainties on the PNM EOS,
see for a recent review [22]. Other works have studied the
effect of hyperons in stellar matter. In [23] the authors have
used a Bayesian inference approach to constrain a relativ-
istic mean field theory (RMF) model with nonlinear meson
terms and introduced the Λ-hyperon. They have tested
different types of priors for the nuclear matter properties
and have predicted that a 1.4 M⊙ star has a radius of
≈12 km if no hyperons are included in the EOS and
≈14 km if matter contains the Λ-hyperon. This result
agrees with the conclusion of [20] but predicts larger radii
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for 1.4 M⊙ stars. In this study, the authors have imposed
only observational data within a Bayesian inference frame-
work to constrain their RMF model parameters and have
not considered any type of low density constraint such as
the PNM EOS from χEFT. A different study, also within a
Bayesian inference approach, has been performed in [24],
where the hyperon-meson couplings were constrained
by astrophysical observations. The possible correlations
between nuclear and hypernuclear parameters and NS
properties have been explored within a RMF description
of hadronic matter including hyperons by imposing multi-
physics constraints filters, including PNM EOS from
χEFT, to a randomly generated EOS set in [25].
In the following, we will investigate which signatures

could indicate the presence of hyperons inside NS that
satisfy not only the two solar mass NS constraints but also
the PNM constraints from χEFT [21] within a Bayesian
inference framework. We will first reanalyze the conclu-
sions drawn in [20] and study the acceptable domain of
hyperonic EOSs in light of the present observations. Notice
that we are assisting to a wider and wider interest on the
problem of extracting the EOS of stellar matter from the
knowledge of observational data, generally using statistical
methods such as Bayesian inference [26–31] or nonpara-
metric inference [32–34] or deep machine learning tech-
niques [35–38]. Still another problem is the determination
of the star composition once the EOS is known. Some
recent studies have shown that the extraction of the neutron
star composition is not trivial even if the problem is
restricted to the proton fraction [39–42]. The present study
will add another contribution to this topic, but now
considering also non-nucleonic degrees of freedom.
In the present work, a minimal number of nuclear matter

properties will be imposed together with the observational
two solar mass constraint. Starting from a relativistic
mean field description of stellar matter, considering a field
theoretical model with density dependent couplings to the
meson fields (DDH) as introduced in [43], we will include
hyperonic degrees of freedom and will determine the
occurrence probability of different nuclear matter proper-
ties (NMPs) and stellar properties, within a Bayesian
inference framework. For the hyperon couplings, we will
restrict ourselves as much as possible to a reduced coupling
domain. For the vector mesons we will take the predictions
from the SU(6) quark model, and the coupling to the σ field
will be chosen taking into account recent determinations
of these parameters from the hypernucleus properties
[19,44,45]. In particular, we will study and compare the
properties of NS that only have nucleons, with the ones
with Λ-hyperons, or with Λ and Ξ−-hyperons, building sets
of EOS with more than 15000 models which obey the two
solar mass constraint. The recent NICER (Neutron star
Interior Composition ExploreR) and LIGO/Virgo observa-
tions will be used to discuss the possible presence of
hyperons. These include the measurement of the radius

12.71þ1.14
−1.19 km and mass 1.34þ0.15

−0.16 M⊙ for the pulsar
PSR J0030þ 0451 [46], and the independent analysis
which obtained the radius 13.02þ1.24

−1.06 km and the mass
1.44þ0.15

−0.14 M⊙ [47]; the recent measurement of the equato-
rial circumferential radius of the pulsar PSR J0740þ 6620

with mass M ¼ 2.072þ0.067
−0.066 M⊙ and R ¼ 12.39þ1.30

−0.98 km
(68% CI) [48]; the radius estimation of 12.45� 0.65 km at
68% CI for a 1.4 M⊙ NS from the simultaneous analysis of
NICER and XMM-Newton x-ray observations; the tidal
deformability determined from the detection of the gravi-
tational waves GW170817 [49,50].
We will first review the model used to perform the study,

the choice of the parameters and the Bayesian inference
approach. Results obtained in terms of corner plots for the
model parameters, NMP, and stellar matter properties will
be discussed. The 90% CI for properties such as maximum
mass configurations and respective radius, the radius and
tidal deformability of NS with different masses, the speed
of sound or central baryonic densities will be calculated.
Three scenarios will be compared: nuclear matter stellar
matter, stellar matter with nucleons and Λs and stellar
matter with nucleons and both Λs and Ξ−s. The two last
scenarios are considered, only Λs and Λs and Ξ−s, in order
to quantify the effect of the onset hyperons, and, in
particular, of a neutral hyperon and a second negatively
charged hyperon. The onset of all the other possible
hyperons gives rise to small amounts of new species and
it is not expected that for densities as the ones occurring
inside NS they will have a large impact. An EOS adequate
to describe core collapse supernova matter or binary
neutron star mergers which includes Λs has been proposed
in [51] and frequently used in simulations [52–54].
However, it has also been shown that the inclusion of
the other hyperonic species has non-negligible effects
[44,55], and, therefore, we introduce both scenarios to
discuss the possible differences. It will be shown that
present observational constraints are compatible with the
three scenarios. The presence of hyperons implies larger
radii and smaller speeds of sound than expected for
nucleonic matter. The measurement of a 1.4 M⊙ NS with
a radius ≲12.5 km or a 2 M⊙ NS with a radius ≲11.5 km
would be incompatible with the presence of hyperons
inside massive NS.
The paper is organized as follows, In Sec. II A, the field

theoretical DDH model for the EOS at zero and finite tem-
peratures is briefly reviewed, followed by a brief description
of nuclear matter parameters (NMPs) in Sec. II B and
Bayesian estimation of model parameters in Sec. II C. The
results of our calculation are discussed in Sec. III. Finally, the
summary and conclusions are drawn in Sec. IV.

II. FORMALISM

In this section, we briefly review the relativistic mean-
field description that will be used to generate EOSs
with different particle compositions: the nucleonic and
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the hyperonic sets. We will also refer to the statistical
approach that will be used to estimate the model
parameters.

A. Model

The nuclear interaction will be described within a RMF
framework through the exchange of mesons, the isoscalar
scalar σ-meson with massmσ, the isoscalar-vector ω-meson
with mass mω and the isovector-vector ϱ-meson with mass
mϱ. We will also include the vector ϕ-meson with hidden
strangeness and mass mϕ which will be responsible for the
description of the hyperon-hyperon interaction. Besides the
nucleons, we will include the Λ-hyperon, the lightest
neutral hyperon, and the Ξ−, an hyperon with two strange
quarks, which, therefore, sets in after the Λ-hyperon: it
couples attractively to nuclear matter and has a negative
charge and, therefore, replaces favorably the electrons
reducing the stellar matter pressure. In order to simplify
the treatment only these two hyperons are included: the Σ-
meson seems to have a repulsive interaction in nuclear
matter [56], and the other isospin component of the Ξ−

hyperon has a larger mass than the Λ. The model
Lagrangian density has the form,

L ¼
X

B¼n;p;Λ;Ξ−

Ψ̄B½γμði∂μ − ΓBωA
ðωÞ
μ − ΓBϱtB · AðϱÞ

μ

− ΓBϕA
ðϕÞ
μ Þ − ðmB − ΓBσϕÞ�ΨB þ 1

2
f∂μϕ∂μϕ

−m2
σϕ

2g − 1

4
FðωÞ
μν FðωÞμν þ 1

2
m2

ωA
ðωÞ
μ AðωÞμ

−
1

4
FðϕÞ
μν FðϕÞμν þ 1

2
m2

ϕA
ðϕÞ
μ AðϕÞμ

−
1

4
FðϱÞ
μν · FðϱÞμν þ 1

2
m2

ϱA
ðϱÞ
μ · AðϱÞμ; ð1Þ

where the baryons with bare mass mB are described by
Dirac spinors ΨB, γμ are the Dirac matrices and tB is the
isospin operator for baryon B. Fðω;ϕÞμν ¼ ∂

μAðω;ϕÞν −
∂
νAðω;ϕÞμ and FðϱÞμν ¼ ∂

μAðϱÞν − ∂
νAðϱÞμ − ΓNϱðAðϱÞμ ×

AðϱÞνÞ are the vector meson field strength tensors, ΓBσ,
ΓBω, ΓBϕ and ΓBϱ are the coupling constants of the baryons
to the meson fields σ, ω, ϕ and ϱ, respectively. For the
density dependence of the couplings, we consider the
functions introduced in [43],

ΓB;MðρÞ ¼ ΓB;M;0hMðxÞ; x ¼ ρ=ρ0: ð2Þ

In this equation ρ is the baryonic density, ΓB;M;0 ¼ xBMΓM;0

is the coupling at saturation density ρ0 of the meson M,
M ∈ fσ;ω; ϱ;ϕg, with the baryon B ∈ fn; p;Λ;Ξ−g. For
the nucleons, i.e., B ¼ p, n, the ratio xBM ¼ 1 if M ≠ ϕ,
and xBϕ ¼ 0. The other couplings will be discussed in
Sec. III. In Eq. (2) the function hM is given by

hMðxÞ ¼ exp½−ðxaM − 1Þ�; ð3Þ

for the isoscalar mesons and

hϱðxÞ ¼ exp½−aϱðx − 1Þ�; ð4Þ

for the ϱ coupling; see [57]. We will describe static uniform
matter in its ground state within the mean field approxi-
mation. The mesonic fields are replaced by their expect-
ation values and only the timelike components of the vector
fields, ω0, ϕ0 and the third isospin component of the ϱ field
ϱ03, survive. In the mean field approximation, the Euler-
Lagrange equations of all the fields are given by

m2
σσ ¼

X
B¼n;p;Λ;Ξ−

ΓBσψ̄BψB; ð5Þ

m2
ωω0 ¼

X
B¼n;p;Λ;Ξ−

ΓBωψ̄Bγ0ψB; ð6Þ

m2
ϱϱ

0
3 ¼

1

2

X
B¼n;p;Ξ−

ΓBϱψ̄Bγ0τ3ψB: ð7Þ

The nucleon number density ρ ¼ hψ̄γ0ψi and scalar density
ρs ¼ hψ̄ψi at zero temperature are defined as

ρ ¼ γ

2π2
X

B¼p;n;Λ;Ξ−

Z
kFB

0

k2dk; ð8Þ

ρs ¼
γ

2π2
X

B¼p;n;Λ;Ξ−

Z
kFB

0

m�
Bk

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2

B þ k2
p dk; ð9Þ

where γ is the spin degeneracy factor, kFB
is the Fermi

momentum of baryon B with effective nucleon mass is
m�

B ¼ mB − ΓBσσ and chemical potential μB ¼ νB þ
ΓBωω0 þ ΓBϱτ3Bϱ

0
3 þ Σr, with τ3B the isospin projection.

The rearrangement term Σr assures thermodynamic con-
sistency. It arises due to the density-dependence of the
couplings and is expressed as

Σr ¼
X

B¼n;p;Λ;Ξ−

�
−
∂ΓBσ

∂ρB
σρsB þ ∂ΓBω

∂ρB
ω0ρB

þ ∂ΓBϕ

∂ρB
ϕ0ρB þ ∂ΓBϱ

∂ρB
τ3Bρ

0
3ρB

�
: ð10Þ

The energy density is defined as

ε ¼ 1

π2
X

B¼n;p;Λ;Ξ−

Z
kFB

0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

B

q
dkþ 1

2
m2

σσ
2

þ 1

2
m2

ωω
2
0 þ

1

2
m2

ϕϕ
2
0 þ

1

2
m2

ϱðϱ03Þ2 þ εlep: ð11Þ

In this expression the last term takes into account the
leptonic contribution of both electrons and muons. The
pressure P is calculated from the Euler relation,
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P ¼
X

i¼n;p;Λ;Ξ−;e;μ

μiρi − ε; ð12Þ

where μi and ρi are, respectively, the chemical potential and
the number density of particle i.
We consider that cold β-equilibrium matter is an electri-

cally neutral matter. These two conditions impose some
relation between the particle chemical potentials and
densities, in particular,

μB ¼ μn − qBμe and μe ¼ μμ; ð13Þ

with qB the electric charge of baryon B and μn, μe, μμ the
neutron, electron and muon chemical potential, respec-
tively; and

ρp ¼ ρΞ− þ ρe þ ρμ; ð14Þ

with ρp, ρΞ− , ρe and ρμ the number density of protons,
cascades, electrons and muons, respectively.
For the crust EOS, the procedure described in [43]

will be considered: the outer crust is described by the
Bethe-Pethick-Sutherland (BPS) EOS; The outer crust
and the core are joined using a polytropic function [58]
pðεÞ ¼ a1 þ a2εγ, where the parameters a1 and a2 are
determined in such a way that the EOS for the inner crust
joins the upper layer of the outer crust at (ρ ¼ 10−4 fm−3)
to the core EOS at (ρ ¼ 0.04 fm−3). The polytropic index γ
is taken to be equal to 4=3. It has been discussed in [17,59]
that this approximation introduces an uncertainty on the
radius of the low mass NS. In order to decrease the uncer-
tainty, the core EOS is used also to describe the upper layers
of the inner crust, since the inner crust EOS does not differ
much from the homogeneous EOS for densities close to the
transition to the core [60]. In [43] we have estimated that
this procedure introduces for models with a symmetry
energy compatible with the χEFT PNMEOS an uncertainty
not greater than 100–200 m.

B. Nuclear matter parameters (NMPs)

The EOS of nuclear matter can be decomposed into two
parts with a good approximation: (i) the EOS for symmetric
nuclear matter ϵðρ; 0Þ and (ii) a term involving the
symmetry energy coefficient SðρÞ and the asymmetry δ,

ϵðρ; δÞ ≃ ϵðρ; 0Þ þ SðρÞδ2; ð15Þ

where ϵ is the energy per nucleon at a given density ρ and
isospin asymmetry δ ¼ ðρn − ρpÞ=ρ. The EOS can be
transformed in terms of various bulk nuclear matter proper-
ties of order n at saturation density: (i) for the symmetric
nuclear matter, the energy per nucleon ϵ0 ¼ ϵðρ0; 0Þ
(n ¼ 0), the incompressibility coefficient K0 (n ¼ 2), the
skewness Q0 (n ¼ 3), and the kurtosis Z0 (n ¼ 4), respec-
tively, given by

XðnÞ
0 ¼ 3nρn0

�
∂
nϵðρ; 0Þ
∂ρn

�
ρ0

; n ¼ 2; 3; 4; ð16Þ

(ii) for the symmetry energy, the symmetry energy at
saturation Jsym;0 (n ¼ 0),

Jsym;0 ¼ Sðρ0Þ; SðρÞ ¼ 1

2

�
∂
2ϵðρ; δÞ
∂δ2

�
δ¼0

; ð17Þ

the slope Lsym;0 (n ¼ 1), the curvature Ksym;0 (n ¼ 2), the
skewness Qsym;0 (n ¼ 3), and the kurtosis Zsym;0 (n ¼ 4),
respectively, defined as

XðnÞ
sym;0 ¼ 3nρn0

�
∂
nSðρÞ
∂ρn

�
ρ0

; n ¼ 1; 2; 3; 4: ð18Þ

C. Bayesian estimation of model parameters

A Bayesian inference approach estimates the parameter
values by updating a prior belief of the model parameters
(i.e., prior distribution) with new evidence (i.e., observed/fit
data) via optimizing a likelihood function, resulting in a
posterior distribution. The marginalized posterior dis-
tributions of model parameters enables one to carry out
a detailed statistical analysis of all the predicted quantities
by the models. The posterior distributions of the model
parameters θ in Bayes’ theorem can be written as

PðθjDÞ ¼ LðDjθÞPðθÞ
Z

; ð19Þ

where θ and D denote the set of model parameters and the
fit data. PðθÞ in Eq. (19) is the prior for the model
parameters and Z is the evidence. The type of prior can
be chosen with the preliminary knowledge of the model
parameters. One can choose it to be a uniform prior, which
has been used as a baseline for many analyses. The PðθjDÞ
is the joint posterior distribution of the parameters, LðDjθÞ
is the likelihood function. The posterior distribution of a
given parameter can be obtained by marginalizing PðθjDÞ
over the remaining parameters. The marginalized posterior
distribution for a parameter θi is obtained as

PðθijDÞ ¼
Z

PðθjDÞ
Y
k≠i

dθk: ð20Þ

We use a Gaussian likelihood function defined as

LðDjθÞ ¼
Y
j

1ffiffiffiffiffiffiffiffiffiffi
2πσ2j

q e
−1
2
ðdj−mjðθÞ

σj
Þ2
: ð21Þ

Here the index j runs over all the data, dj and mj are the
data and corresponding model values, respectively. The σj
are the adopted uncertainties.
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Sampling- We employ the nested sampling technique to
sample the prior distribution for this work. It was first
proposed in Ref. [61] and suitable for low dimensional
problem. In nested sampling, the posterior is broken into
many nested “slices” with starting “n-live” points; samples
are generated from each of them and then recombined to
reconstruct the original distribution. We invoke the
Pymultinest sampler [62,63] in the python library and
generate samples for starting 4000 “n-live” points.

III. RESULTS

We consider that it is important to introduce two
hyperons, a neutral one and a negatively charged one:
the neutral one will mitigate the neutron pressure as soon as
its chemical potential is equal to the neutron chemical
potential; the negatively charged one is important because
its onset is favored to relieve the electron pressure. Other
hyperon species could set in, but it is expected that their
overall influence in the NS properties would be small and,
in order to keep the picture the simplest possible, we restrict
the present study to the inclusion of the Λ and Ξ− hyperons
as exotic degrees of freedom in NS matter. The reason to
choose these two hyperons are Λ is the first hyperon to set
in, if we consider that the Σ-hyperon couples repulsively to
nuclear matter, as the nonexistence of Σ-hypernuclei seems
to indicate [56]; the second hyperon is not so clear, but
considering for the Σ-hyperon a repulsive optical potential,
its onset is frequently shifted to densities above the onset of
the Ξ− [12,17,45,64].
In our study, we adopt the SU(6) values for the couplings

to vector-isoscalar mesons,

gωΞ− ¼ 1

3
gωN ¼ 1

2
gωΣ; ð22Þ

gϕΞ− ¼ 2gϕΣ ¼ −
2

ffiffiffi
2

p

3
gωN; ð23Þ

and assume

gρB ¼ gρN; ð24Þ
for the ρ-meson, the isospin properties of the different
baryons being taken into account in the Lagrangian density
(1). With this choice of couplings to the vector mesons, the
σ-meson coupling to the Λ-hyperon was fitted to hyper-
nuclei properties for several RMF models in [19,44,65].
Expressing this coupling parameter in terms of the coupling
to the nucleon, gσΛ ¼ xσΛgσN , the fraction xσΛ was deter-
mined for each model and values between 0.609 and 0.622
have been obtained. The calibration of the gσΞ− coupling
was performed in [45] with the same assumption for the
vector mesons. The coupling of the σ-meson to the Ξ− was
fitted to the experimental binding energy of two single-Ξ
hypernuclei, 15

Ξ C and 12
ΞBe, and values between 0.309 and

0.321 have been obtained for xσΞ−. In our study, we allow

the fractions xσΛ and xσΞ− to vary in the intervals
[0.609,0.622] and [0.309,0.322], respectively.
We generate the distribution of DDH model parameters

for each set within a Bayesian parameter estimation
approach considering a given set of fit data related with
the nuclear saturation properties, the pure neutron matter
EOS calculated from a precise N3LO calculation in χEFT
and the lowest bound of NS observational maximum mass.
The three different sets of EOSs considered for the present
study are (i) a set of only nucleonic EOS (DDB) [43], prior
defined by numbers 1 to 6 of Table I, (ii) a set of EOS that
includes nucleons and the Λ hyperon (DDBΛ), prior
defined by numbers 1 to 7 of Table I, and (iii) a set of
EOS with nucleons and the Λ and Ξ− hyperons
(DDBΛΞ−), prior defined by numbers 1 to 8 of Table I.
In particular, the last two sets are generated in this work and
the number of EOS in each set is ∼15; 000. The margin-
alized posterior distributions of model parameters in each

TABLE I. The uniform prior (P) setup considered for the DDH
model parameters in this work. The parameters “min” and “max”
denote the minimum and maximum values for the uniform
distribution.

No. Parameters

P

Min Max

1 Γσ;0 6.5 13.5
2 Γω;0 7.5 14.5
3 Γϱ;0 2.5 8.0
4 aσ 0.0 0.30
5 aω 0.0 0.30
6 aϱ 0.0 1.30
7 xσΛ 0.609 0.622
8 xσΞ− 0.309 0.322

TABLE II. The constraints used in the Bayesian inference of
the model parameters to generate the nucleonic set DDH and the
two hyperonic EOS sets DDBΛ and DDBΛΞ−: the binding
energy per nucleon ϵ0, the incompressibility K0 and the sym-
metry energy Jsym;0 calculated at the nuclear saturation density ρ0,
including an 1σ uncertainty; the pressure of pure neutron matter
PNM determined at the densities 0.08, 0.12 and 0.16 fm−3 from a
N3LO calculation in χEFT [21], with 2 × N3LO uncertainty in
the likelihood.

Constraints

Quantity Value=Band Refs.

NMP [MeV] ρ0 0.153� 0.005 [57]
ϵ0 −16.1� 0.2 [66]
K0 230� 40 [67,68]

Jsym;0 32.5� 1.8 [69]

PNM [MeV fm−3] PðρÞ 2 × N3LO [21]
NS mass [M⊙] Mmax >2.0 [9]
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EOS set enable us to perform a detailed statistical analysis
of the nuclear matter parameters and the NS properties. The
marginalized posterior distributions of the model parame-
ters, applying a Bayesian estimation, requires the definition
of the likelihood, of the fit data and of the priors for the
model parameters. The likelihood has been defined in
Sec. II C; see Eq. (21). The list of fit data considered for the
present study is presented in Table II.

In Fig. 1 we plot the distribution of model parameters for
all the three different cases: (i) DDB, (ii) DDBΛ and,
(iii) DDBΛΞ−. The confidence ellipses for two-dimen-
sional posterior distributions are plotted with 1σ, 2σ and 3σ
confidence intervals (CI). The marginalized 1D distribution
of each and every individual parameter is shown in the
diagonal blocks of the corner plot. The vertical lines shown
in the 1D distributions indicate the 68% min, median and
68% max CI of the model parameters, respectively. The
inclusion of hyperons tends to make the EOS softer.
Imposing simultaneously the 2 M⊙ NS maximum mass
constraint, which is considered in every case, pushes the
EOS to a stiffer regime. It can be noted from the figure that
only the values for the couplings Γσ;0 and Γω;0 closer to the
upper limit of the prior, and the values of aσ and aω
parameters closer to the lower limit of the prior (see Table I)
can sustain the 2 M⊙ constraint, when hyperons are
included. As a consequence, the different CI for the
parameters Γσ;0, Γω;0, aσ and aω get shrunk with respect
to DDB in the case of DDBΛ and further shrunk in the case
of DDBΛΞ−. The Ξ− makes the EOS in DDBΛΞ− set even
softer than EOS belonging to the DDBΛ set. However, it
should be referred that the parameters defining the ρmeson
couplings are not effected by the presence of hyperons. As
mentioned earlier, the priors of the parameters xσΛ and xσΞ−

are taken to be uniform distribution in the intervals
[0.609,0.622] and [0.309,0.322], respectively. The pos-
terior obtained for those two parameters are also uniform
and are not shown in the figure.
We now proceed to analyze the ensemble of EOSs

obtained for the three different sets DDB, DDBΛ and
DDBΛΞ−. In Fig. 2, (left) we plot the particle fraction
along with associated 90% CI for proton, Λ and Ξ−

hyperon, (right) the pressure for the three different sets
as a function of baryon density ρ. In the right panel, we also

FIG. 1. Corner plot for the marginalized posterior distributions
of the model parameters. The 68% CI are indicated with vertical
lines for the DDB (red), DDB with Λ hyperon (green) and DDB
with Λ and Ξ− hyperon (black) sets. Also shown are the 1σ, 2σ
and 3σ CI (tonalities from dark to light) of the two-dimensional
posterior distributions ellipses.

FIG. 2. The median and 90% CI for the particle fractions Xi (protons (p) “dashed line”, lambdas (Λ) “solid line” and cascades (Ξ−)
“dotted line”) (left panel) and for the NS matter pressure (right panel) versus baryonic density ρ for the DDB (red), DDBΛ (green) and
DDBΛΞ− (dotted) sets. The GW170817 constraints for the pressure [50] are also shown.
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plot the constraints for NS matter EOS obtained from
GW170817 analysis [50] for comparison. The onset of
hyperons has a strong effect on the proton fraction: if only
Λ-hyperons are considered the proton fraction decreases to
fractions well below 10% while the Λ fraction can reach
fractions as high as ∼50%; the inclusion of Ξ− increases
slightly the proton fraction and reduces the Λ fraction to
values below 30%. A decrease of the proton fraction
disfavors the nucleonic Urca process. However, the onset
of hyperons opens other Urca channels [17,45]. The 90%
CI of β-equilibrium pressure as a function of baryon density
obtained for all the three, DDB, DDBΛ and DDBΛΞ− are
fully compatible with the GW170817 constraints. It is to be
noted that the analysis performed for GW170817 did not
impose the 2 M⊙ constraint.

We perform next a statistical analysis of the NMPs and
neutron star properties, namely, mass, radius, central speed-
of-sound square and energy density, and dimensionless
tidal deformability using the calculated marginalized pos-
terior distributions of the model parameters for three sets
(DDB, DDBΛ and DDBΛΞ−). The NS masses and radii
were calculated from the Tolman-Oppenheimer-Volkoff
equations [70,71] and the dimensionless tidal deformability
(Λ̄ ¼ 2

3
k2ðM=RÞ−5, k2 is the second Love number) from the

equations obtained in [72]. In Table III, we present the
median values and the associated 90% CI uncertainties of
the NMPs and of some NS properties, namely, the
gravitational mass Mmax, the baryonic mass MB;max, the
central speed-of-sound square c2s , the central energy density
εc, fraction of Λ (Xc

Λ) and Ξ− (Xc
Ξ−) hyperon at the center of

TABLE III. The median values and the associated 90% CI of the NMPs defined in Eqs. (16) and (18), and NS properties, the
gravitational massMmax, baryonic massMB;max, radius Rmax, central energy density εc, central number density for baryon ρc and square
of central speed-of-sound c2s of the maximum mass NS, the radius RMi

and the dimensionless tidal deformability Λ̄Mi
for NS mass

Mi ∈ ½1.4; 1.6; 1.8; 2.08� M⊙, and the effective tidal deformability Λ̃ for the GW170817 merger with q ¼ 1 (q is the mass ratio of NSs
involved in binary merger) obtained for the DDB, DDBΛ and DDBΛΞ− sets. The Xc

Λ and Xc
Ξ− are the fraction of Λ and Ξ− at the core of

the maximum mass NS, respectively.

Quantity Units

DDB DDBΛ DDBΛΞ−

Median

90% CI

Median

90% CI

Median

90% CI

Min Max Min Max Min Max

NMP ρ0 fm−3 0.153 0.147 0.158 0.152 0.147 0.157 0.152 0.147 0.157
ε0 −16.10 −16.41 −15.80 −16.09 −16.40 −15.79 −16.09 −16.39 −15.79
K0 231 201 276 260 235 300 273 249 309
Q0 −109 −256 130 58 −82 285 138 −4 352
Z0 1621 735 2020 1491 826 1755 1420 809 1668

Jsym;0 MeV 32.19 29.38 34.81 32.22 29.50 34.79 32.15 29.48 34.83
Lsym;0 41.26 22.79 65.16 42.37 24.84 65.18 43.52 25.92 65.27
Ksym;0 −116 −150 −73 −104 −134 −64 −97 −127 −59
Qsym;0 966 317 1469 981 355 1461 966 356 1447
Zsym;0 −6014 −11564 −1911 −6548 −11947 −2519 −6740 −12109 −2768

NS Mmax M⊙ 2.144 2.021 2.355 2.061 2.012 2.167 2.049 2.010 2.137
MB;max M⊙ 2.552 2.386 2.835 2.414 2.350 2.552 2.391 2.340 2.504
c2s c2 0.65 0.53 0.72 0.49 0.45 0.52 0.48 0.44 0.50
ρc fm−3 0.946 0.879 0.970 0.951 0.880 0.964 0.928 0.870 0.961
εc MeV fm−3 1173 1130 1173 1173 1086 1173 1130 1065 1173
Xc
Λ � � � � � � � � � 0.466 0.442 0.487 0.269 0.251 0.287

Xc
Ξ− � � � � � � � � � � � � � � � � � � 0.153 0.146 0.159

Rmax 11.09 10.56 11.74 11.58 11.30 11.99 11.75 11.52 12.09
R1.4 12.62 12.07 13.21 12.98 12.62 13.43 13.12 12.79 13.52
R1.6 km 12.53 11.95 13.18 12.97 12.61 13.41 13.13 12.82 13.52
R1.8 12.36 11.72 13.11 12.83 12.46 13.32 13.02 12.71 13.45
R2.08 12.01 11.10 12.93 12.35 11.80 13.04 12.52 12.00 13.12
R2.2 12.15 11.43 12.86 12.60 12.18 13.09 12.66 12.45 12.95
Λ̄1.4 454 339 625 568 480 708 615 534 744
Λ̄1.6 185 132 269 243 202 308 268 231 328
Λ̄1.8 � � � 79 52 125 106 85 142 120 101 153
Λ̄2.08 22 11 43 27 18 45 30 20 47
Λ̃q¼1.0 454 339 625 568 480 708 615 534 744
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the NS, and the radius Rmax of maximum mass NS, as well
as the radius and the dimensionless tidal deformability for
1.4, 1.6, 1.8 and 2.08 M⊙ NS (also the radius of 2.2 M⊙
NS and combined tidal deformability Λ̃q¼1 for mass
fraction q ¼ 1 in a binary NS meager) obtained for
DDB, DDBΛ and DDBΛΞ−. In Figs. 3 and 4 are given
the corner plots for the same few quantities, respectively,
NMPs and NS properties. Some conclusions can be drawn
from the above PDs of NMPs and NS properties: the joint
inclusion of hyperons and the two solar mass constraint has
major effects on the isoscalar channel. For example, the
median values of nuclear incompressibility K0 are
231 MeV, 260 MeV and 273 MeV respectively, for

DDB, DDBΛ and DDBΛΞ−. It is to be noted that K0 ¼
230� 40 MeV is in part of the fit data for all the three
cases; however the lower values of K0 are not able to
produce 2 M⊙ NS in the presence of Λ and Λ − Ξ−

hyperons in the DDBΛ and DDBΛΞ− sets, respectively.
A similar behavior can also be seen for the skewness
coefficient Q0. On the other hand, the NMPs patterning to
the density dependence of the symmetry energy remain
similar in all the three cases. Only minor changes
(∼1%–2%) are observed in the curvature parameter of
the symmetry energy Ksym;0.
Next we analyze the NS properties of the three EOSs

sets. The hyperons have a major impact on the star

FIG. 3. Corner plot for the NMPs marginalized posterior distributions (MeV) calculated for the DDB (red), DDB with Λ hyperon
(green) and DDB with Λ plus Ξ− hyperon (black) sets, see Eqs. (16) and (18). The vertical lines indicate the 68% CI and the different
tonalities from dark to light indicate, respectively, the 1σ, 2σ, and 3σ CI.
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properties. The 90% CI maximum limits of NS maximum
mass reduces by 8% and 9% in case of the DDBΛ and
DDBΛΞ− sets compared to the DDB set, respectively. This
arises because the presence of hyperons disfavors large
maximum masses. As a consequence, the tail of the
maximum mass distribution of the DDB set that extends
beyond 2.4 M⊙, stops at ≈2.25 M⊙ for the other two sets.
The well defined peaks of the DDBΛ and DDBΛΞ−

distributions are due to the fact that the three sets have
the same number of EOS, but the two sets that include
hyperons have all the maximum mass stars in a smaller
interval, 2≲Mmax ≲ 2.25 M⊙.

The clear distinction between only nucleonic and nucle-
onic-hyperonic sets is also seen in Fig. 4 where the
distribution of the square of the speed-of-sound at the
NS centre, c2sðρcÞ, is plotted. Hyperons give rise to a strong
reduction of the speed of sound in the centre of the star,
being larger if the two hyperons are included. This is a
reflection of the softening of the EOS due to the onset of
new degrees of freedom.
The NS radius and the tidal deformability for 1.4 M⊙

stars also show noticeable changes in the hyperonic sets
compared with the nucleonic set. It was discussed above
that the presence of hyperons together with the two solar

FIG. 4. Corner plot for the marginalized posterior distributions of some NS properties: gravitational mass Mmax, baryonic mass
MB;max, the square of central speed-of-sound c2s , the central baryonic density ρc, the radius R1.4 and the dimensionless tidal deformability
Λ̄1.4 for 1.4 M⊙ NS for the DDB (red), DDB with Λ hyperon (green) and DDB with Λ and Ξ− hyperon (black) sets. The vertical lines
indicate the 68% CI, and the dark to light intensities represent, respectively, the 1σ, 2σ, and 3σ CI.
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mass constraint give rise to stiffer isoscalar EOS. A direct
consequence is seen in the larger radii and tidal deform-
abilities predicted by the sets DDBΛ and DDBΛΞ− for
radius and tidal deformability of the 1.4 M⊙ stars.
Some other NS properties are given in Table III, in

particular, the median, maximum and minimum of the 90%
CI of the radii and tidal deformabilities of stars with masses
1.6, 1.8, 2.08 and 2.2 M⊙ as well as the effective tidal
deformability Λ̃q¼1 of a NS binary of two equal mass stars
with a chirp mass 1.186 M⊙, q is the mass ratio of NSs
involved in binary merger. The trend on the radii is the
same seen in the corner plot Fig. 3: the two solar mass
constraint and the presence of hyperons results in larger
0.15 to 0.3 km maximum limits and 0.7 to 1 km minimum
limits, and similar effects on the tidal deformabilities. The
effective tidal deformability Λ̃q¼1 is compatible with results
from the GW170817 detection [73]. We also include in the
table information on the hyperon fraction in the center of
maximum mass stars. If only Λs are included the hyperon
fraction take values above 45%. In a calculation with Λs
and Ξ−s the hyperon is just slightly smaller, but above 40%.
In order to better understand the model DDH used in the

present study and the consequences of introducing hyper-
ons subject to the two solar mass constraint, we show in
Fig. 5 the conditional probabilities distribution PðRjMÞ for
the nucleonic EOSs corresponding to the three sets DDB,
DDBΛ and DDBΛΞ− (“no hyperons” are include in the last
two sets). It is to be noted that the “no hyperons” refers to
the case where we obtain nucleonic EOS with the parameter

distribution of hyperonic sets by switching off the hyper-
ons. The left panel of Fig. 5 shows that the DDHmodel and
the parameter domain defined in Table I spans the whole
space of interest. To exemplify this statement we plot on top
of the 99% CI M-R curves for the nucleonic EOSs within
DDH (DDB, DDBΛ and DDBΛΞ−) sets the M-R curves
obtained within several RMF models with average and
extreme properties: DD2 [74], DDME2 [75], DDMEX and
DDLZ1 [76], FSU2R [77], SFHo [78], TW [57]. Our
parametrization at 99% CI covers almost all the RMF EOS.
In the same figure, the pink band represents a large set of
Skyrme forces [79], which can describe stars with smaller
radii but are not intrinsically causal, and it was an objective
of the present study to work within a framework that by
construction includes causality. In the right panel of Fig. 5,
we show the 90% CI M-R bands obtained for the nucleonic
DDB (grey band), DDBΛ (dotted band) and DDBΛΞ−

(slashed band) sets; i.e., no hyperons are included in the last
two sets. The main conclusion is that if hyperons really
exist inside NS that attain 2 M⊙ then the nuclear matter
properties correspond to stiffer EOS, that give rise to larger
radii and slightly larger maximum masses, a similar
conclusion was drawn in [20]. The sets of nucleonic
EOS corresponding to the DDBΛ and DDBΛΞ− sets could
also have been generated within the DDB models but
would lie outside the DDB 90% CI region.
In Fig. 6, we plot the 90% CI region obtained from the

conditional probabilities PðRjMÞ (left) and PðΛjMÞ (right)
for the posterior distributions of the DDB, DDBΛ and

FIG. 5. Left panel: 99% CI of the conditional probabilities distribution PðRjMÞ obtained for the nucleonic DDH EOSs with DDB,
DDBΛ and DDBΛΞ− sets (dotted region) together with the M-R curves determined for some RMF models with average and extreme
properties: DD2 [74], DDME2 [75], DDMEX and DDLZ1 [76], FSU2R [77], SFHo [78], TW [57]. The pink band represents a set of
MR curves obtained in the framework of Skyrme forces [79]. Right panel: conditional probabilities PðRjMÞ region defined by the
nucleonic DDB set (grey region), the nucleonic DDBΛ set (dotted region) and the nucleonic DDBΛΞ− set (slashed region) at 90% CI. In
both panels, the 90% (solid) and 50% (dashed) CI for the binary components of the GW170817 event [73] are represented by the gray
lines. The 1σ (68%) confidence region for the 2D posterior distribution in mass-radii domain from the millisecond pulsar PSR
J0030þ 0451 NICER x-ray data (the cyan hatched and yellow) [46,47]. The horizontal (radius) and vertical (mass) error bars represent
the 1σ confidence interval obtained for the 1D marginalized posterior distribution of the same NICER data. The blue bars in both panel
represents the 90% CI radius of the PSR J0740þ 6620 with 2.08 M⊙ [80].

TUHIN MALIK and CONSTANÇA PROVIDÊNCIA PHYS. REV. D 106, 063024 (2022)

063024-10



DDBΛΞ−; i.e., for a given massM the 90% CI distribution
of the radius R and the tidal deformability Λ̄ is shown. We
represent observational constraints with two blue bars: the
90% CI radius for a 2.08 M⊙ star determined in [80] is
included in the left panel and the 90%CI determined in [50]
for the 1.36 M⊙ tidal deformability in the right panel. The
gray regions indicate the 90% (solid) and 50% (dashed) CI
associated with the binary component of the GW170817
event [73]. We have also included the constraints set by the
PSR J0030þ 0451 NICER x-ray data [46,47]. These
figures confirm the trend already discussed: NS with a
mass above 2 M⊙ has larger radii and subsequently larger
tidal deformations if hyperons are included. The present
observational constraints either from LIGO-Virgo or from
NICER can not rule out the presence of hyperons in the
core of a NS. We conclude that future precise measurement
of simultaneous mass and radius or tidal deformation of NS
masses above 2 M⊙ maximum mass will bring some
information on the possible presence of hyperonic degrees
of freedom inside NS core: the measurement of a two solar
mass star with R < 11.5 km would indicate that no hyper-
ons are present in the NS core.
We have already referred to the effect of hyperons on the

speed of sound at the center of the NS. It is, however,
interesting to discuss the behavior of the speed of sound
with density within the three sets DDB, DDBΛ and
DDBΛΞ−; see Fig. 7 (top). It was shown that 2 M⊙
NSs requires a speed of sound well above the conformal

limit 1=
ffiffiffi
3

p
and which implies that neutron star matter is a

strongly interacting system [81–85]. Compared with the
DDB set, the appearance of Λ and Λ − Ξ− hyperons gives
rise to: an increase of the speed of sound below ∼2ρ0,

FIG. 6. The 90% CI region calculated from the conditional probabilities PðRjMÞ (left) and PðΛjMÞ (right) for the sets DDB (red),
DDBΛ (green) and DDBΛΞ− (dotted). The 90% (solid) and 50% (dashed) CI for the binary components of the GW170817 event [73]
are represented by the gray lines in the left panel. The 1σ (68%) confidence region for the 2D posterior distribution in mass-radii domain
from the millisecond pulsar PSR J0030þ 0451 NICER x-ray data (the cyan hatched and yellow) [46,47]. The horizontal (radius) and
vertical (mass) error bars represent the 1σ confidence interval obtained for the 1Dmarginalized posterior distribution of the same NICER
data. The blue bars represent: the 90% CI radius of the PSR J0740þ 6620 with 2.08 M⊙ [80] (left panel) and the 90% CI tidal
deformability of a 1.36 M⊙ star [50] (right panel).

FIG. 7. The median and 90% CI of the square of sound velocity
c2s (top) and the polytropic index γ introduced in [86] (bottom) as
a function of baryon density for DDB, DDBΛ and DDBΛΞ− sets.
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followed by a decrease of c2s between 2 and 3ρ0 and finally
a soft increase of c2s until values below 0.5 c2 at the center
of the star, well below the ∼0.7c2 obtained with DDB.
Finally, let us also discuss the polytropic index intro-

duced in [86] γ ¼ ∂ ln p=∂ ln ϵ as a quantity that could
convey information on a possible phase transition to
deconfined quark matter. In this study, where a huge set
of EOS using a speed of sound interpolation method
connecting the low densities constrained by the χEFT
neutron matter pressure and the very high densities con-
strained by to pQCD, it was suggested that γ ≈ 1.75 could
be identified with the onset of quark matter. The authors
also indicate γ ≈ 2.5 as characterizing the EOS at saturation
or just above. In Fig. 7 (bottom), the γ index is plotted for
the three sets of models used in the present study, for
densities above the saturation density. We confirm that,
indeed, for densities just above 2ρ0 the γ takes values of the
order of 2.4–3.0. With the onset of hyperons the γ index
reduces quite steeply and takes values of the order of
≈1.6–1.8 above 3ρ0. On the other hand, the γ index
associated with the EOS of the nucleonic set DDH
decreases smoothly and attains the value ≈1.75 above
5ρ0. These results seem to indicate that although a γ index
of the order of 1.75 at not too large densities may indicate
the onset of some kind of exotic matter, it is not necessarily
associated with quark matter. Nucleonic matter may also
attain a value of the order of ≈1.75 but for much larger
densities.

IV. SUMMARY AND CONCLUSIONS

We have analyzed the possible signatures of the presence
of hyperons inside NS. The study was undertaken within a
relativistic mean field description of hadronic matter
considering density dependent couplings [43,57]. Three
sets (∼15; 000 EOSs in each set) were generated using a
Bayesian inference approach and imposing a minimal set of
nuclear matter constraints and a NS maximum mass above
2 M⊙: DDB set including just nucleons, DDBΛ with
nucleons and Λs and DDBΛΞ− with nucleons, Λs and
Ξ−. The hyperon couplings were fixed taking into account
the present information on hypernuclei [19,44,56,65,87]
and considering the SU(6) quark model predictions for the
isoscalar vector meson couplings. All the three sets were
constrained to describe a two solar mass NS.
We could conclude that the 2 M⊙ constraint has strong

effects on the NS properties if hyperonic degrees of
freedom are included. This is because the joint two solar
mass constraint and the onset of new degrees of freedom
imposes a harder isoscalar channel with larger isoscalar
NMP as the K0, Q0 and Z0. In particular, the incompress-
ibility K0 is in average 30 to 50 MeV larger than the one
obtained for the DDH set, however, still taking values that
are perfectly within the accepted ones. One the other hand,
the isosvector channel is not affected by the inclusion of
hyperons. The harder EOS have noticeable effects on the

star radius, giving rise to larger radii, both for stars with a
mass close to the canonical one or with a mass around two
solar masses.
Some observations that would exclude the presence of

hyperons, or reduce it to a negligible fraction, would be: the
detection of a 1.4 M⊙ star with a radius below 12.5 km; a
two solar mass star with a radius below 11.5 km; or a
maximum mass above ∼2.2 M⊙.
The results of the present study corroborate and general-

ize the conclusions drawn in [20], where the properties of
NS obtained with 14 EOS of dense matter with hyperons,
which predict NS with at least two solar masses, were
compared with the properties of three widely used nucle-
onic EOS. In this study, the authors refer that the 14
hyperonic EOS used in their analysis do not satisfy the
PNM constraints on the pressure obtained in the chiral EFT
calculation of [21]. They conclude that models that predict
a sizable amount of hyperons in massive NS also predict for
1.0–1.6 M⊙ NS radii above 13 km. On the other hand, if
these stars have radii below 12 km, sizable hyperon cores
are ruled out in massive stars. Notice, however, that in [17]
it was shown that some of the hyperonic EOS studied were
predicting radii below 13 km for 1.4 M⊙ stars. These were
the DD2 [74] and DDME2 [75] models. In the present
study, the three sets of EOS used to draw our conclusions
all satisfy the PNM constraints of [21] within 2σ, also the
sets DDBΛ and DDBΛΞ−. It is true, however, that the
hyperonic sets show a stiffer behavior than the nucleonic
set. We also conclude that if the two solar mass maximum
mass constraint is imposed, NS from the DDBΛ and
DDBΛΞ− have in average larger radii. In particular,
1.4 M⊙ NS with radii ≲12 km were only obtained with
the DDB set, although stars with R1.4 ≳ 12.5 km are
present in the DDBΛ and DDBΛΞ− sets.
Finally, it is shown that if the polytropic γ index,

introduced in [86], takes values of the order of 1.75 at
not too large densities, ≈3ρ0, it may indicate the onset of
some kind of exotic matter, which, however, is not
necessarily quark matter. In the present study, it is hyper-
onic matter. The γ index of nucleonic matter may also attain
values ≈1.75 but at much larger densities.
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